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Abstract

Long-term memories are thought to depend upon the coordinated activation of a broad network of cortical and subcortical
brain regions. However, the distributed nature of this representation has made it challenging to define the neural elements of
the memory trace, and lesion and electrophysiological approaches provide only a narrow window into what is appreciated a
much more global network. Here we used a global mapping approach to identify networks of brain regions activated
following recall of long-term fear memories in mice. Analysis of Fos expression across 84 brain regions allowed us to identify
regions that were co-active following memory recall. These analyses revealed that the functional organization of long-term
fear memories depends on memory age and is altered in mutant mice that exhibit premature forgetting. Most importantly,
these analyses indicate that long-term memory recall engages a network that has a distinct thalamic-hippocampal-cortical
signature. This network is concurrently integrated and segregated and therefore has small-world properties, and contains hub-
like regions in the prefrontal cortex and thalamus that may play privileged roles in memory expression.
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Introduction

Long-term memories are thought to be represented by changes

in the strength of connections among neurons in the brain [1,2].

While much is understood about the molecular, cellular and

structural changes that contribute to the changes in connection

strength between neurons [3,4,5], it has been challenging to

precisely define which subsets of neurons constitute the memory

trace for at least two reasons. First, long-term memories are

thought to be distributed, and depend on the collective activity of

groups of neurons (or cell assemblies [6]) across a broad network of

cortical and subcortical brain regions [7]. Second, memory

expression likely depends upon network-wide, coordinated activa-

tion of these cell assemblies, rather than an overall, net increase in

network activity [8,9]. Electrophysiological approaches have been

useful in linking regional activity and coordination of inter-

regional activity to memory processing [10]. However, they

necessarily provide only a narrow window into what is appreciated

to be a much more global network.

Imaging-based approaches can detect coordinated activity

across distributed and spatially remote brain regions, and therefore

have been useful in defining functional networks (see Supple-
mentary Note in Text S1). Here we have developed a brain-

wide imaging approach to study the network organization of

long-term contextual fear memories in mice (Figure 1). Sustained

neural activity leads to the induction of activity-regulated genes

such as c-fos [11,12]. As Fos protein may be resolved at the level of

the nucleus, immunohistochemical approaches may be used to

generate high resolution, brain-wide maps of Fos expression

induced by memory recall. Subsequent computation of inter-

regional correlations allows us to identify collections of brain

regions where Fos expression co-varies across mice, and presum-

ably form components of a network that are co-active during recall

of long-term fear memory. This analysis of functional connectivity

suggests that expression of a long-term fear memory is an emer-

gent property of large scale neural network interactions. This

network has a distinct thalamic-hippocampal-cortical signature

and, like many real-world networks [13] as well as other ana-

tomical and functional brain networks [14], has small-world

architecture with a subset of highly-connected hub nodes that may

play more central roles in memory expression.

Results

Fos expression is induced by contextual fear memory
recall

In order to characterize regional activation following long-term

memory recall, we used a contextual fear conditioning task in
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which mice learn an association between a context and an aversive

event (i.e., the delivery of a mild footshock). When returned to the

same context, contextual fear memory is inferred from an increase

in freezing behavior [15]. The advantage of this task is that a single

training episode produces robust memory that is easily-quantifiable

and long-lasting [16]. During training wild-type (WT) mice (F1 from

a cross between C57B6/N and 129) received 5 footshocks, and then

were tested either 1 day or 36 days later (Figure 2A). As expected,

conditioned freezing levels in trained mice were similar at both the

short and long retention delay (planned, unpaired t-test: t(14) = 1.31,

P = 0.21), indicating that no forgetting occurred across this time

period. Control groups, that underwent the same procedure but did

not receive footshocks during training, showed little freezing during

testing (Figure 2B) (2 way between subjects ANOVA; main effect

of training only, F(1,28) = 63.08, P,0.0001).

Neuronal stimulation is associated with increases in intracellular

calcium levels through NMDA receptor activation or voltage-gated

calcium channels. Because these increases in calcium lead to the

rapid upregulation of activity-regulated genes such as c-fos, mea-

suring Fos protein levels allows for the detection of recently

activated neurons [11,12,17] (see Supplementary Note in Text
S1). Therefore, in order to characterize regional activation

following contextual fear testing, Fos was quantified in 84 brain

regions (Figure S1). These included cortical, thalamic, hippocam-

pal, cerebral and midbrain nuclei and were defined according to a

standard mouse brain atlas [18] (for complete listing of brain regions,

see Table S1). In order to isolate changes in gene expression

associated with contextual fear memory recall and control for non-

specific aspects of the testing procedure, the density of Fos positive

cells in each brain region in trained mice was compared to control

animals that did not receive footshocks during conditioning.

Importantly, multivariate task partial least squares (PLS) analyses

revealed that patterns of Fos expression depended both on the

training condition as well as the retention delay (significant condition

6delay interaction (P,0.05). To better we understand the nature of

the interaction we conducted separate ‘post-hoc’ analyses. These

revealed distinct patterns of Fos expression in the trained vs. control

(no shock) mice following testing at both the 1 day (P,0.05;

Figure 2C) and 36 day (P,0.01; Figure 2D) delay. At the 1 day

retention delay, these distinct patterns of activation were primarily

driven by increases in Fos expression in the hippocampus (CA1-d,

CA1-p and DG-low) in trained mice (Figure 2C). In contrast, at the

36 day retention delay, distinct patterns of activation were associated

with increases in Fos expression in distributed brain regions in

trained mice. These included cortical (PrL, Cg-a), thalamic (Hb, C),

hypothalamic (LH, SHy, LPO and MPA) regions, as well as the

BST, Cpu-dm, AcbSh, VP, LSI, LSV and PAG (Figure 2D).

Therefore, these data indicate that memory recall is associated with

the induction of Fos, and patterns of Fos expression in trained mice

are distinct from those in controls.

Generation of functional networks
Memory recall is thought to involve coordinated activation of

multiple brain regions. Therefore, examination of how activity co-

varies across brain regions has been used to study these large scale

interactions in both human and experimental animal imaging

studies and define functional networks engaged during memory

recall. In human imaging studies regional brain activity can be

assessed by measuring an electrical signal (EGG, MEG) or

indirectly by measuring a metabolic signal such as blood flow

(fMRI). Functional connectivity is then typically evaluated by

assessing covariance of these signals across different brain regions

during performance of a given task. In contrast, in experimental

animal studies, neuronal activity is typically assessed post-mortem

by evaluating, for example, changes in expression of the activity-

regulated genes such as c-fos. As such measures provide a single

index of activation per region per animal, functional connectivity

is necessarily estimated by computing covariance across subjects,

rather than within subjects. Both within and across subjects

covariance can be used to infer interactions between neural

elements [9,19].

Accordingly, we next computed a complete set of inter-regional

correlations in the groups of mice tested at each retention delay

(Figure 3A). This allowed us to identify collections of brain

regions where Fos expression co-varied across mice, presumably

Figure 1. Overview of experimental approach. Mice were fear conditioned, and fear memory was tested after either a short- or long retention
delay. In order to identify neurons activated by memory recall, following testing brain sections were stained for the activity-dependent gene c-fos. Fos
expression was subsequently quantified in 84 brain regions, and a complete set of inter-regional correlations computed in order to identify
collections of brain regions where Fos expression co-varies across mice. The most robust correlations were then used to generate functional networks
for long-term fear memory, and network properties and hubs were characterized using graph theoretical approaches.
doi:10.1371/journal.pcbi.1002853.g001

Author Summary

Memory retrieval is thought to involve the coordinated
activation of multiple regions of the brain, rather than
localized activity in a specific region. In order to visualize
networks of brain regions activated by recall of a fear
memory in mice, we quantified expression of an activity-
regulated gene (c-fos) that is induced by neural activity.
This allowed us to identify collections of brain regions
where Fos expression co-varies across mice, and presum-
ably form components of a network that are co-active
during recall of long-term fear memory. This analysis
suggested that expression of a long-term fear memory is
an emergent property of large scale neural network inter-
actions. This network has a distinct thalamic-hippocampal-
cortical signature and, like many real-world networks as
well as other anatomical and functional brain networks,
has small-world architecture with a subset of highly-
connected hub nodes that may play more central roles in
memory expression.

