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Abstract

The present work exemplifies how parameter identifiability analysis can be used to gain insights into differences in
experimental systems and how uncertainty in parameter estimates can be handled. The case study, presented here,
investigates interferon-gamma (IFNc) induced STAT1 signalling in two cell types that play a key role in pancreatic cancer
development: pancreatic stellate and cancer cells. IFNc inhibits the growth for both types of cells and may be prototypic of
agents that simultaneously hit cancer and stroma cells. We combined time-course experiments with mathematical
modelling to focus on the common situation in which variations between profiles of experimental time series, from different
cell types, are observed. To understand how biochemical reactions are causing the observed variations, we performed a
parameter identifiability analysis. We successfully identified reactions that differ in pancreatic stellate cells and cancer cells,
by comparing confidence intervals of parameter value estimates and the variability of model trajectories. Our analysis shows
that useful information can also be obtained from nonidentifiable parameters. For the prediction of potential therapeutic
targets we studied the consequences of uncertainty in the values of identifiable and nonidentifiable parameters.
Interestingly, the sensitivity of model variables is robust against parameter variations and against differences between IFNc
induced STAT1 signalling in pancreatic stellate and cancer cells. This provides the basis for a prediction of therapeutic
targets that are valid for both cell types.

Citation: Rateitschak K, Winter F, Lange F, Jaster R, Wolkenhauer O (2012) Parameter Identifiability and Sensitivity Analysis Predict Targets for Enhancement of
STAT1 Activity in Pancreatic Cancer and Stellate Cells. PLoS Comput Biol 8(12): e1002815. doi:10.1371/journal.pcbi.1002815

Editor: Scott Markel, Accelrys, United States of America

Received April 1, 2012; Accepted October 1, 2012; Published December 20, 2012

Copyright: � 2012 Rateitschak et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the Bundesministerium für Bildung und Forschung through the FORSYS partner program (grant number
0315255 to KR) and the Deutsche Forschungsgemeinschaft (to RJ). FW received a grant from the Interdisciplinary Faculty of the University of Rostock. OW
acknowledges support from the Helmholtz Society as part of the systems biology network. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: katja.rateitschak@uni-rostock.de

Introduction

Progression of pancreatic cancer (PC) is accelerated by an

extended fibrosis, which has been linked to the activation of

pancreatic stellate cells (PSC) [1–3]. Therefore therapies will be

particularly effective if they simultaneously hit carcinoma and

stroma cells. IFNc acts as an antagonist of PSC activation and

displays inhibitory effects on PC growth by inducing the STAT1

signalling pathway in both cell types [4,5]. While the qualitative

effects of IFNc were the same in cancer and stellate cells, a

quantitative analysis revealed significant differences. Specifically,

IFNc inhibited PSC proliferation more efficiently than tumour cell

growth. The stronger biological effect of IFNc in PSC correlated

with a more pronounced nuclear accumulation of STAT1 in the

stroma cells [4–6], raising the question which molecular mecha-

nisms are underlying these observations.

IFNc-induced STAT1 signalling was investigated by combining

experimental and theoretical systems biology in [5,6]. The same

structure of an ordinary differential equation (ODE) model could be

used for both cell types. The parameter values were estimated from

experimental time series for STAT1 phosphorylation and protein

expression and expression of the STAT1 target gene suppressor of

cytokine signaling 1 (SOCS1) using global optimization.

The present work is motivated by the following consideration:

We observed differences in the trajectories of the parameterized

models describing the IFNc-induced STAT1 signalling pathway in

PSC and cancer cells. Simulation results agreed with the

differences in the experimental time series. The differences can

thus be attributed to unequal parameter values of the two models.

In general, however, one finds a range of parameter sets leading to

a similarly good fit of the model, rather than a unique parameter

set. As a consequence it remains unclear which specific model

parameters are behind the differences observed for the model

trajectories of the two cell types. We therefore focused on the

following two questions:

1) Which reactions cause the differences in the temporal profiles of the model

simulations between PSC and cancer cells?

2) What are the consequences for therapeutic target prediction?

An appropriate method for our first objective is a parameter

identifiability analysis. It investigates how accurate the parameter
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values are determined by the model structure including a mapping

of model variables to observables [7,8] and by the experimental data

[8]. This analysis is necessary because successful parameter

estimation usually results in a range of parameter sets that realise

an equally good agreement between experimental data and model

simulations. In this work, we adopted the approach of [8], which is

based on calculating a confidence interval (CI) for each parameter

value. Consequences of uncertainties in parameter values can be

studied by comparing model trajectories resulting from parameter

sets within the CI [9]. This enabled us to identify those reactions

that are underlying the differences in the model simulations between

both cell types. We therefore exploited the results of parameter

identifiability analysis for a systematic parameter comparison of two

structurally identical mathematical models, which is - to our best

knowledge - the first time such an analysis was conducted.

Note that our approach here is different to typical methods of

model discrimination used in systems biology that compare for two

models with a different number of parameters the quality of the fits to

the same experimental data. These methods investigate whether a

model with more parameters than a default model describes given

data better, without introducing more uncertainty in the parameter

values. Such approaches include Akaike Information Criterion

[10,11], likelihood ratio test for nested models [10–12], Bayesian

model comparison [13] and stimulus design for model selection [14].

