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Abstract: Genome-wide associa-
tion study (GWAS) aims to discover
genetic factors underlying pheno-
typic traits. The large number of
genetic factors poses both compu-
tational and statistical challenges.
Various computational approaches
have been developed for large
scale GWAS. In this chapter, we will
discuss several widely used com-
putational approaches in GWAS.
The following topics will be cov-
ered: (1) An introduction to the
background of GWAS. (2) The
existing computational approaches
that are widely used in GWAS. This
will cover single-locus, epistasis
detection, and machine learning
methods that have been recently
developed in biology, statistic, and
computer science communities.
This part will be the main focus of
this chapter. (3) The limitations of
current approaches and future di-
rections.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

With the advancement of genotyping

technology, genome-wide high-density sin-

gle nucleotide polymorphisms (SNPs) of

human and other organisms are now

available [1,2]. The goal of genome-wide

association studies (GWAS) is to seek

strong associations between phenotype

and genetic variations in a population that

represent (genomically proximal) causal

genetic effects. As the most abundant

source of genetic variation, millions of

SNPs have been genotyped across the

entire genome. Analyzing such large

amount of markers poses great challenges

to traditional computational and statistical

methods. In this chapter, we introduce the

basic concept of genome-wide association

study, and discuss recently developed

methods for GWAS.

Genome-wide association study is an

inter-discipline problem of biology, statis-

tics and computer science [3,4,5,6]. In this

section, we will first provide a brief

introduction to the necessary biological

background. We will then formalize the

problem and discuss both traditional and

recently developed methods for genome-

wide analysis of associations.

A human genome contains over 3 billion

DNA base pairs. There are four possible

nucleotides at each base in the DNA:

adenine (A), guanine (G), thymine (T),

and cytosine (C). In some locations in the

genome, a genetic variation may be found

which involves two or more nucleotides

across different individuals. These genetic

variations are known as single-nucleotide

polymorphism (SNPs), i.e., a variation of a

single nucleotide in the DNA sequence. In

most cases, there are two possible nucleo-

tides for a variant. We denote the more

frequent one as ‘‘0’’, and the less frequent

one as ‘‘1’’. For bases on autosomal

chromosomes, there are two parallel nucle-

otides, which leads to three possible

combinations, ‘‘00’’, ‘‘01’’ and ‘‘11’’. These

genotype combinations are known as

‘‘major homozygous site’’, ‘‘heterozygous

site’’ and ‘‘minor heterozygous site’’ re-

spectively. These genetic variations con-

tribute to the phenotypic differences among

the individuals. (A phenotype is the com-

posite of an organism’s observable charac-

teristics or traits.) Genome-wide association

study (GWAS) aims to find strong associa-

tions between SNPs and phenotypes across

a set of individuals.

More formally, let X~fX1,X2, � � � ,
XNg be the set of N SNPs for M

individuals in the study, and Y be the

phenotype of interest. The goal of GWAS

is to find SNPs (markers) in X , that are

highly associated with Y . There are

several challenging issues that need to be

addressed when developing an analytic

method for GWAS [7,8].

Scalability Most GWAS datasets consist

of a large number of SNPs. Therefore the

algorithms for GWAS need to be highly

scalable. For example, for a typical human

GWAS, the dataset may contain up to

millions SNPs and involve thousands of

individuals. Inefficient methods may con-

sume a large amount of computational

resources and time to find highly associated

SNPs.

Missing markers Even with the

current dense genotyping technique, many

genetic variants are still not genotyped.

Current methods usually assume genetic

linkage to enhance the power. Imputation,

which tries to impute the unknown

markers by using existing SNPs databases,

is another popular approach to handle

missing markers. The well known related

projects include the International Hap-

Map project [9] and the 1000 Genomes

Project [10].

Complex traits One approach in

GWAS is to test the association between

the trait and each marker in a genome,

which is successful in detecting a single

gene related disease. However, this ap-

proach may have problems in finding

markers associated with complex traits.

This is because that complex traits are

affected by multiple genes, and each gene

may only have a weak association with the

phenotype. Such markers with low mar-

ginal effects are hard to detect by the

single-locus methods.
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In the remainder of the chapter, we will

first discuss the single-locus methods. We

will then study epistasis detection (multi-

locus) approaches which are designed for

association studies of complex traits. For

epistasis detection, we will mainly focus on

exact two-locus association mapping

methods.

2. Single-Locus Association
Mapping

As the rapid development of high-

throughput genotyping technology, mil-

lions of SNPs are now available for

genome-wide association studies. Single-

locus association test is a traditional way

for association studies. Specifically, for

each SNP, a statistical test is performed

to evaluate the association between the

SNP and the phenotype. A variety of tests

can be applied depending on the data

types. The phenotype involved in a study

can be case-control (binary), quantitative

(continuous), or categorical. We categorize

the statistical tests based on what kind of

phenotypes they can be applied on.

