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Abstract

Increased efforts in the assembly and analysis of connectome data are providing new insights into the principles underlying
the connectivity of neural circuits. However, despite these considerable advances in connectomics, neuroanatomical data
must be integrated with neurophysiological and behavioral data in order to obtain a complete picture of neural function.
Due to its nearly complete wiring diagram and large behavioral repertoire, the nematode worm Caenorhaditis elegans is an
ideal organism in which to explore in detail this link between neural connectivity and behavior. In this paper, we develop a
neuroanatomically-grounded model of salt klinotaxis, a form of chemotaxis in which changes in orientation are directed
towards the source through gradual continual adjustments. We identify a minimal klinotaxis circuit by systematically
searching the C. elegans connectome for pathways linking chemosensory neurons to neck motor neurons, and prune the
resulting network based on both experimental considerations and several simplifying assumptions. We then use an
evolutionary algorithm to find possible values for the unknown electrophsyiological parameters in the network such that
the behavioral performance of the entire model is optimized to match that of the animal. Multiple runs of the evolutionary
algorithm produce an ensemble of such models. We analyze in some detail the mechanisms by which one of the best
evolved circuits operates and characterize the similarities and differences between this mechanism and other solutions in
the ensemble. Finally, we propose a series of experiments to determine which of these alternatives the worm may be using.
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Introduction

In recent years, connectomics – the assembly and analysis of

comprehensive maps of neural connectivity – has been growing by

leaps and bounds. Partial connectomes now exist for several

organisms, including the nematode C. elegans [1], [2], the primate

cerebral cortex of the macaque monkey [3], the cortico-thalamic

system of the cat [4], and the mouse retina and primary visual

cortex [5]. Recent efforts have increasingly been aimed at

collecting data about the structural connectivity of the human

brain at different levels of detail [6]–[9]. Furthermore, there have

been several developments in high-throughput serial electron

microscopy that continue to accelerate the rate and resolution of

data collection [10], [11].

In addition to the experimental assembly of connectome data,

there has also been a growing interest in studying the large-scale

network properties of these connectomes using graph theory [12]–

[15]. The focus of this analysis has been on the global properties of

the full network, such as small-world, scale-free properties,

common motifs, degree distributions, vertex degrees, generalized

eccentricities, number of complete subgraphs, clustering struc-

tures, etc. [16]–[23]. The dynamical consequences of network

structure, such as signal flow and propagation of neuronal activity

in response to artificial sensory stimulation [24], has also begun to

be examined. Thus, connectomics can provide important insights

into the general organizational principles of nervous systems and

their impact on neural activity.

However, despite these considerable advances in connectomics,

connectivity alone is clearly insufficient to understand the neural

basis of behavior. Although network structure can certainly

constrain neural activity, it does not uniquely determine it.

Connectivity data must be integrated with neurophysiological and

behavioral data in order to obtain a complete picture of neural

function [25]–[28]. In addition, connecting a connectome to

behavior requires a much finer-grained analysis of connectivity

than is usually done. In addition to calculating such global network

properties as degree distributions and clustering coefficients, the

specific interneurons and functional pathways that connect the

relevant sensory neurons to the relevant motor neurons must be

identified and the electrophysiological properties of those compo-

nents and connections must be characterized.

The nematode worm Caenorhaditis elegans is an ideal organism in

which to explore in detail the link between neural connectivity and

behavior. C. elegans has been an important model system for

biological research in a variety of fields including genomics, cell

biology, developmental biology, and neuroscience [29]–[33].

Among its many experimental advantages are its short life cycle,

compact genome, stereotypical development, ease of propagation,

and simplicity of the neuromuscular system. The complete cell

lineage, which is invariant between animals, has been established

[29]. Most importantly for neuroscience, the C. elegans connectome

for the hermaphrodite, comprising 302 neurons and over 7000

connections, is by far the most complete to date [1]. Yet, despite its
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relatively simple nervous system, C. elegans displays a large

repertoire of behavior including locomotion, foraging, feeding,

touch withdrawal, and taxes involving smell, taste, and temper-

ature [32], [34], [35]. In addition, the worm exhibits more

complex behaviors such as mating, social feeding, learning and

memory [36]–[41]. A variety of techniques exist for characterizing

and manipulating these behaviors, including automatic visual

tracking [42]–[45] and the use of microfluidics to finely control the

structure of artificial soil-like environments [46], [47].

Given the availability of a nearly complete data set on its

connectome and the fact that many of its behaviors have been well

characterized, the major remaining obstacle to detailed analyses of

the neural basis of behavior in C. elegans is a neurophysiological

one. Until recently, electrophysiological analysis in C. elegans has

been difficult due to its small size and pressurized body. However,

substantial progress is now being made using whole-cell patch-

clamp techniques [48], calcium imaging [49], and optogenetics

[50], and optical and electrophysiological recordings in C. elegans

are becoming routine [51]–[54]. In addition, electrophysiological

studies in the closely-related but larger nematode Ascaris can be

used to make inferences about C. elegans electrophysiology [55],

[56]. Unfortunately, we are still a long way from knowing even

which synaptic connections in this nervous system are excitatory or

inhibitory, let alone the magnitudes of such connections or their

time courses. Indeed, the shortage of electrophysiological data has

been the main reason that few neuroanatomically-grounded

models of C. elegans behavior have been undertaken, despite the

fact that its connectome has been known for over 25 years (e.g.,

[57], [58]).

In order to address the current lack of electrophysiological

data to match the comprehensive connectome data for C. elegans,

one can turn to stochastic optimization techniques such as

evolutionary algorithms applied to brain-body-environment

models of a behavior of interest [59]–[61]. In this approach,

the model is constrained to known neuroanatomy and the

unknown electrophysiological parameters are evolved such that

the behavioral performance of the entire model is optimized to

match that of the animal. Since different runs of the

evolutionary algorithm can produce different solutions with

nearly the same behavioral performance, the result of this

process is not a unique model, but rather an ensemble of

possible models [62]. Clusters of similar solutions can then be

identified within this ensemble and representative members

from each cluster can be analyzed in detail as to how the

observed behavior arises from the interaction between the

neuroanatomically-constrained evolved neural circuit and the

model body and environment in which it is embedded. The

insights gained from these analyses can then be used to design

experiments that distinguish between the various possibilities,

focusing experimental effort where it is most crucial. The results

of such experiments can in turn be used to further constrain

subsequent evolutionary optimizations.