Long-Term Fear Memory Networks in Mice
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constituting components of a common network engaged by recall

of long-term fear memory [19,20]. Network graphs for each

condition were subsequently generated by considering only the

strongest correlations (Pearson’s r$0.83, P,0.005) (Figure 3B).

In addition, networks were generated using either more (r$0.87,

P#0.0025) or less (r$0.79, P#0.025) conservative thresholds

(Figure S2) or alternate correlation coefficients (Spearman’s rank;

Figure S3) in order to evaluate whether network properties were

stable across a range of conditions. In all resulting undirected

graphs, nodes (brain regions) are connected by edges representing

super-threshold inter-regional correlations.

The structure of these network graphs varied across conditions,

but, importantly, these differences were not simply an artifact of

group differences in signal strength and/or variance (Figure S4).

Moreover, a number of other immediate early genes are regulated

by neural activity, including egr-1 [11]. In order to explore the

generality of our effects we additionally quantified Egr-1 expres-

sion in a subset of brain regions in the WT/36 day group. We

found that Fos- and Egr-1-derived patterns of inter-regional

correlations were similar (Figure S5), consistent with previous

studies showing that immediate early genes are typically expressed

in the same or largely overlapping neuronal populations [12].

Finally, while functional connections in these networks reflect

statistical (rather than physical) relationships between regions, we

found that there was excellent correspondence with known

neuroanatomy. For example, in the 36 day retention delay network,

comparison of functional connections for one brain region (reuniens

thalamic nucleus; Re) with published, anatomical data revealed that

all functional connections had corresponding anatomical connec-

tions in the primary and high confidence networks (Figure S6 and

Table S2). While direct anatomical connections are not necessary

for two regions to be functionally connected (e.g., they might be co-

modulated by a third region), nonetheless this finding is consistent

with previous analyses indicating that there is typically good

correspondence between functional and underlying structural

connections in brain networks [21].

Figure 2. Fos is induced by contextual fear memory recall. A. Experimental design. Mice were trained, and fear memory was assessed either 1
(short delay) or 36 (long delay) days later. Ninety minutes following this test, brains were removed and expression of the activity-regulated gene,
c-fos, was evaluated immunohistochemically. B. Percent freezing at the 1 day or 36 day retention test in trained (black bars) or control (open bars)
mice. C–D. Task PLS analysis of Fos expression in trained vs. control mice tested 1 or 36 days following training. These analyses identified LVs (left
graph) that strongly differentiated the trained vs. control conditions at both the (C) short and (D) long retention delays. Salience scores (right)
identify regions that maximally differentiate between these conditions at both the (C) short and (D) long retention delays. The hatched line reflects a
salience score of 3, above which the contribution of the regions is considered reliable. At the short delay, Fos expression in the hippocampus
contributed strongly to this contrast, whereas at the longer retention delay, Fos expression in multiple brain regions contributed to the contrast.
doi:10.1371/journal.pcbi.1002853.g002

Long-Term Fear Memory Networks in Mice
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In our matrices, Fos expression in the anterodorsal thalamic

nucleus consistently showed negative correlations with other brain

regions. In constructing our networks we focused on only positive

correlations. However, while relatively few in number, such

negative correlations are interesting, and may reflect repression

networks. Indeed, future studies using activity-regulated genes that

have higher basal levels of expression (e.g., Egr-1) may offer

greater sensitivity at detecting negative correlations (as levels can

be regulated bi-directionally).

Networks change with memory age
Regional inactivation or lesions may disrupt expression of a

previously-acquired memory. As these retrograde effects are often

temporally-graded (with either newer or older memories differen-

tially affected) [15,22,23,24], these data provide evidence that

memory organization changes with memory age (or systems

consolidation [25]). In the present experiment, we evaluated long-

term contextual fear memory at two time-points after training, and

this therefore provides an opportunity to track these changes in

network organization at a global level. Accordingly, we catego-

rized our 84 regions into major brain subdivisions (e.g., neocortex,

hippocampus, midbrain, cerebral nuclei; Table S1) and asked

whether connection strength between these major subdivisions

differed at the 1 day and 36 day time-points (see Table S3). We

focused in particular, on three a priori predictions of systems

consolidation models [26,27]: Memory aging would be expected to

be associated with 1) strengthening of connections between

different neocortical modules, 2) a gradual disengagement of the

hippocampus and 3) an emergent role for prefrontal cortical

regions in memory expression.

This analysis revealed three main forms of reorganization. First,

Fos expression (or activity) among cortical regions was more

strongly correlated at the 36-day, compared to 1-day, retention

delay (Figure 4A–B). This pattern was particularly evident within

subdivisions of the somatosensory cortex, where activity was more

tightly coupled at the longer retention delay (Figure 4C). This

increase in inter-cortical correlated activity as a function of

memory age is consistent with the idea that consolidation is

Figure 3. Generation of long-term fear memory networks. A. Matrices showing inter-regional correlations for Fos expression at the short
(upper) and long (lower) retention delays. Axes are numbered, and correspond to brain regions listed in Table S1. Colors reflect correlation strength
(scale, right). B. Network graphs were generated by considering only the strongest correlations (Pearson’s r$0.83). In these graphs, regions are
grouped by major brain subdivision and node size is proportional to the number of connections (degree) while the weight of the connection is
proportional to correlation strength.
doi:10.1371/journal.pcbi.1002853.g003

Long-Term Fear Memory Networks in Mice
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associated with the strengthening of functional connections

between anatomically-distinct regions of the neocortex, leading

to the coordination of activity across cortical cell assemblies [6].

Second, previous studies suggested that subregions of the medial

prefrontal cortex (including, in particular, the anterior cingulate

[Cg-a] [22,23,28] and prelimbic cortex [PrL] [23,29,30,31]) play

an increasingly important role in memory expression as a function

of memory age. Consistent with this, we found an increase in

correlated activity between the medial prefrontal cortex and other

cortical, thalamic, and hippocampal regions at the longer retention

delay (Figure 4D–E). Third, whether the hippocampus plays a

transient or more sustained role in memory expression is more

controversial [26,27,32]. While the magnitude of the hippocampal

Fos signal declined with retention delay (Figure 2), nonetheless

we found that this activity either remained tightly coupled or

became more tightly coupled with Fos expression in other brain

regions following recall at the remote time-point. For example,

correlated activity between hippocampal regions and thalamic

regions and between hippocampal regions and the midbrain were

equivalent at the short and long retention delays (see Table S3),

whereas coupling of activity between hippocampal and neocortical

regions increased over time (Figure 4F–G). That hippocampal

Figure 4. Functional connectivity changes as a function of memory age. A. Color-coded matrices showing inter-regional correlations for Fos
expression within the neocortex at the short (1 day) and long (36 days) retention delays. The inset matrices correspond to inter-regional correlations
for subregions of the somatosensory (SS) cortex. Mean inter-regional correlation coefficients were greater at the long delays for (B) cortical regions
and (C) somatosensory regions (for this, and other comparisons, see Table S3). D. Color-coded matrices showing inter-regional correlations for Fos
expression between regions of the prefrontal cortex and other cortical, thalamic and hippocampal regions at the short (1 day) and long (36 days)
retention delays. E. Mean correlation coefficients were greater at the long delay, suggesting that medial prefrontal cortex regions play increasingly
important roles in memory expression as a function of memory age. F. Color-coded matrices showing inter-regional correlations for Fos expression
between hippocampal and cortical regions at the short (1 day) and long (36 days) retention delays. G. Correlation strength increased over time,
suggesting that the hippocampus plays a sustained role in memory expression. In all graphs error bars indicate 95% confidence intervals.
doi:10.1371/journal.pcbi.1002853.g004

Long-Term Fear Memory Networks in Mice
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activity (albeit reduced in magnitude) remains tightly coupled with

activity in other thalamic and cortical regions suggests that

hippocampal regions play a sustained role in the expression of

contextual fear memories. Together, these changes in functional

connectivity are consistent with the idea that networks supporting

contextual fear evolve as a function of time. These changes in

organization are unlikely to be related to changes in behavior since

levels of conditioned freezing were similar at both time points.

However, as we only measured freezing we cannot exclude that

other indices of conditioned fear (e.g., changes in respiration or

heart rate) differ at the short and long retention delays.