2.1 Problem Formalization
Let fX1, � � � ,XNg be a set of N SNPs

for M individuals and Xn~fXn1,
� � � ,XnMg (1ƒnƒN). We use 0, 1, 2 to

represent the homozygous major allele,

heterozygous allele, and homozygous mi-

nor allele respectively. Thus we have that

Xnm[f0,1,2g (1ƒnƒN,1ƒmƒM ). Let

Y~fy1, � � � ,yMg be the phenotype. Note

that the values that Y can take depend on

its type.

2.2 Case-Control Phenotype
In a case-control study, the phenotype

can be represented as a binary variable

with 0 representing controls and 1 repre-

senting cases.

A contingency table records the

frequencies of different events. Table 1

is an example contingency table. For a

SNP Xn and a phenotype Y , and we use

Oij to denote the number of individuals

whose Xn equals i and Y equals j. Also,

we have Oi:~
P

j

Oij and O:j~
P

i

Oij .

The total number of individuals

S~
P
i,j

Oij .

Many tests can be used to assess the

significance of the association between a

single SNP and a binary phenotype. The test

statistics are usually based on the contingency

table. The null hypothesis is that there is no

association between the rows and columns of

the contingency table.

2.2.1 Pearson’s x2 test. Pearson’s x2

test can be used to test a null hypothesis

stating that the frequency distribution of

certain events observed in a sample is

consistent with a particular theoretical

distribution [11].

The value of the test statistic is

X 2~
X

i

X
j

(Oij{Eij)
2

Eij

,

where Eij~
Oi:O:j

S
. The degree of freedom

is 2.

2.2.2 G-test. G-test is an

approximation of the log-likelihood ratio.

The test statistic is

G~2
X

i

X
j

Oij
:ln(

Oij

Eij

),

where Eij~
Oi:O:j

S
.

The null hypothesis is that the observed

frequencies result from random sampling

from a distribution with the given expect-

ed frequencies. The distribution of G is

approximately that of x2, with the same

degree of freedom as in the corresponding

x2 test. When applied to a reasonable size

of samples, the G-test and the x2 test will

lead to the same conclusions.

2.2.3 Fisher exact test. When the

sample size is small, the Fisher exact test is

useful to determine the significance of the

association. The p-value of the test is the

probability of the contingency table given the

fixed margins. The probability of obtaining

such values in Table 1 is given by the

hypergeometric distribution:

p~

O:0

O00

 !
O:1

O01

 !
O:2

O02

 !

S

O0:

 ! ~

(O:0!O:1!O:2!)(O0:!O1:!)

S!(O00!O01!O02!O10!O11!O12!)

Most modern statistical packages can

calculate the significance of Fisher tests. The

actual computation performed by the existing

software packages may be different from the

exact formulation given above because of the

numerical difficulties. A simple, somewhat

better computational approach relies on a

gamma function or log-gamma function.

How to accurately compute hypergeometric

and binomial probabilities remains an active

research area.

2.2.4 Cochran-Armitage test. For

complex traits, contributions to disease

risk from SNPs are widely considered to be

roughly additive. In other words, the

heterozygous alleles will have an inter-

mediate risk between two homozygous

alleles. Cochran-Armitage test can be used

in this case [12,5]. Let the test statistic of U

be the following:

U~O1:O0:

X2

i~0

i:(
O1i

O1:
{

O0i

O0:
)

After substitution, we get

U~S:(O11z2O12{O1:
:(O:1z2O:2)

The variance of U under the null

hypothesis can be computed as

Var(U)~
(S{O1:)O1:

S

½S(O:1z4O:2){(O:1z2O:2)2�

Notice that for a large sample size S, we

have Uffiffiffiffiffiffiffiffiffiffiffi
Var(U)
p *N(0,1), hence U2

Var(U)
*x2

1.

2.2.5 Summary. There is no overall

winner of the introduced tests. Cochran-

Armitage test may not be the best if the risks

are deviated from the additive model.

Meanwhile, x2 test, G-test, and Fisher exact

test can handle the full range of risks, but they

will unavoidably lose some power in the

detection of additive ones. Different tests may

be applied on the same data to detect

different effects.

What to Learn in This Chapter

N The background of Genome-wide association study (GWAS).

N The existing computational approaches that are widely used in GWAS. This will
cover single-locus, epistasis detection, and machine learning methods.

N The limitations of current approaches and future directions.

Table 1. Contingency table for a single
SNP Xn and a phenotype Y .

Xn~0 Xn~1 Xn~2 Totals

Y~0 O00 O01 O02 O0:

Y~1 O10 O11 O12 O1:

Totals O:0 O:1 O:2 S

doi:10.1371/journal.pcbi.1002828.t001
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2.3 Quantitative Phenotype
In addition to case-control phenotypes,

many complex traits are quantitative. This

type of study is also often referred to as the

quantitative trait locus (QTL) analysis.

The standard tools for testing the associ-

ation between a single marker and a

continuous outcome are analysis of vari-

ance (ANOVA) and linear regression.

2.3.1 One-way ANOVA. The F-test

in one-way analysis of variance is used to

assess whether the expected values of a

quantitative variable within several pre-

defined groups differ from each other.