To demonstrate the utility of this approach, we focus here on

salt klinotaxis, a form of chemotaxis in C. elegans. Klinotaxis is

defined as a strategy for moving up a gradient through gradual

changes in orientation directed towards the source [63]. Salt

chemotaxis [64] is one of the most studied spatial orientation

behaviors in the nematode. Orientation to salt is important for C.

elegans because the bacteria on which it feeds release salt into the

surrounding medium as a natural part of their metabolism [35].

Salt chemotaxis also exhibits plasticity, both in the form of

habituation to high salt concentrations [65] and taxis reversal

after association of salt with an aversive stimulus [66], [67].

Moreover, the sensory neurons involved in chemotaxis have been

identified [68]–[70]. The behavior itself has an interesting

substructure, consisting of at least two distinct strategies:

klinokinesis, and the more recently discovered klinotaxis.

Klinokinesis is defined as a biased random walk [71], [72]. A

number of models of klinokinesis have previously been construct-

ed [73]–[76]. As an orientation behavior, klinotaxis fundamen-

tally involves brain-body-environment interactions, since the salt

distribution detected by chemosensory neurons drives the motion

of the body, which in turn changes the perceived salt distribution.

Klinotaxis is a particularly interesting spatial orientation behavior

because (unlike klinokinesis) it exhibits state-dependence: the

reactions to sensory input depend on the worm’s internal state at

the time of the stimulus.

In this paper, we construct a neuroanatomically-grounded

model of C. elegans klinotaxis by building on a previous

sensorimotor model that did not include interneuronal pathways

[77]. First, we identify a minimal klinotaxis circuit by system-

atically searching the C. elegans connectome for pathways linking

chemosensory neurons to the neck motor neurons responsible for

steering and then pruning the resulting network based on both

experimental considerations and several simplifying assumptions.

We then run a large set of evolutionary searches for the

electrophysiological parameters of this minimal circuit that

optimize a measure of chemotactic performance. Although this

measure does not specifically reward klinotaxis, we find that a

significant fraction of these searches successfully produce

klinotaxis in a way consistent with both the nematode and the

previous model. Next, we analyze in some detail the mechanisms

by which one of the best evolved circuits operates, providing

insight into how the observed sensorimotor transformations are

actually implemented interneuronally. We then enlarge our

analysis to characterize the similarities and differences between

this mechanism and other solutions observed in the ensemble.

Finally, we propose a series of experiments that can be

performed to determine which of these alternatives the worm

itself may be using.

Author Summary

Maps of the connections between neurons are being
assembled for several organisms, including humans. But
connectivity alone is insufficient for understanding the
mechanisms of behavior. Nowhere is this more obvious
than in the nematode C. elegans, where the nearly
complete connectome has been available for over 25
years yet little is known about the neural basis of most of
its behavior. Here we combine known neuroanatomical
constraints from the C. elegans connectome with a
simplified body and environment, and use optimization
techniques to fill in the missing electrophysiological
parameters in plausible ways so as to produce worm-like
behavior. We focus on one spatial orientation behavior,
where the reactions to sensory input depend on the
worm’s internal state at the time of the stimulus: salt
klinotaxis. By exploring the possibilities for what is
unknown in ways that are consistent with what is known,
we generate an ensemble of hypotheses about the neural
basis of this behavior. Studying the structure of this
ensemble, we formulate new experiments that can
distinguish between the various hypotheses. This meth-
odology is likely to accelerate the discovery and under-
standing of the biological circuitry underlying the behavior
of interest, before a complete electrophysiological charac-
terization is available.

Neuroanatomical Models of C. elegans Klinotaxis
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Results

Minimal klinotaxis network
In order to identify candidate klinotaxis networks, we mined the

C. elegans connectome using the chemosensory neurons as the root

set and the neck motor neurons as the target set. We began with

the maximal network, connecting all chemosensory neurons to all

neck motor neurons. We then constrained this network based on

experimental evidence and simplifying assumptions until we

arrived at a minimal but neuroanatomically-grounded klinotaxis

network.

The maximal network contains all paths between chemosensory

and neck motor neurons. The C. elegans chemosensory system

enables it to detect a wide variety of volatile and water-soluble

cues, with a total of 8 pairs of amphid neurons that are exposed

directly to chemicals in the environment: ADF, ADL, ASE, ASG,

ASH, ASI, ASJ, ASK [78], [79]. A total of 113 of the 302 C. elegans

neurons are motor neurons [1]. As klinotaxis involves modulation

of the side-to-side headswings, we were interested in the motor

neurons that innervate the muscles in the head. We therefore only

considered the 10 head and neck motor neuron classes: RIV,

RIM, RMG, RMF, RMH, RMD, RME, SMB, SMD, and URA

[80]. Figure 1A shows all of the paths between these two sets of

neurons. Without additional constraints, the network connecting

those two sets contains 90.72% of all neurons and 97.95% of all

the chemical synapses and gap junctions in the connectome

dataset.

The klinotaxis network is clearly contained within the maximal

network, but is likely to involve a smaller subset of neurons. There

are several ways to constrain the maximal network. One of the

simplest and most effective is to limit the length of the paths

because information is likely to be lost after traveling through

many neurons due to nonlinearities and noise. From the maximal

network we knew the longest path between chemosensory neurons

and neck motor neurons was 7. As we limited the length of the

paths, the size of the network (as measured by the number of

neurons and chemical and electrical connections) was reduced

dramatically (Figures 1B and 1C).

