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Abstract

The crab Cancer borealis undergoes large daily fluctuations in environmental temperature (8–24uC) and must maintain
appropriate neural function in the face of this perturbation. In the pyloric circuit of the crab stomatogastric ganglion, we
pharmacologically isolated the pacemaker kernel (the AB and PD neurons) and characterized its behavior in response to
temperature ramps from 7uC to 31uC. For moderate temperatures, the pacemaker displayed a frequency-temperature curve
statistically indistinguishable from that of the intact circuit, and like the intact circuit maintained a constant duty cycle. At
high temperatures (above 23uC), a variety of different behaviors were seen: in some preparations the pacemaker increased
in frequency, in some it slowed, and in many preparations the pacemaker stopped oscillating (‘‘crashed’’). Furthermore,
these crashes seemed to fall into two qualitatively different classes. Additionally, the animal-to-animal variability in
frequency increased at high temperatures. We used a series of Morris-Lecar mathematical models to gain insight into these
phenomena. The biophysical components of the final model have temperature sensitivities similar to those found in nature,
and can crash via two qualitatively different mechanisms that resemble those observed experimentally. The crash type is
determined by the precise parameters of the model at the reference temperature, 11uC, which could explain why some
preparations seem to crash in one way and some in another. Furthermore, even models with very similar behavior at the
reference temperature diverge greatly at high temperatures, resembling the experimental observations.
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Introduction

Neuronal oscillators depend on the balanced interaction of

many voltage-dependent currents to produce functional output.

For example, the cardiac action potential is a result of the voltage-

and time- dependent activation and inactivation of many different

ion channels [1]. Likewise, thalamic neurons generate bursts that

also depend on the properties of many currents [2–4].

Temperature is a global perturbation that influences the

conductance, activation, and inactivation of all ion channels [5].

Because the temperature sensitivities of different ion channels are

generally different, this variability presents a potential challenge to

maintaining stable oscillatory function over an extended temper-

ature range, as is necessary for neuronal oscillators found in cold-

blooded animals.

A number of theoretical studies have shown that similar

neuronal and network behaviors can be produced by widely

different sets of conductances [6–9]. More specifically, very similar

patterns of neuronal bursting can arise from different balances of

inward and outward currents [7,10]. Thus, even if temperature

alters the relative balance of inward and outward currents in a

neuronal oscillator, this divergence might not immediately lead to

a loss of robust oscillation.

In the stomatogastric ganglion (STG) of the crab, Cancer borealis,

the anterior burster (AB) neuron is strongly oscillatory, and is

electrically coupled to the two pyloric dilator (PD) neurons.

Together the AB and PD neurons comprise a three-neuron

pacemaker kernel that drives the pyloric rhythm of the STG [11].

Previous work on the STG has shown that there is substantial

variability in ionic currents across animals [12,13]. Despite this

variability, in a ‘‘permissive’’ temperature range (7uC to 23uC), the

pyloric rhythm exhibits remarkably stable phase relationships

among activity in different neurons [14]. However, at higher

temperatures the rhythm often ‘‘crashes’’, i.e. fails to oscillate [15].

Crashed preparations resume oscillations if returned to a

permissive temperature.

In this paper we characterize the effects of temperature on the

isolated pacemaker kernel of the pyloric rhythm, both over the

permissive temperature range and at more extreme temperatures,

as a way of probing the diversity of the underlying oscillatory

mechanisms across individual animals. Additionally, by studying

the effects of temperature on a simple oscillator model, we describe

the generic features that enable neuronal oscillators to respond to

temperature modifications in a reliable fashion.

Results

The pyloric rhythm is a triphasic motor pattern in which the

pacemaker kernel, consisting of the AB and two PD neurons, fires

in alternating bursts with the lateral pyloric (LP) and pyloric (PY)

neurons. The connectivity among the pyloric network neurons and

the rhythm itself are shown in Figure 1A. Activity of the PD
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neurons can be seen in the intracellular recording of one of the PD

neurons and on the extracellular recording from the pyloric dilator

nerve (pdn; Figure 1A). Activity of the LP neuron is seen as the

spikes recorded on the gastropyloric nerve (gpn; Figure 1A). The

smaller amplitude spikes on the pyloric nerve (pyn) show activity

from the PY neurons (Figure 1A). Note that while the LP and PY

neurons are inhibited by both the glutamatergic AB and the

cholinergic PD neurons [16], the only feedback to the pacemaker

kernel comes from the glutamatergic LP neuron [17].

In the STG, picrotoxin (PTX) blocks the glutamatergic

inhibitory synapses [16,18,19], thus allowing the pacemaker

kernel to be isolated from other members of the pyloric circuit

(Figure 1B). In the presence of 1025 M PTX the pacemaker kernel

maintains its activity, as seen in the intracellular PD recording and

the extracellular pdn recording (Figure 1B). Loss of the AB

inhibition usually causes the LP and PY neurons to fire tonically

(the residual cholinergic inhibition from the PD neurons is often

very weak). Because of the strong electrical coupling between the

AB and PD neurons, PD neuron activity is a good monitor of the

AB neuron’s activity [11].

