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Abstract: The modern biomedical
research and healthcare delivery do-
mains have seen an unparalleled
increase in the rate of innovation
and novel technologies over the past
several decades. Catalyzed by para-
digm-shifting public and private pro-
grams focusing upon the formation
and delivery of genomic and person-
alized medicine, the need for high-
throughput and integrative ap-
proaches to the collection, manage-
ment, and analysis of heterogeneous
data sets has become imperative. This
need is particularly pressing in the
translational bioinformatics domain,
where many fundamental research
questions require the integration of
large scale, multi-dimensional clinical
phenotype and bio-molecular data
sets. Modern biomedical informatics
theory and practice has demonstrat-
ed the distinct benefits associated
with the use of knowledge-based
systems in such contexts. A knowl-
edge-based system can be defined as
an intelligent agent that employs a
computationally tractable knowledge
base or repository in order to reason
upon data in a targeted domain and
reproduce expert performance rela-
tive to such reasoning operations.
The ultimate goal of the design and
use of such agents is to increase the
reproducibility, scalability, and acces-
sibility of complex reasoning tasks.
Examples of the application of knowl-
edge-based systems in biomedicine
span a broad spectrum, from the
execution of clinical decision support,
to epidemiologic surveillance of pub-
lic data sets for the purposes of
detecting emerging infectious diseas-
es, to the discovery of novel hypoth-
eses in large-scale research data sets.
In this chapter, we will review the
basic theoretical frameworks that
define core knowledge types and
reasoning operations with particular
emphasis on the applicability of such
conceptual models within the bio-
medical domain, and then go on to
introduce a number of prototypical
data integration requirements and
patterns relevant to the conduct of
translational bioinformatics that can
be addressed via the design and use
of knowledge-based systems.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

The modern biomedical research do-

main has experienced a fundamental shift

towards integrative and translational

methodologies and frameworks over the

past several years. A common thread

throughout the translational sciences are

needs related to the collection, manage-

ment, integration, analysis and dissemina-

tion of large-scale, heterogeneous biomed-

ical data sets. However, well-established

and broadly adopted theoretical and

practical frameworks intended to address

such needs are still largely developmental

[1–3]. Instead, the development and

execution of multi-disciplinary, transla-

tional science programs is significantly

limited by the propagation of ‘‘silos’’ of

both data and knowledge, and a paucity of

reproducible and rigorously validated

methods that may be used to support the

satisfaction of motivating and integrative

translational bioinformatics use cases, such

as those focusing on the identification of

expression motifs spanning bio-molecules

and clinical phenotypes.

In order to provide sufficient context

and scope to our ensuing discussion, we

will define translational science and re-

search per the conventions provided by

the National Institutes of Health (NIH) as

follows:

‘‘Translational research includes

two areas of translation. One is the process

of applying discoveries generated during

research in the laboratory, and in preclin-

ical studies, to the development of trials and

studies in humans. The second area of

translation concerns research aimed at

enhancing the adoption of best practices in

the community. Cost-effectiveness of pre-

vention and treatment strategies is also an

important part of translational science.’’

[4]

Several recent publications have defined

a translational research cycle, which

involves the translational of knowledge

and evidence from ‘‘the bench’’ (e.g.,

laboratory-based discoveries) to ‘‘the bed-

side’’ (e.g., clinical or public health inter-

ventions informed by basic science and

clinical research), and reciprocally from

‘‘the bedside’’ back to ‘‘the bench’’ (e.g.,

basic science studies informed by observa-

tions from the point-of-care) [5]. Within

this translational cycle, Sung and col-

leagues [5] have defined two critical

blockages that exist between basic science

discovery and the design of prospective

clinical studies, and subsequently between

the knowledge generated during clinical

studies and the provision of such evidence-

based care in the clinical or public health

settings. These are known as the T1 and

T2 blocks, respectively. Much of the work

conducted under the auspices of the NIH

Roadmap initiative and more recently as

part of the Clinical and Translational

Science Award (CTSA) program is specif-

ically focused on identifying approaches or

policies that can mitigate these T1 and T2

blockages, and thus increase the speed and

efficiency by which new biomedical knowl-

edge can be realized in terms of improved

health and patient outcomes.

The positive outcomes afforded by the

close coupling of biomedical informatics
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with the translational sciences have been

described frequently in the published

literature [3,5–7]. Broadly, the critical

areas to be addressed by such informatics

approaches relative to translational re-

search activities and programs can be

classified as belonging to one or more of

the following categories:

The management of multi-dimen-
sional and heterogeneous data sets:
The modern healthcare and life sciences

ecosystem is becoming increasingly data

centric as a result of the adoption and

availability of high-throughput data sourc-

es, such as electronic health records

(EHRs), research data management sys-

tems (e.g., CTMS, LIMS, Electronic Data

Capture tools), and a wide variety of bio-

molecular scale instrumentation platforms.

As a result of this evolution, the size and

complexity of data sets that must be

managed and analyzed are growing at an

extremely rapid rate [1,2,6,8,9]. At the

same time, the data management practices

currently used in most research settings

are both labor intensive and rely upon

technologies that have not be designed to

handle such multi-dimensional data [9–

11]. As a result, there are significant

demands from the translational science

community for the creation and delivery of

information management platforms capa-

ble of adapting to and supporting hetero-

geneous workflows and data sources

[2,3,12,13]. This need is particularly

important when such research endeavors

focus on the identification of linkages

between bio-molecular and phenotypic

data in order to inform novel systems-level

approaches to understanding disease states.

Relative to the specific topic area of

knowledge representation and utilization in

the translational sciences, the ability to

address the preceding requirements is large-

ly predicated on the ability to ensure that

semantics of such data are well understood

[10,14,15]. This is a scenario often referred

to as semantic interoperability, and requires

the use of informatics-based approaches to

map among various data representations, as

well as the application of such mappings to

support integrative data integration and

analysis operations [10,15].