How do we decide what path length to constrain the network

to? We considered a network to be fully-connected if signals from

every sensory neuron could reach every motor neuron. Within the

context of klinotaxis, this is an important criterion because it

ensures that all information from the environment can be used to

modulate motor neurons on both sides of the worm: dorsal and

ventral. For any network, there is a minimal path length that meets

the fully-connected requirement. For the network connecting all

chemosensory neurons to all neck motor neurons that minimum

was length 5, which included still 87.74% of all neurons and

92.98% of all the chemical synapses and gap junctions in the

connectome dataset.

In order to further reduce the complexity of the network, we

constrained the root and target set of neurons based on

experimental results. The sensory neurons required for many

chemosensory responses have been defined by killing identified

neurons with a laser microbeam, and testing the operated animals

for their behavioral capabilities. Studies have shown that

chemotaxis to sodium and chloride ions are mediated mainly by

the ASE sensory neurons [68]. Simultaneous ablation of all

amphid and phasmid neurons except ASE spares chemotaxis,

indicating that the role of ASE in water-soluble chemotaxis is

unique [68]. There have been no studies in the motor neurons

involved in the gradual turning observed during forward

locomotion in klinotaxis. However, from studies of locomotion

[81], we know SMB motor neurons set the amplitude of sinusoidal

movement. Modulating the amplitude of sinusoidal movement at

the timescale of head sweeps (see Methods) during forward

locomotion can lead to gradual turning. This gradual turning is a

likely candidate for producing the curvature in the translational

direction of the worm (i.e., the direction of movement, see

Methods).

The unconstrained network connecting ASE to SMB is still

rather large, with 88.41% of all neurons and 93.76% of all

chemical synapses and gap junctions in the connectome. We

reduced this network to the minimal fully-connected one by once

again constraining the path length. Constraining the network to

paths of length 3 (the minimum consistent with the fully-connected

criterion) reduces it to only 23 (7.61%) neurons and 276 (3.78%)

chemical synapses and gap junctions. This allows us to test how

much of the behavior can be accounted for by the most direct

paths only, with indirect paths added in subsequent iterations of

the model. There is, however, a further simplification that we can

make to the network. Two neurons can be connected by one or

more chemical and electrical synapses. We refer to the total

number of chemical and electrical synapses between two neurons

as the contact number. We simplified the network one step further

by setting a threshold for the number of contacts between two

neurons. The assumption is that the better-connected paths are

more likely to have stronger interactions. When we constrained

the network to paths with 2 or more contacts, we obtained a

network that contained only two interneuron classes: AIY and AIZ

(Figure 2). We refer to this network as the minimal klinotaxis

network. Any further simplification breaks the fully-connected

criterion.

The actual klinotaxis network falls between the two extreme

networks: minimal (Figure 2) and maximal (Figure 1A). There are

three main reasons why the minimal network is worth studying in

more detail. First, the network is fully-connected: each of the

sensory neurons can affect all of the motor neurons. Second, while

the sensory neurons have been well identified, the circuits of

interneurons that process sensory information are much less well

characterized. The two interneurons that have been shown to be

involved in klinotaxis, AIZ [63] and AIY [82], are included in the

minimal network. This is important because it was not deliberately

taken into consideration in the selection of the network; rather it

emerged from the experimental constraints and simplifying

assumptions. Finally, starting with the minimal network allows

us to test the minimum neuroanatomy necessary to produce the

behavior. As soon as the network fails in some respect and as more

experimental data becomes available, the constraints can be

relaxed and more components included in a systematic way.

Population analysis
To identify neuroanatomically constrained neural networks for

klinotaxis in C. elegans, we generated a population of 100 different

networks using an evolutionary algorithm. Networks evolved

reliably after 300 generations. Out of the 100 evolutionary runs,

17 failed to produce networks capable of efficient chemotaxis

(chemotaxis index lower than 0.5, see Methods). Of the rest, we

focused only on the highest-performing subpopulation, namely

those networks having a chemotaxis index (CI) of at least 0.75

(n = 27). When tested over a longer assay, this subpopulation had

an average CI of 0.87. All further analysis was limited to this high-

performance subpopulation.

Networks were evolved in chemical gradients with conical

shapes, where the chemical concentration falls as a linear function

of the Euclidean distance to the peak. To test for generalization we

measured chemotaxis index and reliability in a Gaussian-shaped

chemical gradient (see Methods), which resembles the gradients

Neuroanatomical Models of C. elegans Klinotaxis

PLOS Computational Biology | www.ploscompbiol.org 3 February 2013 | Volume 9 | Issue 2 | e1002890



used in laboratory tests of chemotaxis in C. elegans [64]. The

measures in the Gaussian gradient closely matched those obtained

in the conical gradient (Table 1). This experiment shows that

evolved networks are not specialized for the shape of the gradient;

instead, they embody a more general solution to the task of

klinotaxis, making them appropriate for further study.

In order to determine the mechanism by which model worms

reach the peak of the gradient, we first observed how the

trajectories of virtual worms varied as a function of the model’s

random initial bearing (i.e., the angle difference between the

direction of translational movement and the direction of the peak

of the gradient) and then analyzed whether the trajectories met the

two criteria for klinotaxis set out in previous work [77]. Figure 3

shows that model worms made a smooth turn until they were

oriented in the direction of steepest ascent. Thus the output of the

model was consistent with both real worm tracks during klinotaxis

[63] and the previous theoretical model [77].

Klinotaxis has two necessary conditions: (C1) The organism

continuously adjusts its orientation toward the line of steepest

ascent; (C2) The adjustments in orientation are made on the basis

Figure 1. Searching the connectome for the klinotaxis network. A, Maximal network. All paths between chemosensory neurons (white disks)
and neck motor neurons (black disks). Interneurons shown in gray. Chemical synapses shown as black lines. Directionality not shown. Gap junctions
shown in red. Line thickness represents the relative number of chemical synapses or gap junctions between the two neurons. B, C, Number of
neurons and number of chemical synapse and gap junctions in the network as a function of path length. Points represent the number of total
neurons and contacts in the network. Dashed lines represent the total number of neurons and synapses and junctions in the connectome.
doi:10.1371/journal.pcbi.1002890.g001

Neuroanatomical Models of C. elegans Klinotaxis
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of comparisons of the stimulus at a single point on the body as this

point is swept from side to side over time. To ascertain whether

networks met C1, we plotted track-curvature, quantified in terms

of turning bias (see Methods), as a function of instantaneous

bearing relative to the gradient peak (Figure 4A). According to C1,

the algebraic sign of the turning bias should always be opposite to

the sign of bearing. Figure 4A shows that this was indeed the case.