Networks engaged by fear memory recall have small-
world organization

Our data suggest that recall of long-term fear memories involves

coordinated activation of a broad network of brain regions.

Graphical representation of these networks suggest that they are

complex in nature, with the majority of brain regions (or nodes)

having relatively few connections, but a minority of nodes being

highly connected (Figure 3B). This non-Gaussian degree

distribution was observed at both short and long retention delays

(Figure 5A), and when either more (r$0.87, P#0.0025) or less

(r$0.79, P#0.025) conservative thresholds were used to generate

the networks (Figure S7).

Many complex networks, including both anatomical and

functional brain networks, have small-world organization [13,14].

This type of organization ensures that networks are concurrently

segregated—allowing for specialized processing in more densely-

connected clusters—and integrated—allowing for efficient infor-

mation flow through the network [14]. To evaluate whether fear

memory networks have similar small-world organization for each

network we generated control networks with random topology

(matched for node, degree and degree distribution; see Supple-
mentary Note in Text S1). To assess segregation we initially

computed the clustering coefficient for each network. The clustering

coefficient measures the tendency for a node’s nearest neighbors

to be also connected to each other (quantified as the number of

connections between a node’s nearest neighbors as a proportion of

all possible connections [33]). Using this measure, we found that

fear memory networks were consistently more segregated compared

to random networks. This was evident at both short and long

retention delays (Figure 5B) and when more (r$0.87, P#0.0025)

or less (r$0.79, P#0.025) conservative thresholds were used for

network generation (Figure S8). Moreover, a similar pattern of

results was found using alternate segregation measures (local

efficiency and transitivity; Figure S9).

Integration may be evaluated by quantifying either path length

(average shortest path length between all node pairs) or global

efficiency (the average inverse path length between all node pairs).

Using global efficiency as a measure of integration, we found that

fear memory networks exhibited equivalent integration compared

to random networks (Figure 5C), as would be anticipated for

networks with small-world topology. This pattern was evident at

both retention delays and across a range of thresholds for network

generation (Figure S10). Moreover, we found a similar pattern of

results using path length as a measure of integration (Figure S11).
Therefore, like other macroscale (i.e., inter-regional structural and

functional connections) and micro/meso-scale (i.e., intra-regional

connectivity) brain networks [14], these analyses indicate that

functional networks engaged by recall of long-term fear memories

have properties that are consistent with small-world topology.

Fear memory network includes a densely-connected
thalamic-hippocampal- cortical core

Networks engaged by recall of a long-term fear memory were

highly clustered. To examine this structure in more detail we next

focused on the network engaged by memory recall at the long

retention delay, as this network was densely-connected and fear

memory was robustly expressed. We applied the Markov clustering

algorithm to systematically organize nodes into discrete modules

based on their common inter-connections. This analysis identified

eight distinct clusters in the fear memory network, and, in

particular, a large densely-connected central component containing

two groupings (green and blue nodes; Figure 6A). The green

grouping consisted almost entirely of hippocampal and cortical

regions (Table S4) that appear to cluster based on their common

interaction with the Cg-a. Interestingly, many of the regions within

this grouping, including the Cg-a, have previously been implicated

in long-term memory expression, especially at remote time-points

following training (Figure 6B and Table S5). Within the blue

cluster, thalamic regions were over-represented (Table S4), and,

similar to the green cluster, this grouping contained several regions

that play important roles in remote memory expression, including

PrL, Ca1-m, C, LD and MD (Figure 6B and Table S5).

Figure 5. Fear memory networks have small-world structure. A. Histogram showing degree distribution for fear memory networks
corresponding to the 1 day (upper) and 36 day (lower) retention delay. B. Mean clustering coefficient for fear memory vs. random network. At both
short (upper) and long (lower) retention delays the fear memory network was more clustered. C. Mean global efficiency for fear memory vs. random
network. At both short (upper) and long (lower) retention delays global efficiency (or integration) was equivalent in the fear memory vs. random
networks. Error bars represent 95% confidence intervals.
doi:10.1371/journal.pcbi.1002853.g005

Long-Term Fear Memory Networks in Mice
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Many of these brain regions in the green and blue clusters were

highly connected, suggesting that this central core is composed of

mutually-interconnected high degree ‘hub’ nodes. We formally

evaluated this by computing assortativity—the tendency for nodes

with same or similar degree (i.e., the number of connections for a

given node) to be directly connected with one another [33,34].

Figure 6. The long-term fear memory network is clustered and resilient. A. Network summarizing functional connections after memory
recall at the long delay. Brain regions were categorized into discrete (color-coded) clusters with similar connectivity to the rest of the network using
the Markov Clustering Algorithm. This network contains a densely-interconnected core (green and blue clusters). B. Proportion of brain regions in
green, blue and remaining clusters that have previously been implicated in remote memory expression (darkly-shaded portion of bars). Remote
memory brain regions are over-represented in the green cluster compared to remaining network (for complete list of regions see Table S5). C.
Assortativity for the fear memory vs. random network. Higher assortativity in the fear memory network indicates that highly-connected nodes tend to
be connected to one another. Error bars represent 95% confidence interval. D. Consequence of random node deletion on the size of the largest
connected component in the fear memory network (grey circles) vs. matched random control network (white circles). In both networks, as nodes
were successively removed the size of the largest connected component declined. E. Consequence of targeted node deletion on the size of the
largest connected component in the fear memory network (grey circles) vs. matched random control network (white circles). In this simulation, nodes
were removed in order of descending degree value. The fear memory network was more resilient to successive deletion of high degree nodes. In
both graphs, component size is shown as a proportion of the largest original component.
doi:10.1371/journal.pcbi.1002853.g006

Long-Term Fear Memory Networks in Mice
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Figure 7. Identification of hub regions in the long-term memory network. Brain regions ranked in descending order for (A) degree and (B)
betweenness. C. Venn diagram shows the overlap between brain regions ranked above the 80th percentile for degree and betweenness in each of
the primary, high and low confidence networks. D. The three putative hub regions (Cg-a, PrL and Re) that were ranked above the 80th percentile for

Long-Term Fear Memory Networks in Mice
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Compared to control, random topology networks, our fear

memory network had a strongly positive assortativity coefficient

(Figure 6C), consistent with the observation that high degree

nodes tend to be connected to one another. Such organization is

thought to offer additional resilience, as this central core is more

able to withstand removal of multiple hub nodes before network

failure. We tested this idea by evaluating network resiliency in our

fear memory vs. random network. We simulated the effects of both

random node removal and targeted attacks (progressive removal of

highest degree nodes) [35,36]. In both networks, successive

random node removal led to gradual disintegration of the

network: as nodes were successively removed the size of the

largest connected component declined (Figure 6D). The rate of

disintegration was similar in both networks, suggesting that the

fear memory and control networks exhibit equivalent resilience to

random node removal. However, the fear memory network was

considerably more resilient to targeted attacks. Whereas removal

of ,37% of the most connected nodes led to complete disintegra-

tion of the control network, removal of ,64% of the most con-

nected nodes was necessary to see similar disintegration of the fear

memory network (Figure 6E).

Identification of fear memory network hubs
Our analyses reveal that expression of a long-term fear memory

involves widespread interactions between brain regions. While this

is consistent with the idea that these types of memories are

distributed, nonetheless highly-connected regions (or hubs) may

disproportionately influence network function. In order to identify

specific hub regions within our fear memory network, we therefore

next ranked all nodes by degree. As expected, nodes within the

large, central component were highly ranked. They accounted for

the vast majority of regions .80th percentile rank in our primary

network (Figure 7A), as well as in networks generated using either

more (r$0.87, P#0.0025) or less (r$0.79, P#0.025) conservative

thresholds (Figure S12). However, how any given node interacts

with the rest of the network depends not only on the number of

connections but also the nature of these connections. We therefore

additionally ranked nodes using another measure of centrality,

betweenness (Figure 7B, Figure S12). Betweenness centrality

computes the number of shortest paths between node pairs that

pass through a given node, and nodes that have a large number of

intermodular connections tend to have high betweenness centrality

[37]. Nodes ranked high in betweenness differ from those that

were computed in random networks (Figure S13). Of the highly-

connected nodes, three regions—Cg-a, PrL, and Re—were also

ranked above the 80th percentile in terms of betweenness in each

of the low, moderate and high confidence networks (Figure 7C),

suggesting that this subset of high-degree regions may function as

connector hubs and facilitate global intermodular integration.