In the next part of this work, we investigated the consequences

of parameter uncertainties for the prediction of common

therapeutic targets in both cell types. We performed a sensitivity

analysis to determine those parameters, which sensitively influence

protein concentrations during the time of observation. As a

quantitative measure for sensitivity we employed what is known as

the ‘‘metabolic control coefficient’’ [15,16]. We used our results

from parameter identifiability analysis to select parameter sets for

sensitivity analysis. Sensitive parameters are discussed as candi-

dates for therapeutic targets in both cell types.

It is worth pointing out that we confirmed the key findings of the

study in a larger panel of pancreatic cancer cell lines and in

primary PSC. Finally, we discussed our results from experiments,

parameter identifiability analysis and sensitivity analysis in the

light of STAT1 nuclear accumulation.

Methods

Estimation of parameter values
The parameters of the two models include reaction constants,

delay times, total receptor concentration, Western blot scaling

factors and initial conditions of some model variables. Their values

were estimated by global optimization from protein and mRNA

time series data. We used the experimental findings of reference

[5,6] and additionally raised data of phosphorylated STAT1

translocation in PSC. The additional time series contributed to

stable profile likelihood estimates presented in the ‘‘Results’’ section.

For parameter value estimation a hybrid approach was applied,

which is a combination of a stochastic simulated annealing

algorithm, performing a global search, and a deterministic trust

region algorithm performing a local search. The hybrid approach

is implemented in the routine pwFitBoost of the MATLAB

toolbox PottersWheel [17]. As a measure for how good a

simulation of the model reproduces experimental data, the

following cost function was used:

x2(h)~
Xm

k~1

Xd

l~1

y
exp
kl {ymod

k (h)

s
exp
kl

� �2

ð1Þ

where h is the parameter vector, y
exp
kl are the experimental data,

ymod
k are values of observables at time points when experimental

data are measured, s
exp
kl is the measurement error of the

experimental data, m is the number of time points and d is the

number of observables [17]. We repeated the parameter value

estimation 50 times and varied the start set of values to ensure that

we approach the global minimum of x2 as close as possible. The

parameter value set for the PSC model and the parameter value

set for the PC model presented in Tables S1, S2, S3 in Text S1

belong to the best fitting sets. For PSC it is the set which leads to

the PLE minimum of k5 and k6 in section ‘‘Results’’. For PC it is

the set with k5~298 min{1 which is located within the plateau

of the PLE in section ‘‘Results’’.

Due to nonlinearities in the models averages of parameter

values do not necessarily lead to a good fit and are thus not

appropriate quantities for further analysis. Instead of this, a

parameter identifiability analysis provides a confidence interval

with a confidence level for each parameter value.

Parameter identifiability analysis
A parameter identifiability analysis answers the question of how

accurate the parameter values of a given model can be determined

by the experimental data. This in turn allows an investigation of

which model predictions are possible [9]. We apply the data-based

approach by Raue et al. [8], which is based on calculating CIs

defined by a threshold in the profile likelihoods. Following the

authors: ‘‘A parameter is identifiable, if the confidence interval of

its estimate is finite.’’ The approach is summarized below.

The value x2(h
_

) of Eq. (1) corresponds to the maximum

likelihood estimate for Gaussian measurement noise, where h
_

denotes the parameter set of the best fit. Thus we can use x2(h
_

) as

a related expression for the maximum likelihood estimate. Profile

likelihood estimates (PLE) are calculated by iteratively shifting one

parameter from its optimal value by a small value followed by

fitting again the other parameters [8,18]. This procedure

Author Summary

For the prediction of therapeutic targets and the design of
therapies, it is important to study the same pathway across
different cell types. This is particularly relevant for cancer
research, where several cell types are involved in carcino-
genesis. Pancreatic cancer is enhanced by activated
pancreatic stellate cells. It would thus seem plausible for
an effective therapy to hit stellate and cancer cells. The
cytokine IFNc is an inhibitor of proliferation in both cell
types. Antiproliferative effects of IFNc are mediated by
STAT1 signalling. An important aspect is to determine
those reactions that cause the differences in the initial
increase of phosphorylated STAT1 and in the temporal
profile of STAT1 nuclear accumulation between the two
cell types. We examined this aspect by performing a
parameter identifiability analysis for calibrated mathemat-
ical models. We calculated confidence intervals of the
estimated parameter values and found that they provide
insights into reactions underlying the differences. A key
finding of sensitivity analysis elucidated that predicted
targets for enhancement of STAT1 activity are robust
against parameter uncertainty and moreover they are
robust between the two cell types. Our case study
therefore exemplified how identifiability and sensitivity
analysis can provide a basis for the prediction of potential
therapeutic targets.

Parameter Identifiability and Sensitivity Analysis
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continues either until a threshold in the likelihood is met or until a

maximal number of iterations have passed. Based on a likelihood

threshold, a CI for a parameter estimate can be defined [8,19]:

hDx2(h){x2(h
_

)vDa

n o
Da~x2(a,df ) ð2Þ

The degrees of freedom (df ) give for df ~1 the point-wise and

for df ~#h the simultaneous CI (#h denotes number of

parameters), both to the confidence level a. We used the

simultaneous CI to assure that the majority of parameters are

within the CI when simulating trajectories. Changing a parameter

value within its CI the model observables stay in agreement with

the experimental noise.