To ascertain whether the optimized networks met C2, we plotted

turning bias as a function of the amplitude of the gradient in the

direction normal to the worm’s translational movement

(Figure 4B). This plot revealed that turning bias increased linearly

with the amplitude of the gradient normal to the worm, as

expected for a simple causal relationship between the concentra-

tion differences during head sweeps and turning bias. Further-

more, on average, turning bias was not affected by the model

worm’s movement in the translational direction (black points,

Figure 4C). This finding suggests that turning bias in the model is

controlled by changes in concentration sensed during the side-to-

side head sweeps, as required by C2.

Each of the data points in the gradient in the translational

direction (black points, Figure 4C) corresponds to the average over

two distinct bearings. For example, +90 and 290 degrees both

have 0 translational gradient. Their corresponding turning biases

are nonzero, equal in magnitude but opposite in sign. So although

the translational gradient does not influence the turning bias on

average, when we studied the different cases more systematically

we found some information in the translational direction: the

magnitude of the turns were larger for negative translational

gradients than for positive translational gradients (gray points,

Figure 4C). There is a significant difference in the turning bias of

the model worm when moving up the gradient at an angle than

when moving down the gradient at that same angle (see red points,

Figure 4C). Therefore, the magnitudes of the corrections are larger

when the worm is heading away from the peak than when the

worm is heading towards the peak. Although this is not a

requirement of klinotaxis, it is an efficient component to the

strategy exploited by the evolved model worms.

The sinusoidal relationship between turning bias and bearing,

together with the linear relationship between turning bias and the

normal component of the gradient, are qualitatively similar to the

relationships observed in studies of klinotaxis in real worms [63].

This similarity is significant for two reasons. First, as we did not

explicitly include selection criteria in the evolutionary algorithm to

approximate these features, this similarity is an emergent property

of the evolved networks. Second, the resemblance suggests that the

model employs a klinotaxis strategy similar to the one used by real

worms, making the model presented here especially appropriate

for the generation of testable predictions concerning how the

biological network functions.

Sensorimotor transformation
If we consider only the transformation that occurs between the

sensors and motors, it is possible to compare the results of the

neuroanatomically-grounded model with the previous simplified

model. In order to do this, we studied how changes in

concentration are transformed into changes in motor responses,

as reflected by the worm’s orientation, using single stepwise

changes in concentration of different magnitudes at different

points in the locomotion phase (increments in concentration:

upsteps, Figure 5A; decrements in concentration: downsteps,

Figure 5B).

Orientation responses were expressed in terms of turning bias,

which was computed over a complete cycle of locomotion

following the concentration step. We observed that turning bias

varied as a sinusoidal function of the phase of locomotion at which

the concentration change occurred (Figures 5A and 5B). This

function had extrema near phases 0 and p, where the instanta-

neous velocity vector (v, see Methods) diverges most from the

unbiased translational vector (u, the worm’s direction of movement

in the absence of external input, see Methods), and minima near

phases of p/2 and 3p/2, where the instantaneous velocity vector

diverges least from the unbiased translational vector. In the

context of klinotaxis on a gradient, the instantaneous velocity

vector at the time of an upstep signals the direction of the peak

implied by such a step, whereas the instantaneous velocity vector

at the time of a downstep signals the direction opposite to the peak.

Thus, the model worm corrects its orientation relative to

discrepancies between its velocity vector and the direction of the

peak throughout the locomotion phase. The amplitude of the

orientation response was proportional to the amplitude of the

concentration step (Figure 5). This proportionality is important

Figure 2. Neuroanatomy of the minimal klinotaxis circuit. White
disks, chemosensory neurons; gray disks, interneurons; dark gray disks,
motor neurons. Black connections represent chemical synapses. Red
connections represent electrical gap junctions. The strength and
polarity of the connections are still unknown. We show the strength
and polarity from the best evolved network. Arrowheads, excitatory
connections; filled circles, inhibitory connections. Line thickness shows
relative connection strength. Color of the disk’s border represents the
sign of the bias term h (black, positive; gray, negative). Thickness of the
disk’s border represents the magnitude of the bias. All parameters were
symmetrical across the dorso-ventral midline.
doi:10.1371/journal.pcbi.1002890.g002

Table 1. Chemotaxis efficiency of the high-performance
subpopulation in conical and Gaussian gradients.

Gradient shape

Conical Gaussian

Chemotaxis index (CI) 0.87560.001 0.87160.002

Reliability (%) 1.060.0 1.060.0

doi:10.1371/journal.pcbi.1002890.t001

Neuroanatomical Models of C. elegans Klinotaxis
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when the changes in concentration produced during dorsal and

ventral sweeps have the same sign but different magnitudes.

The sensorimotor transformation in Figure 5 is qualitatively

similar to the previous theoretical model [77], which suggests the

principles of operation of the neuroanatomical network are

consistent with the simpler model.

Analysis of representative network
A neuroanatomically-grounded model allows us to go beyond

overall sensorimotor transformations to examine the interneuronal

implementation of klinotaxis. In this section we analyze in some

detail one of the best evolved networks (Figure 2), a representative

of many of the rest of the high-scoring subpopulation. The

network’s performance depends on the parameters that it evolved,

but the solution is not brittle: there is a graceful degradation of the

performance as parameters are independently perturbed away

from the evolved values (see Figure S1).