For each SNP Xn, we can divide all the

individuals into three groups according to

their genotypes. Let Y ’i (i[f0,1,2g) be a

subset of phenotypes of which the individ-

uals have the genotypes equal to i. We

represent the number of phenotypes in Y ’i
as Mi, and we have Y ’i ~fyi1, � � � ,yiMi

g.

Notice that
S2

i~0

Y ’i ~Y and
P2
i~0

Mi~M

The total sum of squares (SST) can be

divided into two parts, the between-group

sum of squares (SSB) and the within-group

sum of squares (SSW):

SST~
XM
m~1

(ym{Y )2~

X2

i~0

XMi

m~1

(y0im {Y )2,

SSB~
X2

i~0

(Y 0i {Y )2, and

SSW~SST{SSB~
X2

i~0

XMi

m~1

(y0im { �YY ’
i )

2,

where

Y~
1

M

XM
m~1

ym and �YY ’
i ~

1

Mi

XMi

m~1

y’im :

The formula of F-test statistic is F~ SSB
SSW

,

and F follows the F-distribution with 2 and

S-3 degrees of freedom under the null

hypothesis, i.e., F*F(2,S{3).

2.3.2 Linear regression. In the

linear regression model, a least-squares

regression line is fit between the phenotype

values and the genotype values [11]. For

simplicity, we denote the genotypes of a

single SNP to be x1,x2, � � � ,xM . Based on

the data (x1,y1), � � � ,(xM ,yM ), we need to

fit a line in the form of Y~azbx.

We have the sums of squares as follows:

SSxx~
XM
i~1

(xi{x)2,SSyy~
XM
i~1

(Yi{Y )2,

and SSxy~
XM
i~1

(xi{x)(Yi{Y )

where x~ 1
M

PM
i~1

xi and Y~ 1
M

PM
i~1

yi

To achieve least squares, the estimator

of b is
SSxy

SSxx
. To evaluate the significance of

the obtained model, a hypothesis testing

for b~0 is then applied.

2.4 Multiple Testing Problem
In a typical GWAS, the test needs to be

performed many times. We should pay

attention to a statistical issue known as the

multiple testing problem. In the remainder

of this section, we will discuss the multiple

testing problem and how to effectively

control error rate in GWAS.

Type 1 error rate, is the possibility that a

null hypothesis is rejected when it is actually

true. In other words, it is the chance of

observing a positive (significant) result even if

it is not. If a test is performed multiple times,

the overall Type 1 Error rate will increase.

This is called the multiple testing problem.

Let a be the type 1 error rate for a statistical

test. If the test is performed n times, the

experimental-wise error rate a’ is given by

a’~1{(1{a)n:

For example, if a~0:05 and n~20, then

a’~1{(1{0:05)20~0:64. In this case, the

chance of getting at least one false positive is

64%.

Because of the multiple testing problem,

the test result may not be that significant

even if its p-value is less than a significant

level a. To solve this problem, the nominal

p-value need to be corrected/adjusted.

2.5 Family-Wise Error Rate Control
For the single-locus test, we denote the p-

value for a association test of a SNP Xi and a

phenotype Y to be p(Xi,Y ), and the

corrected p-value to be p’(Xi,Y ). Family-wise

error rate (FWER), or the experiment-wise

error rate, is the probability of at least one false

association. We use a’ to denote family-wise

error rate, and it is given by

a’~P(reject H0DH0)~P reject at leastð

one of Hi(1ƒiƒn)DH0Þ,

where n is the total number of tests and H0 is

the hypothesis that all the Hi(1ƒiƒn) are

true.

Many methods can be used to control

FWER. Bonferroni correction is a com-

monly used method, in which p-values

need to be enlarged to account for the

number of comparisons being performed.

Permutation test [13] is also widely used to

correct for multiple testing in GWAS.

2.5.1 Bonferroni correction. In

Bonferroni correction, the p-value of a

test is multiplied by the number of tests in

the multiple comparison.

p’(Xi,Y )~p(Xi,Y ) �N

Here the number of tests is the number of

SNPs N in a study. Bonferroni correction

is a single-step procedure, in which each of

the p-values is independently corrected.

2.5.2 Permutation tests. In the

permutation test, data are reshuffled. For

each permutation, p-values for all the tests are

re-calculated, and the minimal p-value is

retained. After K permutations, we get totally

K minimal p-values. The corrected p-value is

given by the proportion of minimal p-values

which is less than the original p-value.

Let fY1, � � � ,Ykg be the set of K

permutations. For each permutation

Yk(1ƒkƒK), the minimal p-value pYk

is given by

pYk
~minfp(Xi,Yk)D1ƒiƒng:

Then we have the corrected p-value

p’(Xi,Y )~
#fpYk

vp(Xi,Y )D1ƒkƒKg
K

:

The permutation method takes advantage of

the correlation structure between SNPs. It is

less stringent than Bonferroni correction.