We next used seed PLS analysis to examine patterns of

interactions of the three putative hubs (Cg-a, PrL, and Re)

(Figure 7D). These analyses verified that these regions interacted

most strongly with cortical, thalamic, and hippocampal regions,

consistent with the network graphs. Most importantly, this pattern

of interactions differentiated the fear memory and control

conditions (P,0.001), suggesting that regions that show reliable

connectivity with the seed regions form a functional network that

is engaged during contextual fear memory expression specifically,

and not engaged by other non-specific factors of the testing

procedure.

Altered fear memory networks in a-CaMKII+/2 mice with
accelerated forgetting

Usually, fear memories are very stable, and can be maintained

over extended periods with little decay [16]. However, a-

CaMKII+/2 mice exhibit accelerated forgetting [22], and

therefore provide an opportunity to contrast initial organization

of functional networks for fear memories that are destined to

persist with those that are destined to fade with time. Accordingly,

we trained a-CaMKII+/2 mice (in parallel with their WT

littermate controls, described above) and tested their memory 1

or 36 days later. As expected, the mutants exhibited accelerated

forgetting, with freezing levels greatly reduced at the longer

(12.465.2%) compared to shorter (49.5610.5%) retention delay.

Importantly, freezing levels at the shorter retention delay were

similar to WT mice (66.568.7%; planned, unpaired t-test,

t(14) = 1.25, P = 0.23). An ANOVA confirmed the differential

impact of this mutation on memory at the longer retention delay (2

way between subjects ANOVA; delay 6 genotype interaction,

F(1,28) = 10.62, P,0.001). Following testing, Fos expression was

subsequently quantified in 84 brain regions, and networks

generated as previously described (Figure 8A–B).

Similar to WT mice, fear memory networks in the a-CaMKII+/2

mice had a non-Gaussian degree distribution and small-world

topology. As in the WT networks, the majority of brain regions had

relatively few connections, but a minority of nodes was highly

connected (Figure S14A). Moreover, compared to random control

networks, mutant networks were more segregated, but equivalently

integrated, at both the short and long retention delays (Figure
S14B–C). Finally, network density declined (rather than increased)

as a function of time most likely reflecting no (or very weak) memory

expression in the mutants at the remote retention delay

(Figure 8C).

While general network organization was similar in WT and a-

CaMKII+/2 mice, nevertheless there were some notable differ-

ences. In particular, at the 1-d retention delay, while WT and a-

CaMKII+/2 mice exhibited equivalent levels of conditioned

fear, functional connections differed within the neocortex (and

especially the somatosensory cortex), within the hippocampus

and between the hippocampus and neocortex between groups

(Figure 8D). These differences between WT and a-CaMKII+/2

networks at this shorter retention delay indicate equivalent

behavior may be generated by distinct networks. As the a-

CaMKII+/2 mice showed accelerated forgetting, they further

suggest that such degenerate solutions may not always be so

robust. Indeed, they raise the possibility that functional connec-

tions within the neocortex, within the hippocampus and between

the hippocampus and neocortex are especially important for

memory stability.

Discussion

Here we used global mapping and graph theoretical approaches

to characterize functional networks engaged by recall of a long-

term memory in mice. These experiments yielded four principal

findings. First, like many real-world networks, functional networks

degree and betweenness in all three networks were used as seeds in a multi-seed PLS analysis. These analyses identified a LV (upper graph) that
strongly differentiated the patterns of correlations between the seed and other brain regions in the trained (closed bars) vs. control (open bars)
conditions. The salience scores (lower graph) identify brain regions whose activity correlates strongly with all three seed regions in the trained (but
not control) mice. The hatched lines reflect a salience of 63, above or below which the contribution of the regions is considered reliable.
doi:10.1371/journal.pcbi.1002853.g007
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Figure 8. Fear memory networks are altered in a-CaMKII+/2 mice. A. Matrices showing inter-regional correlations for Fos expression at the 1
day (upper) and 36 day (lower) retention delays for a-CaMKII+/2 mice. Axes are numbered, and correspond to brain regions listed in Table S1. Colors
reflect correlation strength (scale, right). B. Network graphs generated for Pearson’s r$0.83. In these graphs, regions are grouped by major brain
subdivision and node size is proportional to the number of connections (degree) while the weight of the connection is proportional to correlation
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engaged by recall of long-term memory have a small-world

topology. This type of organization ensures that networks are

concurrently segregated—allowing for specialized processing in

more densely-connected clusters—and integrated—allowing for

efficient information flow through the network [14]. Second, while

networks maintain small-world topology across time, the specific

nature of functional connections changes as a function of memory

age. Memory aging was associated with strengthening of inter-

cortical functional connections and with strengthening of connec-

tivity between prefrontal areas and thalamic, cortical and

hippocampal areas. Third, the functional network supporting

long-term fear memory had a characteristic thalamic-hippocam-

pal-cortical signature. Many thalamic, hippocampal and cortical

regions formed a central core of mutually-interconnected regions,

and the dense interconnectivity of these high-degree regions likely

enhances network resilience. Fourth, several regions (including the

anterior cingulate cortex and prelimbic cortex) were identified as

important hubs within this long-term memory network and

therefore might play disproportionately important roles in network

function and resilience. While previous imaging and electrophys-

iological studies have examined the role of specific regions and small

collections of regions in expression of a long-term memory, this

analysis provides global picture of how a long-term fear memory is

organized in mice.

In our experiments, we evaluated contextual fear memory at

both short and long delays after training. We found that functional

networks differed at these two time-points, consistent with the idea

that memory organization changes as a function of memory age, a

process known as systems consolidation [25]. One prominent

model of systems consolidation [27] proposes that memories are

initially encoded in hippocampal-cortical networks, and that

reactivation of these networks then leads to the incremental

strengthening of inter-cortical connectivity, and an emergent role

for prefrontal cortical regions in memory expression coupled with

disengagement of the hippocampus. Consistent with this model,

we found that functional connections within the neocortex

strengthened over time, and this was especially evident within

the somatosensory cortex. Moreover, functional connections

between prefrontal cortical regions (including Cg-a and PrL) and

thalamic, posterior cortical and hippocampal regions were

stronger at the longer retention delay, supporting the idea that

these regions play important roles in the memory expression at

remote time points after encoding [22,23,29,38,39]. However, the

picture in the hippocampus was more complex. At the remote

time-point, hippocampal activity was reduced in magnitude, yet

remained tightly coupled with activity in other thalamic and

cortical regions. Clearly, consideration of Fos expression levels

alone may have suggested that the hippocampus is not important

at remote time points. However, the co-activity data paint a more

nuanced picture of the role of the hippocampus in expression of

remote contextual fear memory: That hippocampal activity (albeit

reduced in magnitude) remains tightly coupled with activity in

other thalamic and cortical regions suggests that hippocampal

regions play a sustained role in the expression of contextual fear

memories. This more sustained role is consistent with the finding

that light-induced inactivation of CA1 neurons blocks expression

of remote contextual fear memories [39], as well as conceptua-

lizations that the hippocampus is re-engaged regardless of the age

of the context memory as proposed in alternate models [26] (see

also: [32]).

What might these changes in network organization reflect?

Levels of freezing were similar at the short and long delays, and

therefore distinct networks are unlikely to be directly related to

different levels of fear. However, while behavioral output may be

similar at these two time points, it is possible that underlying

context representations differ. Such representational changes are

suggested by time-dependent increases in context generaliza-

tion following fear conditioning [40]. Indeed, using an identical

training protocol, we found that mice froze more when tested in

the training vs. a novel context at the short delay, but froze

equivalently when tested in these two contexts at the longer delay

(see Figure S15). Therefore, time-dependent changes in the

nature of functional connections might reflect the transformation

of the contextual fear memory from a precise, detailed form into a

less precise, generalized form [40]. A second possibility is that

network changes reflect an interaction between new and existing

memories. In addition to changes in the nature of connections, the

density of connections also increased as a function of retention

delay. This increase in connection density suggests that recall of an

older fear memory involves the coordinated activation of a

broader network, perhaps reflecting the engagement of a more

expansive associative net. Such time-dependent network expan-

sion is predicted by models that propose that consolidation

involves, in part, the integration of new information into existing

knowledge bases or schemas [41,42].