Variability in pacemaker frequency at high temperature
We studied the output of isolated pyloric pacemakers in a

temperature range from 11 to 31uC (Figure 2). Generally, the

frequency increased with temperature (Figure 2A). However,

bursting was quite variable at extreme temperatures, and some

individuals displayed a decrease in frequency as temperature was

increased (Figure 2B). Furthermore, some preparations continued

to cycle at 31uC, the highest temperature tested, whereas some

crashed before this point (compare Figure 2A, 2B). Three isolated

pacemaker kernels increased their frequency over the entire range

from 11 to 31uC (as in Figure 2A). Seven isolated pacemakers

crashed (as in Figure 2B). Finally, four isolated pacemakers showed

frequency-temperature (F-T) curves that flattened out or sloped

downward at high temperatures (as in Figure 2B, compare 19uC
panel to 23uC panel).

Averaged across individuals, frequency increased with temper-

ature (Figure 2C; Q10 = 1.5760.15, SE; See Methods). This

increase was approximately linear from 11 to 19uC (slo-

pe = 0.152 Hz/uC; r2 = 0.87, 95% CI = [0.76, 0.93]). Variability

of the frequency (across individuals) also increased with increasing

temperature (Figure 2D; p,1024, Levene s test on log-

transformed frequency), with most of the change occurring above

19uC. From 11 to 19uC, variability of the frequency did not

change significantly (p = 0.11, Levene s test on log-transformed

frequency), but at higher temperatures the variability increased

strongly (see Figure 2D for detailed comparisons).

Previously, it was shown that in the intact pyloric network,

frequency increased with increasing acute temperature [14,15].

Remarkably, we found that the isolated pacemaker had an F-T

curve that was statistically indistinguishable from that of the intact

network (Figure 2E, with data from [14,15] shown for comparison;

p = 0.34, two-way RM ANOVA).

As in the intact network, isolated pacemaker duty cycle
remains invariant to temperature

We measured the effect of temperature on the pacemaker duty

cycle. For a bursting neuron, duty cycle is defined as the fraction of

the period that the oscillator is bursting. In contrast to the effect of

temperature on frequency, the isolated pacemaker kernel’s duty

cycle changed little as temperature was increased, exhibiting a Q10

close to one (Figure 2F; Q10 = 0.9760.05; SE). In the previous

work on the intact pyloric network, it was also found that the

pacemaker duty cycle did not vary with temperature [14,15]. As

Figure 1. The pyloric network, intact and with pacemaker
isolated. (A) At top, a schematic of the intact pyloric network. Dots
represent inhibitory chemical synapses, resistor symbols indicates
electrical synapses. Dot color represents the transmitter used by
particular synapses. ACh = acetylcholine, Glu = glutamate. At bottom,
intracellular recording of PD and simultaneous extracellular recordings
from three nerves: pdn, gpn, and pyn, which reflect activity in PD, LP,
and PY, respectively. Traces recorded at 11uC. (B) At top, a schematic of
the pyloric network in presence of 1025 M PTX, which blocks
glutamatergic synapses in C. borealis. In this condition, the major
synaptic input to the pacemaker from other pyloric neurons has been
blocked. At bottom, the same preparation as in panel A, but after
application of 1025 M PTX. Deprived of pacemaker input, LP and PY fire
tonically, but the pacemaker continues to oscillate.
doi:10.1371/journal.pcbi.1002857.g001

Author Summary

The nervous systems of cold-blooded animals must
maintain essential function despite fluctuations in envi-
ronmental temperature. We studied the pyloric rhythm of
the crab, Cancer borealis. The pyloric rhythm is important
for the animal’s feeding behavior, and previous work has
shown that relative timing, or phase, of the neurons in the
pyloric circuit is temperature invariant over a range of
physiologically realistic temperatures (7 to 23uC), although
the frequency of the rhythm increases. At higher temper-
atures, the rhythm often becomes disorganized or stops. In
this paper we present experimental work on the isolated
pacemaker of the pyloric rhythm together with a compu-
tational model that explores the loss of stability of the
pacemaker as a function of temperature. Experimentally,
we found that the isolated pacemaker responds to
temperature similarly to the intact network, and maintains
constant duty cycle over large temperature ranges. At high
temperatures, about half of the pacemakers stop oscillat-
ing, reminiscent of certain mathematical bifurcations. We
varied the temperature dependence and conductance
densities of a simple model oscillator, and characterized its
bifurcations as a function of temperature. We found that
particular temperature-dependent relationships must be
maintained to provide robust temperature performance of
oscillators with variable underlying conductances.

Temperature Response of a Neuronal Oscillator
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with frequency, we found that the isolated pacemaker had a duty-

cycle- versus-temperature curve that was statistically indistinguish-

able from that of the intact network (Figure 2F, with data from

[14,15] shown for comparison; p = 0.44, two-way RM ANOVA).

Of these preparations, some crashed at 31uC, but even these

maintained constant duty cycle until they crashed. Together, these

observations strongly suggest that the underlying mechanism for

the pacemaker’s duty-cycle invariance is intrinsic to the pacemaker

itself and does not depend on network interactions.

Crash characterization
For each preparation, we attempted to push the system to its

critical temperature, the temperature at which the behavior of the

oscillations changed qualitatively, e.g. from robust oscillations to a

fixed voltage. While seven isolated pacemakers crashed at or below

31uC, they showed a variety of behaviors as they transitioned in

and out of robust bursting. Figure 3A shows a crash recovery in

which the initially quiescent pacemaker transitioned to small-

amplitude oscillations that then grew to larger amplitude as

temperature was decreased. Figure 3B and C show a similar type

of behavior (in the reverse direction) in which full-amplitude

oscillations gradually decreased in amplitude as temperature was

increased, while maintaining an approximately steady frequency.

