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Abstract

Physicochemical properties of DNA, such as shape, affect protein-DNA recognition. However, the properties of DNA that are
most relevant for predicting the binding sites of particular transcription factors (TFs) or classes of TFs have yet to be fully
understood. Here, using a model that accurately captures the melting behavior and breathing dynamics (spontaneous local
openings of the double helix) of double-stranded DNA, we simulated the dynamics of known binding sites of the TF and
nucleoid-associated protein Fis in Escherichia coli. Our study involves simulations of breathing dynamics, analysis of large
published in vitro and genomic datasets, and targeted experimental tests of our predictions. Our simulation results and
available in vitro binding data indicate a strong correlation between DNA breathing dynamics and Fis binding. Indeed, we
can define an average DNA breathing profile that is characteristic of Fis binding sites. This profile is significantly enriched
among the identified in vivo E. coli Fis binding sites. To test our understanding of how Fis binding is influenced by DNA
breathing dynamics, we designed base-pair substitutions, mismatch, and methylation modifications of DNA regions that are
known to interact (or not interact) with Fis. The goal in each case was to make the local DNA breathing dynamics either
closer to or farther from the breathing profile characteristic of a strong Fis binding site. For the modified DNA segments, we
found that Fis-DNA binding, as assessed by gel-shift assay, changed in accordance with our expectations. We conclude that
Fis binding is associated with DNA breathing dynamics, which in turn may be regulated by various nucleotide modifications.
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Introduction

Transcription factors (TFs), which play an important role in

myriad cellular processes, are proteins that regulate gene

expression through specific interactions with DNA at cis regulatory

sites [1,2,3]. The binding sites in a genome of a given TF are

generally only partially characterized. Importantly, although the

modeling of TF binding sites is now being informed by high-

throughput experimental mapping of TF binding sites, the

detected binding sites are limited in precision [4]. The binding

sites of a TF can be mapped on a genome-wide scale using various

methods, such as chromatin immunoprecipitation followed by

either microarray analysis (ChIP-chip) or sequencing (ChIP-seq)

[5]. Another approach is protein binding microarray (PBM)

analysis [6]. Application of these methods has revealed that the

binding sites of a TF can be numerous, diverse, and difficult to

represent with conventional models for TF binding sites [2,7,8],

such as a consensus sequence or position weight matrix (PWM)

model [9]. A single model may capture only a fraction of the

binding sites of a TF detected via a high-throughput method, and,

even with multiple models, it may be difficult to characterize the

full spectrum of binding sites recognized by a TF [2,10]. A possible

explanation for these findings is that models neglect physicochem-

ical features of DNA that are important for protein-DNA

recognition.

A physicochemical feature of DNA that can affect protein-DNA

recognition is the local sequence-specific structure [11]. Some TFs

are known to recognize their binding sites predominantly through

indirect readout, i.e., recognition of DNA shape. Thus, by

considering local DNA structure, one might expect that models

for TF binding sites could be improved. Indeed, we recently

reported that a method for predicting TF binding sites that makes

use of local structural features of DNA, as well as other

physicochemical features, outperforms PWM-based methods

[12,13]. Similar results have been reported by others [10,14].

Although structure-based models of TF binding sites represent an

advance in modeling, methods based on such models still fail to

yield accurate predictions of binding sites for some TFs. For our

method [12,13], a well-characterized example is that of Fis, a

nucleoid-associated protein and a transcription factor in Escherichia
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coli [15,16]. Thus, it is unclear how best to take advantage of the

physicochemical determinants of protein-DNA recognition, as is

the exact nature of these determinants for specific TFs.

To better define the physicochemical features of DNA that

contribute to protein-DNA recognition, we sought to determine

whether known binding sites of Fis tend to share a sequence-

dependent physicochemical feature that has not been considered

in earlier work. Many physicochemical features of DNA are

sequence dependent [17,18]. As discussed above, one of these is

the local DNA structure. Another is propensity for DNA breathing

[19]. DNA breathing arises because DNA is subjected to thermal

motion making it possible for the two strands of the double helix to

locally and spontaneously open and re-close [19,20]. Breathing

dynamics as well as the melting behavior of short oligomers can be

accurately predicted for many DNA sequences on the basis of the

extended nonlinear Peyrard-Bishop-Dauxois (EPBD) mesoscopic

model [21,22,23,24]. DNA breathing dynamics can also be

studied within the Poland-Scheraga [25] framework (e.g., see

[26,27,28]). Variations in melting behavior [29,30,31,32] as well

as in breathing dynamics [33,34,35,36] are believed to have

functional consequences. DNA breathing dynamics that yield

bubbles (i.e., coherent relatively long-lived transient openings) are a

characteristic feature of mammalian core promoters, see for

example [37]. Sequences with a relatively high propensity to form

bubbles have been found to overlap and affect transcription start

sites [35,38,39,40], replication origins [36,41], correlate with TF

binding sites and affect TF binding [42,43,44,45,46,47], as well as

to play role in formation of non-B-DNA structures [34] and in

cytosine methylation [33]

A potential role for DNA breathing in Fis binding to DNA is

consistent with known aspects of Fis-DNA interaction. Fis binding

either requires or induces DNA bending with an angle of 50u to

90u, which can mediate translocation of superhelical energy to the

promoter region, which in turn can activate transcription initiation

[48,49]. Hence, bending or flexibility is a potential necessary

feature of a Fis binding site [50,51]. The importance of bending

has also been discussed in the literature [51]. Led by previously

discovered correlations between DNA breathing and the in vivo

binding of the mammalian transcription factor YY1 [47], we

reasoned that breathing may also play a role in Fis binding. A

study of Fis was also attractive because Fis-DNA interaction has

been extensively studied [50,51,52,53,54,55,56,57,58]. For exam-

ple, crystallographic and binding studies have identified rules that

characterize the effects of sequence variations on the affinity of Fis-

DNA binding in vitro [51,58,59].

Here, we report that Fis recognition of specific DNA sequences

depends not only on direct points-of-contact with DNA, as

elucidated in earlier work [51,58,59], but also on a particular

DNA breathing profile. Based on our simulations and published in

vitro binding data, we found a significant correlation between the

affinity of Fis for a DNA sequence and the thermodynamic softness

of that sequence, i.e., the propensity for bubble formation. The

computationally derived DNA breathing profile is characteristic of

high-affinity in vitro Fis binding sites and is enriched to a statistically

significant extent in genomic regions that associates with Fis

according to ChIP-chip and ChIP-seq assays [56,57,60]. Finally,

the genomic sequences carrying this breathing profile – charac-

teristic for Fis binding sites in vivo, can be distinguished from ten

times more randomly selected sequences from the E. coli genome

on the basis of DNA breathing via supervised machine learning.

To experimentally test the influence of DNA breathing on Fis-

DNA interaction, we used simulations of DNA breathing

dynamics to guide modifications of well-characterized DNA

sequences, as in earlier work [39,46,61]. We considered one

sequence that binds Fis with relatively high affinity and one that

binds Fis with relatively low affinity. We introduced base-pair

substitution, mismatch, and O6-methylguanine modifications to

alter the DNA breathing dynamics of these sequences while

leaving nucleotides important for direct contact with Fis intact.

The results of electrophoretic mobility shift assays (EMSAs)

confirm that these modifications change affinity for Fis as

predicted by our simulations.

