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Abstract

The binding of proteins can shield DNA from mutagenic processes but also interfere with efficient repair. How the presence
of DNA-binding proteins shapes intra-genomic differences in mutability and, ultimately, sequence variation in natural
populations, however, remains poorly understood. In this study, we examine sequence evolution in Escherichia coli in
relation to the binding of four abundant nucleoid-associated proteins: Fis, H-NS, IhfA, and IhfB. We find that, for a subset of
mutations, protein occupancy is associated with both increased and decreased mutability in the underlying sequence
depending on when the protein is bound during the bacterial growth cycle. On average, protein-bound DNA exhibits
reduced mutability compared to protein-free DNA. However, this net protective effect is weak and can be abolished or even
reversed during stages of colony growth where binding coincides – and hence likely interferes with – DNA repair activity.
We suggest that the four nucleoid-associated proteins analyzed here have played a minor but significant role in patterning
extant sequence variation in E. coli.
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Introduction

The binding of proteins to DNA can alter DNA mutability. This

has been explored most extensively in relation to nucleosomes. On

the one hand, there is evidence that nucleosomes affect the ability

of at least some repair enzymes to detect or gain access to their

target lesions [1,2]. Typically, nucleosomes appear to impede

rather than facilitate repair, for example through steric hindrance

or by altering DNA topology, which many repair enzymes exploit

to recognize their targets [2–4]. Human uracil glycosylases, for

instance, operate with 3- to 9-fold reduced efficiency in vitro when

uracil needs to be removed in a nucleosome context compared to

free DNA [5]. On the other hand, histone binding can also lower

mutability by reducing the risk of lesion formation. In yeast,

nucleosomal DNA exhibits reduced rates of cytosine deamination

[6], probably because the nucleosome conformation reduces the

amount of time the DNA spontaneously spends in a single-

stranded state [6], which is associated with an elevated risk of

deamination [7]. Being in close contact with a protein surface can

also more directly inhibit mutagenic processes, as illustrated at the

sub-nucleosome scale by the observation that residues facing the

histone core have a lower propensity to form pyrimidine dimers

[8]. Nucleosomes, therefore, can exert pleiotropic and contraven-

ing effects on sequence mutability, both interfering with repair and

conferring physical protection.

Although bacteria do not encode histones they do express a

variety of DNA-binding proteins. Some, collectively known as

nucleoid-associated proteins (NAPs), are abundant in the cell

and fulfil both architectural and regulatory roles [9]. For a

subset of NAPs, there is evidence from mutation-specific

reporter strains that their presence too can affect sequence

mutability. Notably, the DNA-protection during starvation (Dps)

protein, expressed at high levels in stationary phase [10] and

during oxidative stress [11] in E. coli, reduces the incidence of

double strand breaks as well as C:G to A:T transversions

[11,12]. Similarly, small acid soluble proteins (SASPs), present in

the spores of Bacillus subtilis, limit the formation of certain lesions

including pyrimidine dimers [13]. Part of the protective effect

may be indirect and global. Dps, for example, sequesters iron

and thereby reduces the formation of mutagenic agents [14]. But

there is also evidence for localized protection, where protein

binding alters DNA mutability in and around the binding

footprint, through direct physical interaction or by virtue of

modulating repair dynamics [15,16].

As NAPs constitute a diverse class of proteins, variously able to

wrap, bridge, or bend DNA, it may come as no surprise that not

all NAPs necessarily reduce lesion formation. The abundant DNA-

binding protein Fis, for example, appears to promote the induction

of (specifically) pyrimidine dimers [16], likely because its binding

locally alters DNA curvature, making it more conducive to dimer

formation [17]. In short, biochemical studies provide strong

evidence that a number of different NAPs can affect DNA

mutability in a number of different ways, variously able to confer

localized protection, remodel DNA topology and thereby render
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DNA more prone to mutations, or – like Dps – modulate mutation

risk systemically.