2.6 False Discovery Rate Control
False discovery rate (FDR) controls the

expected proportion of type 1 error among all

significant hypotheses. It is less conservative

than the family-wise error rate. For example,

if 100 observed results are claimed to be

significant, and the FDR is 0.1, then 10 of

results are expected to be false discoveries.

One way to control the FDR is as

follows [14]. The p-values of SNPs and the

phenotype are ranked from smallest to

largest. We denote the ordered p-values to

be p1, � � � ,pN . Starting from the largest p-

value to the smallest, the original p-value is

multiplied by the total number of SNPs

and divided by its rank. For the ith p-value

pi, its corrected p-value p’i is given by

p’i ~pi � (
N

i
):
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In this section, we have discussed com-

monly used methods in single-locus study,

the multiple testing problem and how to

control error rate in GWAS. In the next

section, we will introduce methods used

for two-locus association studies. We will

focus on one class work that finds exact

solution when searching for SNP-SNP

interactions in GWAS.

3. Exact Methods for Two-Locus
Association Study

The vast number of SNPs has posed

great computational challenge to genome-

wide association study. In order to under-

stand the underlying biological mecha-

nisms of complex phenotype, one needs to

consider the joint effect of multiple SNPs

simultaneously. Although the idea of

studying the association between pheno-

type and multiple SNPs is straightforward,

the implementation is nontrivial. For a

study with total N SNPs, in order to find

the association between n SNPs and the

phenotype, a brute-force approach is to

exhaustively enumerate all
N

n

� �
possible

SNP combinations and evaluate their

associations with the phenotype. The

computational burden imposed by this

enormous search space often makes the

complete genome-wide association study

intractable. Moreover, although permuta-

tion test has been considered the gold

standard method for multiple testing

correction, it will dramatically increase

the computational burden because the

process needs to be performed for all

permuted data.

In this section, we will focus on the

recently developed exact method for two-

locus epistasis detection. Different from

the single-locus approach, the goal of two-

locus epistasis detection is to identify

interacting SNP-pairs that have strong

association with the phenotype. FastA-

NOVA [15] is an algorithm for two-locus

ANOVA (analysis of variance) test on

quantitative traits and FastChi [16] for

two-locus chi-square test on case-control

phenotypes. COE [17] is a general

method that can be applied in a wide

range of tests. TEAM [18] is designed for

studies involving a large number of

individuals such as human studies. In this

subsection, we will discuss these algo-

rithms, and their strengths and limita-

tions.

3.1 The FastANOVA Algorithm
FastANOVA utilizes an upper bound of

the two-locus ANOVA test to prune the

search space. The upper bound is ex-

pressed as the sum of two terms. The first

term is based on the single-SNP ANOVA

test. The second term is based on the

genotype of the SNP-pair and is indepen-

dent of permutations. This property allows

to index SNP-pairs in a 2D array based on

the genotype relationship between SNPs.

Since the number of entries in the 2D

array is bound by the number of individ-

uals in the study, many SNP-pairs share a

common entry. Moreover, it can be shown

that all SNP-pairs indexed by the same

entry have exactly the same upper bound.

Therefore, we can compute the upper

bound for a group of SNP-pairs together.

Another important property is that the

indexing structure only needs to be built

once and can be reused for all permutated

data. Utilizing the upper bound and the

indexing structure, FastANOVA only

needs to perform the ANOVA test on a

small number of candidate SNP-pairs

without the risk of missing any significant

pair. We discuss the algorithm in further

detail in the following.

Let fX1,X2, � � � ,XNg be the set of SNPs

of M individuals (Xi[f0,1g,1ƒiƒN) and

Y~fy1,y2, � � � ,yMg be the quantitative

phenotype of interest, where ym

(1ƒmƒM ) is the phenotype value of

individual m.

For any SNP Xi (1ƒiƒN ), we repre-

sent the F-statistic from the ANOVA test

of Xi and Y as F(Xi,Y ). For any SNP-

pair (XiXj), we represent the F-statistic

from the ANOVA test of (XiXj) and Y as

F (XiXj ,Y ).

The basic idea of ANOVA test is to

partition the total sum of squared devia-

tions SST into between-group sum of

squared deviations SSB and within-group

sum of squared deviations SSW :

SST~SSBzSSW :

In our application of the two-locus asso-

ciation study, Table 2 and Table 3 show

the possible groupings of phenotype values

by the genotypes of Xi and (XiXj)

respectively.

Let A, B, a1, a2, b1, b2 represent the

groups as indicated in Table 2 and

Table 3. We use SSB(Xi,Y ) and

SSB(XiXj ,Y ) to distinct the one locus

(i.e., single-SNP) and two locus (i.e., SNP-

pair) analyses. Specifically, we have

SST (Xi,Y )~SSB(Xi,Y )zSSW (Xi,Y ),

SST (XiXj ,Y )~SSB(XiXj ,Y )z

SSW (XiXj ,Y ):

The F-statistics for ANOVA tests on Xi

and (XiXj) are:

F (Xi,Y )~
M{2

2{1
|

SSB(Xi,Y )

SST (Xi,Y ){SSB(Xi,Y )
,

ð1:1Þ

F (XiXj ,Y )~

M{g

g{1
|

SSB(XiXj ,Y )

SST (XiXj ,Y ){SSB(XiXj ,Y )
,

ð1:2Þ

where g in Equation (1.2) is the number of

groups that the genotype of (XiXj) parti-

tions the individuals into. Possible values

of g are 3 or 4, assuming all SNPs are

distinct: If none of groups A, B, a1, a2, b1,

b2 is empty, then g~4. If one of them is

empty, then g~3.