Qualitatively, this type of behavior is reminiscent of a supercritical

Hopf bifurcation, in which amplitude transitions gradually from

fixed voltage to full oscillations and at the transition point the

oscillations are born at non-zero frequency [20].

In contrast, some preparations abruptly transitioned from full-

amplitude oscillations to quiescence at high temperatures. In the

example shown in Figure 3D, the rhythm spontaneously flipped

between full-amplitude oscillations and quiescence at a fixed

temperature. This kind of behavior is reminiscent of a fold limit

cycle bifurcation, in which oscillations emerge at a non-zero

amplitude [20]. Additionally, the sudden transitions at a fixed

temperature suggest that the system is highly sensitive to small

perturbations when it is close to a critical temperature.

A model of the pyloric pacemaker
Broadly speaking, the experimental data show that as temper-

ature is increased, the pacemaker duty cycle is largely constant

while its frequency increases. Nevertheless, the individual prepa-

rations showed considerable diversity at high temperature, with

Figure 2. Effect of temperature on frequency and duty cycle of the isolated pyloric pacemaker. (A) Membrane potential of the PD neuron
in one animal, at several temperatures. (B) Similar to A, but in a different individual. (C) PD burst frequency versus temperature for n = 14 individuals
(gray), and averaged across individuals (black). Gray lines that end in a dot represent animals that crashed above that temperature. Error bars
represent SD. (D) The coefficient of variation of the burst frequency (across individuals) at each temperature, and the variance of the log-transformed
frequency (S2

log, see Methods). Brackets denote a Levene s test to compare the log-transformed variance between two temperatures: n.s. = not
significant, ** = p,0.01. (E) Pyloric frequency versus temperature, for the isolated pacemaker (black, subset of the data shown in panel C), and the
intact network (gray, n = 15, as previously reported in [14,15]). Data for 31uC is not shown because many preparations crashed or cycled erratically at
this temperature. Error bars represent SD. (F) Duty cycle versus temperature, again in the isolated pacemaker (black, n = 12) and the whole network
(gray, n = 15, as previously reported in [14,15]). Again, data for 31uC is not shown. Error bars represent SD.
doi:10.1371/journal.pcbi.1002857.g002

Temperature Response of a Neuronal Oscillator
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some steadily increasing in frequency while others leveled off or

even slowed (Figure 2C). Furthermore, some preparations crashed

at very high temperatures, while others continued to oscillate. This

diversity of behavior is likely the result of diverse underlying

conductances in the individual pacemakers [8,14,21,22]. To better

understand these results, we constructed models in which we

varied the maximal conductances and temperature sensitivity of

the pacemaker currents, and examined how these models behaved

as temperature was changed.

We chose to use a Morris-Lecar model [23] to represent the

oscillator. This simple model uses biophysically realistic membrane

currents and produces an oscillation that varies in amplitude, burst

duration and frequency as its parameters are varied [24], and has

been widely used in other studies of STG neurons and other

neuronal oscillators [24–27]. A two-neuron multicompartmental

model of the PD-AB neuron exists [28], but this model, while

producing voltage trajectories that resemble those of the PD and AB

neurons much more accurately than does the Morris-Lecar model,

has so many parameters that it can only be studied numerically. Our

intent in this paper is to understand how temperature can influence a

neuronal oscillator in an analytically tractable model, and then to use

these insights to guide further biological and computational studies.

A single Morris-Lecar neuron [23,24,27] captures the features of the

slow-wave oscillations that we studied experimentally, including

amplitude, frequency, and duty cycle, but does not capture the fast

action potentials of the biological neurons. As in previous studies

[25,27], fast action potential dynamics were neglected for two

reasons. First, STG pacemaker neurons can continue to oscillate

after sodium spikes are blocked (at least in some modulatory

conditions) [21,29,30]. Second, in the STG, synaptic transmission is

a graded function of presynaptic voltage [31,32]. It therefore seems

reasonable for a simple model to only capture slow-wave behavior.

The Morris-Lecar model [23] is a single isopotential electrical

compartment with an instantaneous inward Ca+2 current, a slow

outward K+ current, and a leak current. Here we use the same

model equations to capture the total inward, outward and leak

currents, respectively. While it is possible to make use of an even

simpler oscillator model, we feel it is important to retain the form

of actual voltage-dependent membrane conductances. The model

has the following form:

Cm

dV

dt
~{�ggleak(V{Eleak){�ggoutn(V{Eout){�ggin(V{Ein) ð1Þ

dn

dt
~k(n?(V ){n) ð2Þ

Figure 3. Examples of isolated pacemaker crashes at high temperatures. (A) Simultaneous intracellular recording from two PD neurons, and
an extracellular recording from the pdn, as temperature is dropped from 27 to 23uC. In the top trace, spikes were cut off at 240 mV. (B, C) Two
examples of similarly behaving oscillations: as temperature was increased, from around 18 to 30uC, amplitude dropped and frequency continued to
increase, eventually terminating in small-amplitude oscillations. (D) PD recording at a steady 35uC shows multiple switching between oscillation and
flat-line voltage seemingly through fold limit cycle bifurcations.
doi:10.1371/journal.pcbi.1002857.g003