Fear memory networks had a distinct thalamic-hippocampal-

cortical signature, and this was most pronounced at the longer

retention delay. Interestingly, electrophysiological recording stud-

ies in awake, behaving animals suggest similar networks are

engaged during encoding and subsequently re-engaged during

post-encoding periods such as sleep or even retrieval [43]. For

example, encoding-related situations (e.g., spatial exploration or

exploration-based learning) are associated with coordinated activa-

tion of the hippocampus and neocortex, with especially pro-

nounced coupling between the hippocampal and prefrontal

cortical activity [44,45,46]. Moreover, these same patterns of

hippocampal and cortical activity are spontaneously replayed in

subsequent ‘offline’ periods such as quiet wakefulness or sleep [47],

and hippocampal-cortical activity remains coupled [10,48].

Moreover, similar coupling of hippocampal and prefrontal activity

is observed during retrieval of a contextual fear conditioning [49].

While hippocampal-cortical replay has been studied in most detail,

post-encoding replay also been observed hippocampal-thalamic

and hippocampal-striatal circuits [50,51], suggesting that replay

occurs in brain-wide networks. This brain-wide reactivation is

thought to play an essential role in systems consolidation, leading

to the incremental remodeling of networks for long-term memory

storage. Indeed, disruption of replay impairs consolidation of

spatial memory [52,53].

In our networks, functional connections reflect statistical, rather

than necessarily physical, relationships between brain regions.

Accordingly, our network analyses allowed us to generate hypo-

strength. C. Comparison of mean degree (observed connections per node [K]/all possible connections for that node [N]) for a-CaMKII+/2 mice at the
short (1 day; closed circles) and long (36 days; open circles) retention delays. The number of connections per node is greater at the 1 day delay for
almost all correlation (r) thresholds, reflecting greater network density at the shorter delay. D. Individual correlations differ between WT and a-
CaMKII+/2 matrices. These were determined by permutation testing, using a false discovery rate of 5% to account for multiple comparisons.
Correlations where WT.a-CaMKII+/2 are shown in white, and where a-CaMKII+/2.WT are shown in black. Notably, at this short retention delay
correlation strength within the somatosensory cortex (outlined in purple) and between hippocampal regions and other brain regions (outlined in
green) was stronger in a-CaMKII+/2 mice.
doi:10.1371/journal.pcbi.1002853.g008
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theses about which brain regions may play privileged roles in

memory expression, with highly-connected hub-like regions

likelier to influence overall network function. In particular, our

analysis revealed that the network engaged by recall of a fear

memory more than one month after training contains a densely-

interconnected central core of highly-connected hub-like regions.

Importantly, this central core included many brain regions that

have previously been implicated in the expression of contextual

fear memories at such remote time-points [25] (Table S4),

consistent with the idea that hubs play more integral roles in

network function. For example, loss of function manipulations

(including pharmacological inactivation, cytotoxic lesions or opto-

genetic silencing) targeting the anterior cingulate cortex

[22,28,39,54], hippocampus (including CA1 and CA3 fields)

[39,55], retrosplenial cortex [56] and prelimbic cortex [30] disrupt

expression of contextual fear memories at extended retention

delays. Similarly, loss of function manipulations targeting these

regions, as well as thalamic (e.g., LD, MD, C) and orbitofrontal

(DLO, VO, LO) regions affect expression of other forms of

remote memory, including spatial and olfactory-based memories

[23,57,58]. While correspondence between the predictions derived

from the network analysis and these published findings provides

some validation of our approach, perhaps greater value lies in

using this approach for the identification of novel, candidate brain

regions. In this regard, it is interesting that many thalamic regions

were identified within this central core, including Re, Sub, VPM

and Po. These regions, by virtue of their widespread connectivity

with both the hippocampus and neocortex, are ideally positioned

to influence network function. In particular, thalamic regions

strongly influence cortical activity by modulating up/down states

[59] and therefore may play central roles in coordinating memory

replay and retrieval. Indeed a recent lesion study provided

evidence that Re plays a key role in remote memory [60].

One interesting observation was that the same (or very similar)

behavioral output was associated with distinct functional networks,

suggesting that there is a degree of degeneracy at the network level

(i.e., an ability of distinct constellations of neural elements to

produce same output [61,62]). This was the case for networks

engaged by recall of contextual fear memory at the short vs. long

delay in WT mice. Likewise, a-CaMKII+/2 mice exhibited

equivalent levels of conditioned freezing compared to WT

littermates at the short delay, yet underlying functional networks

differed considerably. Together, this suggests that a population of

network solutions may support contextual fear memory, and raise

two related issues. First, because of this degeneracy, pre-training

manipulations of key brain regions may not necessarily prevent the

formation of a contextual fear memory. For example, pre-training

lesions of the hippocampus surprisingly do not always impair

acquisition of a contextual fear memory [63,64], and this is

presumably because alternate networks can support this type of

memory in the absence of an intact hippocampus at the time of

training. If multiple networks can support the formation of a

contextual fear memory, then a second issue is whether all

networks perform equivalently under all conditions? In the case of

animals trained without a hippocampus this does not seem to be

the case. While hippocampal lesioned animals may form a

contextual fear memory, acquisition is less efficient [64], and the

resultant memory is less precise [63] and less durable [65].

Similarly, in our study, the a-CaMKII+/2 mice were able to form

a contextual fear memory, but this memory faded rapidly over

time. This highlights that not all degenerate solutions necessarily

have the same robustness, although it remains to be determined

which specific alterations in network organization in a-CaMKII+/2

mice might be causally related to premature forgetting.

In these studies we quantified expression of the immediate early

gene, c-fos, to track changes in neural activity. Like other IEGs, Fos

is induced rapidly in neurons after sustained activity and can be

quantified at single-cell resolution across the entire brain [12,66].

However, as Fos is an indirect measure of activity, there some

potential limitations worth noting. Foremost, promoter-specific

differences in regional and cellular expression mean that it is

unlikely that there is a uniform relationship between neural

activity and Fos across the brain, and regional differences in

magnitude of the behaviorally-induced Fos signal inevitably would

compromise mapping and subsequent network generation. How-

ever, regional differences in signal did not appear to be limiting as

correlation strength (or connectivity) was not strongly influenced

by Fos signal. A closely-related issue is whether networks based on

different activity markers might differ markedly from one another.

Accordingly, in additional analyses we quantified expression of

another activity-regulated gene, egr-1, in a subset of brain regions.

While there are inevitably some regional differences in Egr-1 and

Fos expression following memory recall, we found that the overall

patterns of inter-regional correlations derived from Egr-1 vs. Fos

expression were very similar, consistent with idea that many

activity-regulated genes are expressed in the same subpopulations

of neurons after regional activation [12]. Future refinement of this

approach might focus on improving temporal resolution (e.g.,

examining mRNA for single or multiple activity markers) [11] and

data acquisition and analysis (e.g., optical projection tomography

or 3D digital reconstruction from serial block-face scanning of

activity marker expression [67,68,69] and derivation of voxel-

based, rather than region-based maps of co-activity). Indeed, a

limitation of the current study was the relatively small sample sizes

(,8 mice/group). In the future, implementation of these more

high-throughput data acquisition and analysis methods, in parti-

cular, should make it is feasible to use larger sample sizes and

consequently maximize the power of the approach.

Methods

Ethics statement
All experimental protocols were approved by the Animal Care

Committee at The Hospital for Sick Children.

Behavioral and immunohistochemical procedures
In these experiments, Fos and Egr-1 expression was analyzed

following recall of long-term contextual fear memory at two time-

points after training. A sub-analysis of these brain sections was

previously published in which gene expression was quantified in

six brain regions [22]. In the current analyses, quantification was

extended to 84 brain regions, and the network properties of fear

memory were analyzed using graph theoretical approaches. The

genetic background of all mice used in these experiments was 50%

C57Bl/6NTacfBr and 50% 129Sv/J. Briefly, experimental mice

were generated by crossing a-CaMKII+/2 mutants that were 50%

C57Bl/6NTacfBr and 50% 129Sv/J with mice that were F1

hybrids of the same genetic background. Male and female

littermate WT and a-CaMKII+/2 mice were used in experiments.