Let T~
P

ym[Y

ym be the sum of all

phenotype values. The total sum of

squared deviations does not depend on

the groupings of individuals:

SST (Xi,Y )~SST (XiXj ,Y )~
X

ym[Y

y2
m{

T2

M
:

Let Tgroup~
P

ym[group

ym be the sum of

phenotype values in a specific group, and

ngroup be the number of individuals in that

group. SSB(Xi,Y ) and SSB(XiXj ,Y ) can

be calculated as follows:

SSB(Xi,Y )~
T2

A

nA

z
T2

B

nB

{
T2

M
,

Table 2. Grouping of Y by Xi .

Xi~1 Xi~0

group A group B

doi:10.1371/journal.pcbi.1002828.t002

Table 3. Grouping of Y by XiXj .

Xi~1 Xi~0

Xj~1 group a1 group b1

Xj~0 group a2 group b2

doi:10.1371/journal.pcbi.1002828.t003
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SSB(XiXj ,Y )~
T2

a1

na1

z
T2

a2

na2

z

T2
b1

nb1

z
T2

b2

nb2

{
T2

M
:

Note that for any group of A, B, a1, a2, b1,

b2, if ngroup~0, then
T2

group
ngroup

is defined to be

0.

Let fymDym[Ag~fyA1
,yA2

, � � � ,yAnA
g

be the phenotype values in group A.

Without loss of generality, assume that

these phenotype values are arranged in

ascending order, i.e.,

yA1
ƒyA2

ƒ � � �ƒyAnA
:

Let fymDym[Bg~fyB1
,yB2

, � � � ,yBnB
g be

the phenotype values in group B. Without

loss of generality, assume that these

phenotype values are arranged in ascend-

ing order, i.e.,

yB1
ƒyB2

ƒ � � �ƒyBnB
:

We have the overall upper bound on

SSB(XiXj ,Y ):

Theorem 1 (Upper bound of SSB(Xi

Xj ,Y ))

SSB(XiXj ,Y )ƒSSB(Xi,Y )zR1(XiXjY )z

R2(XiXjY ):

The notations in the bound can be found

in Table 4. The upper bound in Theorem 1

is tight. The tightness of the bound is obvious

from the derivation of the upper bound, since

there exists some genotype of SNP-pair

(XiXj) that makes the equality hold.

We now discuss how to apply the upper

bound in Theorem 1 in detail. The set of

all SNP-pairs is partitioned into non-

overlapping groups such that the upper

bound can be readily applied to each

group. For every Xi (1ƒiƒN), let

AP(Xi) be the set of SNP-pairs

AP(Xi)~f(XiXj)Diz1ƒjƒNg:

For all SNP-pairs in AP(Xi), nA, TA, nB, TB

and SSB(Xi,Y ) are constants. Moreover,

la1
, ua1

are determined by na1
, and lb1

, ub1

are determined by nb1
. Therefore, in the

upper bound, na1
and nb1

are the only

variables that depend on Xj and may vary

for different SNP-pairs (XiXj) in AP(Xi).

Note that na1
is the number of 1’s in Xj

when Xi takes value 1, and nb1
is the number

of 1’s in Xj when Xi takes value 0. It is easy to

prove that switching na1
and na2

does not

change the F-statistic value and the correct-

ness of the upper bound. This is also true if

we switch nb1
and nb2

. Therefore, without

loss of generality, we can always assume that

na1
is the smaller one between the number of

1’s and number of 0’s in Xj when Xi takes

value 1, and nb1
is the smaller one between

the number of 1’s and number of 0’s in Xj

when Xi takes value 0.

If there are m 1’s and (M{m) 0’s in Xi,

then for any (XiXj)[AP(Xi), the possible

values that na1
can take are f0,1,2, � � � ,

tm=2sg. The possible values that nb1
can

take are f0,1,2, � � � ,t(M{m)=2sg.
To efficiently retrieve the candidates, the

SNP-pairs (XiXj) in AP(Xi) are grouped

by their (na1
,nb1

) values and indexed in a

2D array, referred to as Array(Xi).

Suppose that there are 32 individuals, and

the genotype of Xi consists of half 0’s and half

1’s. Thus for the SNP-pairs in AP(Xi), the

possible values of na1
and nb1

are

f0,1,2, � � � ,8g. Figure 1 shows the 9|9
array, Array(Xi), whose entries represent

the possible values of (na1
,nb1

) for the SNP-

pairs (XiXj)[AP(Xi). The entries in the same

column have the same na1
value. The entries

in the same row have the same nb1
value. The

na1
value of each column is noted beneath

each column. The nb1
value of each row is

noted left to each row. Each entry of the array

is a pointer to the SNP-pairs (XiXj)[AP(Xi)

having the corresponding (na1
,nb1

) values.