The application of knowledge-
based systems and intelligent agents
to enable high-throughput hypothe-
sis generation and testing: Modern

approaches to hypothesis discovery and

testing primarily are based on the intuition

of the individual investigator or his/her

team to identify a question that is of

interest relative to their specific scientific

aims, and then carry out hypothesis testing

operations to validate or refine that

question relative to a targeted data set

[6,16]. This approach is feasible when

working with data sets comprised of

hundreds of variables, but does not scale

to projects involving data sets with mag-

nitudes on the order of thousands or even

millions of variables [10,14]. An emerging

and increasingly viable solution to this

challenge is the use of domain knowledge

to generate hypotheses relative to the

content of such data sets. This type of

domain knowledge can be derived from

many different sources, such as public

databases, terminologies, ontologies, and

published literature [14]. It is important to

note, however, that methods and technol-

ogies that can allow researchers to access

and extract domain knowledge from such

sources, and apply resulting knowledge

extracts to generate and test hypotheses

are largely developmental at the current

time [10,14].

The facilitation of data-analytic
pipelines in in-silico research pro-
grams: The ability to execute in-silico

research programs, wherein hypotheses are

designed, tested, and validated in existing

data sets using computational methods, is

highly reliant on the use of data-analytic

‘‘pipelining’’ tools. Such pipelines are ideally

able to support data extraction, integration,

and analysis workflows spanning multiple

sources, while capturing intermediate data

analysis steps and products, and generating

actionable output types [17,18]. Such pipe-

lines provide a number of benefits, includ-

ing: 1) they support the design and execution

of data analysis plans that would not be

tractable or feasible using manual methods;

and 2) they provide for the capture meta-

data describing the steps and intermediate

products generated during such data anal-

yses. In the case of the latter benefit, the

ability to capture systematic meta-data is

critical to ensuring that such in-silico research

paradigms generate reproducible and high

quality results [17,18]. There are a number

of promising technology platforms capable

of supporting such data-analytic ‘‘pipelin-

ing’’, such as the caGrid middleware [18]. It

is of note, however, that widespread use of

such pipeline tools is not robust, largely due

to barriers to adoption related to data

ownership/security and socio-technical fac-

tors [13,19].

The dissemination of data, infor-
mation, and knowledge generated
during the course of translational
science research programs: It is

widely held that the time period required

to translate a basic science discovery into

clinical research, and ultimately evidence-

based practice or public health interven-

tion can exceed 15 years [2,5,7,20]. A

number of studies have identified the lack

of effective tools for supporting the ex-

change of data, information, and knowl-

edge between the basic sciences, clinical

research, clinical practice, and public

health practice as one of the major

contributors to effective and timely trans-

lation of novel biological discoveries into

health benefits [2]. A number of informat-

ics-based approaches have been developed

to overcome such translational impedi-

ments, such as web-based collaboration

platforms, knowledge representation and

delivery standards, public data registries

and repositories [3,7,9,21]. Unfortunately,

the systematic and regular use of such

tools and methods is generally very

poor in the translational sciences, again

as was the prior case, due to a combina-

tion of governance and socio-technical

barriers.

At a high level, all of the aforemen-

tioned challenges and opportunities corre-

spond to an overarching set of problem

statements, as follows:

N Translational bioinformatics is defined

by the presence of complex, heteroge-

neous, multi-dimensional data sets;

N The scope of available biomedical

knowledge collections that may be

applied to assist in the integration

What to Learn in This Chapter

N Understand basic knowledge types and structures that can be applied to
biomedical and translational science;

N Gain familiarity with the knowledge engineering cycle, tools and methods that
may be used throughout that cycle, and the resulting classes of knowledge
products generated via such processes;

N An understanding of the basic methods and techniques that can be used to
employ knowledge products in order to integrate and reason upon
heterogeneous and multi-dimensional data sets; and

N Become conversant in the open research questions/areas related to the ability
to develop and apply knowledge collections in the translational bioinformatics
domain.
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and analysis of such data is growing at

a rapid pace;

N The ability to apply such knowledge

collections to translational bioinfor-

matics analyses requires an under-

standing of the sources of such knowl-

edge, and methods of applying them to

reasoning applications; and

N The application of knowledge collec-

tions to support integrative analyses in

the translational science domain intro-

duces multiple areas of complexity that

must be understood in order to enable

the optimal selection and use of such

resources and methods, as well as the

interpretation of results generated via

such applications.

2. Key Definitions

In the remainder of this chapter, we will

introduce a set of definitions, frameworks,

and methods that serve to support the

foundational knowledge integration re-

quirements incumbent to the efficient

and effective conduct of translational

studies. In order to provide a common

understanding of key terms and concepts

that will be used in the ensuing discussion,

we will define here a number of those

entities, using the broad context of Knowl-

edge Engineering (KE) as a basis for such

assertions. The KE process (Figure 1)

incorporates multiple steps:

1. Acquisition of knowledge (KA)

2. Representation of that knowledge (KR)

in a computable form

3. Implementation or refinement of

knowledge-based agents or applications

using the knowledge collection gener-

ated in the preceding stages

4. Verification and validation of the

output of those knowledge-based

agents or applications against one or

more reference standards.

In the context of the final phase of the

KE cycle, comparative reference standards

can include expert performance measures,

requirements acquired before designing

the knowledge-based system, or require-

ments that were realized upon implemen-

tation of the knowledge-based system. In

this regard, verification is the process of

ensuring that the knowledge-based system

meets the initial requirements of the

potential end-user community. In com-

parison, validation is the process of

ensuring that the knowledge-based system

meets the realized requirements of the

end-user community once a knowledge-

based system has been implemented [22].

Furthermore, within the overall KE pro-

cess, KA can be defined as the sub-process

involving the extraction of knowledge

from existent sources (e.g., experts, litera-

ture, databases, etc.) for the purpose of

representing that knowledge in a comput-

able format [23–28].

The KE process is intended to target

three potential types of knowledge, as

defined below:

N Conceptual knowledge is defined

in the education literature as a combi-

nation of atomic units of information

and the meaningful relationships be-

tween those units. The education

literature also describes two other

types of knowledge, labeled as proce-

dural and strategic;

N Procedural knowledge is a process-

oriented understanding of a given

problem domain [29–32];

N Strategic knowledge is knowledge

that is used to operationalize concep-

tual knowledge into procedural knowl-

edge [31].

The preceding definitions are derived

from empirical research on learning and

problem-solving in complex scientific and

quantitative domains such as mathematics

and engineering [30,32]. The cognitive

science literature provides a similar differ-

entiation of knowledge types, making the

distinction between procedural and de-

Figure 1. Key components of the KE process.
doi:10.1371/journal.pcbi.1002826.g001
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clarative knowledge. Declarative knowl-

edge is synonymous with conceptual

knowledge as defined above [33].