In order to understand how changes in concentration travel

through the network, we studied how the synaptic potential

(henceforth, output) of the neuron changed as a function of step

changes in concentration of different sign and magnitude over the

full spectrum that the model worms experience during klinotaxis

runs (Figure 6). The dynamics of the chemosensory neurons follow

directly from their definition (see Methods): ASER and ASEL

react only to downsteps and upsteps in concentration, respectively

(Figures 6A1 and 6A2).

The connections between the chemosensory cells ASEL and

ASER and the first interneuron class (AIY) are excitatory and

inhibitory, respectively (Figure 2). Therefore, upsteps in concen-

tration move the membrane potential of both AIY cells upward

and downsteps in concentration move the membrane potential of

both AIY cells downward (henceforth, we will refer to the

membrane potential as the activation of the neuron, with positive-

going changes as increases in activation and negative-going

changes as decreases in activation). How each AIY cell reacts to

changes in concentration is a function of their bias parameter in

relation to the strength and sign of the incoming chemical synapses

from the chemosensory neurons. Because of the nonlinearity of the

input-output relation (see Methods, Eq. 3), each AIY cell can only

respond to changes in concentration within a certain range

(henceforth, sensitivity). Also, given that the parameters of the

network are not constrained to be left/right symmetric, the range

of sensitivities of the two AIY cells can be different. In this

network, AIYL is sensitive to small changes in concentration,

positive or negative (Figure 6B1); whereas AIYR, due to a strong

negative bias parameter (Figure 2), is only sensitive to large

increases in concentration (Figure 6B2). Crucially, the ranges of

sensitivities of the two cells are complementary, such that together

they cover a broader range of the possible stimuli than

individually.

The gap junction between cells drives the activation of the

neurons closer together: the lower the resistance, the bigger the

effect. The effect, however, is not always noticeable in output

space due to the nonlinearity of the input-output relation: changes

to the activation of the neuron can be masked by the saturation of

the input-output relation. This is the case for the gap junction

between the AIY cells in this network (Figures 6B1 and 6B2).

Indeed, blocking the gap junction does not alter the dynamics of

the output of the two interneurons significantly. From this

experiment we conclude that the sensitivities of the AIY cells

depend mainly on the incoming chemical synapses from ASE.

Neuroanatomically, AIZ cells only receive a chemical synapse

from the AIY cell directly upstream. When we combine this with

AIZ’s own nonlinear response, we would expect the range of

sensitivities to different steps in concentration to be a reduced set

from AIY’s. But this is not what we observe (Figure 6C). Unlike in

the AIY interneurons, the gap junction between these AIZ cells

plays an important role. The effect can be seen in AIZR best: even

though AIYR is not sensitive to downsteps (Figure 6B2), AIZR is

sensitive to them (Figure 6C2). This information is transferred not

via the chemical synapses downstream, but via the lateral gap

junction with AIZL. The AIZ gap junction plays a crucial role in

redistributing and broadening the sensitivities to the changes in

concentration between the left and right cells.

Unlike interneurons, motor neurons additionally receive an

oscillatory input. Therefore, how they react to step changes in

concentration depends on the phase of the locomotion cycle

(Figure 6D–E) in which a change occurs. In order to understand

their operation, we first consider their dynamics in the absence of

sensory input. Figure 7 shows the steady-state input-output (SSIO)

curve of the left and right motor neurons. The oscillatory input

drives the motor neurons around the red trajectory, with dorsal

and ventral cells out of phase. The key feature of the motor

neurons is that the sensitive part of the SSIO curve is such that

Figure 3. Behavioral trace. A representative model worm was placed at 10 random orientations 4.5 cm from the gradient peak and allowed to
move for 300 sec. The gradient is Gaussian shaped. Trace color represents time. Inset: Enlargement of a gradual turn.
doi:10.1371/journal.pcbi.1002890.g003
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when one of the dorsal motor neuron is in the sensitive area of the

curve, the ventral one is not, and vice versa. Even though the

SSIO curves for the left (Figure 7A) and right (Figure 7B) pair of

motor neurons are different, they share the same principles: (a) the

sensitive region is biased with respect to the oscillatory range, and

(b) increases in concentration move the input towards the most

saturated part of the range; decreases in concentration move the

input towards the sensitive part of the range. This is consistent

with the principles observed in the motor neurons of the previous

sensorimotor-only model [77].

It is the asymmetry in the location of the sensitive area in the

SSIO curves of the motor neurons that allows for state-

dependence in the network (Figure 7). We analyze first the left

pair of motor neurons. When the concentration increases, AIZL’s

activation also increases, and for some range of magnitudes the

neuron output increases as well (blue traces Figure 6C1). Given the

inhibitory connection to the motor neurons (Figure 2), SMBDL

and SMBVL receive less input as a consequence. As the dorsal and

ventral neurons are out of phase, one is in the sensitive region of its

SSIO curve and the other is not. Therefore, the output of one of

the motor neurons decreases and the other one stays the same

(compare blue trace in Figure 6D1 to Figure 6E1). This decreases

the difference between the output of the dorsal and ventral motor

neurons, which ultimately decreases the worm’s turning. When the

concentration decreases, AIZL’s activation also decreases (red

traces, Figure 6C1), and for some range of these changes in

concentration the neuron output decreases as well. In this case, the

motor neurons receive more input, and as a consequence of the

bias in sensitivity, the output of one of the motor neurons increases

and the other stays saturated (compare red trace in Figure 6D1 to

Figure 6E1). This increases the difference between the output of

the dorsal and ventral motor neurons, which ultimately increases

the worm’s turning.

Despite the differences in evolved parameter values, the effect is

similar in the right motor neurons (Figures 6D2 and 6E2). When

the concentration increases, AIZL’s activation also increases, and

for some range of magnitudes the neuron output increases as well

(blue traces, Figure 6C2). Given the excitatory connection to the

motor neurons (Figure 2), SMBDR and SMBVR receive more

input as a consequence. As the dorsal and ventral neurons are out

of phase, one is in the sensitive region and the other is not.