Structural nonidentifiability is caused by a redundant para-

meterisation of the mathematical model. Such correlated param-

eters lead to a curve with the same likelihood value in the high

dimensional landscape of the likelihood function. The CIs are

infinite. Practically nonidentifiability arises if the amount of

experimental data is insufficient with respect to the complexity

of the mathematical model. In that case x2(h) increases by moving

away from the best fit but the CI of the parameter value is infinite

at least in one direction. The x2- curve of a practical

nonidentifiable parameter can be very flat with a minimum

difficult to detect as in our study. The approach of [8] is in contrast

to other published methods, which only allow uncovering

structural nonidentifiability and could be more difficult to apply

for larger nonlinear models [7].

The difference x2(h){x2(h
_

) is equal to the amount of over-

fitting by the parameter set h [20]. To test whether a model shows

deviations from the x2 distribution, random time series are

generated with the same mean and the same standard deviation as

the original data [20,21]. The model is then successively fitted

against all random data sets. Next the optimized parameter values

Figure 1. Reaction network of the IFNc stimulated STAT1 signalling pathway. The network shows key reactions of the pathway. IFNc
activates the type II IFN receptor. To keep the model simple, Janus kinases (JAK) are not considered separately but as part of the active receptor
complex only. The receptor-associated JAKs phosphorylate cytosolic STAT1 (STAT1Uc), followed by rapid and high affinity formation of homodimers
(STAT1Dc). STAT1Dc translocates into the nucleus (STAT1Dn). Nuclear STAT1D can be dephosphorylated, leading to nuclear export of the resulting
STAT1Un into the cytoplasm. STAT1Uc can also shuttle into the nucleus. As a transcription factor, STAT1 induces the transcription of specific target
genes. The network considers STAT1 itself and SOCS1 as target genes of IFNc-activated signalling. SOCS1 is a potential negative feedback regulator;
inhibiting the phosphorylation of STAT1Uc. The annotation delay refers to temporal differences between IFNc action at the receptor level and
consecutive steps. We could omit the binding of nuclear phosphorylated STAT1 to the DNA in this work comparing to [5,6], because the slightly
simplified model leads to indistinguishable fits, as shown in Figures S1 and S2 in Text S1.
doi:10.1371/journal.pcbi.1002815.g001

Parameter Identifiability and Sensitivity Analysis
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for each random data set are used to calculate x2(h) respective to

the original data set according to Eq. (1). Finally, the distribution

of x2(h){x2(h
_

) is compared with a x2 distribution with #h
degrees of freedom. Deviations from a distribution with #h
degrees of freedom indicate that the degrees of freedom of the

model are lower than the number of parameters.

Sensitivity analysis
A sensitivity analysis answers the question how small

perturbations of a single or multiple parameter values influence

the trajectories of arbitrary model variables [22]. For this

analysis, it is irrelevant whether the model parameter values are

arbitrarily chosen or the result from fitting the model to

experimental data.

We are interested in the time-dependent sensitivity of a specific

model variable, as a function of individual model parameter

perturbations. A simple appropriate measure is the metabolic

control coefficient. They measure the relative response of a state

variable xi with respect to the relative perturbation by the

parameter kj and are a standard quantitative measure in sensitivity

analysis [15]. Metabolic control coefficients can be also calculated

for finite times as described in [16]. They are defined by

C(xi(t),kj)~
L log xi(t)

L log kj

ð3Þ

If C(xi(t),kj)~0 then the parameter perturbation has no

influence on the model variable at the respective time point. The

larger the value of C(xi(t),kj) the higher is the influence of the

parameter perturbation. For each parameter the sensitivity

analysis was performed for 20 parameter sets covering the CI.

In each of the 20 sets the value of the default parameter was

perturbed by 21% to calculate the metabolic control coefficient.

This procedure allows to study whether nonidentifiability influ-

ences the results of sensitivity analysis.

Complementary experiments
Cell culture. Immortalised rat PSC [23] were cultured in

Iscove’s modified Dulbecco’s medium (IMDM; Biochrom,

Figure 2. IFNc-induced STAT1 pathway in PSC and PC: Comparison between experimental time series and model simulations.
Experimental time series and model simulations that differ between the two cell types are shown. The left column in Figure 2 contains two subfigures
of Figure S1 in Text S1 and the right column in Figure 2 contains two subfigures of Figure S2 in Text S1 for IFNc= 100 ng/ml. The observation time is
given on the x-axis of each subfigure. Experimentally determined expression levels of phospho-STAT1 protein are given in arbitrary units (a.u.).
Immunofluorescence analysis data obtained by confocal microscopy were processed by calculating the ratio of nuclear versus cytoplasmic STAT1
concentration. Measured data are presented as blue circles with error bars. The simulated time courses resulting from the mathematical model with
optimized parameter values are presented by red solid lines. The quality of the fit in the upper right subfigure is commented in the captions of Figure
S2 in Text S1. Experimental time series are replotted from [5,6].
doi:10.1371/journal.pcbi.1002815.g002

Parameter Identifiability and Sensitivity Analysis
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Berlin, Germany) supplemented with 17% fetal calf serum (FCS)

(PAA Laboratories, Pasching, Austria), 1% non-essential amino

acids, 100 U/ml penicillin and 100 mg/ml streptomycin.