Temperature Response of a Neuronal Oscillator
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where

m?(V )~
1

1zexp {4(V{Vin)=sin½ � ð3Þ

n?(V )~
1

1zexp {4(V{Vout)=sout½ � ð4Þ

V corresponds to the membrane potential, n is the gating variable

for the outward current, k is the maximum activation rate of n, Ei is

the reversal potential of conductance i, �ggi is the maximal

conductance of conductance i, Vi is the half-activation voltage

for conductance i, si controls the slope of the activation curve for

conductance i, and Cm is the membrane capacitance. The

capacitance, reversal potentials, steady-state activation functions

and maximal conductances were chosen to roughly match known

biological values [33–35]. The parameters were then hand-tuned

to produce frequency and amplitude that resembles the pyloric

output at 11uC, and were fixed unless otherwise stated (see

Methods).

The electrical properties most strongly affected by temperature

are the maximal conductances and the rates of channel opening

and closing [5]. We added these effects to the model by making

�ggleak, �ggin, �ggout, and k all functions of temperature, using the usual

Q10-based formalism:

r~rref Q ð5Þ

Q~Q
(T{Tref )=10

10 , ð6Þ

where r is one of �ggleak, �ggin, �ggout, and k; rref is the value of r at the

reference temperature, Tref, here chosen to be 11uC; Q is the factor

by which the parameter is scaled at the current temperature, T;

and Q10 describes the temperature sensitivity. Generally, the Q10

values for �ggleak, �ggin, �ggout, and k can all be different, and are denoted

by Qleak
10 , Qin

10, Qout
10 and Qk

10, respectively. With this model we hope

to illuminate temperature effects and how they relate to average

inward and outward conductance dynamics, and ignore more

complex contributions from large numbers of parameters in

models with many conductances.

Given this model, we examined how its behavior changed as a

function of temperature for different choices of Q10 values and

other parameters. We were particularly interested to determine

whether the model was oscillatory or quiescent (non-oscillatory),

and if oscillatory, what were the frequency, amplitude, and duty

cycle of its membrane potential oscillations, since these are the

most salient features of the biological oscillations. In the model,

amplitude was defined as the peak-to-peak amplitude of the

voltage waveform. Because the model did not include spikes, duty

cycle was defined, somewhat arbitrarily, as the fraction of time in

each cycle that the membrane potential was above the half-

activation voltage of the inward conductance (Vm), which did not

vary with temperature.

In what follows, we begin with a highly constrained model and

successively relax it to make it agree better with the biology. While

the first model is not very realistic, it is more analytically tractable,

and it yields insights that will be useful when thinking about the

less-constrained models.

Model 1: Uniform Q10’s yield perfect duty cycle
invariance, but no crashes

If the same Q10 is used for all the temperature-dependent

parameters (i.e. Qleak
10 ~Qin

10~Qout
10 ~Qk

10), the oscillation wave-

form remains the same as temperature is varied, while the

frequency changes according to the common Q10 (Figure 4A).

This implies that the duty cycle remains invariant in the face of

temperature changes, which matches the pyloric pacemaker’s

activity (Figure 2F). However, this also implies that this model

does not crash, regardless of the temperature swing, which does

not match the data. We also know that in biological systems, the

relevant Q10’s are not all the same [15]. Therefore we

investigated models that do not require all of the Q10’s to be

identical, to determine whether they would achieve approximate

duty cycle invariance and also produce variable high temperature

behavior.

Model 2: Supercritical Hopf bifurcation at high
temperature

Experimental measurements of channel Q10 values show that

channel activation rates are generally more sensitive to temper-

ature than are maximal conductances [14]. Therefore, we next

examined models in which the Q10’s for the maximal conductances

remained identical (Qleak
10 ~Qin

10~Qout
10 ), but the Q10 for the

activation of the outward channel, Qk
10, was larger. We refer to

the common maximal conductance Q10 as Q
g
10. Initially, we chose

Qk
10~3 and Q

g
10~1:5, which are typical biological values [5].

With these parameters, oscillation frequency increases with

increasing temperature, as before, while amplitude and duty cycle

decrease slowly (Figure 4B). However, above a critical temperature

the model ceases to oscillate (i.e. crashes). Note that at the

temperature where oscillation ceases, the frequency is non-zero

(and is, in fact, increasing up to the crash). The combination of

non-zero frequency and zero amplitude transitions are hallmarks

of a supercritical Hopf bifurcation. We confirmed that this

transition was indeed a supercritical Hopf bifurcation for this

model using numerical bifurcation analysis (see Methods). Thus,

the model produced crashes similar to some of those observed

biologically (Figure 3A–C), and also exhibited approximate duty

cycle invariance.

To investigate whether these results might depend on our

particular choice of Qk
10 and Q

g
10, we made plots of frequency,

amplitude and duty cycle as a function of two scaling factors.