Despite strong in vitro (and short-term lab culture) evidence from

both eukaryotic and prokaryotic systems that protein occupancy

can affect mutation dynamics, our knowledge of how repair and

protective effects trade off to influence mutability in vivo and,

ultimately, pattern segregating and fixed variation in natural

populations remains rudimentary. Several genome-scale studies of

polymorphism and divergence patterns in eukaryotes have found

rates of evolution to vary with nucleosome occupancy [18–24] and

a recent analysis of multiple cancer genomes uncovered striking

correlations between different chromatin modifications and

regional mutation rates [25]. However, it remains largely unclear

whether correlations with nucleosome occupancy and chromatin

status reflect differential repair efficacy, mutational liability or –

especially where inter-specific comparisons are concerned –

selection, for example for adequate nucleosome positioning. In

fact, when it comes to repair, it is difficult to say whether we should

have strong a priori expectations. Despite the stark differences in

repair efficacy observed in vitro, histones and other DNA-binding

proteins might be rather permeable barriers to repair in vivo where

chromatin remodelers and polymerases regularly evict these

proteins, provide opportunities for repair [26] and therefore

potentially negate occupancy effects [27].

One approach to revealing how repair and protection affect

heterogeneous mutability across the genome is to contrast the

evolution of neutrally evolving sequences (thus by-passing selection

as a potential confounder) bound under different physiological

conditions (e.g. exponential versus stationary phase growth). The

idea here is simple: being refractory to repair only matters if the

relevant repair machinery is actually active at the time when the

focal protein is bound. Conversely, protection will be of greater

importance whenever the risk of mutagenesis is higher. Thus, in

principle, analyzing physiologically specific binding events might

allow us to look beyond the net impact on mutability and reveal

insights into the relative sway of protective and repair effects. In

practice, nucleosome binding profiles – at least in budding and

fission yeast - change little when entering stationary phase, during

heat shock or even in cells undergoing meiosis [28–30]. The

binding landscapes of some bacterial NAPs, however, change

much more radically throughout growth [9,31,32]. In this study,

we therefore analyze data from a series of Chip-Seq experiments

in E. coli where binding profiles of four NAPs (H-NS, Fis, IhfA and

IhfB) were determined on a genome-wide scale [31,32]. Relating

NAP binding profiles assayed during different stages of the E. coli

growth cycle to patterns of sequence evolution across 54 E. coli

strains, we present evidence for weak but significant growth stage-

specific effects of protein occupancy on mutability that reveal a

dynamic balance between protective and repair effects.

Results

In order to establish whether the binding of different NAPs

affects mutability we first reconstructed the history of single

nucleotide changes across 54 E. coli strains (see Methods). As the

strains are closely related, observed changes represent relatively

recent events, and, at least for a subset of sites (see below), likely

reflect mutational input rather than selection [33].

For a first coarse-grained view, we classified genomic regions

into those bound by one of the NAPs at any point during colony

growth versus regions that are never bound by any of the NAPs

considered. For all possible nucleotide replacements, we then

considered mutability as a function of NAP binding assayed in the

K-12 MG1655 strain [31,32]. Mutability (or mutation risk) is

defined here as the number of changes observed across the

phylogeny divided by the number of at-risk nucleotides. For

example, we would count all C to T changes that occurred at

intergenic sites located in Fis-bound DNA and then divide this

tally by the number of all cytosine located in intergenic Fis-bound

DNA, i.e. by all sites that fall into the same binding/site category

(Fis-bound, intergenic) and could, in principle, have experienced

the same mutation.

Figure 1 suggests that there is a tendency for unbound

sequence to have higher mutability than NAP-bound sequence.

However, estimates are not entirely consistent between coding,

intergenic, and 4-fold synonymous sites (where all three possible

nucleotide replacements do not result in a different amino acid)

suggesting that selection confounds our estimates of NAP

binding effects. Indeed, as one might expect, the different site

classes considered here are subjects to different evolutionary

regimes. Notably, the average probability for a nucleotide

change to occur is ,2-fold lower in coding sequence as a whole

compared to 4-fold synonymous sites, indicating that – in the

former case – we are looking at the combined effect of mutation

and selection. Intergenic sites show similarly reduced rates of

change. The intergenic regions considered here likely harbour

conserved regulatory elements because, when reconstructing

sequence evolution, we required homologous regions to be

present across all 54 genomes (as well as E. fergusonii, see

Methods). This strongly implies that analyzing either nonsynon-

ymous or intergenic nucleotides will lead to a misleading view of

NAP-related mutability. For the remainder of the analysis we

therefore focus on 4-fold synonymous sites, where selection is

much reduced or entirely absent [33] and which should

therefore reproduce most faithfully the underlying mutation

dynamics. In fact, reassuringly, the spectrum of nucleotide

changes at 4-fold synonymous sites observed here resembles the

frequency spectrum obtained in a recent mutation accumulation

experiment [34], with transitions outnumbering transversions

and C:G to T:A transitions by some distance the most common

type of mutation (Figure S1).