All mice were maintained on a 12 h light/dark cycle with free

access to food and water. Behavioral experiments were conducted

during the light phase of the cycle, and mice were at least 8 weeks

old at the time of training.

Context fear conditioning experiments were conducted in a

windowless room containing four conditioning chambers. The cham-

bers were stainless steel (31 cm624 cm621 cm; Med Associates, St.

Albans, VT). The shock-grid floor consisted of stainless steel shock-

grid bars (diameter 3.2 mm) that were spaced 7.9 mm apart. The

Long-Term Fear Memory Networks in Mice

PLOS Computational Biology | www.ploscompbiol.org 12 January 2013 | Volume 9 | Issue 1 | e1002853



front, top, and back of the chamber were made of clear acrylic and

the two sides made of modular aluminum. Mouse freezing behavior

was monitored via four overhead cameras. Freezing was assessed

using an automated scoring system (Actimetrics, Wilmette, IL), which

digitized the video signal at 4 Hz and compared frame by frame

movement to determine the amount of time spent freezing. During

training, WT and a-CaMKII+/2mice were placed in the condition-

ing chamber for seven minutes. After two minutes they were

presented with five unsignalled footshocks (2 s duration, 0.75 mA,

1 minute apart). Following the last footshock mice remained in the

context for an additional minute, and then were returned to their

home cage. Separate groups of mice were tested either 1 day (WT

mice, n = 8, CaMKII+/2 mice, n = 8) or 36 days (WT mice, n = 8,

CaMKII+/2 mice, n = 8) later. During testing, mice were placed back

in the conditioning chamber for two minutes, and freezing was

assessed. Control mice underwent the same procedure but did not

receive the footshocks during the conditioning session (WT mice, 1

day delay, n = 8, WT mice, 36 day delay, n = 9).

Ninety minutes following the completion of testing, mice were

deeply anesthetized then perfused transcardially with phosphate

buffered saline (PBS) followed by 4% paraformaldehyde (PFA).

The brains were removed, fixed overnight in PFA, then

transferred to 30% sucrose solution and stored at 4uC. Fifty mm

coronal cryostat sections were cut from the anterior to the

posterior of the brain. Every fourth section contributed to a set,

creating four sets with sections spaced 200 mm apart. One set was

used for Fos and another for Egr-1 immunohistochemical staining.

Brains were prepared for immunocytochemistry using an anti Fos

(1:20000) or an anti Egr-1 (1:7500) primary rabbit polyclonal

antibody. A biotinylated goat anti-rabbit antibody (1:2000) was

used as a secondary antibody. Staining was revealed using the

avidin-biotin peroxidase method (ABC kit) coupled to diamino-

benzidine as a chromogen, as previously described [22].

Immediate early gene quantification
Fos expression was analyzed in 84 brain regions (see Table S1)

and included cortical, thalamic, hippocampal, cerebral and

midbrain nuclei. The borders of regions were defined manually

according to the Franklin and Paxinos mouse brain atlas [18]. This

was accomplished at low magnification (26 objective), using the

trace contour function in the Stereo Investigator imaging system

(Microbrightfield Inc., Colchester, VT). Images were subsequently

acquired using either a Nikon Eclipse 80i microscope (Nikon,

Instruments, Melville, NY) or Olympus BX61 epifluorescent

microscope (Olympus America, Center Valley, PA) at a higher

magnification (106 objective) for offline quantification of Fos-

positive or Egr-1-positive cells (Figure S1).

Quantitative analysis of Fos-positive and Egr-1-positive nuclei

was performed on 8-bit grey scale images using Image J software

(National Institute of Health, Bethesda, MD). The threshold for

detection of positive nuclei was set at a consistent level for each

brain region, and only nuclei 25–125 mm2 in area were counted.

Immunoreactive nuclei were counted in all 84 regions of interest

by an experimenter blind to the condition and expressed as the

average number of Fos or Egr-1 positive cells per standard unit of

area (10,000 mm2). For the majority of brain regions three sections

were quantified bilaterally and then a mean count was computed

for each animal. These sections were evenly spaced, and typically

did not include the most anterior and posterior portions of a region

in order to avoid sampling outside the region of interest. In a small

subset of regions, counts were based on ,3 sections, usually

because the anterior-posterior extent of the region #600 mm (e.g.,

VTA).

Task PLS analysis
PLS is a multivariate statistical technique that is used to identify

optimal patterns of functional activity or connectivity that

differentiate conditions [9]. Task PLS is used in the analysis of

brain region activity to describe the relationship between experi-

mental conditions and functional activity [70]. PLS is able to pull

out similarities and differences between groups by identifying brain

regions where activation varies with the experimental condition.

Through singular value decomposition, PLS produces a set of

mutually orthogonal latent variable (LV) pairs. One element of the

LV depicts the contrast, which reflects a commonality or differ-

ence between conditions. The other element of the LV, the brain

region salience, identifies brain regions that show the activation

profile across tasks, indicating which brain areas are maximally

expressed in a particular LV.

Statistical assessment of PLS was performed by using permu-

tation testing for LVs and bootstrap estimation of standard error

for the brain region saliences. For the LV, significance was

assessed by permutation testing; resampling without replacement

by shuffling which condition (trained vs. control) each mouse was

assigned to. Following each resampling, the PLS was recalculated.

This was done 500 times in order to determine whether the effects

represented in a given LV were significantly different to random

noise. For brain region salience, reliability was assessed using

bootstrap estimation of standard error. Bootstrap tests were

performed by resampling 500 times with replacement, while

keeping the subjects assigned to their conditions. This reflects the

reliability of the contribution of that brain region to the LV. Brain

regions with a bootstrap ratio greater than 3 (roughly corresponding

to a confidence interval of 0.01) were considered as reliably con-

tributing to the pattern. An advantage to using this approach over

univariate methods is that no corrections for multiple comparisons

are necessary because the brain region saliences are calculated on all

of the brain regions in a single mathematical step [70].

Functional connectivity analysis
Within each of the four experimental groups of animals (WT/1

day, WT/36 days, a-CaMKII+/2/1 day, a-CaMKII+/2/36 days),

all possible pairwise correlations between the Fos signal in the 84

regions were determined by computing Pearson correlation

coefficients (totalling 3486 correlations). Each complete set of

correlations was computed from a vector of size 8, and were

displayed as color-coded correlation matrices using Matlab

software (Mathworks, Natick, MA). A correlation matrix was also

constructed for analysis of Egr-1 expression in 8 regions in the

WT/36 day group.

Wild-type correlation matrix comparisons
In order to evaluate how functional connectivity changed as a

function of memory age in WT mice, we categorized our 84 brain

regions into major brain subdivisions (hippocampus, thalamus,

hypothalamus, cerebral nuclei and neocortex). We then contrasted

mean correlation strength between different major subdivisions at

the short vs. long retention delays. These contrasts were selected a

priori according to models of systems consolidation [27] that

predict time-dependent changes in the strength of hippocampal,

prefrontal cortical and inter-cortical functional connections.

Specifically, to assess time-dependent changes in hippocampal

functional connectivity, mean correlations were calculated be-

tween hippocampal subregions (CA1-a, CA1-m, CA1-d, CA1-p,

CA3, DG-up, DG-low) and the other major subdivisions of the

brain (thalamus, hypothalamus, cerebral nuclei, midbrain and

neocortex). To assess changes in medial prefrontal cortical func-

tional connectivity, mean correlations were calculated between
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regions in the medial prefrontal cortex (Cg-a, Cg-p, IL, PrL) and

the other subdivisions of the brain (thalamus, hypothalamus,

cerebral nuclei, midbrain and neocortex). To assess changes in

inter-cortical connectivity mean correlations were calculated

within the entire neocortex, as well as within only the somatosen-

sory cortex. Ninety-five % confidence intervals were computed by

bootstrapping which involves resampling subjects with replace-

ment 1000 times and each time recalculating the mean

correlation. Differences between mean correlation coefficients at

the 1 and 36 day delay were assessed by calculating the 95%

confidence interval of the difference between mean correlations,

and correlation differences where this confidence interval $0 were

considered reliably different.