For any SNP Xi, the maximum number of

the entries in Array(Xi) is (qM
4
rz1)2. The

proof of this property is straightforward and

omitted here. In order to find candidate SNP-

pairs, we scan all entries in Array(Xi) to

calculate their upper bounds. Since the

SNP-pairs indexed by the same entry share

the same (na1
,nb1

) value, they have the same

upper bound. In this way, we can calculate

the upper bound for a group of SNP-pairs

together. Note that for typical genome-wide

association studies, the number of individuals

M is much smaller than the number of SNPs

N . Therefore, the additional cost for access-

ing Array(Xi) is minimal compared to

performing ANOVA tests for all pairs

(XiXj)[AP(Xi).

For multiple tests, permutation proce-

dure is often used in genetic analysis for

controlling family-wise error rate. For

genome-wide association study, permuta-

tion is less commonly used because it often

entails prohibitively long computation

times. Our FastANOVA algorithm makes

permutation procedure feasible in ge-

nome-wide association study.

Let Y ’~fY1,Y2, � � � ,YKg be the K

permutations of the phenotype Y . Following

the idea discussed above, the upper bound in

Theorem 1 can be easily incorporated in the

algorithm to handle the permutations. For

every SNP Xi, the indexing structure

Array(Xi) is independent of the permuted

phenotypes in Y ’. The correctness of this

property relies on the fact that, for any

(XiXj)[AP(Xi), na1
and nb1

only depend on

the genotype of the SNP-pair and thus

remain constant for different phenotype

permutations. Therefore, for each Xi, once

we build Array(Xi), it can be reused in all

permutations.

3.2 The FastChi Algorithm
As our initial attempt to develop scalable

algorithms for genome-wide association

study, FastANOVA is specifically designed

for the ANOVA test on quantitative pheno-

types. Another category of phenotypes is

generated in case-control study, where the

phenotypes are binary variables representing

disease/non-disease individuals. Chi-square

test is one of the most commonly used

statistics in binary phenotype association

Table 4. Notations for the bounds.

Symbols Formulas

la1

Xna1

i~1
yAi

ua1

XnA

i~nA{na1
z1

yAi

R1(XiXjY ) maxf(nAla1
{na1

TA)2,(nAua1
{na1

TA)2g
na1

(nA{na1
)nA

lb1

Xnb1

i~1
yBi

ub1

XnB

i~nB{nb1
z1

yBi

R2(XiXjY ) maxf(nBlb1
{nb1

TB)2,(nBub1
{nb1

TB)2g
nb1

(nB{nb1
)nB

doi:10.1371/journal.pcbi.1002828.t004
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study. We can extend the principles in

FastANOVA for efficient two-locus chi-

square test. The general idea of FastChi is

similar to that of FastANOVA, i.e., re-

formulating the chi-square test statistic to

establish an upper bound of two-locus chi-

square test, and indexing the SNP-pairs

according to their genotypes in order to

effectively prune the search space and reuse

redundant computations. Here we briefly

introduce the FastChi algorithm.

For SNP Xi, we represent the chi-square

test value of Xi and the binary phenotype Y as

x2(Xi,Y ). For any SNP-pair Xi and Xj , we

use x2(XiXj ,Y ) to represent the chi-square

test value for the combined effect of (XiXj)

with Y . Let A,B,C,D represent the following

events respectively: Y~0 ^ Xi~0; Y~0^
Xi~1; Y~1 ^ Xi~0; Y~1 ^ Xi~1. Let

Oevent denote the observed value of an event.

T1, T2, S1, S2, R1, and R2 represent the

formulas shown in Table 5. We have the

upper bound of x2(XiXj ,Y ) stated in

Theorem 2.

Theorem 2 (Upper bound of x2(XiXj ,
Y ))

x2(XiXj ,Y )ƒx2(Xi,Y )zT1S1R1z

T2S2R2:

For given phenotype Y and SNPXi,

x2(Xi,Y ), T1, S1, T2, and S2 are constants.

R1 and R2 are the only variables that

depend on Xj and may vary for different

SNP-pairs (XiXj)[AP(Xi). (Recall that

AP(Xi)~f(XiXj)Diz1ƒjƒNg.) Thus for

a given Xi, we can treat equation

x2(Xi,Y )zT1S1R1zT2S2R2~h as a

straight line in the 2-D space of R1 and R2.

The ones whose (R1(XiXj),R2(XiXj)) val-

ues fall below the line can be pruned without

any further test.