Author Summary

Mutations can be more or less likely to occur depending
on whether DNA is naked or bound by proteins. On the
one hand, DNA-binding proteins can shield the DNA from
certain mutagenic processes. On the other hand, the very
same proteins can interfere with efficient DNA repair. In
this study, we reconstruct the history of mutations across
54 E. coli genomes and ask whether mutation risk is higher
or lower in regions occupied by proteins that help
organize bacterial DNA into chromatin. Intriguingly, we
find that the effect of binding depends on its timing. When
we consider genomic regions bound during stationary
phase, we observe that binding is associated with lower
mutation risk for some mutation classes compared to
naked DNA, albeit weakly. However, when binding occurs
during exponential phase, bound regions actually experi-
ence more mutations on average. We argue that this is
because, during exponential phase, the major effect of
binding is that it interferes with efficient DNA repair,
whereas in stationary phase – when many repair pathways
are inactive – the protective effect of binding dominates.
Our results suggest that the four DNA-binding proteins
considered here have a small but significant growth phase-
specific effect on mutation dynamics in E. coli.

Nucleoid-Associated Proteins Affect DNA Mutability
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NAPs affect mutability in a growth phase-specific manner
Next, we assessed mutability for sequence bound by a specific

NAP at a defined stage of the growth cycle (during mid-

exponential, late exponential, transition to stationary, and/or

stationary phase). The most striking pattern to emerge is that, for

C:G to T:A transitions in particular, mutability appears to change

systematically with the time of binding (Figure 2). This is the case

for all NAPs considered (note that Fis is only found at detectable

levels during mid- and late exponential phase). Overall, regions

bound later during the growth cycle seem to experience

successively reduced mutability.

Although these trends are intriguing, systematic biases may

suggest a causal growth phase-specific association between protein

occupancy and mutability when, in fact, there is none. For

example, binding regions might differ by growth stage with regard

to their expression level and hence opportunities to benefit from

transcription-coupled repair. To establish whether there is an

independent effect of binding status on mutability we trained a

series of Random Forest classifiers to discriminate between at-risk

4-fold synonymous sites that had experienced a change and those

that had not. Along with growth phase-specific NAP binding

status, the classifiers were provided with features such as

expression, genomic location, and regional GC content (see

Methods for a full list of features) that might alternatively account

for a difference in mutability between bound and unbound

sequence. Note that some of these features relate to strand-specific

processes (replication and transcription); we therefore trained a

total of 12 (rather than six) classifiers, considering, for example, C

to T changes on the transcribed strand as distinct from C to T

changes on the non-transcribed strand. For each classifier, we then

asked whether the predictive power of the classifier dropped when

NAP binding status was randomized across sites, repeating the

randomization plus classification procedure 50 times to establish

significance. A significant drop in classifier performance means

Figure 1. Mutability as a function of NAP occupancy. The upper panels depict mutability (changes per nucleotide at risk) as a function of NAP
occupancy for all possible transitions and transversions. White: sequence bound by one of the four NAPs. Sequence is considered bound when at
least one of the NAPs binds during at least one of the growth phases assayed (see main text). Blue: sequence not bound by any of the four NAPs
throughout growth. The lower panels show odds ratios along with 95% confidence intervals. Values in excess of 1 indicate higher mutability in
unbound sequence.
doi:10.1371/journal.pcbi.1002846.g001
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that NAP binding contains information relevant for predicting

mutability that cannot be reproduced from any of the other

variables, either alone or in combination.

Focusing on those mutation categories where Figure 1 suggested

a possible role for NAP binding, we find that, upon randomizing

NAP occupancy, classifier performance drops significantly for C to

G, G to C, C to T and T to C changes (Figure S2). Interestingly,

NAP binding is not predictive of either A to G or G to A

mutability, suggesting strand-specific effects. Overall, our results

suggest that NAP binding is a weak predictor of net mutation risk,

particularly when compared to other features in the analysis. For

example, location on leading versus lagging strand has a

considerably stronger influence on mutability (not shown),

consistent with results from a recent mutation accumulation

experiment [34]. However, as we argue below, this weak net effect

of NAP binding conceals a more dynamic picture of the interplay

between E. coli chromatin and mutability.