Functional network construction
Networks were constructed by thresholding inter-regional

correlations in each group of animals. The primary networks

were constructed by considering correlations with Pearson’s r

$0.8343, which corresponds to a one tailed significance level of

P,0.005, uncorrected for multiple comparisons. Higher and lower

confidence networks were constructed as well to insure that

network properties were not dependent on threshold level

selection. A threshold of r$0.8697 (corresponding to a significance

level of P,0.0025 [one tailed, uncorrected]) was used to generate

the high confidence networks and a threshold of r $0.7887

(corresponding to a significance level of P,0.01 [one tailed,

uncorrected]) was used to generate the low confidence networks.

In addition, networks were constructed using Spearman’s rank

correlation coefficient, with a threshold of r $0.8343, which

corresponds to a one tailed significance level of P,0.005. The

nodes in the networks represent brain regions and the correlations

that survived thresholding were considered connections. NetDraw

(Analytic Technologies, Lexington, KY) was used to visualize

networks, with node size set proportional to degree (number of

connections) and connection line weights reflecting the strength of

the correlation. While potentially interesting, we did not consider

negative correlations in the current network analyses.

Graph theory analysis
Graph theoretical measures were used to characterize properties

of the long-term memory networks. For each primary, low and

high confidence fear memory network, 1000 random, null

hypothesis networks were generated with the same number of

active nodes, connections and same degree distribution. Then

long-term memory network properties were contrasted with

averaged values from these corresponding random, control

networks. Network measures and random null hypothesis

networks were generated using functions from Olaf Sporns’ brain

connectivity toolbox (https://www.brain-connectivity-toolbox.

net/). Definitions and formulae for these graph theory measures

have been described in elsewhere [33]. Ninety-five percent

confidence intervals for the network measures are reported in

order to determine whether network properties differ reliably

between fear memory network and random, control networks.

Means and confidence intervals for the network measures were

derived by bootstrapping which involves resampling subjects with

replacement one thousand times and recalculating the network

measures.

Integration. Integration in a brain network gives rise to

coordinated activation of distributed neuronal populations and

brain areas [33]. In our analyses we computed two measures of

integration: characteristic path length and global efficiency.

Shortest path length is the mean number of connections that

need to be traversed to get from one node to another. The

characteristic path length is then the average shortest path length

for all pairs of nodes in the network [13]. Global efficiency is the

average inverse shortest path length in the network [71]. Global

efficiency differs from characteristic path length in that it considers

unconnected node pairs in its calculation since the inverse of

infinity is zero.

Segregation. Segregation in a brain network allows for

specialized processing in more densely-connected clusters [33].

In our analyses we computed three common measures of segre-

gation: mean clustering coefficient, transitivity and local efficiency.

The clustering coefficient is computed by dividing the number of

existing connections among a node’s directly connected neigh-

bours by the number of possible connections between them [13].

The mean clustering coefficient for the network is then the average

clustering coefficient for all of the active nodes in the network.

Transitivity is a weighted version of the clustering coefficient that

is less biased by low degree nodes [72]. The local efficiency is the

global efficiency computed among all directly connected neigh-

bours of a node [71], and the mean local efficiency of all active

nodes in the network was considered.

Identification and characterization of clusters. Cluster

analysis was conducted with the Markov Cluster Algorithm

(inflation parameter set at 2.6), a scalable, unsupervised cluster

algorithm for networks based on simulation of stochastic flow in

graphs (http://www.micans.org/mcl/). Additionally, we validated

our results using a number of alternate clustering algorithms,

including community clustering, clusterONE, affinity propagation,

connected components and k means clustering. These yielded

mostly overlapping results. However, we chose to present results

based on Markov clustering since previous studies indicated that

this procedure is significantly more tolerant to noise and behaves

more robustly than other algorithms [73]. Clusters were visualized

using Cytoscape (http://www.cytoscape.org/). The assortativity

coefficient is a correlation coefficient between the degrees of all

directly-connected node pairs. A positive assortativity coefficient

indicates that nodes tend to link to other nodes with the same or

similar degree [34].

Hub identification. Hub regions play disproportionately

important roles in the function of a network [33]. Two measures

of centrality, degree and betweenness, were computed for all nodes

in the network and used to identify candidate hub regions. Degree

corresponds to the number of edges that are incident upon a node.

Node betweenness is the number of all shortest paths in the

network that pass through a given node, and nodes with high

values of betweenness centrality participate in a large number of

shortest paths. All regions were ranked by degree and between-

ness, and candidate hub regions were considered to be regions that

were ranked .80th percentile for both measures in primary, as

well as high and low confidence, networks. For comparison

betweeness values were also computed in 100 random networks.

Resilience of networks to sequential node attack. We

assessed network resilience to random error and targeted attack

using an approach previously described by Achard et al (2006)

[36]. Random error was modeled by sequentially removing nodes

and all of their connections from the network at random and then

recalculating the size of the largest connected component (i.e.,

collection of connected nodes) in the new network. Targeted

network attack was simulated using the same process except that

node removal began with the most highly-connected node (i.e.,

node with the highest degree) and progressed in order of

descending degree value. Curves describing the effect of random

and targeted node removal on largest component size in the fear

memory network were compared to curves for a control network

matched for node, degree and degree distribution.
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Seed Partial Least Squares
Seed PLS is used in the analysis of functional connectivity to

explore if seed regions exhibit task-related changes in activity in

relation to the rest of the brain. Like task PLS described above,

seed PLS identifies LVs through singular value decomposition of

correlation maps [74]. The LVs maximally describe patterns of

brain region interactivity with seed regions that are similar or

different between groups. The three brain regions identified as

hubs with graph theory measures were used as seeds in this

analysis. This analysis was used to verify that activity in hubs co-

varies with activity in other brain regions, and to determine if this

pattern of interactivity is unique to the experimental condition or

shared between the experimental and control condition.

a-CaMKII+/2 and WT 1 day correlation matrix
comparisons

In order to compare correlation matrices for the WT and a-

CaMKII+/2 1 day retention delay groups, all individual correla-

tions were compared with no a priori predictions (3486 compar-

isons). Significance differences in individual correlations were

determined with permutation testing. Permutation testing involved

shuffling subject labels to produce several permuted combinations

of the original two groups of data. Following each permutation the

test statistic (correlation) was recalculated. The number of events

that exceeded the observed correlation statistic was determined

and a probability of the number of observed events being greater

than expected was assigned. The false discovery rate was controlled

at the 5% level because of the number of multiple comparisons.

Supporting Information

Figure S1 Fos quantification. Sample images of Fos

immunohistochemical staining from a representative brain section.

Images were captured with the 26objective (red border) and 106
objective (blue border). Higher magnification images are shown

for specific hippocampal (CA3), cortical (S1Tr), cerebral nuclei

(Ce), hypothalamic (DM) and thalamic (VPM) regions. Dotted

lines indicate region borders.

(TIF)

Figure S2 High and low confidence networks in WT
mice. Networks formed from thresholding inter-regional Fos

correlations in mice tested at the 1 (upper) and 36 day (lower)

retention delay using either a high confidence threshold of r .0.87

(left) or a low confidence threshold of r .0.79 (right). Brain regions

are grouped by major brain subdivision and node size is

proportional to the number of connections (degree) while the

weight of the connection is proportional to correlation strength.

(TIF)

Figure S3 Spearman rank correlation networks in WT
mice. A. Matrices showing inter-regional Spearman rank

correlations for Fos expression at the 1 (upper) and 36 day (lower)

retention delays. Axes are numbered, and correspond to brain

regions listed in Table S1. Colors reflect correlation strength

(scale, right). B. Network graphs were generated by considering

only the strongest correlations (Spearmans’s rs$0.83). In these

graphs, regions are grouped by major brain subdivision and node

size is proportional to the number of connections (degree) while the

weight of the connection is proportional to correlation strength.

(TIF)

Figure S4 Relationship between magnitude and vari-
ance of regional Fos signal and correlation strength. A.