Conceptual knowledge collections are

perhaps the most commonly used knowl-

edge types in biomedicine. Such knowledge

and its representation span a spectrum that

includes ontologies, controlled terminolo-

gies, semantic networks and database sche-

mas. A reoccurring focus throughout dis-

cussions of conceptual knowledge collections

in the biomedical informatics domain is the

process of representing conceptual knowl-

edge in a computable form. In contrast, the

process of eliciting knowledge has received

less attention and reports on rigorous and

reproducible methods that may be used in

this area are rare. It is also important to note

that in the biomedical informatics domain

conceptual knowledge collections rarely

exist in isolation. Instead, they usually occur

within structures that contain multiple types

of knowledge. For example, a knowledge-

base used in a modern clinical decision

support system might include: (1) a knowl-

edge collection containing potential findings,

diagnoses, and the relationships between

them (conceptual knowledge), (2) a knowledge

collection containing guidelines or algo-

rithms used to logically traverse the previous

knowledge structure (procedural knowledge),

and (3) a knowledge structure containing

application logic used to apply or operatio-

nalize the preceding knowledge collections

(strategic knowledge). Only when these three

types of knowledge are combined, it is

possible to realize a functional decision

support system [34].

3. Underlying Theoretical
Frameworks

The theories that support the ability to

acquire, represent, and verify or validate

conceptual knowledge come from multiple

domains. In the following sub-section,

several of those domains will be discussed,

including:

N Computational science

N Psychology and cognitive science

N Semiotics

N Linguistics

3.1 Computational Foundations of
Knowledge Engineering

A critical theory that supports the ability

to acquire and represent knowledge in a

computable format is the physical symbol

hypothesis. First proposed by Newell and

Simon in 1981 [35], and expanded upon

by Compton and Jansen in 1989 [24], the

physical symbol hypothesis postulates that

knowledge consists of both symbols of

reality, and relationships between those

symbols. The hypothesis further argues

that intelligence is defined by the ability to

appropriately and logically manipulate

both symbols and relationships. A critical

component of this the theory is the

definition of what constitutes a ‘‘physical

symbol system’’, which Newell and Simon

describe as:

‘‘…a set of entities, called symbols, which

are physical patterns that can occur as

components of another type of entity called

an expression (or symbol structure). Thus,

a symbol structure is composed of a number

of instances (or tokens) of symbols related

in some physical way (such as one token

being next to another). At any instant of

time the system will contain a collection of

these symbol structures.’’ [36]

This preceding definition is very similar

to that of conceptual knowledge introduced

earlier in this chapter, which leads to the

observation that the computational repre-

sentation of conceptual knowledge collec-

tions should be well supported by compu-

tational theory. However, as described

earlier, there is not a large body of research

on reproducible methods for eliciting

such symbol systems. Consequently, the

elicitation of the symbols and relationships

that constitute a ‘‘physical symbol system’’,

or conceptual knowledge collection, re-

mains a significant challenge. This chal-

lenge, in turn, is an impediment to the

widespread use of conceptual knowledge-

based systems.

3.2 Psychological and Cognitive
Basis for Knowledge Engineering

At the core of the currently accepted

psychological basis for KE is expertise

transfer, which is the theory that humans

transfer their expertise to computational

systems so that those systems are able to

replicate expert human performance.

One theory that helps explain the

process of expertise transfer is Kelly’s

Personal Construct Theory (PCT). This

theory defines humans as ‘‘anticipatory

systems’’, where individuals create tem-

plates, or constructs that allow them to

recognize situations or patterns in the

‘‘information world’’ surrounding them.

These templates are then used to antici-

pate the outcome of a potential action

given knowledge of similar previous expe-

riences [37]. Kelly views all people as

‘‘personal scientists’’ who make sense of

the world around them through the use of

a hypothetico-deductive reasoning system.

It has been argued within the KE

literature that the constructs used by

experts can be used as the basis for

designing or populating conceptual knowl-

edge collections [26]. The details of PCT

help to explain how experts create and use

such constructs. Specifically, Kelly’s fun-

damental postulate is that ‘‘a person’s

processes are psychologically channelized by the

way in which he anticipated events.’’ This is

complemented by the theory’s first corol-

lary, which is summarized by his statement

that:

‘‘Man looks at his world through transparent

templates which he creates and then attempts

to fit over the realities of which the world is

composed… Constructs are used for predic-

tions of things to come… The construct is a

basis for making a distinction… not a class of

objects, or an abstraction of a class, but a

dichotomous reference axis.’’

Building upon these basic concepts,

Kelly goes on to state in his Dichotomy

Corollary that ‘‘a person’s construction system is

composed of a finite number of dichotomous

constructs.’’ Finally, the parallel nature of

personal constructs and conceptual knowl-

edge is illustrated in Kelly’s Organization

Corollary, which states, ‘‘each person charac-

teristically evolves, for his convenience of antici-

pating events, a construction system embracing

ordinal relationships between constructs’’ [26,37].

Thus, in an effort to bring together

these core pieces of PCT, it can be argued

that personal constructs are essentially

templates applied to the creation of

knowledge classification schemas used in

reasoning. If such constructs are elicited

from experts, atomic units of information

can be defined, and the Organization

Corollary can be applied to generate

networks of ordinal relationships between

those units. Collectively, these arguments

serve to satisfy and reinforce the earlier

definition of conceptual knowledge, and

provide insight into the expert knowledge

structures that can be targeted when

eliciting conceptual knowledge.

There are also a number of cognitive

science theories that have been applied to

inform KE methods. Though usually very

similar to the preceding psychological

theories, cognitive science theories specif-

ically describe KE within a broader

context where humans are anticipatory

systems who engage in frequent transfers

of expertise. The cognitive science litera-

ture identifies expertise transfer pathways

as an existent medium for the elicitation of

knowledge from domain experts. This

conceptual model of expertise transfer is
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often illustrated using the Hawkins

model for expert-client knowledge transfer

[38].

It is also important to note that at a high

level, cognitive science theories focus upon

the differentiation among knowledge types.

As described earlier, cognitive scientists

make a primary differentiation between

procedural knowledge and declarative

knowledge [31]. While cognitive science

theory does not necessarily link declarative

and procedural knowledge, an implicit

relationship is provided by defining proce-

dural knowledge as consisting of three

orders, or levels. For each level, the

complexity of declarative knowledge in-

volved in problem solving increases com-

mensurately with the complexity of proce-

dural knowledge being used [28,31,39].