Results

DNA breathing dynamics and Fis binding
We sought to focus on DNA sequences that have the essential

features of Fis binding sites. Previous studies, including systematic

DNA base pair replacements in the Fis core-binding motif

followed by a combination of EMSA and systematic evolution of

ligands by exponential evolution (SELEX) experiments, have

characterized the affinities of diverse Fis binding sites (Table S1)

[50,58]. We reviewed results of earlier studies of Fis binding

[16,50,51,53,54,57,58] with the goal of gleaning clear patterns or

rules that must be satisfied by a strong Fis binding site. These

earlier studies taken together strongly suggest two inclusion-rules

(requirements for nucleotides at specific positions as a condition for

strong Fis binding), and one exclusion-rule (prohibition of a

nucleotide at a specific position – the presence of such a nucleotide

at a specific location obstructs Fis binding). These rules are

illustrated in Figure 1A. Deviation from these rules hinders Fis

binding [16,50,51]. In describing the rules of Figure 1, we use the

IUPAC nucleic acid code and, without loss of generality, assume a

palindromic motif (Figure 1A). Fis binding sites are usually, but not

always [57], palindromic [58]. Thus, in vitro studies [50,58] suggest

that a high-affinity Fis binding site must contain either a guanine

at the 27 position or a cytosine at the +7 position (i.e., 27G or

+7C is required). This condition is the first inclusion-rule.

Similarly, 23R and +3Y are also common features of a high-

affinity Fis binding site. These conditions are the second inclusion-

rule. The exclusion-rule [51,58] prohibits 24A or +4T, because

Author Summary

Cellular transcription factors (TFs) are proteins that
regulate gene expression, and thereby cellular activity
and fate, by binding to specific DNA segments. The
physicochemical determinants of protein-DNA binding
specificity are not completely understood. Here, we report
that the propensity of transient opening and re-closing of
the double helix, resulting from thermal fluctuations, aka
‘‘DNA breathing’’ or ‘‘DNA bubbles,’’ can be associated
with binding affinity in the case of Fis, a well-studied
nucleoid-associated protein in Escherichia coli. We found
that a particular breathing profile is characteristic of high-
affinity Fis binding sites and that DNA fragments known to
bind Fis in vivo are statistically enriched for this profile.
Furthermore, we used simulations of DNA breathing
dynamics to guide design of gel-shift experiments aimed
at testing the idea that local breathing influences Fis
binding. As a result, we show that via nucleotide
modifications but without modifying nucleotides that
directly contact Fis, we were able to transform a low-
affinity Fis binding site into a high-affinity site and vice
versa. The nucleotide modifications were designed only
based on DNA breathing simulations. Our study suggests
that strong Fis-DNA binding depends on DNA breathing -
a novel physicochemical characteristic that could be used
for prediction and rational design of TF binding sites.

DNA Breathing Influences Protein-DNA Binding
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adenine at the 24 position or thymine at the +4 position

dramatically hinders binding. These three rules are consistent with

(and partly derived from) recently determined Fis-DNA crystal

structures [51], exemplified in Figure 1B. In both panels of

Figure 1, direct Fis-DNA points-of-contact are highlighted in

yellow.

To determine the local DNA breathing dynamics of sequences

binding Fis differently (strongly or weakly) but satisfying the

inclusion/exclusion rules for Fis binding sites and having the same

direct points-of-contact, we performed simulations of EPBD

Langevin dynamics [39]. Although EPBD does not include

three-dimensional (3D) atomic coordinates and cannot be used

to derive parameters that characterize local 3D-DNA structure

(e.g., roll, twist and tilt), which are considered in the SiteSleuth

method [12,13], the EPBD model provides a coarse-grained

representation of DNA that accurately predicts DNA denaturation

(melting temperatures of B-DNA oligomers) [23,24,62]. DNA

breathing is connected with the propensity for local disruption of

the hydrogen bonds between the complementary bases, and hence

with DNA stability [63]. Importantly, we previously have

demonstrated that our EPBD simulations can account for single-

nucleotide polymorphisms responsible for non-local binding effects

(in noncoding parts of the human genome) associated with

schizophrenia [45], and that our simulations can serve to engineer

DNA promoter functionality in vitro [39] and in vivo [61], to modify

the strength of a TBP binding site (i.e., the TATA-box) in vitro [46],

and to predict the YY1 TF binding sites in cells [47]. To apply our

computational framework to rationally design Fis binding sites, we

initially considered two specific and well-characterized (as strong

and weak) Fis binding sites without any changes. We simulated

breathing dynamics of these sequences, which are called FIS1 and

FIS2 (Table 1). These sequences have experimentally determined

equilibrium dissociation constants (KD) for Fis binding and

protein-DNA crystal structures. Both FIS1 and FIS2 satisfy all

the inclusion/exclusion rules and have the same points-of-contact,

but as shown in Figure 2, FIS1 and FIS2 have different breathing

dynamics. These two sequences, each with 27 base pairs, differ

only in five nucleotides in the middle of the 15 bp Fis core-binding

region (Table 1). The difference between the two sequences is that

a subsequence with high breathing propensity in FIS1, AATTT, is

substituted with a subsequence with low breathing propensity in

FIS2, GGCGC (Table 1). We will refer to the 5-nucleotide region

that differs between FIS1 and FIS2 as the bubble formation

region. This bubble formation region does not overlap with any of

the Fis-DNA direct points-of-contact, but the breathing dynamics

of this region affect FIS1 and FIS2 binding nonetheless. The

reported KD for Fis binding to FIS1 is 0.2 nM, whereas the

reported KD for Fis binding to FIS2 is 140 nM [51]. Replacement

of the subsequence having high breathing propensity with the

subsequence having low breathing propensity decreases the

probability for local bubble formation in FIS2 more than 10-fold

(Figure 2). This lower probability for bubble formation corre-

sponds to a 700-fold lower affinity of Fis for FIS2 (vs. FIS1), which

suggested that DNA breathing and Fis-DNA binding affinity

might be correlated. To test this hypothesis, we performed

simulations of breathing dynamics for an additional set of known

Fis binding sites, 58 sites in total (Table S1). These sites have been

characterized in previous in vitro Fis-DNA binding studies (see

below).

Fis binding affinity correlates with the equilibrium DNA
opening profile

Simulations of EPBD Langevin dynamics are computationally

expensive. To more efficiently characterize DNA breathing for a

large collection of sequences, we previously developed an efficient

EPBD-based MCMC protocol that allows fast derivation of the

DNA opening profile. The opening profile is based on calculations

of the displacements/openings (see Materials and Methods) of

each base pair in the DNA sequence from their equilibrium

positions [23]. The base pairs openings are: i) connected at higher

temperatures with DNA stability, as evidenced by the accuracy of

DNA melting calculations [23]; ii) at physiological temperature

and pH they effectively correspond to the flipping probability at

various sites; and iii) they are free of the requirement for window

averaging that is usually needed when thermodynamical or

structural parameters of DNA are used to construct profiles

characterizing regulatory elements [31,64]. That is, the average

opening profile represents a physical property of DNA at the single

base pair level of resolution, connected to the temperature and pH

[23,39,65]. Reanalyzing FIS1 and FIS2 with the EPBD MCMC

Figure 1. Fis-DNA points-of-contact and inclusion/exclusion rules. (A) Qualitative depiction of the sequence logo for a palindromic Fis
binding site, emphasizing inclusion rules (above the numbers indicating the locations in the binding segment) and exclusion rules (below the
numbers). The rules were derived from previous studies (see the main text). Yellow indicates direct points-of-contact or positions of inclusion/
exclusion rules; blue indicates location of the Fis bubble formation region. The colors of the nucleic acids are chosen as the commonly used ones in
consensus sequence logos. (B) Crystal structure example of Fis-DNA binding complex visualized by the data from PDB code 3IV5 as submitted in [51].
The nucleotides (direct points-of-contact) participating in the inclusion/exclusion rules are labeled and highlighted in yellow.
doi:10.1371/journal.pcbi.1002881.g001
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protocol reveals that these two sequences exhibit different opening

profiles in the bubble formation region (Figure 3A).