Overall Fos signal levels (Fos+ nuclei/10,000 mm2) in WT and a-

CaMKII+/2 mice tested at the 1 and 36 day delay. Fos levels were

elevated in the WT mice that were tested at the long retention

delay. B. Scatterplot of mean correlation strength (r2) vs.

magnitude of Fos signal for each brain region. Data points are

taken from all 4 groups tested. There was no relationship between

correlation strength and the magnitude of the Fos signal,

indicating that group differences in number of functional

connections (or network density) cannot be attributed to overall

differences in Fos expression. C. Overall coefficient of variation

(standard deviation/mean Fos) in WT and a-CaMKII+/2 mice

tested at the 1 and 36 day delay. Variability did not differ across

groups. D. Scatterplot of mean correlation strength (r2) vs.

coefficient of variation for each brain region. Data points are

taken from all 4 groups tested. While correlation strength typically

increased as a function of variance (or coefficient of variation),

variance was equivalent across groups and therefore cannot

account for increased network connectivity in WT mice at the long

retention delay.

(TIF)

Figure S5 Patterns of inter-regional correlations de-
rived from Fos and Egr-1 expression are similar. Matrices

showing inter-regional correlations for (A) Fos and (B) Egr-1

expression in a subset of brain regions in WT mice tested at the 36

day retention delay. Colors reflect correlation strength (scale,

right). Overall correlation strength did not differ in the Fos vs. Egr-

1 matrices (by permutation testing; P = 0.76), nor were any

individual inter-regional correlations different (by permutation

testing; all Ps.0.05, corrected for multiple comparisons with the

false discovery rate set at 5%).

(TIF)

Figure S6 Correspondence between structural and
functional connectivity for the reuniens thalamic nucle-
us (Re). Of the 84 regions investigated, 47 demonstrated direct

structural (afferent or efferent) connectivity with the Re in

published tract tracing studies in rodents (green circles, for a

listing of all connections see Table S2). Regions that demonstrate

functional connectivity with the Re in the high (left), primary

(center) and low (right) confidence long term memory networks are

represented by red circles. For the high and primary networks, all

functional connections had corresponding structural connections.

For the low confidence network, the majority (22/24) of functional

connections had corresponding structural connections.

(TIF)

Figure S7 Degree distribution in high and low confi-
dence networks. Histogram showing degree distribution for fear

memory networks in WT mice tested at the 1 day (upper) and 36 day

(lower) retention delay. These networks were constructed by imposing

either (A) more (r.0.87, high confidence) or (B) less (r.0.79, low

confidence) stringent thresholds on correlation matrices.

(TIF)

Figure S8 Segregation in high and low confidence
networks. Mean clustering coefficient constructed by imposing

(A) more (r.0.87, high confidence) or (B) less (r.0.79, low

confidence) stringent thresholds on correlation matrices for WT

mice tested at the 1 day (upper) and 36 day (lower) delay. The

bootstrapped mean clustering coefficient for the fear memory

networks are compared to the average of 1000 random networks

matched for node, degree and degree distribution. Error bars

represent 95% confidence intervals.

(TIF)

Figure S9 Alternate measures of segregation for WT
mice tested at the 1 and 36 day delay. (A) Transitivity and

(B) mean local efficiency measured in fear memory networks for

Long-Term Fear Memory Networks in Mice
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WT mice tested at the 1 day (upper) and 36 day (lower) retention

delay. The mean of bootstrapped measures in the fear memory

networks are compared to the average of 1000 random networks

matched for node, degree and degree distribution. Error bars

represent 95% confidence intervals. These alternate measures

indicate that fear memory networks are more segregated than

would be expected by chance.

(TIF)

Figure S10 Integration measures in high and low
confidence networks. Mean global efficiency in graphs

constructed by imposing (A) more (r.0.87, high confidence) or

(B) less (r.0.79, low confidence) stringent thresholds on

correlation matrices for WT mice tested at the 1 day (upper)

and 36 day (lower) delay. The bootstrapped mean global efficiency

for the fear memory networks are compared to the average of

1000 random networks matched for node, degree and degree

distribution. Error bars represent 95% confidence intervals.

(TIF)

Figure S11 Alternate measure of integration for WT
mice tested at the 1 and 36 day delay. Characteristic path

length for fear memory networks for WT mice tested at the 1 day

(upper) and 36 day (lower) retention delay. The bootstrapped

characteristic path length in the fear memory networks is

compared to the average of 1000 random networks matched for

node, degree and degree distribution. Error bars represent 95%

confidence intervals. Fear memory and random networks had

similar characteristic path length, suggesting they have equivalent

levels of integration.

(TIF)

Figure S12 Ranked centrality measures in high and low
confidence networks. Brain regions are ranked in descending

order for degree and betweenness in the (A) high and (B) low

confidence long term memory networks. Regions to the left of the

hatched line are ranked above the 80th percentile and dark colors

indicate regions that are additionally ranked above 80th percentile

for both degree and betweenness. These regions were used for hub

identification, shown in Figure 7C.

(TIF)

Figure S13 Nodes ranked high in betweenness differ
from those in random networks. Mean betweenness values

for nodes in 100 random networks matched for node, degree and

degree distribution is superimposed on the ranked betweenness

values in the primary (A), high (B) and low (C) confidence

networks. High betweenness nodes differ from those derived from

the random networks.

(TIF)

Figure S14 Networks have small-world properties in a-
CaMKII+/2 mice. A. Histogram showing degree distribution for

fear memory networks corresponding to 1 day (upper) and 36 day

(lower) retention delay. B. Mean clustering coefficient for fear

memory vs. random network (matched for node, degree and

degree distribution). At both short (upper) and long (lower)

retention delays the fear memory network was more clustered. C.

Mean global efficiency for fear memory vs. random network. At

both short (upper) and long (lower) retention delays global

efficiency (or integration) was equivalent in the fear memory vs.

random networks. Error bars represent 95% confidence intervals.

(TIF)

Figure S15 Context generalization increases as a func-
tion of retention delay. A. Experimental design. Mice were

trained in an identical way as in the main experiment (5 footshocks

in context A). Freezing was then assessed either 1 day (n = 12) or 36

days (n = 14) later in the training context (context A) and an alternate

context (context B). B. Percent time freezing in contexts A and B at

the short (1 day) vs. long (36 day) retention delay. C. Context discri-

mination ([freezingA2freezingB]/[freezingA+freezingB]) declined as

a function of retention delay.

(TIF)

Table S1 List of brain regions in which Fos was
quantified with corresponding abbreviations (according
to supplementary reference [8] in Text S1) and reference
numbers for the correlation matrices. Brain regions are
categorized by major brain subdivision.

(PDF)

Table S2 Direct afferent and efferent connections with
the reuniens thalamic nucleus (Re). Connections were

identified from published tract tracing studies in rodents (see

supplementary references [9–45] in Text S1). Brain structure

from which each connection originates from and terminates are

listed, together with tracer method and strength of projection (if

reported).

(PDF)

Table S3 Mean correlation coefficients within or be-
tween major brain subdivisions for WT mice tested 1 vs.
36 days after training, with corresponding 95% confi-
dence interval of the difference. Time-dependent changes in

correlation strength were only considered significant if the 95%

confidence interval of the difference was greater than zero (in red).

mPFC = medial prefrontal cortex (includes Cg-a, PrL, IL and

Cg-p).

(PDF)

Table S4 Over-representation of cortical, hippocampal
and thalamic regions in the densely-interconnected
central component. Using a clustering algorithm, the fear

memory network (for the WT/36 day group) was organized into

eight distinct clusters that included, in particular, a large densely-

connected central component containing two groupings (green

and blue nodes). This table reports the proportion of brain regions

in major brain subdivisions with respect to the total number of

regions analyzed, as well as the proportion of brain regions in

major brain subdivisions with respect to the total number of

regions found in the blue and green clusters. Cortical and

hippocampal regions were over-represented in the green cluster,

and thalamic regions were over-represented in the blue cluster

(highlighted in red).

(PDF)

Table S5 Brain regions implicated in long-term mem-
ory expression at remote time-points following training.
A pubmed-based search was conducted to identify brain regions

where targeted, loss-of-function manipulations affect expression of

remote memory expression (see supplementary references [46–73] in

Text S1). Behavioral paradigms were considered if acquisition and/

or initial memory expression (e.g., 24 hours after training) were

dependent upon the hippocampus. Loss-of-function manipulations

included anatomical lesions, pharmacological inactivation, DNA

demethylation, and testing occurred at least 25 days after the

completion of training. DNMT = DNA methyltransferases. adorsal

hippocampus, bventral hippocampus, cdorsal+ventral hippocampus.

(PDF)

Text S1 Supplementary methods, results, notes and
references.

(PDF)
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