A key difference between the theories

provided by the cognitive science and

psychology domains is that the cognitive

science literature emphasizes the impor-

tance of placing KA studies within appro-

priate context in order to account for the

distributed nature of human cognition

[25,40–46]. In contrast, the psychology

literature is less concerned with placing

KE studies in context.

3.3 Semiotic Basis for Knowledge
Engineering

Though more frequently associated

with the domains of computer science,

psychology and cognitive science, there

are a few instances where semiotic theory

has been cited as a theoretical basis for

KE. Semiotics can be broadly defined as

‘‘the study of signs, both individually and grouped

in sign systems, and includes the study of how

meaning is transmitted and understood’’ [47]. As

a discipline, much of its initial theoretical

basis is derived from the domain of

linguistics, and thus, has been traditionally

focused on written language. However, the

scope of contemporary semiotics literature

has expanded to incorporate the analysis

of meaning in visual presentation systems,

knowledge representation models and

multiple communication mediums. The

basic premise of the semiotic theory of

‘‘meaning’’ is frequently presented in a

schematic format using the Ogden-Rich-

ards semiotic triad, as shown in Figure 2

[48].

A core component of semiotic triad is

the hypothesis that there exist three

representational formats for knowledge,

specifically:

N Symbol: representational artifact of a

unit of knowledge (e.g., text or icons).

N Referent: actual unit of knowledge,

which is largely a conceptual construct.

N Thought or Reference: unit of

knowledge as actually understood by

the individual or system utilizing or

acting upon that knowledge.

In addition, three primary relationships

are hypothesized to exist, linking the three

preceding representational formats:

N ‘‘Stands-for’’ imputed relation:

relationship between the symbolic

representation of the knowledge and

the actual unit of knowledge

N ‘‘Refers-to’’ causal relation: rela-

tionship between the actual unit of

knowledge, and the unit of knowledge

as understood by the individual or

system utilizing or acting upon that

knowledge

N ‘‘Symbolizes’’ causal relation:

relationship between the unit of knowl-

edge as understood by the individual

or system utilizing or acting upon that

knowledge, and the symbolic repre-

sentation of the knowledge

Figure 2. Ogden-Richards semiotic triad, illustrating the relationships between the three major semiotic-derived types of
‘‘meaning’’.
doi:10.1371/journal.pcbi.1002826.g002
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N The strength of these relationships is

usually evaluated using heuristic meth-

ods or criteria [48].

3.4 Linguistic Basis for Knowledge
Engineering

The preceding theories have focused

almost exclusively on knowledge that may

be elicited from domain experts. In

contrast, domain knowledge can also be

extracted through the analysis of existing

sources, such as collections of narrative

text or databases. Sub-language analysis

is a commonly described approach to the

elicitation of conceptual knowledge from

collections of text (e.g., narrative notes,

published literature, etc.). The theoretical

basis for sub-language analysis, known as

sub-language theory was first described

by Zellig Harris in his work concerning

the nature of language usage within

highly specialized domains [49]. A key

argument of his sub-language theory is

that language usage in such highly

specialized domains is characterized by

regular and reproducible structural fea-

tures and grammars [49,50]. At an

application level, these features and

grammars can be discovered through

the application of manual or automated

pattern recognition processes to large

corpora of language for a specific domain.

Once such patterns have been discovered,

templates may be created that describe

instances in which concepts and relation-

ships between those concepts are defined.

These templates can then be utilized to

extract knowledge from sources of lan-

guage, such as text [51]. The process of

applying sub-language analysis to existing

knowledge sources has been empirically

validated in numerous areas, including

the biomedical domain [50,51]. Within

the biomedical domain, sub-language

analysis techniques have been extended

beyond conventional textual language to

also include sub-languages that consist of

graphical symbols [52].

4. Knowledge Acquisition Tools
and Methods

While a comprehensive review of tools

and methods that may be used to facilitate

the knowledge acquisition (KA) is beyond

the scope of this chapter, in the following

section, we will briefly summarize example

cases of such techniques in order to

provide a general overview of this impor-

tant area of informatics research, develop-

ment, and applications.

As was introduced in the preceding

section, KA can be defined as the sub-process

involving the extraction of knowledge

from existent sources (e.g., experts, liter-

ature, databases, etc.) for the purpose of

representing that knowledge in a comput-

able format [23–28]. This definition also

includes the verification or validation of

knowledge-based systems that use the

resultant knowledge collections [27]. Be-

yond this basic definition of KA and its

relationships to KE, there are two critical

characteristics of contemporary ap-

proaches to KA that should be noted, as

follows:

N By convention within the biomedical

informatics domain, KA usually refers

to the process of eliciting knowledge

specifically for use in ‘‘knowledge-

bases’’ (KBs) that are integral to expert

systems or intelligent agents (e.g.,

clinical decision support systems).

However, a review of the literature

concerned with KA beyond this do-

main shows a broad variety of appli-

cation areas for KA, such as the

construction of shared database mod-

els, ontologies and human-computer

interaction models [23,53–57].

N Verification and validation methods

are often applied to knowledge-based

systems only during the final stage of

the KE process. However, such tech-

niques are most effective when em-

ployed iteratively throughout the en-

tire KE process. As such, they also

become necessary components of the

KA sub-process.

Given the particular emphasis of this

chapter on the use of conceptual knowledge

collections for the purpose of complex

integrative analysis tasks, it is important to

understand that the KA methods and tools

available to support the generation of

conceptual knowledge collections can be

broadly divided into three complementary

classes:

N Knowledge unit elicitation: tech-

niques for the elicitation of atomic

units of information or knowledge

N Knowledge relationship elicita-
tion: techniques for the elicitation of

relationships between atomic units of

information or knowledge

N Combined elicitation: techniques

that elicit both atomic units of infor-

mation or knowledge, and the rela-

tionships that exist between them

There are a variety of commonly used

methods that target one or more above

these KA classes, as summarized below:

4.1 Informal and Structured
Interviewing

Interviews conducted either individually

or in groups can provide investigators with

insights into the knowledge used by

domain experts. Furthermore, they can

be performed either informally (e.g.,

conversational exchange between the in-

terviewer and subjects) or formally (e.g.,

structured using a pre-defined series of

questions). The advantages of utilizing

such interviewing techniques are that they

require a minimal level of resources, can

be performed in a relatively short time

frame, and can yield a significant amount

of qualitative knowledge. More detailed

descriptions of interviewing techniques are

provided in the methodological reviews

provided by Boy [58], Morgan [59], and

Wood [60].