Protective effects alone cannot explain patterns of
growth phase-dependent mutability

Having established that binding is an independent, albeit weak

predictor of mutability at 4-fold synonymous sites for a subset of

mutation types, we wondered why mutability should be relatively

higher for DNA bound during exponential growth. There are a

number of scenarios that might explain this pattern: one simple

explanation might be that there is an interaction between a

protective effect of NAP binding and the timing of mutations.

Imagine all mutations occurred during stationary phase so that the

protective effect would be mediated exclusively by stationary phase

binding. In this scenario, regions bound during exponential phase

should behave the same as unbound sequence. However, we may

still observe a signature of protective binding if early-bound

regions are also bound in stationary phase. Such overlap in

binding sites is indeed observed, with temporally more remote

growth phases sharing increasingly fewer binding sites (Figure S3).

Figure 2. Growth phase dependency of mutability in NAP-bound sequence. The top left panel shows schematically when NAP binding was
assayed by Chip-Seq during the E. coli growth cycle. The remaining panels depict mutability at 4-fold synonymous sites as a function of the binding of
a specific NAP (or of all NAPs combined) at a specific stage during the growth cycle. The colour coding corresponds to the colours of the growth
phase labels in the top left panel. Note that mutability estimates for a certain growth phase do not only include regions that are exclusively bound
during that phase but also include regions that are bound at several stages during the growth cycle.
doi:10.1371/journal.pcbi.1002846.g002
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A second possibility is that binding is more dynamic during

exponential phase where protein occupancy is constantly disturbed

by polymerases so that earlier growth phases contain a greater

fraction of bound sites that spend a considerable amount of time in

an unbound state, and therefore only benefit partially from the

protective effect of binding.

Two observations argue against these two models as satisfactory

explanations. First, sequence bound throughout all stages of

growth largely shows intermediate mutability (Figure S4). If

stationary phase binding had been the only important variable, we

would have expected mutability comparable to that in stationary

phase. More importantly, regions bound exclusively early (during

mid- and/or late-exponential but not later) or exclusively late

(during transition to stationary and/or stationary phase but not

earlier) show the most dramatic differences in mutability.

Crucially, mutability in early-bound DNA commonly exceeds

that of unbound sequence (Figure 3). If the only effect of NAP

binding were to protect DNA from mutagenic processes, we would

not expect mutation risk to ever exceed that of the unbound state,

regardless of the timing of binding. Keeping in mind that the

limited number of exclusively early-/late-bound sites precludes

comprehensive confounder control, we suggest that protein

occupancy during exponential growth actually impedes repair

(or facilitates mutation, perhaps by interfering with polymerase

processivity during replication).

Evidence that NAP binding increases mutability during
periods of active repair

If NAP binding does, as suggested, interfere with repair and

repair activity mainly occurred during exponential phase, that

might explain why we observe elevated mutability during that

stage of E. coli growth. Many key repair processes are indeed

physically coupled to replication (39-59 exonucleolytic proof-

reading of the DNA polymerase) or closely coupled in time

(methyl-directed mismatch repair) and are down-regulated in

stationary phase cells [35]. However, a limited number of repair

enzymes are mainly expressed during stationary phase, including

the alkylguaninetransferase Ada, which counteracts alkylation

damage, the mismatch uracil glycosylase Mug, which reduces the

incidence of C:G to T:A transitions and the very short patch VSP

repair system (see below) [36]. Our hypothesis predicts that lesions

specifically targeted by these enzymes should run counter to the

overall trend and exhibit higher (not lower) mutability when

bound during stationary phase. Is this the case? Testing this

hypothesis is not trivial, the principal challenge being to identify

mutations that have occurred (and should have been repaired by

one of these enzymes) during stationary phase. Frequently, a

variety of mutational processes, associated with diverse repair

pathways, may have given rise to an observed nucleotide change.

Pertinently, C:G to T:A changes can be caused by cytosine

deamination to uracil, alkylation, or oxidation, result from

deamination of 5-methylcytosine (5-meC) to thymine and even

occur as a downstream consequence of UV-induced pyrimidine

dimerization [37,38]. Changes originating from 5-meC deamina-

tion are unique among these lesions because we can identify them

based on the sequence context in which they occur. In E. coli, 5-

meC is generated with high specificity and efficiency [39,40] at the

second cytosine of CCWGG motifs by the DNA cytosine

methyltransferase Dcm. The T:G mismatches that result from

5me-C deamination are repaired by the VSP repair pathway,

which, importantly, is almost exclusively active during stationary

phase [35,41] and recognizes T:G lesions outside the CCWGG

context or U:G mismatches created by cytosine deamination with

much reduced efficiency [39,42]. By implication, C to T changes

that occurred in a CCWGG context are enriched for events that

failed to be repaired during stationary phase whereas C to T

changes outside that context more likely represent failures by other

repair pathways such as methyl-directed mismatch or base

excision repair, which are most active during exponential growth

[35,43]. We therefore compared C to T changes that occurred in a

CCWGG context with changes in a control context (CCWHH)