Therefore, the output of one of the motor neurons increases and

Figure 4. Klinotaxis analysis. A, Average turning bias vs. bearing. B,
Average turning bias vs. the component of the gradient in the normal
direction. C, Average turning bias vs. the component of the gradient in
the translational direction. Black points represent all of the data
averaged into bins according to the translational gradient. Gray points
show the data separated between positive and negative turning bias.
The two red points highlight the significance of the difference between
the turning bias when moving down the gradient versus when moving
up the gradient at the same angle. Error bars are standard error of the
mean.
doi:10.1371/journal.pcbi.1002890.g004

Figure 5. Phase sensitivity of orientation responses. A, Response
to upsteps. B, Response to downsteps. Plots show turning bias vs. the
phase of locomotion at which the concentration step occurred. Each
point represents the average across all networks; error bars are standard
error of the mean. Shades of gray indicate the magnitude of the
concentration step (0.005 black, 0.00333 dark gray, and 0.00166 light
gray). Positive and negative values of turning bias result, respectively, in
counterclockwise and clockwise rotations of the translational vector.
Abbreviations: VS, ventral head sweep; DS, dorsal head sweep (shaded
region).
doi:10.1371/journal.pcbi.1002890.g005
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the other one stays the same (compare blue trace in Figure 6D2 to

Figure 6E2). This decreases the difference between the output of

the dorsal and ventral motor neurons, which ultimately decreases

the worm’s turning. When the concentration decreases, AIZR’s

activation also decreases (red traces, Figure 6C2), and for some

range of these changes in concentration the neuron output

decreases as well. In this case, the motor neurons receive less input,

and as a consequence of the bias in sensitivity, the output of one of

the motor neurons decreases and the other stays saturated

(compare red trace in Figure 6D2 to Figure 6F2). This increases

the difference between the output of the dorsal and ventral motor

neurons, which ultimately increases the worm’s turning.

In order to understand the range over which each neuron is

sensitive to changes in concentration, we visualized the difference

in output between the no input and input conditions as a function

of the magnitude and polarity of stepwise changes in concentration

(Figure 8). In AIY, the sensitive regions of the neuron output for

the left and right cells are different (Figure 8A): AIYL is most

sensitive to small negative and positive steps whereas AIYR is most

sensitive to larger positive steps. We can also use this analysis to

study the role of the gap junction, by blocking it and comparing

the changes in sensitivity to the unblocked condition. We observed

almost no change in the sensitivities of the left and right cells when

the gap junction is blocked (dashed curves, Figure 8A). In contrast,

for AIZ, the sensitive regions of the neuron output for both the left

and right are similar (Figure 8B): both are sensitive to small

upsteps and downsteps, though AIZL is still most sensitive to small

negative and positive steps and AIZR is biased towards larger

positive steps. The difference in the range of sensitivity for the AIZ

cells when the gap junction is blocked is dramatic (dashed curves,

Figure 8B).

The surfaces in Figures 8C and 8D allow us to visualize how the

sensitivities change as a function of locomotion phase, in addition

to the magnitude and polarity of the step change in concentration.

As for the interneurons, the main differences between the left and

right pair of motor neurons is in the range over which they are

sensitive to changes in concentration. The left pair of motor

neurons is most sensitive to small downsteps and upsteps

(Figure 8C), whereas the right pair is more sensitive to large

upsteps (Figure 8D). This difference stems from the combination of

Figure 6. Neuron output traces in response to step changes in concentration in the best evolved network. A, Chemosensory neuron
output, ASE. B, First layer interneuron output, AIY. C, Second layer interneuron output, AIZ. D and E, neck motor neuron output (D, SMBD; E, SMBV).
Time is shown on the x-axis. Neuron output is shown on the y-axis. Each trace is color-coded according to the magnitude and sign of the step of the
concentration step. The black trace represents the neuron output without input. The neuron output from left cells is shown on the left; the neuron
output from right cells is shown on the right.
doi:10.1371/journal.pcbi.1002890.g006
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sensitivities of the AIZ cells upstream (Figure 8B) and the dynamics

of the motor neuron (Figure 7). The dorsal and ventral, left and

right motor neurons add together to affect the dorsal and ventral

muscles, respectively. Therefore, the different ranges of sensitivity

are ultimately combined at the level of the dorsal and ventral

muscles.

The final issue in analyzing the mechanism of klinotaxis in this

model circuit is to consider the behavioral effects of motor activity

on the orientation of the body. How do the step changes in

concentration result in changes in the translational direction? (cf.

Figure 5). In order to answer this question, we analyzed the

orientation responses produced by single stepwise changes in

concentration (upsteps, Figure 9A; downsteps, Figure 9B).

Upsteps activate the ON cell, which reduces turning angle. The

effect of the turning angle reduction on the worm’s translational

direction is dependent on the phase of locomotion. We consider

two representative phases. First, an upstep at the midpoint of a

ventral/dorsal head sweep (Figure 9A1, points a/c): turning angle

is decreased for approximately the duration of a head sweep

(2.1 secs, cf. Fig. 6). This persistent reduction in turning angle

attenuates the ensuing dorsal/ventral turn; with the result that the

worm’s translational velocity vector rotates ventrally/dorsally

(red/green trajectory, vector ua/uc vs. u). Both the dorsal rotation

at point a and the ventral rotation at point c are appropriate

orientation responses because the model worm turns in the

direction of its instantaneous velocity vector at the time of the

increase in concentration. Second, an upstep at the ventral/dorsal

maximum (point b/d): no rotation occurs because the decrease in

turning angle attenuates parts of the dorsal and ventral turns

almost equally (blue/yellow trajectory). The absence of rotation at

points b and d is appropriate because the model worm’s

instantaneous velocity vector at the time of the increase in

concentration was the same as its translational direction. Down-

steps activate the OFF cell, which increases turning angle. The

analysis is the same as with upsteps, except that the turning

increases instead (Figure 9B1). Crucially, the ventral rotation at

point a and the dorsal rotation at point c are appropriate

orientation responses because the model worm turns away from

the direction of its instantaneous velocity vector at the time of the

decrease in concentration (red/green trajectory, vector ua/uc vs. u).