4.2 Observational Studies
Ethnographic evaluations, or observa-

tional studies are usually conducted in

context, with minimal researcher involve-

ment in the workflow or situation under

consideration. These observational meth-

ods generally focus on the evaluation of

expert performance, and the implicit

knowledge used by those experts. Exam-

ples of observational studies have been

described in many domains, ranging from

air traffic control systems to complex

healthcare workflows [61,62]. One of the

primary benefits of such observational

methods is that they are designed to

minimize potential biases (e.g., Hawthorne

effect [63]), while simultaneously allowing

for the collection of information in con-

text. Additional detail concerning specific

observational and ethnographic field study

methods can be found in the reviews

provided by John [62] and Rahat [64].

4.3 Categorical Sorting
There are a number of categorical, or

card sorting techniques, including Q-sorts,

hierarchical sorts, all-in-one sorts and

repeated single criterion sorts [65]. All of

these techniques involve one or more

subjects sorting of a group of artifacts

(e.g., text, pictures, physical objects, etc.)

according to criteria either generated by

the sorter or provided by the researcher.

The objective of such methods is to

determine the reproducibility and stability

of the groups created by the sorters. In all

of these cases, sorters may also be asked to

assign names to the groups they create.

Categorical sorting methods are ideally

suited for the discovery of relationships

between atomic units of information or

knowledge. In contrast, such methods are
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less effective for determining the atomic

units of information or knowledge. How-

ever, when sorters are asked to provide

names for their groups, this data may help

to define domain-specific units of knowl-

edge or information. Further details con-

cerning the conduct and analysis of

categorical sorting studies can be found

in the review provided by Rugg and

McGeorge [65].

4.4 Repertory Grid Analysis
Repertory grid analysis is a method

based on the previously introduced Per-

sonal Construct Theory (PCT). Repertory

grid analysis involves the construction of a

non-symmetric matrix, where each row

represents a construct that corresponds to

a distinction of interest, and each column

represents an element (e.g., unit of infor-

mation or knowledge) under consider-

ation. For each element in the grid, the

expert completing the grid provides a

numeric score using a prescribed scale

(defined by a left and right pole) for each

distinction, indicating the strength of

relatedness between the given element-

distinction pair. In many instances, the

description of the distinction being used in

each row of the matrix is stated differently

in the left and right poles, providing a

frame of reference for the prescribed

scoring scale. Greater detail on the

techniques used to conduct repertory grid

studies can be found in the review

provided by Gaines et al. [26].

4.5 Formal Concept Analysis
Formal concept analysis (FCA) has often

been described for the purposes of devel-

oping and merging ontologies [66,67].

FCA focuses on the discovery of ‘‘natural

clusters’’ of entities and entity-attribute

pairings [66], where attributes are similar

to the distinctions used in repertory grids.

Much like categorical sorting, FCA is

almost exclusively used for eliciting the

relationships between units of information

or knowledge. The conduct of FCA studies

involves two phases: (1) elicitation of

‘‘formal contexts’’ from subjects, and (2)

visualization and exploration of resulting

‘‘concept lattices’’. It is of interest to note

that the ‘‘concept lattices’’ used in FCA

are in many ways analogous to Sowa’s

Conceptual Graphs [68], which are com-

prised of both concepts and labeled

relationships. The use of Conceptual

Graphs has been described in the context

of KR [68–70], as well as a number of

biomedical KE instances [48,71–73].

Recent literature has described the use

of FCA in multi-dimensional ‘‘formal

contexts’’ (i.e., instances where relational

structures between conceptual entities

cannot be expressed as a single many-

valued ‘‘formal context’’). One approach

to the utilization of multi-dimensional

‘‘formal contexts’’ is the agreement con-

text model proposed by Cole and Becker

[67], which uses logic-based decomposi-

tion to partition and aggregate n-ary

relations. This algorithmic approach has

been implemented in a freely available

application named ‘‘Tupleware’’ [74].

Additionally, ‘‘formal contexts’’ may be

defined from existing data sources, such as

databases. These ‘‘formal contexts’’ are

discovered using data mining techniques

that incorporate FCA algorithms, such as

the open-source TOSCANA or CHIAN-

TI tools. Such algorithmic FCA methods

are representative examples of a sub-

domain known as Conceptual Knowledge

Discovery and Data Analysis (CKDD)

[75]. Additional details concerning FCA

techniques can be found in the reviews

provided by Cimiano et al. [66], Hereth et

al. [75], and Priss [76].

4.6 Protocol and Discourse Analysis
The techniques of protocol and dis-

course analysis are very closely related.

Both techniques are concerned with the

elicitation of knowledge from individuals

while they are engaged in problem-solving

or reasoning tasks. Such analyses may be

performed to determine the unit of

information or knowledge, and relation-

ships between those units of information

or knowledge, used by individuals per-

forming tasks in the domain under study.

During protocol analysis studies, subjects

are requested to ‘‘think out loud’’ (i.e.,

vocalize internal reasoning and thought

processes) while performing a task. Their

vocalizations and actions are recorded

for later analysis. The recordings are then

codified at varying levels of granularity to

allow for thematic or statistical analysis

[77,78]. Similarly, discourse analysis is a

technique by which an individual’s in-

tended meaning within a body of text or

some other form of narrative discourse

(e.g., transcripts of a ‘‘think out loud’’

protocol analysis study) is ascertained by

atomizing that text or narrative into

discrete units of thought. These ‘‘thought

units’’ are then subject to analyses of

both the context in which they appear,

and the quantification and description of

the relationships between those units

[79,80]. Specific methodological ap-

proaches to the conduct of protocol and

discourse analysis studies can be found in

the reviews provided by Alvarez [79] and

Polson et al. [78].