According to Equation 5 and 6, temperature determines a factor,

Q. We temporarily ignore the dependence of Q on temperature,

and treat it as an arbitrary scaling factor, which we call Qk in the

case of k, and Qg in the case of the maximal conductances. We

then examine how the model behaves as a function of Qk and Qg,

plotting both on a logarithmic scale (Figure 5). In this plot, one can

see a linear boundary where frequency drops abruptly to zero

(Figure 5A), and amplitude gradually decreases to zero (Figure 5B):

this is a line of supercritical Hopf bifurcations. In this plot, a

particular choice of Qk
10 and Q

g
10 corresponds to a path through

the plane, the path being parameterized by T. If Qk
10~Q

g
10 as in

model 1, the line will have a slope of 1, and will never intersect the

line where the bifurcation occurs, which also has a slope of 1 (this

follows from the fact that when all of �ggleak, �ggin, �ggout, and k are

scaled together, the model waveform does not change, only its

frequency). Thus, choosing Qk
10wQ

g
10 will yield a line with slope

greater than 1, leading to a supercritical Hopf bifurcation when

temperature is increased enough. Furthermore, and regardless of

the particular choice of Qk
10 and Q

g
10, the duty cycle remains close

Temperature Response of a Neuronal Oscillator
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to 50% until one is quite close to the bifurcation. Both the

approximately invariant duty cycle and the crash at high

temperature are general properties of model 2 as long as

Qk
10wQ

g
10.

Model 3: Accounting for variability in pacemaker
behavior at high temperatures

One unrealistic aspect of both models 1 and 2 is that frequency

always increases monotonically with temperature until one reaches

Figure 4. Difference in model channel temperature dependencies produces bifurcation at high temperatures. Waveforms and
corresponding phase plots are plotted as examples for two different Q10 relationships: (A) Qk

10~Q
g
10~2 and (B) Qk

10~3, Q
g
10~1:5. Phase plots have

the gating variable n on the y-axis and the voltage on the x-axis. Thin green line is the V nullcline (the line where dV=dt~0) and the thin blue line is
the n nullcline (where dn=dt~0). All red lines correspond to the duty cycle threshold line, chosen as the inward half activation voltage (250 mV).
Thickest black line is the limit cycle. Black dot is a stable fixed point. Lower panel plots capture simultaneous frequency, amplitude, and duty cycle
plotted from 0 to 35uC with reference temperature of 11uC. Each point is calculated from the steady state solution of the model equations.
doi:10.1371/journal.pcbi.1002857.g004

Figure 5. Generalized parameter scaling maps. Values from the reference model are plotted without scaling at Qg = 1 and Qk = 1. From the
given reference model, along the x-axis, all conductances (Qg) are log-scaled together; on the y-axis, the gating variable (Qk) is log-scaled
independently. Each point on the color plot corresponds to the measurements from the steady state model ran at their respective scaling factors. The
maps of model outputs plot frequency (A), amplitude (B), and duty cycle (C). The dark blue region represents parameters where no oscillations exist.

The diagonal (unity) line corresponds to a slice through parameter space where Q
g
10~Qk

10, as in Figure 4A; the white line with a slope of 2
corresponds to the parameter space from Figure 4B.
doi:10.1371/journal.pcbi.1002857.g005

Temperature Response of a Neuronal Oscillator
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the crash temperature. Some experimental preparations showed a

monotonic increase in frequency with temperature, but others

exhibited a decrease in frequency as temperature approached the

crash point (Figure 2A–C). We observed that in the model, as

described by Equations 1–4 (i.e. before temperature dependence

was added), increasing �ggin typically led to a decrease in frequency,

and eventually to a crash via a fold limit cycle bifurcation

(qualitatively similar to Figure 3D). Thus we reasoned that if we

modified model 2 so that �ggin was more temperature-sensitive than

�ggleak and �ggout, we might generate a model that, at least in some

cases, had decreasing frequency as temperature was increased, and

crashed via a fold limit cycle bifurcation.

We therefore implemented model 3, in which

Qleak
10 ~Qout

10 ~1:5, Qin
10~1:6, and Qk

10~3. We studied the model’s

output over a range of maximal outward conductance at the

reference temperature (�ggref
out ), while fixing all other parameters

(Figure 6). There were two qualitatively different possibilities for

the oscillator behavior as temperature was varied. At high values

of �ggref
out, we observed a monotonically increasing frequency curve,

amplitude decreasing to zero, and eventually a supercritical Hopf

bifurcation (Figure 6, case 1), very similar in behavior to model 2.

In this case, the limit cycle drifted below the duty cycle threshold

and eventually dropped to 0% as a function of temperature. Low

values of �ggref
out , on the other hand, yielded a decrease in frequency

as the crash was approached, and a fold limit cycle bifurcation

(Figure 6, case 2). In this case, the limit cycle drifted upwards

relative to the duty cycle threshold, causing the duty cycle to

monotonically increase and eventually reach 100%.

Thus model 3 mimics some of the individual-to-individual

variability seen in the biological data. Depending on the

parameters, it can produce either a monotonic or an inverted

U-shaped F-T curve (compare Figure 6A, bottom two panels, with

Figure 2C). It can also produce two different kinds of crashes,

mimicking the dichotomy seen experimentally (Figure 3). In both

cases it produces approximate duty-cycle invariance, as is observed

experimentally (compare Figure 6C with Figure 2F).