Suppose that there are 32 individuals, Xi

contains half 0’s, and half 1’s. For the

SNP-pairs in AP(Xi), the possible values of

R1 (and R2) are f 0

16
,

1

15
,

2

14
,

3

13
,

4

12
,

5

11
,

6

10
,
7

9
,
8

8
g. Figure 2 shows the 2-D space

of R1 and R2. The blue stars represent the

values that (R1,R2) can take. The line

x2(Xi,Y )zT1S1R1zT2S2R2~h is plot-

ted in the figure. Only the SNP-pairs whose

(R1,R2) values are in the shaded region are

subject to two-locus Chi-square test.

Similar to FastANOVA, in FastChi, we

can index the SNP-pairs in AP(Xi) accord-

ing to their genotype relationships, i.e., by the

values of (R1,R2). Experimental results

demonstrate that FastChi is an order of

magnitude faster than the brute force

alternative.

3.3 The COE Algorithm
Both FastANOVA and FastChi rework the

formula of ANOVA test and Chi-square test

to estimate an upper bound of the test value

for SNP pairs. These upper bounds are used

to identify candidate SNP pairs that may have

strong epistatic effect. Repetitive computation

in a permutation test is also identified and

performed once those results are stored for use

by all permutations. These two strategies lead

to substantial speedup, especially for large

permutation test, without compromising the

accuracy of the test. These approaches

guarantee to find the optimal solutions.

However, a common drawback of these

methods is that they are designed for specific

tests, i.e., chi-square test and ANOVA test.

The upper bounds used in these methods do

not work for other statistical tests, which are

Figure 1. The index array Array(Xi) for efficient retrieval of the candidate SNP-pairs.
doi:10.1371/journal.pcbi.1002828.g001

Table 5. Notations used in the derivation of the upper bound for two-locus Chi-
square test.

Symbols Formulas

T1 M2

(OAzOB)(OAzOC )(OCzOD)

S1 maxfO2
A,O2

Cg

R1
minf

OXj ~1

OXj ~0

DXi~0

� �
,

OXj ~0

OXj ~1

DXi~0

� �
g

T2 M2

(OAzOB)(OBzOD)(OCzOD)

S2 maxfO2
B,O2

Dg

R2
minf

OXj ~1

OXj ~0

DXi~1

� �
,

OXj ~0

OXj ~1

DXi~1

� �
g

doi:10.1371/journal.pcbi.1002828.t005

PLOS Computational Biology | www.ploscompbiol.org 6 December 2012 | Volume 8 | Issue 12 | e1002828



also routinely used by researchers. In addition,

new statistics for epistasis detection are

continually emerging in the literature. There-

fore, it is desirable to develop a general model

that supports a variety of statistical tests.

The COE algorithm takes the advantage

of convex optimization. It can be shown that

a wide range of statistical tests, such as

chi-square test, likelihood ratio test (also

known as G-test), and entropy-based tests

are all convex functions of observed frequen-

cies in contingency tables. Since the maxi-

mum value of a convex function is attained at

the vertices of its convex domain, by

constraining on the observed frequencies in

the contingency tables, we can determine the

domain of the convex function and get its

maximum value. This maximum value is

used as the upper bound on the test statistics

to filter out insignificant SNP-pairs. COE is

applicable to all tests that are convex.

3.4 The TEAM Algorithm
The methods we have discussed so far

provide promising alternatives for GWAS.

However, there are two major drawbacks that

limit their applicability. First, they are designed

for relatively small sample size and only

consider homozygous markers (i.e., each

SNP can be represented as a f0,1g binary

variable). In human study, the sample size is

usually large and most SNPs contain hetero-

zygous genotypes and are coded using

f0,1,2g. These make previous methods

intractable. Second, although the family-wise

error rate (FWER) and the false discovery rate

(FDR) are both widely used for error

controlling, previous methods are designed

only to control the FWER. From a compu-

tational point of view, the difference in the

FWER and the FDR controlling is that, to

estimate FWER, for each permutation, only

the maximum two-locus test value is needed.

To estimate the FDR, on the other hand, for

each permutation, all two-locus test values

must be computed.

To address these limitations, TEAM is

proposed for efficient epistasis detection in

human GWAS. TEAM has several advan-

tages over previous methods. It supports to

both homozygous and heterozygous data. By

exhaustively computing all two-locus test

values in permutation test, it enables both

FWER and FDR controlling. It is applicable

to all statistics based on the contingency table.

Previous methods are either designed for

specific tests or require the test statistics satisfy

certain property. Experimental results dem-

onstrate that TEAM is more efficient than

existing methods for large sample studies.

TEAM incorporates the permutation test

for proper error controlling. The key idea is

to incrementally update the contingency

tables of two-locus tests. We show that only

four of the eighteen observed frequencies in

the contingency table need to be updated to

compute the test value. In the algorithm, we

build a minimum spanning tree [19] on the

SNPs. The nodes of the tree are SNPs. Each

edge represents the genotype difference

between the two connected SNPs. This tree

structure can be utilized to speed up the

updating process for the contingency tables.