4.7 Sub-Language Analysis
Sub-language analysis is a technique for

discovering units of information or knowl-

edge, and the relationships between them

within existing knowledge sources, includ-

ing published literature or corpora of

narrative text. The process of sub-lan-

guage analysis is based on the sub-

language theory initially proposed by

Zellig Harris [49]. The process by which

concepts and relationships are discovered

using sub-language analysis is a two-stage

approach. In the first stage, large corpora

of domain-specific text are analyzed either

manually or using automated pattern

recognition techniques, in an attempt to

define a number of critical characteristics,

which according to Friedman et al. [50]

include:

N Semantic categorization of terms used

within the sub-language

N Co-occurrence patterns or constraints,

and paraphrastic patterns present

within the sub-language

N Context-specific omissions of informa-

tion within the sub-language

N Intermingling of sub-language and

general language patterns

N Usage of terminologies and controlled

vocabularies (i.e., limited, reoccurring

vocabularies) within the sub-language

Once these characteristics have been

defined, templates or sets of rules may be

established. In the second phase, the

templates or rules resulting from the prior

step are applied to narrative text in order

to discover units of information or knowl-

edge, and the relationships between those

units. This is usually enabled by a natural

language processing engine or other sim-

ilar intelligent agent [81–85].

4.8 Laddering
Laddering techniques involve the crea-

tion of tree structures that hierarchically

organize domain-specific units of informa-

tion or knowledge. Laddering is another

example of a technique that can be used to

determine both units of information or

knowledge and the relationships between

those units. In conventional laddering

techniques, a researcher and subject

collaboratively create and refine a tree

structure that defines hierarchical relation-

ships and units of information or knowl-

edge [86]. Laddering has also been

reported upon in the context of structuring

relationships between domain-specific pro-

cesses (e.g., procedural knowledge). There-

fore, laddering may also be suited for

discovering strategic knowledge in the

PLOS Computational Biology | www.ploscompbiol.org 7 December 2012 | Volume 8 | Issue 12 | e1002826



form of relationships between conceptual

and procedural knowledge. Additional

information concerning the conduct of

laddering studies can be found in the

review provided by Corbdridge et al. [86].

4.9 Group Techniques
Several group techniques for multi-

subject KA studies have been reported,

including brainstorming, nominal group

studies, Delphi studies, consensus decision-

making and computer-aided group ses-

sions. All of these techniques focus on the

elicitation of consensus-based knowledge.

It has been argued that consensus-based

knowledge is superior to the knowledge

elicited from a single expert [27]. Howev-

er, conducting multi-subject KA studies

can be difficult due to the need to recruit

appropriate experts who are willing to

participate, or issues with scheduling

mutually agreeable times and locations

for such groups to meet. Furthermore, it is

possible in multi-subject KA studies for a

forceful or coercive minority of experts or

a single expert to exert disproportionate

influence on the contents of a knowledge

collection [25,27,59,87]. Additional detail

concerning group techniques can be found

in reviews provided by Gaines [26], Liou

[27], Morgan [59], Roth [88], and Wood

[60].

5. Integrating Knowledge in the
Translational Science Domain

Building upon the core concepts intro-

duced in Section 1–4, in the remainder of

this chapter we will synthesize the require-

ments, challenges, theories, and frame-

works discussed in the preceding sections,

in order to propose a set of methodological

approaches to the data, information, and

knowledge integration requirements in-

cumbent to complex translational science

projects. We believe that it is necessary to

design and execute informatics efforts in

such context in a manner that incorporates

tasks and activities related to: 1) the

identification of major categories of infor-

mation to be collected, managed and

disseminated during the course of a project;

2) the determination of the ultimate data

and knowledge dissemination requirements

of project-related stake-holders; and 3) the

systematic modeling and semantic annota-

tion of the data and knowledge resources

that will be used to address items (1) and (2).

Based upon prior surveys of the state of

biomedical informatics relative to the

clinical and translational science domains

[3,89], a framework that is informative to

preceding design and execution pattern

can be formulated. Central to this frame-

work are five critical information or

knowledge types involved in the conduct

of translational science projects, as are

briefly summarized in Table 1.

The preceding framework of informa-

tion and knowledge types ultimately in-

forms a conceptual model for knowledge

integration in the translational sciences.

Table 1. Overview of information and knowledge types incumbent to the translational sciences.

Information or Knowledge Type Description Examples Sources or Types

Individual and/or Population Phenotype This information type involves data elements
and metadata that describe characteristics at the
individual or population levels that relate to the
physiologic and behavioral manifestation of
healthy and disease states.

N Demographics
N Clinical exam findings
N Qualitative characteristics
N Laboratory testing results

Individual and/or Population Bio-markers This information type involves data elements and
metadata that describe characteristics at the
individual or population levels that relate to the
bio-molecular manifestation of healthy and
disease states.

N Genomic, proteomic and metabolomic expression profiles
N Novel bio-molecular assays capable of measuring bio-
molecular structure and function

Domain Knowledge This knowledge type is comprised of community-
accepted, or otherwise verified and validated [17]
sources of biomedical knowledge relevant to a
domain of interest. Collectively, these types of
domain knowledge may be used to support
multiple operations, including: 1) hypothesis
development; 2) hypothesis testing; 3) comparative
analyses; or 4) augmentation of experimental data
sets with statistical or semantic annotations [15,17,125].

N Literature databases
N Public or private databases containing experimental
results or reference standards
N Ontologies
N Terminologies

Biological Models and Technologies This knowledge type typically consists of: 1)
empirically validated system or sub-system level
models that serve to define the mechanisms by
which bio-molecular and phenotypic processes
and their markers/indicators interact as a network
[6,20,124,126]; and 2) novel technologies that
enable the analysis of integrative data sets in
light of such models. By their nature these tools
include algorithmic or embedded knowledge
sources [124,126].

N Algorithms
N Quantitative Models
N Analytical ‘‘Pipelines’’
N Publications

Translational Biomedical Knowledge Translational biomedical knowledge represents a
sub-type of general biomedical knowledge that is
concerned with a systems-level synthesis (i.e.,
incorporate quantitative, qualitative, and semantic
annotations) of pathophysiologic or biophysical
processes or functions of interest (e.g.,
pharmacokinetics, pharmacodynamics, bionutrition,
etc.), and the markers or other indicators that can
be used to instrument and evaluate such models.

N Publications
N Guidelines
N Integrative Data Sets
N Conceptual Knowledge Collections

doi:10.1371/journal.pcbi.1002826.t001
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The role of Biomedical Informatics and

KE in this framework is to address the four

major information management challeng-

es enumerated earlier relative to the ability

to generate Translational Biomedical
Knowledge, namely: 1) the collection

and management of high throughput,

multi-dimensional data; 2) the generation

and testing of hypotheses relative to such

integrative data sets; 3) the provision

data analytic ‘‘pipelines’’; and 4) the

dissemination of knowledge collections

resulting from research activities.