Primary rat PSC were isolated as described before [24] and

cultured in IMDM supplemented with 17% FCS, 1% non-

essential amino acids, 100 U/ml penicillin and 100 mg/ml

streptomycin. The PC cell lines BxPC-3, MIA PaCa-2 and

DSL-6A/C1 were obtained from the American Type Culture

Collection (ATCC). BxPC-3 was cultured in RPMI 1640

medium supplemented with 10% FCS, 100 U/ml penicillin

and 100 mg/ml streptomycin. MIA PaCa-2 and DSL-6A/C1

were cultured in Dulbecco’s modified Eagle medium supple-

mented with 10% FCS, 100 U/ml penicillin and 100 mg/ml

streptomycin. The cells were grown at 37uC in a 5% CO2

humidified atmosphere.

Immunofluorescence staining. All cell types were cultured

onto glass coverslips until reaching approximately 20% conflu-

ence. The cells were stimulated with 100 ng/ml species-specific

IFNc (Immunotools, Friesoythe, Germany) for up to 9 hours and

fixed in methanol. Immunofluorescence staining of cytoplasmic

and nuclear STAT1 and phospho-STAT1 as well as confocal laser

scanning microscopy were done as described in [5,6]. Briefly,

images were further analysed using the software ImageJ (Open

Source software package). To quantify nuclear translocation of

STAT1, averaged ratios of nuclear versus cytoplasmic concentra-

tion (sum of pixel intensity divided by area) of STAT1 were

calculated. Therefore, at least 10 cells from three different images

were analysed for each time point.

Results

Experimental data and model simulations reveal
differences between pancreatic stellate and cancer cells

The network presented in Figure 1 shows the key reactions of

the IFNc-induced STAT1 pathway (cf. [5,6]). The network was

translated into a system of ODEs, which is presented in the

supporting information. The simulations of the parameterized

ODE models are in good agreement with the experimental time

series for both cell types (Figures S1 and S2 in Text S1).

Interestingly, the experimental time series and the model

simulations revealed two major differences between PSC and PC

summarized in Figure 2:

A) Rapid initial STAT1 phosphorylation in PSC. Slower initial

rise of phosphorylated STAT1 in PC.

B) Nuclear accumulation of STAT1 in PSC. Lack of nuclear

accumulation of STAT1 in PC.

This raised the question which reactions caused these differ-

ences in the model simulations between PSC and PC. To

approach this question we performed a parameter identifiability

analysis.

Figure 3. Profile likelihood estimates for the calibrated PSC model. Model parameters or initial conditions of variables are given on the x-axis
of each subfigure. The PLE (black line) together with the point wise (red dashed lower horizontal line) and simultaneous confidence levels (red
dashed upper horizontal line) are shown on the y-axis. The values of the x-axis where the PLE crosses the confidence levels yield the lower and upper
boundary of the point wise and simultaneous confidence intervals, respectively. A parameter is identifiable if both confidence intervals are finite. We
used the simultaneous confidence levels.
doi:10.1371/journal.pcbi.1002815.g003
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Parameter identifiability analysis
We performed a parameter identifiability analysis by calculating

the profile likelihood estimates (PLE). The PLE for the parameter

values of the PSC model are shown in Figure 3 and the PLE for

the parameter values of the PC model are shown in Figure 4. The

PLE profiles of both cell types show identifiable and nonidentifi-

able parameters.

A distinction between the PSC and PC profiles, important

for our later discussion, is parameter k1 that describes the

receptor activation and parameter k6 that describes nuclear

import of phosphorylated STAT1. The lower boundary of the

CI for the PSC value and the upper boundary of the CI for the

PC value do not overlap and the parameter value at the

minimum is for both k1 and k6 more than ten-fold higher for

the PSC model than for the PC model. In contrast, the

parameter of feedback inhibition (k12) has the same minimal

value for the PSC and PC model but the upper CI is

marginally missed by the PLE for PC. The parameter

describing STAT1 phosphorylation (k4) has a finite lower CI

boundary at around zero for PSC whereas is in unbounded for

PC. The parameter for nuclear export (k10) is identifiable for

PSC but without CI boundaries for PC.

Deviation from x2 distribution. According to Eq. (2) we

calculated the amount of overfitting for the two models. The

comparison between the normalized frequency distribution of

x2(h){x2(h
_

) and the x2 probability distributions with different

degrees of freedom is shown in the upper row of Figure 5 for both

models. We observed deviations between the calculated normalized

frequency distribution and the expected x2
df with df ~23 for the

PSC and df ~24 for the PC model (solid lines). These deviations

could be caused by the nonlinearities in the model and by the small

data sets [20,21]. Reducing the value of df by the number of large-

range correlated parameters leads to df ~15 for the PSC model

df ~11 for the PC model. However, we still observe deviations

between the calculated x2(h){x2(h
_

) and the expected x2
df (dotted

lines) for both models. Therefore we finally chose intermediate

values as ‘‘effective number of degrees of freedom’’ of df ~19 for

the PSC model and df ~16 for the PC model. Simulations show

that the x2 curve (dashed lines in upper row of Figure 5) and the

histogram over x2(h){x2(h
_

) agree very well.

We furthermore plotted the cumulative distribution function in

the lower part of Figure 5, which allows either calculating

appropriate confidence levels for the given confidence intervals or

alternatively appropriate confidence intervals for the given confi-

dence levels for the estimated parameter values. The calculated CI

led to a higher confidence level a of 86% for the PSC model and of

91% for the PC model. For the initial assumption that the degrees of

freedom are equal to the number of parameters the confidence level

was 68%. Alternatively we could have used the expected confidence

intervals with the original confidence levels, which would have not

changed our results of the identifiability analysis.