Previous in vitro studies have characterized Fis binding to a

number of DNA oligomers. In Table S1, we summarize available

binding data for 58 oligomers. We examined these sequences to

determine whether the MCMC-derived DNA opening profiles can

be used as a novel biophysical characteristic for describing Fis-

DNA binding affinity. The MCMC profiles of the 10 sequences

with KD#1 nM, i.e., with the strongest Fis binding (Table S1),

were averaged, and a polynomial fitting function was used to

capture the average profile of these high-affinity Fis binding sites.

We will refer to this average profile as the characteristic opening

profile (COP) of a strong Fis binding site (Figure 3B).

Analysis of the 58 oligomers revealed that the majority of

sequences with strong affinity to Fis (KD, = 3.0 nM) do not

violate the inclusion/exclusion rules and have individual average

opening profiles that correlate with the COP, minimum Person

correlation .0.51 (Figure 3C, the blue ellipse). The Pearson

correlation coefficient is calculated as the correlation between the

simulated residue displacements of a given sequence and the COP.

The two exceptions are FIS16 and FIS40 (Table S1). The

correlation cutoff of 0.51 can be compared to the correlations of

the sequences used to derive the COP, which range from 0.56

(FIS37) to 0.9 (FIS12) (Table S1). Thus, the majority of previously

in vitro characterized sequences, to which Fis binds strongly, are

compliant with the inclusion/exclusion rules and have an opening

profile that correlates with the COP. These results indicate that, at

least for the available data, the MCMC-derived EPBD average

opening profile of a sequence is associated to the affinity of Fis-

DNA binding in vitro. We next decided to examine the

interconnection between the COP and all experimentally known

Fis binding sites in the E. coli K12 MG1655 genome.

E. coli Fis binding sites are associated with a specific DNA
breathing pattern

To compare the breathing dynamics of genomic regions

containing Fis binding sites with the dynamics of randomly

selected genomic regions, we collected a set of experimentally

identified Fis binding sites (Tables S2 and S3). Recently, ChIP-

chip and ChIP-seq assays have generated three independent high-

throughput datasets [56,57,60] and a fourth set of Fis binding sites

is available from a curated database [66]. Although there is some

overlap at the gene level across the four datasets, there is almost no

overlap at the binding-site sequence level [57,60]. It has been

suggested that this lack of overlap is due to limited sampling,

meaning that the various studies may have each sampled only a

distinct fraction of the Fis binding sites in the E. coli genome [60].

Below, we will examine the breathing dynamics of the Fis binding

sites of Table S3. We will also examine the breathing dynamics of

randomly selected sequences from the E. coli K12 MG1655

genome.

Table S3 lists a subset of the union of the four sets of

experimentally identified Fis binding sites. Because the Fis core-

binding sequence is 15 bp long (Figure 1), we filtered out

experimentally identified Fis binding sequences shorter than

15 bp. We also filtered out sequences longer than 50 bp to focus

only on high-resolution regions. Table S3 lists 1,449 Fis binding

sites, which are more or less uniformly distributed across the E. coli

genome. Of these 1,449 sequences, 1,411 are non-overlapping.

Additionally, we randomly selected 14,110 non-overlapping 50 bp

long sequences from the E. coli genome. These sequences were

sampled from promoter, intergenic, and open reading frame

regions in proportion to the frequency of the 1,411 Fis binding

sites in each of these regions. In other words, 60% of the randomly
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selected sequences were drawn from promoter regions, 6% were

drawn from intergenic regions (i.e., regions between convergently

transcribed genes), and 34% were drawn from open reading

frames. This distribution of Fis binding sites across promoter,

intergenic, and open reading frame regions is consistent with

earlier observations [57].

We statistically compared the enrichment of the COP in the

above two sets of sequences (Figure 4). For the sets of 1,411 known

Fis binding regions and 14,110 randomly selected regions, we

examined each sequence for the presence of 15 bp subsequences

(the length of the Fis core-binding region) compliant with the

exclusion rule. We considered these subsequences to be potential

locations of Fis binding sites. The two inclusion rules were ignored

here, because there are sequences that violate these rules but still

bind Fis in vitro, although with relatively low affinity. Next, we

calculated the Pearson correlation coefficient as above to

characterize the similarity of the opening profile of each

exclusion-rule compliant subsequence to the COP. Within a given

genomic binding sequence, we first assumed that the subsequence

with largest correlation coefficient is the bona fide Fis binding site.

As shown in Figure 4A, known Fis binding regions are enriched for

subsequences with opening profiles similar to the COP, relative to

the set of randomly selected regions. The enrichment is statistically

significant. With high confidence, we can say that the correlations

with the COP for the two sets of sequences are drawn from

different distributions: a two-sample T2 test yields a p-value of

2.69610217, and a two-sample Kolmogorov-Smirnov test yields a

p-value of 6.64610215. To test this further, and without the

assumption that the subsequence with largest correlation coeffi-

cient is the bona fide Fis binding site, we compared directly the

distribution of the correlations to the COP of all 15 bp long

subsequences at each genomic Fis binding set to the distribution of

Figure 2. DNA local breathing dynamics of FIS1 and FIS2. The nucleotide positions are shown along the horizontal axis. Positions
corresponding to points-of-contact are highlighted in yellow while the bubble formation region is highlighted in blue. The length of the transient
bubbles (in number of base pairs [bp]) is shown along the vertical axis. The color map represents the probability for bubble openings where the red
color denotes high probability and blue color denotes low probability. The name of the sequence for each variant is shown in the panel (all
sequences can be found in Table 1).
doi:10.1371/journal.pcbi.1002881.g002
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the correlations to the COP of all 15 bp long subsequences, at

each 50 bp region in the random set. A two-sample T2 test yields a

p-value of 4.1761024, and a two-sample Kolmogorov-Smirnov

test yields a p-value of 5.5661026, thus further confirming that

there is a statically significant enrichment of the COP profile in the

set of known in vivo Fis binding sites.

Furthermore, we asked if the COP and the exclusion rule,

alone, could be used to distinguish the bona fide Fis binding sites

from ten times more background genome sequences. The results

are shown in Figure 4B. As described in Materials and Methods,

on the basis of the EPBD opening profiles, we trained a support

vector machine (SVM) classifier to distinguish between the set of

1,411 presumed 15 bp bone fide Fis binding sequences and a set of

14,110 randomly selected 15 bp sequences. We evaluated the

SVM classifier by comparing its receiver operating characteristic

(ROC) curve with the ROC curves of two recently developed

software tools for predicting TF binding sites, CRoSSeD [14] and

BioBayesNet [67]. We selected these tools because they have been

evaluated using an approach similar to the approach that we take

here, i.e., they have been shown to be superior to alternative

methods at recognizing TF binding sites among a larger set of

randomly selected sequences [14]. The ROC curves for our SVM

classifier, CRoSSeD, and BioBayesNet are plotted in Figure 4B.