chosen to preserve local nucleotide neighbourhood. Focussing on

exclusively late versus exclusively early bound sequences, which

afford the greatest discriminatory power, we find that the control

contexts exhibit the mutability behaviour observed previously

(refractory effects of NAP occupancy during exponential phase,

Figure 4). However, as predicted, changes that occurred in the

CCWGG context show the opposite pattern, i.e. higher mutability

for sequence bound during stationary phase. Observing higher

mutability in late-bound regions inside the CCWGG context but

lower mutability outside of it is unlikely to occur by chance

(permutation test: P = 0.013, see Methods). Once again, it is

important to highlight that sites exclusively bound early or late are

rare so that we cannot control systematically for potential

confounders. However, on current evidence, this finding supports

the hypothesis that NAP binding enhances mutability by

interfering with repair pathways in a lesion- and growth phase-

specific manner.

Discussion

It has been known for some time that both the rate [44] and

spectrum [45] of mutations vary with growth stage in laboratory

populations of E. coli and other bacteria, consistent with substantial

physiological variability in the production of endogenous muta-

gens, differential activity of mutagenic processes such as replication

or recombination, and variable expression of DNA repair

enzymes. We argue that taking this physiological variability into

account is crucial to understand the impact of DNA-binding

proteins on sequence evolution in natural populations. This is

because binding has pleiotropic effects on mutability, is capable of

both protecting DNA from mutagens and interfering with lesion

repair, so reducing or enhancing mutability in a dynamic fashion

that depends on the physiological state of the cell.

The analysis presented above suggests that the net effect of NAP

binding on mutability is relatively weak and NAP binding is a

comparatively poor predictor of within-genome differences in

mutability. However, one should not jump to the conclusion that

NAPs are largely irrelevant determinants of mutation dynamics on

a mechanistic level. As indicated by the comparison between sites

bound exclusively during exponential or stationary phase

(Figure 3), and consistent with biochemical evidence [16], NAPs

can exert countervailing effects on DNA mutability, elevating

mutation risk under one condition but reducing it in another. We

suggest that, over the bacteria’s life cycle, and evolutionary time,

these forces partially counteract each other, leading to a relatively

small net difference between NAP-bound and NAP-free sequence.

Note also, that our analysis is very conservative. Some of the

confounders might in fact be mechanistically linked to NAP

binding. For example, it has been suggested that Fis binding

changes repair dynamics at the tyrT locus through altering

transcription patterns [16]. We would attribute such an effect to

transcription rather than NAP binding therefore understating the

significance of NAP binding.

Our analysis also suggests that only a subset of mutation

processes are affected by NAP binding. Given the plethora of

lesion processes, some of which may be more, some less affected by

DNA curvature and protein binding, it is not surprising that not all

Nucleoid-Associated Proteins Affect DNA Mutability
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mutation types behave in a similar fashion. However, it is

interesting to ask why we specifically observe an effect for C to G,

G to C, T to C, and C to T changes. C:G to G:C transversions are

rare and there is considerable uncertainty as to which lesions

predominantly give rise to these mutations in the wild [46].

Guanines damaged by oxidative and alkylation processes can lead

to C:G to G:C mutations [38,47], but it is hard to see why NAP

binding should preferentially reduce the incidence of oxidative

lesions leading to C:G to G:C mutations but not affect mutability

for C:G to A:T transversions, which are frequently derived from

oxidatively damaged bases. Perhaps differences in lesion repair

provide a more likely link to NAP binding. C:C mismatches, which

– if unrepaired – would yield C:G to G:C transversions, exhibit

intrinsically high mobility compared to other mispaired bases [48].

It is conceivable that these mismatches are stabilized in the context

of NAP binding, facilitating their detection and repair. However,

this is speculative and we currently have no convincing model why

NAP binding specifically affects C:G to G:C mutability.

Reduced rates of C to T transitions might be owing to an effect

of NAP binding on cytosine deamination dynamics, analogous to

what has been proposed for nucleosomes in eukaryotes [6].