5.1 Design Pattern for Translational
Science Knowledge Integration

Informed by the conceptual framework

introduced in the preceding section and

illustrated in Figure 3, we will now

summarize the design and execution

pattern used to address such knowledge

integration requirements. This design pat-

tern can be broadly divided into four major

phases that collectively define a cyclical and

iterative process (which we will refer to as a

translational research cycle,). For each

phase of the pattern, practitioners must

consider both the required inputs and

anticipated outputs, and their interrelation-

ships between and across phases.

Figure 3. Practical model for the design and execution of translational informatics projects, illustrating major phases and
exemplary input or output resources and data sets.
doi:10.1371/journal.pcbi.1002826.g003
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Phase 1 - Stakeholder engagement
and knowledge acquisition: During

this initial phase, key stakeholders who will

be involved in the collection, manage-

ment, analysis, and dissemination of proj-

ect-specific data and knowledge are iden-

tified and engaged in both formal and

informal knowledge acquisition, with the

ultimate goal of defining the essential

workflows, processes, and data sources

(including their semantics). Such knowl-

edge acquisition usually requires the use of

ethnographic, cognitive science, workflow

modeling, and formal knowledge acquisi-

tion techniques [14]. The results of such

activities can be formalized using a

thematic narratives [90–92] and workflow

or process artifacts [92–94]. In some

instances, it may be necessary to engage

domain-specific subject matter experts

(SMEs) who are not involved in a given

project in order to augment available

SMEs, or to validate the findings generat-

ed during such activities [14,92].

Phase 2 - Data identification and
modeling: Informed by the artifacts

generated in Phase 1, in this phase, we

focus upon the identification of specific,

pertinent data sources relative to project

aims, and the subsequent creation of

models that encapsulate the physical and

semantic representations of that data.

Once pertinent data sources have been

identified, we must then model their

contents in an implementation-agnostic

manner, an approach that is most fre-

quently implemented using model-driven

architecture techniques [95–99]. The re-

sults of such MDA processes are common-

ly recorded using the Unified Modeling

Language (UML) [16,100–102]. During

the modeling process, it is also necessary to

identify and record semantic or domain-

specific annotation of targeted data struc-

tures, using locally relevant conceptual

knowledge collections (such as terminolo-

gies and ontologies), in order to enable

deeper, semantic reasoning concerning

such data and information [16,103,104].

Phase 3 - Integration and aggre-
gation: A common approach to the

integration of heterogeneous and multi-

dimensional data is the use of technology-

agnostic domain or data models (per

Phases 1–2), incorporating semantic anno-

tations, in order to execute data federation

operations [105] or to transform that data

and load it into an integrative repository,

such as a data warehouse [106–108].

Once the mechanisms needed to integrate

such disparate data sources are imple-

mented, it is then possible to aggregate the

data for the purposes of hypothesis

discovery and testing – a process that is

sometimes referred to as creating a data

‘‘mashup’’ [109–115]. Data ‘‘mashups’’

are often created using a variety of readily

available reasoners, such as those associ-

ated with the semantic web [109–115],

which directly employ both the data

models and semantic annotations created

in the prior phases of the Translational

Informatics Cycle, and enable a knowl-

edge-anchored approach to such opera-

tions.

Phase 4 - Analysis and dissemina-
tion: In this phase of the Translational

Informatics Cycle, the integrated/aggre-

gated data and knowledge created in the

preceding phases is subject to analysis. In

most if not all cases, these analyses make

use of domain or task specific applications

and algorithms, such as those implement-

ed in a broad number of biological data

analysis packages, statistical analysis appli-

cations, and data mining tools, and

intelligent agents. These types of analytical

tools are used to address questions per-

taining to one or more of the following

four basic query or data interrogation

patterns: 1) to generate hypotheses con-

cerning relationships or patterns that serve

to link variables of interest in a data set

[116]; 2) to evaluate the validity hypoth-

eses and the strength of their related data

motifs, often using empirically-validated

statistical tests [117,118]; 3) to visualize

complex data sets in order to facilitate

human-based pattern recognition [119–

121]; and 4) to infer and/or verify and

validate quantitative models that formalize

phenomena of interest identified via the

preceding query patterns [122,123].

6. Open Research Questions
and Future Direction

As can be ascertained from the preced-

ing review of the theoretical and practice

bases for the integration of data and

knowledge in the translational science

domain, such techniques and frameworks

have significant potential to positively

impact the speed, efficacy, and impact of

such research programs, and to enable

novel scientific paradigms that would not

otherwise be tractable. However, there are

a number of open and ongoing research

and development questions being ad-

dressed by the biomedical informatics

community relative to such approaches

that should be noted:

Dimensionality and granularity:
the majority of knowledge integration

techniques being designed, evaluated,

and applied relative to the context of the

translational science domain target low-

order levels of dimensionality (e.g., the

integration of data and knowledge corre-

sponding to a single type, per the defini-

tions set forth in Table 1). However, many

translational science problem spaces re-

quire reasoning across knowledge-types

and data granularities (e.g., multidimen-

sional data and knowledge collections).

The ability to integrate and reason upon

data in a knowledge-anchored manner

that addresses such multi-dimensional

context remains an open area of research.

Many efforts to address this gap in

knowledge and practice rely upon the

creation of semantically typed ‘‘vertical’’

linkages spanning multiple integrative

knowledge networks, as is illustrated in

Figure 4.

Scalability: Similar to the challenge of

dimensionality and granularity, the issue

of scalability of knowledge integration

methods also remains an open area of

research and development. Specifically, a

large number of available knowledge

integration techniques rely upon semi-

automated or human-mediated methods

or activities, which significantly curtail the

scalability of such approaches to large-

scale problems. Much of the research

targeting this gap in knowledge and

practice has focused on the use of artificial

intelligence and semantic-reasoning tech-

nologies to enable the extraction, disam-

biguation, and application of conceptual

knowledge collections.

Reasoning and visualization: Once

knowledge and data have been aggregated

and made available for hypothesis discov-

ery and testing, the ability to reason upon

and visualize such ‘‘mashups’’ is highly

desirable. Current efforts to provide reus-

able methods of doing so, such as the tools

and technologies provided by the semantic

web community, as well as visualization

techniques being explored by the comput-

er science and human-computer interac-

tion communities, hold significant promise

in addressing such needs, but are still

largely developmental.