Reactions which cause differences between the temporal

profiles of PSC and PC. Consequences of uncertainties in

parameter values on the dynamics can be studied by comparing

trajectories resulting from parameter sets within the confidence

Figure 4. Profile likelihood estimates for the calibrated PC model. Model parameters or initial conditions of variables are given on the x-axis
of each subfigure. The PLE (black line) together with the point wise (red dashed lower horizontal line) and simultaneous confidence interval (red
dashed upper horizontal line) are shown on the y-axis. For further details see Figure 3.
doi:10.1371/journal.pcbi.1002815.g004
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interval. In the following, we focus on parameters, which based on

their position in the biochemical network, could be related to the

different experimental profiles of STAT1 and phosphorylated

STAT1 between PSC and PC after stimulation with IFNc.

A) Rapid initial increase of phosphorylated STAT1 time series in

PSC in contrast to PC as presented in Figure 2 - upper row.

i) The estimated value of the parameter k1 (IFNc receptor

activation) is larger in PSC than in PC and the CIs do

not overlap (Figure 6 - upper row). Simulations for

parameter sets within the CI of k1 show that PSC

trajectories for activated receptor (IIr) and phosphory-

lated STAT1 (STAT1D) rapidly increase in contrast to

the respective trajectories for PC, see Figure 6 - second

and third row.

ii) The parameter I (total receptor concentration) is inverse

proportional to k4 (STAT1 phosphorylation) for PSC

and PC, as presented in the upper row of Figure 7. The

correlation equation presented in the respective sub-

figures show that the product k4
:I is larger for PSC than

for PC contributing to a more rapid phosphorylation of

STAT1 in PSC.

B) Nuclear accumulation of STAT1 in PSC but not in PC, see

Figure 2 - lower row.

i) The negative correlation between k4 and I contributes to

the small variability of the k4 trajectories for cytoplasmic

and nuclear phosphorylated STAT1 (STAT1Dc,

STAT1Dn) of the PSC model in contrast to the

variability of the PLE trajectories of other parameters,

see Figure 8. The parameters k4 and I are only negatively

correlated for k4w0:01 min21a.u.21 in the PC model.

This leads to a broader variability of the k4 trajectories

resulting from the PC model, see Figure 9.

ii) The parameter k6 describing nuclear import of phos-

phorylated STAT1 is correlated with k5 describing

Figure 5. Amount of overfitting of the calibrated PSC and PC model. Upper figures: Comparison of the normalized frequency distribution

x2(h){x2(h
_

) with the probability distribution x2
df . Lower figures: Respective cumulative distributions. The df are chosen to represent the theoretically

expected degrees of freedom (solid line), the degrees of freedom most compatible with the frequency distribution (dashed line) and the calculated
degrees of freedom (dotted line). Left column: results for the calibrated PSC model, right column: results for the calibrated PC model.
doi:10.1371/journal.pcbi.1002815.g005
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nuclear dephosphorylation in the PSC model, see

Figure 7 lower row. The ratio of k6=k5 is nearly equal

to one. This leads to a rapid nuclear accumulation of

phosphorylated STAT1 and to a temporal constant ratio

of nuclear versus cytoplasmic phosphorylated STAT1

(Figure S1 in Text S1, subfigure ‘‘STAT1D immunoflu-

orescence’’). Trajectories, generated from the PLEs of

parameters involved in STAT1 activation, deactivation

and transport (k4, k6, k5, k10), show that IFNc induced

STAT1 phosphorylation is followed by a 3.5-fold

increased nuclear accumulation of phosphorylated

STAT1, relative to the cytoplasm (Figure 8 - lower rows).

The parameter k10 describing nuclear export is identifi-

able and the upper boundary of its CI is smaller than the

lower boundary of the k5-CI (Figure 8 - upper row). This

leads to an accumulation of unphosphorylated STAT1 in

the nucleus which is counterbalanced by enhanced

STAT1 expression at times greater than 200 min. These

reactions together explain the temporal increase with an

initial overshoot of the ratio nuclear versus cytoplasmic

STAT1 for PSC as shown in Figure 2.

iii) The ratio of nuclear versus cytoplasmic STAT1 for PC

does not show a nuclear accumulation of STAT1, as

depicted in Figure 2. The parameter k6 is identifiable, the

best fit value is lower than the best fit value for PSC and

the CIs do not overlap, see the respective PLEs in the

upper row of Figures 8 and 9. Trajectories generated from

the PLEs of parameters involved in STAT1 activation,

deactivation and transport (k4, k6, k5, k10) show that

STAT1 gets phosphorylated but it mainly remains in the

cytoplasm (lower rows in Figure 9). Few trajectories of k5

in Figure 9 which contradict this conclusion base on

values of k6 located outside the upper boundary of its CI.

Figure 7 depicts: For k5w0:25 min21 one finds

k6~0:07 min21, which is inside the boundaries of the

CI, but for k5v0:25 min21 one finds k6~108 min21

which is located outside the upper boundary of its CI.

Summarizing our results, we successfully identified reactions

that could explain the differences of STAT1 signalling in

pancreatic stellate and cancer cells: A larger value of the reaction

constant for receptor activation (k1) leads to a rapid increase of

STAT1D in PSC and to a slower increase of STAT1D in PC, see

Figures 2 and 6. A larger value of the reaction constant for nuclear

import of phosphorylated STAT1 (k6) leads to a nuclear

accumulation of STAT1 in PSC and to a lack of nuclear

accumulation of STAT1 in PC, as illustrated in Figures 2, 8, and

9.