Comparing base-specific mutability in E. coli with base-specific

substitution rates at 4-fold synonymous sites in yeast reveals that

C:G to T:A transitions, the most common type of nucleotide

Figure 3. Growth phase-specifically bound sequence reveals time-dependent effects of NAP binding on mutability. Left-hand panels:
Mutability as a function of H-NS, IhfA, or IhfB occupancy for all possible transitions and transversions. Light green: sequence bound by the focal
protein during mid- and/or late exponential phase but not later. Dark green: sequence bound by the focal protein during transition to stationary and/
or stationary phase but not earlier. Blue: sequence not bound by the focal NAP throughout growth. Right-hand panels provide odds ratios along with
95% confidence intervals, where values in excess of 1 indicate higher mutability in exclusively early- versus exclusively late-bound sequence. Note
that very few genomic regions are bound exclusively early (see Table S3). This applies to H-NS in particular so that odds ratio estimates are
correspondingly noisy.
doi:10.1371/journal.pcbi.1002846.g003

Figure 4. Mutability at 5-methylcytosine deamination hotspots. C:G to T:A mutability at the second cytosine in CCWGG motifs and CCWHH
control motifs (expressed as changes per context at risk) for sequence bound by a specific NAP (either H-NS, IhfA, or IhfB) either exclusively early (light
green) or exclusively late (dark green) or never (blue) bound by any of the NAPs considered (including Fis).
doi:10.1371/journal.pcbi.1002846.g004
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replacement, are less likely to occur in a protein-bound context in

both taxa (Figure S5). Although it remains unclear to what extent

nucleosome-related substitution dynamics in yeast [20,23] and

other eukaryotes [21] are modulated by selection, recent data [6]

suggest that elevated C:G to T:A rates in nucleosomal DNA

principally reflect mutational input rather than selection. That

does not automatically imply, of course, that protective effects in E.

coli and eukaryotes are mediated by the same mechanism.

However, it is tempting to speculate that both NAPs and

nucleosomes reduce C:G to T:A mutability by limiting the

amount of time the bound DNA spends in a vulnerable single-

stranded state [6]. Such a model, where protection is not

contingent on a specific protein-DNA binding conformation, is

attractive because we observe consistent trends across proteins that

differ substantially in how they bind to DNA and affect its

topology [9]. Beyond C:G to T:A changes, there seems to be

limited agreement in mutability trends between yeast and E. coli

(Figure S5). However, this comparison is preliminary and a

comprehensive assessment of convergent mutability will require a

thorough, confounder-controlled analysis of mutability patterns in

yeast.

Methods

Multiple genome alignment
We extracted all complete E. coli and Shigella genomes available

in GenBank. Excluding a number of genomes known to be of

inferior quality [49], we arrived at a final set of 54 E. coli/Shigella

genomes (Table S1). These genomes were aligned along with the

genome of E. fergusonii using progressiveMauve [50]. We then only

considered alignment blocks (locally collinear blocks in Mauve

terminology) present across all 55 genomes. Further, we only

considered blocks that did not overlap non-unique regions of the

E. coli K-12 MG1655 genome. This is because binding calls from

the Chip-Seq experiments only considered reads that uniquely

mapped to the MG1655 genome so that – if we included non-

unique regions – we would consider them unbound although they

might in fact be bound. Non-unique portions of the E. coli genome

were defined by subjecting the MG1655 genome to in silico

digestion into overlapping windows of 300 nucleotides (off-set by

10 nt). These pseudo-reads were mapped against the MG1655

genome using GEM (http://sourceforge.net/apps/mediawiki/

gemlibrary/index.php?title = The_GEM_library) allowing up to

2 mismatches. In cases where pseudo-reads mapped to more than

one genomic locale, these locales were excluded from downstream

analysis. This procedure eliminates only a small fraction of the

MG1655 genome (,2%).

Polymorphic sites were extracted using Mauve and filtered to

obtain a set of sites where none of the species contained a gap and

polymorphic status was not caused by a difference in E. fergusonii,

i.e. we required a polymorphic site amongst the E. coli/Shigella

genomes.

Phylogenetic reconstruction
Locally collinear blocks were concatenated, homomorphic

positions removed and a phylogenetic tree constructed using

RAxML 7.2.8 [51,52] with 100 rapid bootstraps followed by

thorough maximum likelihood search. The topology of the best

tree (Figure S6) closely resembles the topologies of previously

reported multi-strain E. coli trees [33,53].