As it can be seen, the performance of our SVM classifier is best.

CRoSSeD and BioBayesNet implement general-purpose TF

binding site prediction methods that incorporate DNA structural

features, but these methods are not tailored specifically for

prediction of Fis binding sites, so their relatively poor performance

Figure 3. Correlation between Fis binding affinity and the generalized opening profile. (A) The MCMC average opening profiles (vertical
axis in [Å]) of FIS1 and FIS2 as a function of the nucleotide position. The bubble formation region is highlighted in blue while the points-of-contact
are highlighted in yellow. (B) Characteristic MCMC opening profile (COP) obtained as the average of the profiles (black squares) of the oligomers with
in vitro Fis-DNA binding affinity with KD,1 nM (Table S1). The red line represents a polynomial fit to the data. The bubble formation region is
highlighted in blue while the points-of-contact are highlighted in yellow. In panels (A) and (B), the horizontal axes indicate base pair position whereas
the vertical axes indicate base pair average displacement (see Materials and Methods). (C) Schematic affinity shape-correlation diagram of the
examined in vitro sequences. Each point represents an oligomer with specific direct points-of-contact, correlation with the COP, and measured
dissociation constant KD (the data is from Table S1). The Pearson’s correlation coefficient (horizontal axis) between the COP and the sequence shape
and the KD (vertical logarithmic axis) are the (x, y) coordinates for each oligomer. The red circles depict sequences that violate at least two of the
inclusion/exclusion rules while the blue squares correspond to the remaining sequences. The blue ellipse schematically depicts the majority of DNA
sequences with good Fis-DNA binding (KD, = 3 nM), and the other two ellipses schematically depict the majority of sequences with low affinity to Fis
caused by bad point-of-contacts (pink) or low correlation with COP (green).
doi:10.1371/journal.pcbi.1002881.g003

Figure 4. Fis in vivo binding sites vs. randomly selected E. coli genomic sequences. (A) Cumulative density functions of subsequences with
most significant correlation with COP. The Fis binding sites dataset is shown as a red curve while the random sequences dataset is depicted as a blue
curve. The x-axis is the Pearson correlation coefficient while the y-axis is the proportion of subsequences with a maximum correlation with the COP
profile worst or equal to the corresponding x value. (B) Receiver-operating curves base on our SVM model as well as models built with CRoSSeD and
BioBayesNet. The x-axis depicts the false positive rate while the y-axis depicts true positive predictions. The blue curve corresponds to the results
from our SVM classifier, the red curve to ones from the CRoSSeD model, and the green curve to ones from the BioBayesNet model.
doi:10.1371/journal.pcbi.1002881.g004
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in the case of Fis binding is perhaps unsurprising. Although the

model training is performed in a way that favors our SVM-based

approach (i.e., the SVM model is trained on DNA breathing

profile that is enriched in the set of bona fide Fis binding sites), it is

nevertheless encouraging that the SVM classifier performs best. Its

superior performance indicates that the examined DNA breathing

dynamics, which are associated with Fis binding sites in vivo,

cannot be derived and recognized from the features considered in

CRoSSeD and BioBayesNet, which include major/minor grove

distance, width, and shape. From this result, it seems that DNA

breathing is a novel binding characteristic and its incorporation as

a novel feature into more sophisticated methods for predicting TF

binding sites (e.g., the SiteSleuth method [12,13]), together with

other important physicochemical features (e.g., major/minor grove

distance, width, and shape), would have the potential to improve

prediction accuracy for genome-scale TF binding site prediction,

at least for Fis binding sites. Such incorporation is not trivial and

therefore it is left as a subject for a future study.

Modification of the breathing and hence of the affinity of
Fis binding sites

The available Fis-DNA crystal structures and the previous

results of EMSA experiments have demonstrated that Fis contacts

DNA only at a few intermolecular direct points-of-contact, which

can significantly affect Fis binding affinity [51,58,59]. The

existence of a correlation between the Fis binding affinity and

the DNA breathing of the binding region, in vitro, as well as the

enrichment of the COP among genomic Fis binding sites are

indicative of a new biophysical characteristic of Fis binding.

Namely, the bubble formation region should possess enhanced

DNA local breathing dynamics. The enhanced DNA breathing

dynamics of FIS1 and the suppressed breathing of FIS2

(associated with a 700-fold decrease in affinity) are consistent

with this observation (Figure 2). Hence, we hypothesized that

modifying Fis binding sites in accord with computationally

predicted increasing or decreasing probability for local bubble

formation would result, respectively, in stronger or weaker Fis-

DNA binding.

Weakening Fis-DNA binding by suppressing breathing

dynamics with base pair substitutions. We used EPBD

Langevin dynamics to identify base pair substitutions that would have

the effect of modifying FIS1 local breathing dynamics without

modifying any direct points-of-contact. Our study resulted in design

of a sequence that we will refer to as FIS1S (Table 1). This sequence

differs from FIS1 as follows. In the regions flanking the 15 bp Fis core

binding region, there are eight substitutions: at positions 213:ARC,

212:ARG, 211:ARC, 29:TRG, +9:ARC, +10:ARG, +11:TRC,

and +13:TRG, that leave the direct points-of-contact with Fis

intact. Moreover, in the core-binding region, but outside the

bubble formation region, there are three substitutions: at

position 26:TRC, 25:TRG, and +5:ARC. Each of these

three substitutions has been shown individually not to affect Fis-

DNA binding [51,58]. EPBD simulations indicate that the

above 11 substitutions together suppress the local DNA

breathing dynamics (Figure 5A). Thus, based on our hypothesis

concerning the relationship between breathing dynamics and

affinity, we expect Fis to bind FIS1S more weakly than FIS1.

To test this prediction, we performed EMSA experiments and

found that binding of purified Fis protein to the FIS1S

oligonucleotide is indeed weaker than binding to FIS1, i.e., a

higher concentration of protein is required to observe binding to

FIS1S (Figure 5B). The FIS1 sequence (at 100 nM) forms a

detectable complex with Fis protein at a concentration of 0.25–

0.50 mM. In contrast, the FIS1S sequence forms a detectable

complex only at a higher concentration of 0.75–1.0 mM (Figure 5B).

Thus, the EMSA experiments agree with our prediction.

Strengthening Fis-DNA binding by enhancing breathing

dynamics with O6-methylguanine modifications. To de-

termine if we could enhance binding by modifying breathing

dynamics, we used EPBD simulations to guide O6-methylguanine

modifications of the FIS2 sequence, which binds Fis weakly.