Extreme temperatures can reveal underlying individual-
to-individual differences

We know that despite great variability in underlying parame-

ters, pyloric rhythm output is extremely consistent from animal-to-

animal at moderate temperatures, but diverges at extreme

temperatures [15]. Likewise, the frequency of the pyloric

pacemakers is highly constrained at moderate temperatures, but

widely variable at high temperatures (Figure 2D). Thus high

temperatures can reveal differences between individuals that are

obscured at normal temperatures. We were curious whether

varying the parameters of model 3 could yield this pattern of

behavior: low variability at moderate temperature but high

variability at high temperature.

We examined three versions of model 3, with different maximal

leak conductances at the reference temperature (�ggref
leak; 0.1, 0.075,

and 0.06 mS) but all other parameters fixed (Figure 7). For each

model, we determined the range of �ggref
in values that would yield a

frequency between 0.95 and 1.05 Hz for all temperatures between

10 and 11uC (narrow vertical rectangles in the parameter maps of

Figure 7). We then varied the temperature for the models

corresponding to the highest and lowest values of �ggref
in in each case

(horizontal white lines in Figure 7), and examined the pacemaker

behavior at high temperatures. For the highest value of �ggref
leak, we

observed inverted U-shaped F-T curves in both cases, and both

models crashed via a fold limit cycle bifurcation, but they did so at

Figure 6. Variation in Q10 ratios achieves high temperature variability in model output. Temperature dependencies in the model are as
follows: Qleak

10 = Qout
10 = 1.5, Qin

10 = 1.6, Qk
10 = 3. Each grid point corresponds to a model output at steady state. Temperature is plotted from 0 to 45uC,

�ggref
out is varied from 0.04 to 0.09 mS. The maps of model outputs plot frequency (A), amplitude (B), and duty cycle (C). The amplitude map points to

domains where the transition to instability happens through a supercritical Hopf or a fold limit cycle bifurcation. The mark indicates where these two
bifurcations coalesce. The two white lines (1, 2) are chosen as two representative curves with qualitatively different behaviors. Line 1 is at

�ggref
out = 0.07 mS and line 2 is at �ggref

out = 0.051 mS. The waveform, phase plots and scaling behavior (frequency, amplitude, duty cycle) are plotted for each
line to show specific examples. For the phase plots, the thin green line is the V nullcline (where dV=dt~0) and the thin blue line is the n nullcline
(where dn=dt~0). Red line is the duty cycle threshold line chosen as the inward half activation voltage (250 mV). Black line is the limit cycle.
doi:10.1371/journal.pcbi.1002857.g006
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different temperatures (Figure 7A). For the middle value of �ggref
leak,

one F-T curve was monotonic, and the other was inverted U-

shaped (Figure 7B). The former model crashed via a supercritical

Hopf bifurcation, the latter via a fold limit cycle bifurcation, and

their frequencies just below the crash point were very different. For

the lowest value of �ggref
leak, both models yielded monotonic F-T

curves and supercritical Hopf bifurcations, but both their crash

temperatures and their frequency just shy of the crash were quite

different (Figure 7C). Thus the model demonstrates how

individuals that behave similarly at moderate temperatures can

diverge considerably at extreme temperatures.

To further demonstrate the variability that can arise from small

differences in underlying reference-temperature parameters, we

picked random values for �ggref
leak, �ggref

in , and �ggref
out from a range that

covered the intersection of the two bifurcations shown in Figure 7A

(white arrow). This sample of models yielded similar frequency,

amplitude and duty cycle near the reference temperature (11uC),

but their behavior diverged as temperature was increased

(Figure 8). This phenomenon is similar to that observed for the

biological pacemaker frequency (Figure 2C). Again, this demon-

strates how individuals that behave similarly at moderate

temperatures can diverge wildly at extreme temperatures.

Discussion

Neuronal oscillators are ubiquitous throughout the nervous

system. Some individual neurons are intrinsically oscillatory, by

virtue of their voltage-dependent conductances [22,36–38]. Other

oscillations arise from network interactions, such as reciprocal

inhibition [39–42] or other circuit configurations [43]. Rhythmic

pattern generators must maintain robust and reliable activity in

the face of external and internal perturbations. For the central

pattern generators that control movement, it is important to

control both the frequency of the motor pattern as well as the

phase relationships of all of the constituent circuit elements [44].

Mathematical models have been quite instructive for understand-

ing many features of central pattern generating circuits. For

example, in many circuits reciprocal inhibition helps ensure the

out-of-phase activity of functional antagonists, but it was

theoretical models that illuminated the richness of behaviors

possible with reciprocally inhibitory circuits [42,45]. In one of the

best-understood circuits driven by reciprocal inhibition, the leech

heartbeat system, mathematical models and bifurcation analysis

have been particularly helpful in understanding the parameters

that allow the system to be sensitive to various modulator inputs

while maintaining robust activity [46–48].

In general, studying the stability of oscillators by perturbing

them in a realistic fashion, especially to the point of failure, can

help reveal the salient features that contribute to their robustness.

In this paper, we use temperature to perturb the pacemaker of the

pyloric circuit of the stomatogastric ganglion, to assess the extent

to which the mechanisms that give rise to this function are variable

across individual animals. The responses of oscillators to

perturbations have been extensively studied and characterized

using dynamical systems theory [20,47,49–53]. As a result, it was

possible to use a mathematical framework to loosely infer the

underlying structure of the pyloric pacemaker responsible for

generating the behavior produced in response to temperature.