To obtain a more complete understanding of how the simple

rules for predicting changes in turning angle lead to correct

orientation responses, we expanded the analysis of Figures 9A1

and 9B1 to include steps in concentration not only at points a–d,

but also at the points in between (upsteps, Figure 9A2; downsteps

Figure 9B2; cf. Figure 5).

This mechanism depends on three basic principles. (1) The two

motor neurons are biased such that when one motor neuron is

sensitive to sensory input, the other is not. (2) The signs of

connections from sensory neurons to motor neurons are adjusted

with respect to motor neuron bias such that ON cell activation

reduces the curvature of the worm’s path, whereas OFF cell

activation increases the curvature of the worm’s path. (3) The

dynamics of sensory responses are adjusted so that changes in

curvature are transient, lasting for approximately the duration of a

head sweep. As a result, changes in curvature cause the worm’s

path to veer toward concentration increases and away from

concentration decreases, unless the worm’s head is moving in the

direction of the gradient peak at the time the concentration change

is encountered. These principles are similar to those found in the

previous sensorimotor-only model [77]. The novelty of the analysis

here lies in the implementation of the mechanism at the

interneuronal level. The interneurons on the left and right side

of the network show a certain amount of shared information about

the changes in concentration, but also some degree of specializa-

tion: some changes in concentration are sensed by the left side of

the network only and some changes in concentration are sensed by

the right side of the network only. This feature allows the network

to extend the coverage of the range of possible changes in

concentration. Finally, the gap junctions between the interneurons

can play a key role in distributing the sensitivities.

Generalizations
The result of evolutionary optimization is not a unique model,

but rather an ensemble of possible models. Given the

underconstrained nature of optimization (due to the lack of

Figure 7. Dynamics of the neck motor neurons. Input-output diagrams for the left (A) and right (B) pair of dorsal and ventral motor neurons.
Gray trace, steady-state input-output (SSIO) curve when the head sweep oscillation is absent. Red trace, instantaneous input-output relation when
the head sweep oscillation is present. Arrows show the effects of output of the indicated chemosensory neuron on motor neuron input. Shaded areas
show the range of oscillation. For each of the SSIO curves, there are dorsal and ventral motor neurons moving out of phase over the red trajectory
due to the out of phase input from the oscillatory component. When the dorsal motor neuron is at point a in the curve, the ventral motor neuron is at
point d, and vice versa. When the dorsal motor neuron is at point b in the curve, the ventral motor neuron is at point c, and vice versa. For the dorsal/
ventral SMBL pair (A), an increase/decrease in chemical concentration would decrease/increase the output of the neuron in d, but not of the neuron
in a; decreasing/increasing the difference between the two left neck motor neurons. For the dorsal/ventral SMBR pair (B), a and d represent the
opposite regions: a neuron at a is more sensitive to changes in input than the other neuron at d; but the result is the same: an increase/decrease in
chemical concentration decreases/increases the difference between the two neck right motor neurons. To different degrees, the same is the case for
other points along the curve.
doi:10.1371/journal.pcbi.1002890.g007
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electrophysiological data and the possibility of variability in both

the available experimental data and behavior across individuals),

understanding the structure of this ensemble is a key aspect of the

approach we have taken in this paper. Studying an ensemble of

models with different underlying parameters and similar behaviors

provides opportunities to explore different possible mechanisms

that could be operating in the worm. How does the mechanism

that evolved in the network analyzed generalize to the rest of the

high-scoring population? We examined the similarities and

differences between, on the one hand, the evolved electrophysi-

ological parameters and the interneuronal dynamics of the best

evolved network and, on the other hand, the rest of the high-

scoring subpopulation.

Interneuron types. Due to the nonlinearities of the input-

output relation, interneurons can react to changes in concentra-

tion only over a limited range (e.g., Figure 8A). We identified four

types of interneuron dynamics: insensitive (type A, Figure 10A),

sensitive only to either upsteps or downsteps (type B, Figure 10B),

ambiguously sensitive to both upsteps and downsteps (type C,

Figure 10C), and unambiguously sensitive to upsteps and down-

steps (type D, Figure 10D). There are two factors that determine

the type of a cell. The first is the location of the bias with respect to

the incoming weights. In cells of type A, the bias is saturating the

neuron output and both incoming weights push in the direction of

saturation. In cells of type B, the bias is in the saturated region, but

the sensory neurons connect with opposite polarities and one of

them drives the net input into the sensitive area of the sigmoid. In

cells of type C and D, the bias is centered on ranges of the

sensitivity. The second determining factor in the type of the cells is

the polarity of the incoming weights from the ON and OFF cells.

The incoming weights for type C cells have the same polarities,

whereas the incoming connections in type D cells have opposite

polarities.

AIY. In the high performance subpopulation, 6 of the 54 cells

were type A, 10 were type B, 12 were type C, and 26 were type D.

Klinotaxis networks have two AIY cells, a left and a right one. What

matters to klinotaxis is the combination of the pair. The majority of

successful networks (25 out of the 27) had a type D AIY cell paired

with any type of other AIY cell, in roughly similar proportions: 6

were paired to a type A, 9 were paired to a type B, and 9 were paired

to a type C. Only one of the networks has two type D cells. The

remaining two networks have a combination of types C and B.