According to our hypothesis, modifications that enhance breathing

dynamics, while leaving the direct points-of-contact with Fis intact,

should strengthen Fis-DNA binding. We saw this effect by

incorporating two O6-methylguanine (6mG) modifications (at

position 22:GR6mG and +1:GR6mG) into the bubble forma-

tion region of the FIS2 sequence. We will refer to the modified

sequence as FIS2m2 (Table 1). The O6-methylguanine modifica-

tions were chosen because the presence of a 6mG in a DNA

segment destabilizes slightly the double helix and hence decreases

its melting temperature [68] while causing only a minor

perturbation of the Watson–Crick structure [69,70,71,72]. A

decrease in the melting temperature is an indicator of enhanced

bubble dynamics at physiological temperatures and, indeed, the

EPBD Langevin simulations show that FIS2m2 exhibits enhanced

breathing (Figure 5C). Consistent with our expectations, the

EMSA experiments demonstrate stronger binding of Fis to FIS2m2

than FIS2 (Figure 5D). In the case of FIS2m2, significant complex

formation is observed at a Fis protein concentration of 0.25 mM,

whereas there is no detectable FIS2 complex with Fis at this

concentration. Binding of Fis to FIS2 can only be detected at

protein concentrations $0.50 mM.

Weakening Fis-DNA binding by destabilization of the

double helix with O6-methylguanine and mismatch

modifications. In contrast to, e.g., the E. coli SBB-protein,

which can bind to a single DNA strand [73], Fis binds only to

double-stranded regions but not to single stranded DNA.

Therefore, we would expect the correlation between the enhanced

breathing dynamics and Fis binding affinity to hold only below a

threshold level of the propensity for transient openings of the

double helix. To check if this is the case, we constructed another

DNA sequence by introducing three O6-methylguanines into

FIS2, which we will refer to as FIS2m3 (Table 1). FIS2m3 contains

three 6mG modifications (at position 22:GR6mG, 21:GR6mG,

and +1:GR6mG) that strongly destabilize the Fis binding site by

locally disrupting the double helix. Indeed, Fis binds FIS2m3

weakly. The complex of Fis and FIS2m3 was barely detectable even

at a Fis protein concentration of 1.0 mM (Figure 5D, the third set

of lanes). Our EPBD simulations suggest that the bubble formation

region of FIS2m3 has a much higher opening probability than

other sequences considered so far (Figure 6A). In accordance with

this enhanced local destabilization of the double helix structure,

the FIS2m3 oligomer (alone) displays retardation in mobility

compared to FIS2 and FIS2m2 oligomers (Figure 6B), potentially

signifying that large bubble formation, disrupting locally DNA

structure, can have slightly slow migration in the gel. This is an

indication that the presence of extremely enhanced local transient

openings in the bubble formation region is the likely reason for

weak binding of Fis to the FIS2m3 sequence.

To further test this hypothesis, we designed a novel, FIS1–

FIS2, hybrid sequence with five mismatches in the bubble

formation region and no other modifications (Table 1). Our

EPBD simulations indicate that FIS1–FIS2 is locally melted at

the bubble formation region (Figure 6C). Accordingly, FIS1–

FIS2 did not exhibit detectable binding by EMSA at Fis protein

concentrations sufficient for Fis binding to FIS1 (e.g., at a Fis

concentration of 0.75 mM) (Figure 6D). These results support

the conclusion that Fis binding requires an optimal level of
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DNA breathing, i.e., that Fis binding is suppressed by both the

absence of sufficient breathing and breathing above a threshold

level.

In each of the performed experiments, multiple nucleotide

modifications were introduced simultaneously. We recognize that

this makes it difficult to separate the effect of these modifications

on DNA breathing dynamics from their possible effects on other

DNA physicochemical features that may impact Fis-DNA binding,

such as flexibility. Nevertheless, the EPBD calculated breathing

dynamic profiles accurately predict Fis-DNA binding strength for

the examined sequences.

Discussion

In this report, we studied the connection between DNA

breathing dynamics and binding affinity of the Fis protein. In

general, proteins bind to a particular DNA sequence by having a

series of energetically favorable — electrostatic or van der Waals

— contacts with the base pairs at the binding site. The specificity

of the binding is believed to rely on two main recognition

mechanisms [6,74]: (i) direct recognition, which requires the

presence of specific DNA nucleotides, the direct points-of-contact;

and (ii) indirect recognition, which depends on the DNA

conformation in the vicinity of the binding motif. Thus, DNA

shape and entropic effects are important for indirect recognition.

For example, protein binding to the major groove of DNA is

perhaps primarily an enthalpy-driven process, based on the

energetic profiles of protein–DNA structures, whereas binding to

the minor groove is enabled by entropic effects [9]. It is natural to

expect that the binding of a protein with direct points-of-contact

predominantly on one of the two DNA strands, such as the TF and

initiator YY1 [75,76], can be promoted by transient openings of

the DNA at the TF binding site, as it was demonstrated recently

[47]. In contrast, a DNA sequence having low breathing

Figure 5. Fis binding site modifications, Langevin dynamics simulations of DNA breathing, and EMSA experiments, the first set. (A)
Langevin dynamics simulations demonstrating suppressed local DNA breathing dynamics in the FIS1S sequence (compare to FIS1 in Figure 2). Base
pair substitutions were made in the left and right flank regions of FIS1 to create a stiffer sequence while the direct points-of-contact remained
unchanged (Table 1). (B) EMSA demonstrating the decrease in affinity of bound FIS1S sequence in complex with purified Fis protein vs. the FIS1
sequence. FIS1 and FIS1S oligonucleotides were constant at 100 nM, and Fis protein ranged from 0 to 1.5 mM. (C) Langevin dynamics simulations
demonstrating enhanced FIS2m2 local DNA breathing dynamics (compare to FIS2 in Figure 2). FIS2m2 was designed by introducing two O6-
methylguanine in the bubble formation region of FIS2 (Table 1) while the direct points-of-contacts remain unchanged. (D) EMSA demonstrating the
increase in complex formation of FIS2m2 vs. FIS2 as well as the decrease in complex formation in FIS2m3 (third set of lanes). Oligonucleotide
sequences were constant at 100 nM, and Fis protein ranged from 0 to 1.5 mM (for each of the lanes). Sonicated salmon sperm DNA at 0.5–1 mg/ml was
added to the binding reactions to eliminate non-specific binding. In Langevin dynamics (panels A and C) the probability of bubble openings is
represented by the same color map; red denotes high probability and blue denotes low probability of opening. The length of the transient bubbles,
given in base pairs [bp], is shown along the vertical axis. The horizontal axis depicts base pair position; the bubble formation region is highlighted in
blue while the points-of-contact are highlighted in yellow. The names of each of the sequences are shown in the panels while the complete
nucleotide sequences could be found in Table 1.
doi:10.1371/journal.pcbi.1002881.g005

DNA Breathing Influences Protein-DNA Binding

PLOS Computational Biology | www.ploscompbiol.org 8 January 2013 | Volume 9 | Issue 1 | e1002881



propensity should be a better binding site for proteins that interact

with both DNA strands, such as NF1 [77,78], since an easily

destabilized DNA motif (i.e., one forming enhanced transient

bubbles) would not be favorable for binding to both DNA strands

[79]. Interestingly, initiator TFs mostly have points-of-contact at

one of the DNA strands [80]. DNA breathing can expose

nucleotides by base flipping, for example, for interaction with

proteins, which could be favorable depending on the mechanism

of protein-DNA binding. A binding mechanism that may benefit

from breathing in this way could be similar to the mechanism

proposed for methyltransferases [33]. Another connection between

breathing and protein-DNA binding can be seen for proteins

whose binding depends on local DNA bending [81], because of the

interrelation between local bending and DNA breathing

[82,83,84]. Although local DNA bending and propensity for

breathing are interrelated, the propensity for breathing does not

necessarily coincide with the bending-stiffness of a DNA sequence.