A majority of the individuals are pruned and

only a small portion are scanned to update

the contingency tables. This is advantageous

in human study, which usually involves

Figure 2. Pruning SNP-pairs in AP(Xi) using the upper bound.
doi:10.1371/journal.pcbi.1002828.g002
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thousands of individuals. Extensive experi-

mental results demonstrate the efficiency of

the TEAM algorithm.

As a summary of the exact two-locus

algorithms, FastANOVA and FastChi are

designed for specific tests and binary geno-

type data. The COE algorithm is a more

general method that can be applied to all

convex tests. The TEAM algorithm is more

suitable for large sample human GWAS.

4. Multifactor Dimensionality
Reduction

Multifactor dimensionality reduction

(MDR) [20] is a data mining method to

identify interactions among discrete variables

for binary outcomes. It can be used to detect

high-order gene-gene and gene-environment

interactions in case-control studies. By pooling

multi-locus SNPs into two groups, one

classified as high-risk and the other classified

as low risk, MDR effectively reduces the

predictors from n dimensions to one dimen-

sion. Then, the one-dimensional variable is

evaluated through cross-validation. The steps

are repeated for all other n factor combina-

tions, and the factor model which has the

lowest prediction error is chosen as the ‘best’ n
factor model. Its detailed steps are as follows:

N Divide the set of factors into 10 equal

subsets.

N Select a set of n factors from the pool

of all factors in the training set

N Create a contingency table for these n
factors by counting the number of cases

and controls in each combination.

N Compute the case-control ratio in each

combination. Label them as ‘‘high-risk if

it is greater than a certain threshold, and

otherwise, it is marked as ‘‘low-risk’’.

N Use the labels to classify individuals.

Compute the misclassification rate.

N Repeat previous steps for all combina-

tions of n factors across 10 training and

testing subsets.

N Choose the model whose average

misclassification rate is minimized

and cross-validation consistency is

maximized as the ‘‘best’’ model.

MDR designs a constructive induction

method that combines two or more SNPs

before testing for association. The power of

the MDR approach is that it can be

combined with other methodologies includ-

ing the ones described in this chapter.

5. Logistic Regression

Logistic regression is a statistical method

for predicting binary and categorical out-

come. It is widely used in GWAS [21,22].

The basic idea is to use linear regression to

model the probability of the occurrence of a

specific outcome. Logistic regression is appli-

cable to both single-locus and multi-locus

association studies and can incorporate

covariates and other factors in the model.

Let Y[f0,1g be a binary variable

representing disease status (diseased verses

non diseased), and X[f0,1,2g be a SNP.

The conditional probability of having the

disease given a SNP is h(X )~P(Y~1DX ).
We define the logit function to convert the

range of the probability from ½0,1� to

({?,z?) :

logit(X )~ln
h(X )

1{h(X )
:

The logit can be considered as a latent

continuous variable that will be fit to a

linear predictor function:

logit(X )*b0zb � X :

To cope with multiple SNP loci and

potential covariates, we can modify the

above model. For example, in the follow-

ing model the logit is fit with predictors of

SNPs (X1, X2) and covariates (Z1, Z2):

logit(X )*b0zb1 � X1zb2 � X2zb3�

X1 � X2zb4 � Z1zb5 � Z2:

Although logistic regression can handle

complicated models, it may be computa-

tionally demanding when the number of

predictors is large [23].

6. Summary

The potential of genome-wide association

study for the identification of genetic variants

that underlying phenotypic variations is well

recognized. The availability of large SNP data

generated by high-throughput genotyping

methods poses great computational and

statistical challenges. In this chapter, we have

discussed serval computational approaches to

detect associations between genetic markers

and the phenotypes. For further readings, the

readers are encouraged to refer to [11,7,24,25]

for discussions about current progress and

challenges in large-scale genetic association

studies.

7. Exercises

Question 1: The table below con-

tains binary genotype and case-control

phenotype data from ten individuals.

Give the contingency table and use x2

test to compute the association test

score.

Genotype

0

0

1

0

1

0

1

0

1

0

���������������������������

Phenotype

1

0

1

0

0

0

1

0

1

0

Question 2: Assuming that we have

the following SNP and phenotype data, is

the SNP significantly associated with the

phenotype? Here, we represent each SNP

site as the number of minor alleles on that

locus, so 0 and 2 are for major and minor

homozygous sites, respectively, and 1 is for

the heterozygous sites. We also assume

that minor alleles contribute to the phe-

notype and the effect is additive. In other

words, the effect from a minor homozy-

gous site should be twice as large as that

from a heterozygous site. You may use any

test methods introduced in the chapter.

How about permutation tests?

Genotype

1

2

2

1

1

0

2

0

1

0

���������������������������

Phenotype

0:53

0:78

0:81

{0:23

{0:73

0:81

0:27

2:59

1:84

0:03

Question 3: Categorize the following

methods in the table. The methods are x2

test, G-test, ANOVA, Student’s T-test,

Pearson’s correlation, linear regression,

logistic regression.

case� control phenotype
����quantitative phenotype

Question 4: Why is it important to

study multiple-locus association? What are

the challenges?

Answers to the Exercises can be found

in Text S1.
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