The parameter identifiability analysis revealed additional

insights into consequences of parameter uncertainties: The

negative correlation between the parameters k4 and I in the

PSC model contributes to the small variability of the k4-

trajectories of STAT1Dc and STAT1Dn. The parameter

describing nuclear export (k10) is identifiable in PSC and the

upper boundary of its CI is smaller than the lower boundary of the

k5-CI. An open question is whether the resulting nuclear

accumulation of STAT1Un supports IFNc action too.

Sensitivity analysis
In this section we investigated the influence of parameter

perturbations on the trajectories of nuclear phosphorylated

STAT1, which we consider as the output of the pathway. We

calculated the metabolic control coefficient for different time

points according to Eq. (3) in order to find out which perturbed

parameters most sensitively influence the temporal profile of

nuclear phosphorylated STAT1 in the PSC and PC model. The

default parameter values are presented in Tables S1, S2, S3 in

Text S1. The calculation was performed for 20 parameter value

sets covering the CI of each default parameter value. The results

for the time-dependent metabolic control coefficients are shown in

Figures 10 and 11. The coefficients with the largest deviation from

the default coefficient form the CI boundaries of the default

coefficient. Interestingly, the temporal profiles of the metabolic

control coefficients for the different parameter values are similar

between the PSC parameter sets (Figure 10) and the PC parameter

sets (Figure 11). The CI boundaries are located close to the default

coefficients in the PSC model. This holds also for most parameters

in the PC model.

The results show that nuclear phosphorylated STAT1 sensi-

tively depends on perturbed parameters describing phosphoryla-

tion (k4), dephosphorylation (k5) and total receptor concentration

Figure 6. Trajectories for parameter sets along profile likeli-
hoods show differences in phosphorylated STAT1 increase. The
upper row shows the PLEs of the parameter k1 from Figures 3 and 4.
The lower rows show trajectories generated from k1-parameter sets
within the PLE confidence intervals of the variables active receptor
concentration (IIr) and phosphorylated STAT1 (STAT1D) for both cell
types stimulated with IFNc= 100 ng/ml. The observation time is given
on the x-axis of each subfigure. The trajectories for k1-parameter sets
are shown on the y-axis. For good visibility approximately 11
trajectories are plotted in equal distance according to the PLE in each
subfigure. A ‘‘2’’ indicates the location of the trajectory for the smallest
parameter value. A ‘‘+’’ indicates the location of the trajectory for the
largest parameter value.
doi:10.1371/journal.pcbi.1002815.g006
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Figure 7. Correlations between model parameters after calculation of the PLEs. The parameter for phosphorylation (k4) is inversely
correlated to the total receptor concentration (I ) for PSC and PC as presented in the upper row. The lower row, left column shows the correlation
between the parameters nuclear dephosphorylation (k5) and nuclear import of STAT1Dc (k6) and for PSC. A respective correlation equation is
inserted in each subfigure. The lower row, right column shows for PC: One finds k6~0:07 min21 which is located inside the CI for k5w0:25 min21.
However, one finds k6~108 min21 which is located outside the upper boundary of its CI for k5v0:25 min21.
doi:10.1371/journal.pcbi.1002815.g007

Figure 8. Trajectories for parameter sets along profile likelihoods show nuclear accumulation of phosphorylated STAT1 in PSC. The
upper row shows the PLEs of the parameters (k4, k6, k5, k10) from Figure 3. The lower rows show trajectories generated from (k4, k6, k5, k10)
parameter sets within the PLE confidence intervals of the variables cytoplasmic and nuclear phosphorylated STAT1 (STAT1Dc,STAT1Dn). Stimulation
was done with IFNc= 100 ng/ml. For higher values of k5 and k6 the plateau of the PLE trajectories further decrease, such that for
k6~k5~2:106 min21 the plateau is located at STAT1Dc&STAT1Dn&10{7 a.u. For further details see captions of Figure 6.
doi:10.1371/journal.pcbi.1002815.g008
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(I ) over the whole time interval but it is robust against

perturbations of phosphorylated STAT1 nuclear import (k6).
While k4, k5, I are nonidentifiable parameters in both models the

parameter k6 is nonidentifiable in the PSC model but identifiable

in the PC model.

For the control coefficients of the PC model (k9, k10, t1, t2, t3)
the CI boundaries show some deviations from the default control

coefficients leading to a change of sensitivity from medium to

robust. The parameter t1 is identifiable, while the other four

parameters are nonidentifiable.

Summarizing, our results show that there is no clear relation

between parameter identifiability and sensitivity. Note that

parameter identifiability can be improved by additional experi-

ments, while sensitivity only depends on the model properties. An

explanation for the sensitive response of the nonidentifiable

parameters k4, k5, I in the PSC and PC model could be:

Perturbing a parameter value can lead to a very sensitive response

of a model variable. However, parameter identifiability analysis

proceeds by fitting again the other parameter values. This could

lead to very similar or even identical x2 values.

Discussion

Parameter identifiability analysis
Our results of the parameter identifiability analysis led to a

successful identification of model parameters and parameter

relations, explaining differences between the experimental time

series of STAT1 phosphorylation and STAT1 nuclear accumu-

lation for pancreatic stellate cells and pancreatic cancer cells.