For example, a poly(A) tract is internally unbent and stiffer than a

general DNA sequence [85], but this tract is thermodynamically

very soft and its melting temperature is one of the lowest [65,86].

Thus, the interrelationship between breathing and bending is

complex. DNA local static-curvature has also been associated with

DNA binding by some nucleoid-associated proteins, including Fis

[87,88].

In the study reported here, we found that there is a strong

correlation between in vitro Fis binding affinity and enhanced DNA

breathing dynamics. Furthermore, we found that Fis binding sites

in the E. coli genome are statistically associated with a character-

istic breathing profile. Finally, in targeted experiments, we

demonstrated that base pair substitutions in the flanking regions

of the Fis binding motif that leave direct points-of-contact intact,

as well as O6-methylguanine and mismatch modifications, can

Figure 6. Fis binding site modifications, Langevin dynamics simulations of DNA breathing, and EMSA experiments, the second set.
(A) Langevin dynamics simulations reinforcing the local DNA breathing dynamics in FIS2m3 via three O6-methylguanine modifications in the bubble
formation region of FIS2 (Table 1). The direct points-of-contacts remain unchanged. (B) Polyacrylamide gel electrophoresis of dsDNA oligonucleotides
sequences - FIS2, FIS2m2, and FIS2m3 - demonstrating gel migratory effects due to possible bubble formation (gel at 15%). (C) Langevin dynamics
simulations demonstrating local disruption of the hydrogen bonds in the super-enhanced DNA local openings of the FIS1–FIS2 sequence (Table 1)
caused by the presence of five mismatches at the FIS1 bubble formation region. (D) EMSA demonstrating the lack in complex formation in FIS1–FIS2.
Concentration of the FIS1 and FIS1–FIS2 oligomers were constant at 100 nM and Fis protein ranged from 0 to 0.75 mM. Sonicated salmon sperm DNA
at 0.5–1 mg/ml was added to the binding reactions to eliminate non-specific binding. In Langevin dynamics simulations (panels A and C) the
probability of bubble openings is represented by the same color map as in Figure 5; red denotes high probability and blue denotes low probability of
opening. The probability is determined from the lifetimes of all open states with a given length (bp) and above amplitude of 1.0 (Å), normalized over
the complete time of the simulation. The length of the transient bubbles, given in base pairs [bp], is shown along the vertical axis. The horizontal axis
depicts base pair position; the bubble formation region is highlighted in blue while the points-of-contact are highlighted in yellow. The names of
each of the sequences are shown in the panels while the complete nucleotide sequences could be found in Table 1.
doi:10.1371/journal.pcbi.1002881.g006
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change DNA mechanics, with either enhancement or inhibition of

DNA breathing and strengthening or weakening of in vitro Fis-

DNA binding.

In conclusion, although the results of this study do not

deconvolute the contribution of DNA breathing from other

factors such as local DNA bending, or the sequence requirements

of the inclusion/exclusion rules, our findings strongly suggest that

Fis-DNA binding depends on a computationally derivable DNA

breathing, and that using specific breathing profile as a feature for

prediction of genomic Fis binding sites will be beneficial. It is

noteworthy that DNA breathing depends on DNA mechanics,

which can be impacted by genetic or other DNA modifications

(e.g., mismatches or nucleotide methylation). Hence, TF binding

that depends on DNA breathing could be affected by even a few

such modifications in a nontrivial way. Future studies will be

required to determine if the results reported here for Fis and in

Ref. [47] for YY1 generalize to other TFs and to elucidate the

molecular mechanisms by which transient DNA openings facilitate

Fis-DNA binding.

Materials and Methods

Cloning and expression of GST fusions to response
regulators

The Fis E. coli protein was amplified with sequence-specific

primers: forward 59-GATCGGATCCATGTTCGAACAACGC-

GTfAAATTCTGAC-39 and reverse 59-GATCAAGCTTTTAG-

TTCATGCCGTATTTTTTCAATTTTTTACGCAG-39, con-

taining BamHI and HindIII restriction enzyme sites, respectively,

by PCR in 50 ml reactions [1 ml 100 mM primer 1, 1 ml

100 mM primer 2, 50 ng genomic DNA isolated from E. coli

DH5a, 5 ml 106 Pfu reaction buffer, 1 ml 100 mM dNTPs,

2.5 ml DMSO, 2.5 U of PfuUltra DNA polymerase, and distilled

H2O for the remaining volume] using the following conditions, (1)

94uC, 3 min, (2) 94uC, 1 min; 50uC, 1 min, 72uC, 1 min for 30

cycles, and (3) 94uC, 1 min; 50uC, 1 min, 72uC, 10 min. The Fis

gene was cloned into the pGEX-KG vector using T4 ligase (NEB),

transformed into BL21 E. coli competent cells, and induced for N-

terminal GST fusion protein expression with 1 mM IPTG for

4 hrs. Cells were lysed with 1 mg/ml lysozyme on ice for 30 min,

followed by treatment with 10 mg/ml DNase and 10 mM MgCl2
for an additional 30 min, and centrifuged at 40,000 rpm for 1 hr.

GST fusion proteins were purified from the cleared supernatants

by incubation with agarose beads cross-linked to glutathione for

1 hr and then eluted with 50 mM Tris-Cl (pH 8), 10 mM reduced

glutathione. Protein samples were then dialyzed using a Slidea-

lyzer cassette (Pierce) with a 10,000 MWCO to remove free

glutathione, quantified using the BCA Protein Assay (Pierce), and

stored at 280uC at a final concentration of 25% glycerol.

Electrophoretic Mobility Shift Assays (EMSA)
Table 1 displays the oligonucleotide sequences used to

demonstrate Fis binding to target DNA sequences. All dsDNA

sequences used in EMSA experiments, including those with

guanine modifications, were obtained through annealing of two

synthetic oligonucleotides (Gene Link, Hawthorne, NY), in which

all forward sequences were biotinylated at the 59 end for detection.

The annealing reaction was performed by incubating a 20 mM

solution of the two oligonucleotides in dH2O at 95uC in a heat

block for 5 minutes, removal of the block to the bench, and

progressive decrease to room temperature to allow strand

annealing to occur. The reaction mixtures consisted of 500 nM

or 1.0 mM of dsDNA and protein concentrations of 250 nM–

1.5 mM, in binding buffer [20 mM HEPES], 150 mM NaCl,

500 mg/mL BSA, 1 mM DTT, 0.1 mM EDTA, adapted from

[51]. Sonicated salmon sperm DNA at 0.5–1 mg/ml was added to

the binding reactions to eliminate non-specific binding. The

reactions were allowed to incubate at room temperature for

30 minutes before loading onto a 6.0% non-denaturing polyacryl-

amide gel. The gel was pre-run for 30 minutes at 8 V/cm in 0.56
TBE buffer composed of 44 mM Tris-Cl, 44 mM Boric Acid,

1.0 mM EDTA pH 8.0, and samples were run at 17 mA for

approximately 2.5 hours. Gels were developed using the Light-

Shift Chemiluminescent EMSA kit (Thermoscientific) according to

the manufacturer’s instructions. Gels were transferred to nylon

membrane (Thermoscientific) at 380 mA for 45 minutes. DNA

was cross-linked to the membrane with 15 minutes exposure to

ultraviolet light. Chemiluminescent detection was performed using

a ChemiDoc XRS gel imaging system (BioRad). Oligonucleotide

migration assays were conducted on 15% polyacrylamide gel at

120V for 3 hours. Concentration of oligonucleotides was 100 nM

with 0.56TBE buffer. Gels were stained with ethidium bromide

and imaged with appropriate filters.