Reconstruction of nucleotide changes
Considering E. coli genomes in a phylogenetic context, we

reconstructed the history of nucleotide changes using the baseml

algorithm in PAML [54]. The tree obtained above was used as a

guide tree. We then applied the following filters to obtain a set of

high confidence changes: a) only a single event had to be evoked to

explain the distribution of states through the phylogeny, b) the

reconstructed ancestral state had a posterior probability . = 0.9, c)

the change is not dependent on topology downstream of poorly

supported (bootstrap support ,98%) nodes (see Figure S6). These

filters, along with requiring coverage across all 55 genomes, are

designed to reduce the impact of false inferences caused by inter-

strain recombination/horizontal gene transfer as well as sequenc-

ing and alignment errors.

NAP binding
Genome-wide binding profiles for four nucleoid-associated

proteins (H-NS, Fis, IhfA, and IhfB) were obtained from two

publications (REFs. 29 and 30). The authors determined binding

profiles at four points during colony growth: during mid-

exponential (OD = 0.5, Prieto, pers. comm.), late exponential

(OD = 0.8–0.9), transition to stationary (OD = 1.8–2), and station-

ary phase (after 24 hours).

Classifier and statistical analysis
In order to establish whether NAP occupancy has an effect on

mutability that can be separated from potential confounding

factors we took the following approach: We trained Random

Forest (RF) classifiers [55] to separate instances where a certain

change at a 4-fold synonymous site (e.g. C to T) had occurred

along the E. coli phylogeny from instances where the nucleotide at

risk (C in our example) had not experienced a change. The (very

large) class of unchanged nucleotides was randomly sub-sampled

to obtain a sample exactly five times larger than the (smaller)

changed-nucleotide class, which was kept intact. All 12 possible

nucleotide changes were classified independently. The settings of

the RF classifier were as follows: forest size was set to a very large

value (10,000 trees) to avoid limiting predictive accuracy; the

maximum tree depth was slightly decreased from the default

setting (unlimited depth) to 10, for reasons of computational

efficiency. While RF is considered robust to choice of parameters,

one particular parameter may influence its predictive ability

somewhat, namely the number of features considered at each node

[55], here called K. Therefore we optimized K to maximize the

average cross-validation accuracy of the RF models across the 12

nucleotide changes, yielding K = 2 as the optimum (Figure S7). A

higher (5:1) RF weight was put on the minority class (mutated

nucleotides) than on the majority class (unchanged nucleotides) to

counter the imbalance in the number of sampled nucleotides.

Other RF parameters were left at the default values. 2-fold

synonymous sites were included when analyzing transitions. The

classifier was provided with a number of features potentially

predictive of mutability such as the location of the corresponding

gene relative to the origin of replication and its expression level at

a certain stage of growth (see Table S2 for a full list of features).

We recoded growth phase-specific NAP binding into four

categories, bound throughout the growth cycle (always), bound

during mid-exponential or mid- and late exponential phase (early),

bound during stationary or stationary and transition to stationary

phase (late) or not bound at any time point (never). While this

approach discards more complex but potentially genuine binding

behaviour, it captures the majority of binding profiles observed in

the data (see Table S3) and reduces the number of binding

categories, hence increasing power.

We then assessed classifier performance in the presence of all

features, including NAP binding, as the area under the curve

(AUC). We then repeated the classification process 50 times, each

Nucleoid-Associated Proteins Affect DNA Mutability

PLOS Computational Biology | www.ploscompbiol.org 8 December 2012 | Volume 8 | Issue 12 | e1002846



time randomly shuffling NAP binding status across residues. The

approximately normal distribution of AUC values from these

randomized runs was then compared to the AUC derived from

observed data by finding a Z-score to establish whether

considering NAP binding improves classifier performance beyond

confounding factors. A one-tailed P value was then derived from

the Z-score. A one-tailed test is appropriate here because the only

relevant outcome of the test is a decrease in the AUC score upon

randomization. Note that it does not matter whether NAP binding

is positively or negatively correlated with mutation risk; the non-

randomized AUC score should always be higher. With 10% false

positives expected at the P,0.1 threshold, corresponding to 0.6

false positive results from the 6 mutation types (3 couples) that

were found associated with protein binding in our univariate odds

ratio test (Figure 1), and 4 mutation types testing positive below the

P,0.1 threshold in the RF randomization test, we estimate a false

discovery rate of FDR = 0.6/4 = 15%.