We verified whether the normalized frequency distribution

x2(h){x2(h
_

) follows a x2 distribution to test whether the initially

chosen confidence level is consistent with the calculated confidence

intervals for the parameter values according to [20,21]. We

obtained the best agreement for an ‘‘effective number’’ of degrees

of freedom of the x2 distribution, see Figure 5. Based on the

reduced number of degrees of freedom we obtained a higher

confidence level for the calculated confidence intervals of the

parameter value estimates. The calculation of confidence intervals

for the parameter values of the best fit allowed a comparison

between the parameter variability and the variability in the model

trajectories, as presented in Figures 6, 8 and 9. Trajectories for

parameter sets within the confidence interval show:

A) The best fit value of the parameter describing receptor

activation (k1) is larger for the PSC model than for the PC

model and the confidence intervals do not overlap. This

leads to a faster increase of phosphorylated STAT1 in PSC,

compared to PC.

B) The best fit value of the parameter describing nuclear

translocation of phosphorylated STAT1 (k6) is larger for the

PSC model than for the PC model and the confidence

intervals do not overlap. This leads to a high nuclear

accumulation of STAT1 in PSC in contrast to PC.

We successfully answered the first question raised in the

introduction, asking for what causes the differences between the

temporal profiles in pancreatic stellate cells and cancer cells. Our

analysis showed that valuable information for model comparison

can also be obtained from nonidentifiable parameters. Correlated

Figure 9. Trajectories for parameter sets along profile likelihoods show missing nuclear accumulation of phosphorylated STAT1 in
PC. The upper row shows the PLEs of the parameters (k4, k6, k5, k10) from Figure 4. The lower rows show trajectories generated from
(k4, k6, k5, k10) parameter sets within the PLE confidence intervals of the variables cytoplasmic and nuclear phosphorylated STAT1 (STAT1Dc,
STAT1Dn). Stimulation was done with IFNc= 100 ng/ml. A ‘‘*’’ indicates trajectories for k5v0:25 min21. In this region one finds k6~108 min21 (see
Figure 7), which is located outside the upper boundary of its CI. For further details see captions of Figure 6.
doi:10.1371/journal.pcbi.1002815.g009
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parameters and parameters with one finite confidence interval

helped to explain differences between IFNc-induced STAT1

signalling in stellate and cancer cells. This suggests that one should

extend those parameter regions for which a profile likelihood

estimate was calculated, either until a confidence interval

boundary has been reached or until a further calculation is limited

by numerical precision.

We are, however, also aware of the limitations that are due to

parameter nonidentifiabilities in our studied examples. Reducing

practical nonidentifiability, by decreasing the experimental noise,

would improve the differentiation between the parameter sets

(including CI) that fit the PSC time series and the parameter sets

(including CI) that fit the PC time series. A model variable which is

a nonobservable can be influenced by changing a parameter value

even within its CI. This includes the amount of phosphorylated

STAT1 or to answer the question whether there is more nuclear

phosphorylated STAT1 in one of the two cell types. Nevertheless,

we positively exploited information from nonidentifiability in our

work: The knowledge of one finite confidence interval boundary of

a nonidentifiable parameter was sufficient to draw conclusions

about reactions which differ between the IFNc induced STAT1

signalling pathway in pancreatic stellate cells and pancreatic

cancer cells.

Sensitivity analysis
We used the results of the parameter identifiability analysis to

choose parameter sets within the confidence intervals for the

sensitivity analysis. The profiles of the time-dependent meta-

bolic control coefficients are very similar for the PSC parameter

sets and the PC parameter sets as demonstrated in Figures 10

and 11. Though only few parameters turned out to be

identifiable, our study demonstrated that the results from

sensitivity analysis are largely robust for different parameter

sets within the CIs and moreover the results from sensitivity

analysis are largely robust when comparing the two cell types.

Our findings successfully answer the second question raised in

the introduction, asking for the consequences of differences

between the model simulations in pancreatic stellate cells and

cancer cells for therapeutic target prediction. The first outcome

is also in line with Chen et al., who found that for the ErbB1-4

receptors activated MAPK and P13K/Akt pathway in cancer

Figure 10. Time dependent metabolic control coefficients for nuclear phosphorylated STAT1 of PSC model. Stimulation with
IFNc= 100 ng/ml. The observation time is given on the x-axis of each subfigure. The metabolic control coefficient is given on the y-axis. The
symbol ‘‘,’’ in the y-axis label is a placeholder for the respective parameter or initial condition name. Each parameter or initial condition is
independently perturbed by 21%. The metabolic control coefficients for the perturbed default parameter set (See Tables S1, S2, S3 in Text S1)
are shown as red triangles. The black lines show the lower and upper CI boundaries of the MCCs. For few parameters one or both black lines are
behind the red line.
doi:10.1371/journal.pcbi.1002815.g010
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cell types several parameter sets with similar good fits do not

affect sensitivity [25].

Our results show that the time dependent metabolic control

coefficients can be used for experimental therapeutic studies in

cell culture. A similar question was asked by Raia et al., who

predicted that the inhibition of STAT5 phosphorylation in IL13

induced STAT5 pathway reduces proliferation in two lymphoma

cell types [12]. However, in our investigation we need to

enhance STAT1 phosphorylation, in order to ensure a stronger

reduction of proliferation in both cell types [4,5]. An interesting

complement or alternative to this approach is targeting

intracellular components because a higher IFNc dose could

lead to unwanted side effects. A reduction of proliferation by

maximization of nuclear phosphorylated STAT1 could be

achieved by inhibiting nuclear dephosphorylation of STAT1

(k5), SOCS1 transcription (k7), and the feedback regulation (k12)

as depicted in Figures 10 and 11. Inhibition of dephosphoryla-

tion shows an effect over the whole observation time while the

other two processes are sensitive only after a time delay.