Computer simulations
Extended Peyrard-Bishop-Dauxois (EPBD) model. To

study DNA breathing dynamics, we used the mesocopic EPBD

model, which is an extension of the original Peyrard-Bishop-

Dauxois model [22] that includes sequence-specific stacking

potentials [23].

A comment on the choice of model is perhaps appropriate, as

many models have been used to study the mechanical properties

of DNA. Most of them are purely thermodynamical models

parameterized on the basis of measurements of equilibrium

thermodynamical properties. The probabilities for local DNA

opening obtained from the EPBD model are also equilibrium

properties of the underlying free energy landscape, and

essentially the same information can be obtained from various

available thermodynamical models, such as the Poland-Sheraga

model [25]. However, it should be noted that the EPBD model is

a dynamical model that is strongly nonlinear and admits

breather solutions, which constitute transient but relatively

long-lived openings of the double helix, that are interconnected

with the local bending propensity [84]. The EPBD derived

trajectories contain the information about the lifetimes of the

DNA transient openings (bubbles). This type of information

cannot be obtained by purely thermodynamical calculations.

Explicit accounting of the dependence on the solvent conditions

such as salt, temperature, as well on the twist of the DNA, can

lead to long-lived bubbles with enhanced lifetimes (see e.g.,

[89,90]). Another advantage of the EPBD model is its single-

nucleotide resolution. With a thermodynamical model, the

calculation of a property profile typically requires window-

averaging over 100–500 base pairs, which limits one’s ability to

distinguish the property profiles of two closely related sequences.

In contrast, window averaging is not used in EPBD calculations,

and as a result, the effects of even single base-pair changes can be

readily determined.

The EPBD model is a quasi-two-dimensional nonlinear model

that describes the transverse opening motion of the complemen-

tary strands of double-stranded DNA, while distinguishing the two

sides (left - vn and u right - un) of the DNA double strand. The

potential surface VEPBD of the EPBD model is:

VEPBD~
XN

n~1

U ½un; vn�zW ½un; un{1; vn; vn{1�,
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where

U ½un; vn�~Dn(e{an(un{vn){1)2, and W ½un; un{1; vn; vn{1�~
Ku

n;n{1

2
(un{un{1)2z

Kv
n;n{1

2
(vn{vn{1)2z

r

4
e{b½(un{vn)z(un{1{vn{1)�(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ku

n;n{1

q
(un{un{1){

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kv

n;n{1

q
(vn{vn{1))2

The sum is over all N base pairs of the DNA sequence. For each base

pair, the EPBD includes two independent degree of freedom; un and

vn, that represent the relative displacement from the equilibrium of

the corresponding nucleotide, located in the right or left strand of

DNA double helix. The displacements are chosen as in [22], and

quantify the transverse stretching, yn~
un{vnffiffi

2
p of the hydrogen bonds

between the complementary nucleotides. The first term, U ½un; vn�,
is the Morse potential for the nth base pair. U ½un; vn� represents the

combined effects of the hydrogen bonds between the complemen-

tary bases and electrostatic repulsion of the backbone phosphates

[22]. The parameters Dn and an depend on the nature of the base

pair (A-T vs. G-C, i.e., two hydrogen bonds vs. three) at the base pair

n. The second term W ½un; un{1; vn; vn{1� represents a quasi-

harmonic approximation of the stacking interactions between

consecutive nucleotides, which influences their transverse stretching

motion. The exponential term effectively decreases the stacking

interaction when one of the nucleotides is displaced away from its

equilibrium position, e.g., when one of the nucleotides is out of the

DNA stack. The stacking force constants Ku
n;n{1(Kv

n;n{1) depend on

the nature of the base, on its closest neighbor, and on the location of

the nucleotide - the right or left DNA strand. The dinucleotide

stacking force constants were determined in [23] by fitting

simulation to UV-melting curves of DNA oligomers. The stacking

force-constants are constructed in a manner that allows treatment of

single strand DNA-defects such as UV-dimers [91], mismatches,

and other defects that belong only to one of the DNA strand. In

particular, this dependence is designed in a way such that the EPBD

Hamiltonian to correspond to the PBD Hamiltonian, when the

DNA sequence is homogenous. In the new variables the only

changes of the parameters of the model are aEPBD
n ~

aPBD
n ffiffi

2
p ;

bEPBD
n ~

bPBD
n ffiffi

2
p . The mass and dispersion of the random force

remains unchanged, while the value of any external force has to be

divided by !2, in the corresponding Langevin stochastic differential

equations for un and vn.

EPBD based Langevin dynamics simulations. Langevin

molecular dynamics simulations were performed at T = 310 K, by

numerically integrating systems of stochastic differential equations

corresponding to the EPBD model [38]. Periodic boundary

conditions were applied to avoid terminal base pair effects without

introducing torsional effects. Each DNA sequence was simulated

in 1000 separate realizations, each with duration of 1 ns. At the

flanking of each of the simulated sequences we added clamps, viz.,

five base pairs (GCGCG) at the right side, and five base pairs

(CGCGC) at the left side, to avoid end effects. The probability

Pn~Pn(L,A) for the existence of a bubble of a certain length L

[bp], beginning at base pair n, and with amplitude of the opening

larger than A [Å], was calculated as in [38]: Pn L,Að Þ~

S 1

Time

Xqkmax
n

qk
n~1

Dt qk
n L,Að Þ

� �T
M

. Here, , .M denotes averaging

over all M = 1000 ensembles of stochastic trajectories, and Time is

the total duration (1 ns) of each run, qk
n(L,A) enumerates the

bubbles of duration Dt qk
n(L,A)

� �
with amplitudes larger than A

[Å] and length L [bp] beginning at the nth base pair in the kth

simulation. Therefore, the probability is determined from the

lifetimes of all open states with a given length L [bp] and above

amplitude A [Å], normalized over the time of the simulation and

over the ensemble of 1000 stochastic trajectories. In the

simulations of mismatches (i.e., the sequence FIS1–FIS2) the

hydrogen bonds (i.e., the force-constants Dn) were set to zero at the

locations of the mismatches, while the stacking force-constants

Ku
n;n{1(Kv

n;n{1) were chosen according to the type of the

nucleotides at the right (un) or left (vn) strand of the DNA.