This kind of analysis is particularly revealing at points of instability

or bifurcation as it offers qualitative points of comparison between

the biological oscillator and the model. The temperature-induced

bifurcations in the models studied here were of two forms,

supercritical Hopf and fold limit cycle. In the supercritical Hopf

bifurcation, the oscillation amplitude decreases gradually, but the

oscillation stops at a non-zero frequency (Figure 6A). In the fold

limit cycle bifurcation, the oscillation does not gradually decrease

in amplitude, but stops abruptly from a non-zero amplitude

(Figure 6B). The bifurcations in the model can be unambiguously

identified because all the state variables are known, as are their

dynamics. Although the biological pacemakers show behaviors

that look similar to those of the models, we presently lack detailed

knowledge of the full complement of voltage- and time-dependent

currents in the biological PD and AB neurons. A complete

understanding of how temperature affects the biological oscillator

must await biophysical studies of the effects of temperature on

each of the currents in these neurons, followed by the construction

of a far more biophysically realistic computational model that

incorporates those data.

Nonetheless, we can account for the temperature compensation

of phase in the intact pyloric rhythm as a consequence of two

processes: the maintenance of pacemaker duty cycle shown here

and the effect of temperature on the follower neurons [14].

Interestingly, the pacemaker duty cycle’s relative invariance to

period depends on the interaction between the AB and PD

neurons [25,28], so temperature must produce balanced effects on

the AB and PD neurons and the electrical coupling between them.

The pacemaker neurons provide strong inhibitory drive to the

follower neurons, which imposes a well-defined temporal con-

straint on them as temperature is changed [14]. Because the LP

and PY neurons burst on rebound from inhibition [54–57], the

phase invariance of the LP and PY neuron’s activity is partially

accounted for by the phase invariance of the pacemaker [14,15].

Additionally the intrinsic IA and Ih conductances in the LP neuron

scale with temperature in a complementary way that also

contributes to the temperature invariance of the pyloric phase

relationships [14]. The combination of the pacemaker’s intrinsic

stability and the synaptic and intrinsic channel regulation of the

follower neurons explains how phase-temperature stability is

achieved at the level of the entire network.

Pacemaker duty cycle stability arises from the scaling of the limit

cycle appropriately around the duty cycle threshold. We can

speculate that in the biological system, the limit cycle as well as the

duty cycle threshold change in such a manner as to conserve these

relationships in response to temperature perturbation. Further-

more, the model results inform the understanding of how duty

cycle reliability is consistent with diversity in behavior at high

temperatures (Figures 6–8). While the intrinsic temperature-

dependent model parameters are well balanced at low tempera-

tures, they diverge steeply at higher temperatures because of the

variable exponential temperature-dependent terms. Of course, the

Morris-Lecar model is, at best, an over-simplified caricature of the

biological pacemaker. Furthermore, in the work presented here,

temperature dependence was implemented as a simplified

approximation of the full range of temperature’s effects on ion

channel function. Nevertheless, the model’s simplicity allows for

intuitive, testable predictions regarding channel temperature

dependencies and deepens our understanding of the way in which

variability plays a role in robustness.

Not all biological circuits routinely face large swings in

temperature. Yet, all networks are challenged with perturbations

of their internal or external environment. Because there are many

sets of underlying parameters that can give rise to similar neuronal

or network performance [9,58–63], it is critical for us to

understand how network robustness is maintained in the face of

perturbations across a population of individuals with variable sets

of network parameters. The work presented here provides one

example of the remarkable robustness that biological networks can

display over a large range of parameters. Nonetheless, it is
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Figure 7. Restricting low temperature frequency output constraints high temperature variability. Three models were generated with
the same reference parameters, but different �ggref

leak values. Temperature dependence fixed at: Qleak
10 = Qout

10 = 1.5, Qin
10 = 1.6, Qk

10 = 3. Frequency,
amplitude and duty cycle maps were generated (as in Figure 5) for the three parameter points, varying temperature and inward conductance: (A)
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important that the parameters underlying robust network perfor-

mance in a population of wild-caught crabs are the result of long

years of evolutionary pressure, and we understand as yet little of

the mechanisms by which individual animals find one of the sets of

parameters that can allow it to live for years in a variable world.

Methods

Animals
Cancer borealis were purchased from Commercial Lobster

(Boston, MA). The tanks were kept at approximately 7uC, 11uC,

or 19uC. The experiments reported in this manuscript were done

between December 2010 and April 2011.

Solutions
C. borealis physiological saline was composed of 440 mM NaCl,

11 mM KCl, 13 mM CaCl2, 26 mM MgCl2, 11 mM Trizma

base, and 5 mM Maleic acid, pH 7.4–7.5. The microelectrode

solution contained 0.6 M K2SO4 and 20 mM KCl. Picrotoxin

(PTX) was obtained from Sigma and used at 1025 M in saline.

Electrophysiology
The stomatogastric nervous system was dissected out of the

animals and pinned out in a Sylgard (Dow Corning) coated plastic

Petri dish containing chilled saline at 11–12uC [64]. During

experiments, the preparations were continuously superfused with

saline. Isolated pacemaker experiments were done in 1025 M

PTX, which blocks glutamatergic synapses in crustaceans [17,18].