Simulations with 50% inhibition of k5 are in agreement with the

results for the metabolic control coefficients with 1% inhibition,

see Figure S3 in Text S1.

Nuclear accumulation of STAT1- bringing the pieces
together

We used mathematical modeling, simulations and parameter

identifiability analysis to explain experimentally observed differ-

ences of IFNc-induced STAT1 signalling in pancreatic stellate

cells and cancer cells. Parameter identifiability analysis revealed

that it is a larger value of the reaction constant for nuclear import

of phosphorylated STAT1 (k6) that leads to a nuclear accumu-

lation of STAT1 in PSC but not in PC.

Subsequently, we expanded our experimental studies to primary

rat PSC and different human PC cell lines, and performed additional

time course experiments. The cells were stimulated with 100 ng/ml

IFNc and STAT1 translocation was observed for nine hours. We

could experimentally confirm the nuclear accumulation of STAT1

after IFNc treatment also for primary PSC, as presented in Figure 12.

In contrast, an extended time series of the PC cell line DSL-6A/C1

showed no nuclear accumulation of STAT1 in response to IFNc.

This result agrees with the shorter time series in Figure 2. A nuclear

accumulation of STAT1 was also not observed in the human PC cell

lines BxPC-3 and MIA PaCa-2 (Figure 12). Our results therefore

allow the conclusion that the differences in IFNc induced nuclear

accumulation of STAT1 are not restricted to the two originally used

Figure 11. Time dependent metabolic control coefficients for nuclear phosphorylated STAT1 of PC model. Stimulation with
IFNc= 100 ng/ml. The observation time is given on the x-axis of each subfigure. The metabolic control coefficient is given on the y-axis. The symbol
‘‘,’’ in the y-axis label is a placeholder for the respective parameter or initial condition name. Each parameter or initial condition is independently
perturbed by 21%. The metabolic control coefficients for the perturbed default parameter set (See Tables S1, S2, S3 in Text S1) are shown as red
triangles.The black lines show the lower and upper CI boundaries of the MCCs. For few parameters one or both black lines are behind the red line.
doi:10.1371/journal.pcbi.1002815.g011
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cell lines but reflect a general difference between pancreatic stellate

and cancer cells. In two previous studies, we could show that nuclear

accumulation of STAT1 is directly correlated with the antiprolifer-

ative effect of IFNc. Accordingly, pancreatic stellate cells were found

to be more sensitive to IFNc-mediated growth inhibition than

pancreatic cancer cells [4,5].

The nuclear accumulation of STAT1 is induced by STAT1

phosphorylation. The parameter identifiability analysis of the ODE

models led to the result that the nuclear import of STAT1D (k6) is a

parameter with a distinct value in the ODE models of PSC and PC,

see Figures 8 and 9, upper row. However, the results of our sensitivity

analysis reveal that the trajectories of nuclear phosphorylated

STAT1, which we consider as output of the pathway, are robust

against perturbations of the parameter k6, see Figures 10 and 11.

Remarkable, the nuclear import of STAT1D cannot be considered

as a target for experimental therapeutic studies in cell culture.

An alternative parameter, which can influence the nuclear

accumulation of STAT1, is the nuclear dephosphorylation (k5).

This parameter is nonidentifiable in the PSC and PC model and the

finite lower CIs do not provide information which parameter value is

larger. However, results of the sensitivity analysis reveal that nuclear

dephosphorylation of STAT1 (k5) is the most sensitive parameter for

both cell types independent of the chosen parameter set within the

CI. The inhibition of k5 leads to a nuclear accumulation of STAT1

over the whole measured period. The parameter describing nuclear

dephosphorylation of STAT1D (k5) can thus be considered as a

target for experimental in vitro therapeutic studies.

Conclusions
We demonstrated that results from parameter identifiability

analysis can be exploited to designate reactions of a signalling

pathway which differ between two cell types. In particular, even

information from nonidentifiable parameters contributed to our

findings. Interestingly, the sensitivity of model variables is robust

against nonidentifiability and moreover it is robust against the

different parameterizations for the two cell types. This enabled us to

predict targets that can be successfully hit in both cell types despite

quantitative and temporal differences in the activation profile of the

signaling cascade. At the current stage, our results and conclusions are

restricted to in vitro models. In the long run, they may also contribute

to the development of drugs that display optimized simultaneous

effects on different types of cells, e.g. in the context of cancer.
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Figure 12. Nuclear accumulation of STAT1 in primary PSC and PC cells. Isolated primary PSC from rat pancreas and PC cell lines of rat (DSL-
6A/C1) and human (BxPC-3, MIA PaCa-2) origin were stimulated with 100 ng/ml species-specific IFNc for the indicated times. STAT1 nuclear
translocation was detected by immunofluorescence analysis. Data obtained by confocal microscopy were processed by calculating the ratio of
nuclear versus cytoplasmic STAT1 concentration. Measured data are presented as circles with error bars, mean (n$10) 6 SEM.
doi:10.1371/journal.pcbi.1002815.g012
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