EPBD based MCMC simulations and average

displacement/opening profiles. For each base pair, the

displacement from its equilibrium position quantifies the trans-

verse stretching yn of the hydrogen bonds between the comple-

mentary nucleotides (i.e., the base pairs opening) as a function of

DNA sequence. To obtain the average displacement/opening

profile, for a specific DNA sequence at a given temperature, we

performed Markov chain Monte Carlo (MCMC) simulations

based on the EPBD model as described earlier [23,39]. In each

run, we first produced an equilibrium state using the standard

Metropolis algorithm [92] and then recorded the displacements yn

of each base at selected time steps. Performing a large number of

simulation runs (each with different initial conditions), we obtained

the average displacement/opening profile (,yn.) of the DNA

sequence of interest. Thus, ,yn. represents the ‘‘thermodynamic

softness’’ and ‘‘thickness’’ of the double helix because of the base

pair breathing at physiological temperature and pH [23,39,46,65].

The profile ,yn. is related to DNA melting [62,86,93]. Indeed,

DNA denaturation is a closed-to-open state transition of the

double helix and the transition is quantified by measuring/

calculating the fraction of disrupted hydrogen bonds (openings)

between complimentary nucleotides (i.e., the fraction of these base

pairs, for which ,yn. is bigger then a given threshold-distance) as

a function of temperature. Importantly, the profile ,yn. is free of

the requirement for window averaging, usually applied in

thermodynamic calculations, making the average displacement/

opening profile sensitive to single base pair substitutions [39]. The

profile ,yn. can be calculated efficiently via MCMC simulation,

and the results have been shown to be equivalent to those obtained

by averaging over Langevin dynamics trajectories [39]. In the

supporting information, we provide a listing of the parameter

values of the EPBD model (Text S1), more information about the

algorithms used in calculations, and links to sources of available

software implementations of these algorithms.

EPBD based MCMC protocol for O6-methylguanine

(6mG) modifications. Several powerful mutagens and carcin-

ogens attack DNA at the O6-position of guanine [94], which result

in O6-methylguanine. This guanine modification leads to a

destabilization of the double helix and a base-flipping rate similar

to the behavior of mismatched DNA segments [95]. Here, we use

6mG modifications to destabilize the DNA double helix and to

enhance the local bubble formation at the Fis-DNA binding site.

To derive the changes (due to the presence of 6mG) in the

hydrogen bonds between the complementary nucleotides and in

the stacking interactions with the closest consecutive nucleotides,

we followed our protocol for deriving the dinucleotide stacking

constants described in [23]. In particular, we use MCMC

simulations to reproduce the melting behavior of three 21 bp

long DNA sequences, whose UV-melting were experimentally

determined with and without the presence of a single 6mG (41).

The simulated three sequences are: S1:GGTGGGCGCTG-

GAGGCGTGGG, with melting temperature Tm = 73.5+/20.3;
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the methylated S2:GGTGGGCGCTGmGAGGCGTGGG, with

Tm = 68.4+/20.3; and S3:GGTGGGCGCTmGGAGGCGT-

GGG, with Tm = 65.6+/20.4. We first simulated the melting

behavior of sequence S1, which does not contain 6mG modifi-

cation. To achieve the ,5uC difference in the melting temper-

atures between sequences S1 and S2, we changed gradually the

strength of the hydrogen bond force constant Dn, at the place of

the 6mG modification, with a step of 0.0075 eV. Finally, we

obtained the difference of ,3uC between the sequence S2 and S3
(both containing one 6mG modification but at different location)

by varying the strength of the stacking force constant Kn;n-1, at the

place of the 6mG modification, in steps of 0.0025 eV/Å2. In the

MCMC, the steps were performed using a cutoff value of 25 Å

and a strand separation threshold of yn = 0.5 Å, above which the

DNA was considered melted. At least 1000 simulations with

different initial conditions were conducted. The Dn for 6mG was

found to be 0.0345 eV, the TG dinucleotide-stacking step was

changed to 0.0075 eV/Å2. These values were further used in the

Langevin dynamics simulations of the FIS1–FIS2 sequence.

Datasets and statistical analysis
Datasets. E. coli K12 MG1655 genome was downloaded from

the KEGG database [96]. The genomic locations of the E. coli open

reading frames were retrieved form the KEGG database while the

locations of E. coli promoters were downloaded from RegulonDB

[66]. The data for in vitro Fis binding sites is described in Table S1,

while the in vivo identified genomic E. coli Fis binding sites were taken

from [56,57,60,66]. For the genomic Fis binding site dataset, any

entries duplicated in a single data source, lacking genomic

coordinates, having a binding site length less than 15 bp, or more

than 50 bp were discarded. All in vivo E. coli Fis binding sites

analyzed in this study are summarized in Tables S2 and S3. For the

random set, 50 bp long sequences were randomly selected from the

E. coli K12 MG1655 genome. The random set was constructed to

have the same percentage of sequences in promoter (60%),

intergenic (6%), and open reading frame (34%) regions as the one

in the Fis binding dataset. Each random sequence was selected to

not contain (or overlap) with any other random sequence.

The Fis protein structure was downloaded from the protein

database [97] with PDB code 3IV5 as submitted by [51], and

visualized using the VMD software [98].
Statistical analysis. A specific characteristic opening profile

(COP) was derived for the Fis protein. The maximum correlation

between the subsequences of each randomly selected region with

the COP was statistically compared with the maximum correlation

between the COP and subsequences of the regions containing Fis

binding sites. Two-sample T2 and two-sample Kolmogorov-

Smirnov tests were used for the statistical comparison. In addition,

these two statistical tests were applied to the correlations to the

COP distributions of all subsequences in both sets.
SVM model and comparison how other models

(BioBayesNet and CRoSSeD) recognize the motifs

corresponding to the characteristic breathing profile. A

dataset containing positive and ten times more negative examples

was constructed. The positive examples, i.e., ones corresponding to

genomic Fis binding sites, were obtained by selecting the

subsequences with maximum correlation with the COP profile

in each of the experimentally determined Fis binding sites in

[56,57,60,66]. As before, any Fis binding sites duplicated in a

single data source, lacking genomic coordinates, having a binding

site length less than 15 bp or more than 50 bp were discarded.

The negative examples were generated by randomly selecting

15 bp long sequences in a manner similar to the one described in

the previous section.

Our SVM classifier was trained on the sequences’ average

breathing profiles, obtained by EPBD MCMC simulations, and by

leveraging the LIBSVM framework and utilities [99]. The

CRoSSeD model was trained using its default parameters after

converting the sequences from FASTA format to the appropriate

format using the CRoSSeD converter [14]. The BioBayesNet

model [67] was trained with default settings – all structural

parameters were used and no information for motifs or significant

regions was provided to the tool. Each of the models was evaluated

using five 10-fold cross-validations. Any bias from randomly

splitting the dataset was avoided by repeating the 10-fold cross-

validation five times with different splitting of the subsets. All

reported results are averaged over the five 10-fold cross-validations.

Supporting Information

Table S1 Previously characterized in vitro Fis binding
sites. Information for all previously in vitro characterized Fis

bindings site used in our analysis. Nucleotides located in bubble

formation regions are highlighted in blue, while points-of-contact

with DNA are highlighted in yellow.

(XLSX)

Table S2 Summary of previous studies identifying Fis
binding sites in the E. coli genome.

(XLSX)

Table S3 Examined Fis binding sites’ locations in the E.
coli genome.

(XLSX)

Table S4 Parameters of the EPBD model.

(PDF)

Text S1 EPBD model algorithms and implementations.
This supporting text provides a listing of the parameter values of

the EPBD model, information about the algorithms used in our

calculations, and links to source codes of available software

implementations of these algorithms.

(PDF)
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