The PD, LP and PY neurons project axons to the pdn, gpn and pyn,

respectively. Vaseline wells were placed around the corresponding

motor nerves and extracellular recordings were obtained using

stainless steel pin electrodes placed in the wells and amplified using

a differential amplifier (A-M Systems). Intracellular recordings

were obtained from STG somata using 10–30 MV glass micro-

electrodes pulled with a Flaming/Brown micropipette puller

(Sutter Instrument Company). For all intracellular recordings,

the STG was desheathed. Neurons were identified using previ-

ously described procedures [65].

The temperature of the saline was controlled using a Peltier

device (Warner Instruments), which had a precision of 60.5uC.

Slight adjustments of the electrode position were required with

large swings of temperature, as the cells tended to swell at high

temperatures. Temperature was increased from 11 to 31uC in

increments of 4uC. Each preparation was given at least 5 minutes

to adapt at a new steady-state temperature before taking data. At

the end of each experiment, the temperature was returned to the

reference 11uC to check that no irreversible changes had occurred

and that the circuit output remained the same.

Data analysis
Data were acquired using a Digidata 1200 data acquisition

board (Axon Instruments) and analyzed using Clampfit 9.0 (Axon

Instruments), Spike 2.5 (Cambridge Electronic Design), and

MATLAB 7.1 (Mathworks). All figures were generated in Adobe

Illustrator CS5, and obvious electrical artifacts were removed by

hand. Spike2 scripts written by Dirk Bucher were used to extract

phase and frequency from extracellular recordings [65].

To quantify the temperature sensitivity of a quantity (e.g.

pyloric frequency), we calculated the Q10. That is, we assumed the

quantity, r, fit the equation

r(T)~r0Q
(T{Tref )=10

10 ð7Þ

as a function of temperature, where all parameters are as in

Equations 5 and 6. We then fit a line to a plot of log10r versus

temperature, T, and extracted the slope of this line, m. The Q10 is

then given by

Q10~1010m: ð8Þ

The PD neuron’s duty cycle was calculated as the ratio of burst

duration to period. Burst period was the time between PD burst

onsets, and frequency as the reciprocal of the period. Data from 8

�ggref
leak = 0.1 mS, (B) �ggref

leak = 0.075 mS, and (C) �ggref
leak = 0.06 mS. The white boxes constrain a region from 10 to 11uC where frequency is between .95 and

1.05 Hz. The horizontal lines represent the vertical boundaries of the box and are plotted explicitly below each map to demonstrate the high

temperature variability. Line 1 – �ggref
in = 0.0696 mS; line 2 – �ggref

in = 0.0645 mS; line 3 – �ggref
in = 0.0639 mS; line 4 – �ggref

in = 0.0563 mS; line 5 – �ggref
in = 0.0587 mS;

line 6 – �ggref
in = 0.0486 mS. White mark corresponds to bifurcation coalescence point that defines the parameter region for Figure 8.

doi:10.1371/journal.pcbi.1002857.g007

Figure 8. Example of random parameter choices producing
similar output at low temperature and divergent output at
high temperature. Temperature dependence fixed at: Qleak

10 =
Qout

10 = 1.5, Qin
10 = 1.6, Qk

10 = 3. From a chosen reference parameter point,

�ggref
in = 0.063 mS; �ggref

out = 0.06 mS; �ggref
leak = 0.1 mS, at 11uC, each maximal

conductance (leak, inward and outward) is given a 67.5% tolerance
and 15 randomly generated curves are plotted across temperature.
Variability in parameter space is shown in the 3D plot above. The
frequency, amplitude and duty cycle of the 15 models are plotted
simultaneously across the three graphs as a function of temperature.
doi:10.1371/journal.pcbi.1002857.g008
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experiments with and 6 experiments without intracellular record-

ings were pooled for analyzing average frequency and duty cycle.

A rhythm was considered crashed when periodic oscillatory

bursting behavior terminated. All statistical analyses were

performed using SigmaPlot and SigmaStat 11.0 software packages

(Jandel Scientific). XPPAUT 5.6 was used to analyze and

characterize bifurcations in the Morris-Lecar model for all the

parameter sweeps preformed in the paper [49]. Matlab was used

to numerically calculate the model output and generate the

parameter color maps.

For performing statistical comparisons of relative variability, we

used the sample variance of the log-transformed data (denoted

S2
log in Figure 2D) instead of the coefficient of variation. This

provides a measure of variability which is invariant to the overall

scale of the data (like the coefficient of variation), but because it is a

sample variance it has more convenient statistical properties [66].

Model
The Morris-Lecar model is defined by Equations 1–4. The

model used in this work has some differences from the original

Morris-Lecar model [23]: the Iapp term is dropped, and in our

hands the two currents are intended to describe an aggregate

inward and an aggregate outward current, rather than being literal

calcium and potassium currents. All reference model parameters

are fixed unless otherwise stated; parameters were chosen to

resemble real biological values: �ggref
in = 0.06 mS; �ggref

out = 0.06 mS;

�ggref
leak = 0.1 mS; Ein = 210 mV; Eout = 280 mV; Eleak = 250 mV;

k = 3 Hz; sin = 10; sout = 7; Vin = 250 mV; Vout = 253 mV;

Cm = 5 nF.
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