Applications of knowledge-based
systems for in-silico science para-
digms: As has been discussed throughout

this collection, a fundamental challenge in

Translational Bioinformatics is the ability

to both ask and answer the full spectrum of

questions possible given a large-scale and

multi-dimensional data set. This challenge

is particularly pressing at the confluence of

high-throughput bio-molecular measure-

ment methods and the translation of the

findings generated by such approaches to

clinical research or practice. Broadly

speaking, overcoming this challenge re-

quires a paradigm that can be described as

in-silico science, in which informatics
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methods are applied to generate and test

integrative hypotheses in a high-through-

put manner. Such techniques require the

development and use of novel KA and KR

methods and structures, as well as the

design and verification/validation of

knowledge-based systems targeting the

aforementioned intersection point. There

are several exemplary instances of investi-

gational tools and projects targeting this

space, including RiboWeb, BioCyc, and a

number of initiatives concerned with the

modeling and analysis of complex biolog-

ical systems [6,113,114,120,124]. In addi-

tion, there are a number of large-scale

conceptual knowledge collections focusing

on this particular area that can be

explored as part of the repositories main-

tained and curated by the National Center

for Biomedical Ontologies (NCBO). How-

ever, broadly accepted methodological

approaches and knowledge collections

related to this area generally remain

developmental.

7. Summary

As was stated at the outset of this

chapter, our goals were to review the

basic theoretical frameworks that define

core knowledge types and reasoning

operations with particular emphasis on

the applicability of such conceptual

models within the biomedical domain,

and to introduce a number of prototyp-

ical data integration requirements and

patterns relevant to the conduct of

translational bioinformatics that can be

addressed via the design and use of

knowledge-based systems. In doing so,

we have provided:

N Definitions of the basic knowledge
types and structures that can be

applied to biomedical and translational

research;

N An overview of the knowledge en-
gineering cycle, and the products

generated during that cycles;

N Summaries of basic methods, tech-
niques, and design patterns that
can be used to employ knowl-
edge products in order to integrate

and reason upon heterogeneous and

multi-dimensional data sets; and

N An introduction to the open re-
search questions and areas re-
lated to the ability to apply
knowledge collections and knowl-

edge-anchored reasoning processes

across multiple networks or knowledge

collections.

Given that the translational bioinfor-

matics is defined by the presence of

complex, heterogeneous, multi-dimension-

al data sets, and in light of the growing

volume of biomedical knowledge collec-

tions, the ability to apply such knowledge

collections to biomedical data sets requires

an understanding of the sources of such

knowledge, and methods of applying them

to reasoning applications. Ultimately,

Figure 4. Conceptual model for the generation of multi-network complexes of markers spanning a spectrum of granularity from
bio-molecules to clinical phenotypes.
doi:10.1371/journal.pcbi.1002826.g004
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these approaches introduce both signifi-

cant opportunities to advance the state of

translational science, while simultaneously

adding areas of complexity to the design of

translational bioinformatics studies, in-

cluding the methods needed to reason in

an integrative manner across multiple

networks or knowledge constructs. As

such, these theories, methods, and frame-

works offer significant benefits as well as a

number of exciting and ongoing areas of

biomedical informatics research and de-

velopment.

8. Exercises

Instructions: Read the following mo-

tivating use case and then perform the

tasks described in each question. The

objective of this exercise is to demonstrate

how available and open-access knowledge

discovery and reasoning tools can be used

to satisfy the information needs incumbent

to biomedical knowledge integration needs

commonly encountered in the clinical and

translational research environment.

Use Case: The ability to identify potentially

actionable phenotype-to-biomarker relationships is

of critical importance in the translational science

domain. In the specific context of integrative cancer

research, it is regularly the case that structural and

functional relationships between genes, gene

products, and clinical phenotypes are used to

design and evaluate diagnostic and therapeutic

approaches to targeted disease states. Large

volumes of domain specific conceptual knowledge

related to such hypothesis generation processes can

be found in publically available literature corpora

and ontologies.

1) Task One: Select a specific cancer

and perform a search for a collection

of recent literature available with full

free text via PubMed Central (the

resulting corpora should contain 5

manuscripts published within the

last three years, selected based upon

their publication dates beginning

with the most recent articles/manu-

scripts). Download the free text for

each such article.

2) Task Two: For each full text article

in the corpora established during

Task One, semantically annotate

genes, gene products, and clinical

phenotype characteristics as found in

the Abstract, Introduction, and Con-

clusion (or equivalent) sections using

applicable Gene Ontology (GO)

concepts, using the NCBO anno-

tator found at: http://bioportal.

bioontology.org/annotator)

3) Task Three: Identify the top 10

most frequently occurring Gene

Ontology (GO) concepts found in

your annotations, per Task Two.

For each such concept, perform a

search of PubMed Central for

articles in which both the appropri-

ate terms describing the cancer

selected in Task One as well as

these concepts co-occur. For the top

5 (most recent) articles retrieved via

each search, retrieve the associate

abstract for subsequent analysis

4) Task Four: Using the NCBO Ontol-

ogy Recommender (http://bioportal.

bioontology.org/recommender), analyze

each of the abstracts retrieved in Task

Three to determine the optimal ontology

for annotating those abstracts, noting the

top ‘‘recommended’’ ontology for each

such textual resource.

5) Task Five: For each abstract

identified in Step Three, again using

the NCBO annotator (found at:

http://bioportal.bioontology.org/

annotator), annotate those abstracts

using the recommended ontologies

identified in Step Four (selecting

only those ontologies that are also

reflects in the NLM’s UMLS). Then,

for the top 2–3 phenotypic (e.g.,

clinically relevant) concepts identi-

fied via that annotation process, use

the UMLS UTS (https://uts.nlm.

nih.gov/) in order to identify poten-

tial phenotype-genotype pathways

linking such phenotypic concepts

and the genes or gene products

identified in Task Two. Please note

that performing this task will require

exploring multiple relationship

types reflected in the UMLS me-

tathesaurus (documentation con-

cerning how to do perform such a

search can be found here: http://

www.ncbi.nlm.nih.gov/books/

NBK9684/).

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises

(DOCX)
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