To establish whether the pattern depicted in Figure 4 (higher

mutability across NAPs for late-bound residues in CCWGG

contexts but lower mutability for late-bound residues in control

contexts) is likely to arise by chance, we adopted the following

strategy: we preserved the total number of mutations that occurred

within each NAP+context combination (e.g. H-NS+control

context) but redistributed mutations randomly to the late- or

early-bound category according to the number of contexts in each

category. Repeating this procedure 100,000 times for all six

NAP+context combinations, we asked how likely we are to observe

all NAP+context pairs to conform to the observed pattern.

All classifier analyses were carried out within the Weka machine

learning suite [56] and a customized version of the FastRandom-

Forest classifier (http://fast-random-forest.googlecode.com/). All

statistical analyses were conducted in R [57].

Supporting Information

Figure S1 The frequency spectrum of nucleotide changes
at 4-fold synonymous sites resembles the frequency
spectrum observed in mutation accumulation experi-
ments. The left panel corresponds to the central panel of Figure 1

in the main text, but pooling changes that occurred at bound and

unbound sites. The right panel gives the frequencies of different

mutation types (per at-risk nucleotide), as determined across the entire

MG1655 genome in a recent mutation accumulation experiment

[34]. A total of 233 mutations were observed in this experiment.

(EPS)

Figure S2 The effect of NAP binding status on classifier
performance. Z scores indicate the difference between classifier

performance when bona fide NAP binding is considered compared to

50 runs with randomized binding status. Positive Z scores reflect

increased performance. Mutation classes that show a significant drop-

off in classifier performance when binding status is ignored are

marked with * (P,0.1) or ** (P,0.05). Mutation couples that exhibit

significantly different odds ratios for bound versus unbound sequence

(see Figure 1 in the main text) are highlighted in red (one-tailed test,

see Materials and Methods). Expectedly, none of the mutation

couples that did not show significant odds ratios in the univariate

analysis in Figure 1 (here in black) appear affected by NAP binding.

(EPS)

Figure S3 Overlap in binding regions across growth
phases. The bars show the fraction of sequence bound during

stationary phase that is also occupied by the same protein (IhfA,

IhfB, or H-NS) during transition to stationary, late exponential

and mid-exponential phase.

(EPS)

Figure S4 DNA bound by NAPs throughout the growth
cycle exhibits intermediate mutability. This figure corre-

sponds to Figure 2 in the main text. Grey bars represent regions

bound by a given NAP during all four growth stages sampled.

(EPS)

Figure S5 Mutability at 4-fold synonymous sites as a
function of NAP (nucleosome) occupancy in E. coli (S.
cerevisiae). The left panel shows mutability (changes per

nucleotide at risk) as a function of NAP occupancy for all possible

transitions and transversions. White: sequence bound by one of the

four NAPs. Sequence is considered bound when at least one of the

NAPs binds during at least one of the growth phases assayed (see

main text). Blue: sequence not bound by any of the four NAPs

throughout growth. On the right, mutability as a function of

nucleosome occupancy in S. cerevisiae. Base-specific rates correspond

to rates reported for the highest (white) and lowest (blue) nucleosome

occupancy bin in supplementary figure 7 of Chen et al. [6]. To what

extent differences in A:T to G:C mutability between E. coli and yeast

genuinely reflect differences in protein occupancy or alternative

confounders between the two taxa remains to be established.

(EPS)

Figure S6 Maximum likelihood tree of 54 E. coli/
Shigella genomes. E. fergusonii was used to root the tree (see

Methods for details of tree reconstruction).

(EPS)

Figure S7 Finding the optimal value of the Random
Forest parameter K, the number of features considered
for each split. K can vary from 1 to the total number of features

(12) in increments of 1. The optimum K is defined as the one

yielding the highest average normalized AUC score across the 12

mutation datasets. The AUC score is obtained from the Random

Forest’s out-of-bag cross-validation procedure, and normalized to

range from 0 to 1 within each mutation dataset separately; then,

the average is computed, which was found to be highest for K = 2.

The range of original, non-normalized AUC scores for each

dataset is given in parentheses.

(PDF)

Table S1 Escherichia strains and their chromosomal
accessions.
(PDF)

Table S2 Potential predictors of mutability considered
in the classifier analysis.
(PDF)

Table S3 Encoding growth phase-specific binding.
(PDF)
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