How is information about the chemical concentration distrib-

uted across the pair of AIY cells? In order to determine how much

Figure 8. Range of sensitivity to changes in concentration. A, Interneuron class AIY. B, Interneuron class AIZ. Left neuron shown in blue; right
neurons shown in red. Flat regions of the curve correspond to areas of no-sensitivity to input over that region. The slope of the curve denotes the
degree of sensitivity to changes around that region of the input. For example, AIYR is sensitive to large positive changes in concentration only,
whereas AIYL is sensitive to changes in concentration around the midline. Dashed lines show the sensitivity when the gap junction between those
two neurons is blocked. In AIY, blocking the gap junction does not affect the sensitivity of its left and right neurons. In AIZ, blocking the gap junction
results in substantial differences in the range of sensitivity. C, D, Sensitivity in the left and right pair of motor neurons as a function of the phase of
locomotion, respectively. The dorsal motor neuron is shown in blue-green-yellow shades; the ventral motor neuron is shown in gray scale. Similar to
the interneurons, the motor neurons have a selective range of sensory input over which they are sensitive. Unlike the interneurons, their sensitivity
changes as a function of the worm’s sinusoidal movement. Because of the out of phase oscillation between dorsal and ventral motor neurons, which
neuron is more sensitive to a certain input swaps back and forth between them.
doi:10.1371/journal.pcbi.1002890.g008
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of the information about the stimulus is redundant or comple-

mentary in the left and right cells, we compared the range over

which the cell is sensitive to changes in sensory input (henceforth,

coverage, see Methods), individually versus combined (Figure

S2A). Across the successful population, individual AIY cells

covered only a fraction of the range covered by two cells

combined, on average 0.65. Therefore, although there is some

overlap in the range of sensitivities, the left and right cells in all

networks specialize their sensitivities to only a part of the sensory

range. We can also ask how much information the two neurons are

sharing. The only connection between the two neurons is via the

gap junction. We studied the role of the gap junction by

comparing the coverage of the AIY pair while blocking the gap

junction between the left and right cells (Figure S3A). Across the

successful population, the gap junction did not play an important

role in the transformation that occurs in the AIY layer. That is, for

the majority of networks in the successful population, blocking the

AIY gap junction leaves the individual AIY cells with only a minor

decrease in its coverage over the sensory input compared to the

unblocked scenario.

Ablating the chemosensory neurons ASEL and ASER resulted

in qualitatively similar deteriorations to klinotaxis performance to

what has been observed experimentally [63] and in the previous

model [77] (Figure 11). The current neuroanatomical model

allowed us to also explore the effect of ablating individual

interneurons, which had not been possible in previous models

and has not yet been done in the worm (Figure 11). Ablating any

one of the AIY cells individually decreased klinotaxis performance

severely in most of the successful networks. Nevertheless, as can be

seen by the variance, there were some networks in the high scoring

subpopulation that performed klinotaxis even after ablating one of

the AIY cells.

AIZ. All cells in the second layer of interneurons were type D

(Figure 10D). That is, each AIZ left and right cell is individually

sensitive to upsteps and downsteps. This can be seen when we

compare the coverage of individual AIZ cells with the combined

coverage over the pair (Figure S2B). Across the successful

population, the coverage of the individual AIZ cells was more

similar to the range covered by two cells combined, on average

0.83. In the majority of the networks in the successful population

(24 out of 27), the overlap between the shared coverage of the

range of sensitivities in the left and right AIZ cells is greater than in

the AIY cells (Figure 12A). Neuroanatomically, this is not intuitive

because when we only consider the chemical synapses, the

Figure 9. Orientation responses elicited by stepwise changes in concentration. A, Response to upsteps. B, Response to downsteps. 1,
Behavioral traces for four points in the locomotion phase. The black trace shows the trajectory in the absence of a concentration step. The colored
traces show the trajectories obtained in response to concentration steps placed at the locations indicated by dots of matching color. The four
locations chosen cover a complete cycle of locomotion (dashed box). Vectors indicating the direction of translation (dashed lines) are shown for no
concentration step (u), and steps at locations a and c (ua, and uc). Abbreviations: DS, dorsal head sweep; VS, ventral head sweep (shaded region). 2,
Generalization of the turning bias as a function of the timing within the locomotion phase where the step is introduced. The example traces from A1
and B1 are represented by labeled disks in A2 and B2, respectively.
doi:10.1371/journal.pcbi.1002890.g009
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sensitivity of each AIZ cell is constrained by the sensitivity of the

AIY cell upstream from it. The explanation for the increased

shared coverage in the AIZ pair is to be found in the role of their

gap junction (Figure S3B). When we compared the coverage of the

AIZ neurons while blocking the gap junction with the normal

coverage, we observed a larger detriment to the coverage of the

sensory range with respect to the AIY neuron. The left and right

AIZ cells mutually increase their sensitivity to a larger range of the

spectrum via the gap junction. In the majority of successful

networks (24 out of 27), the gap junction plays a more important

role in the AIZ layer (by broadening the range of sensitivities) than

in the AIY layer (Figure 12B). Finally, ablating any one of the AIZ

cells individually decreased klinotaxis performance substantially in

all of the successful networks. Unlike ablations to AIY, ablations to

AIZ result in a decrease in klinotaxis performance across all high-

performing individuals. This suggests that both AIZ cells are likely

to be crucial for klinotaxis in the biological organism, but not

necessarily both AIY cells.

SMB. Motor neurons all produced the same strategy: upsteps

in concentration result in reduced difference between the dorsal

and ventral motor neuron outputs and downsteps in concentration

result in a larger difference between the dorsal and ventral motor

neuron outputs. Although the specifics of how each circuit

accomplishes this varies, three common features are observed.

Figure 10. Interneuron types based on their response to step changes in concentration. Type A: insensitive. Type B: sensitive only to
either upsteps or downsteps. Type C: ambiguously sensitive to both upsteps and downsteps. Type D: unambiguously sensitive to upsteps and
downsteps. Figures in column 1 show neuron output trace over time, colored according to the different steps in concentration received. The sign and
magnitude of the step in concentration is given by the color bar. The black trace represents the output of the neuron without any input. Column 2
shows their corresponding sensitivity plot. Average output of the neuron (relative to the average output of the neuron in the absence of any input) as
a function of step changes in concentration of different sign and magnitude over the range of sensory stimuli. Flat regions of the curve correspond to
areas of no-sensitivity to input over that region. The slope of the curve denotes the degree of sensitivity to changes around that region of the input.
doi:10.1371/journal.pcbi.1002890.g010
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First, the sensitive part of the SSIO curve is biased to the side of

the oscillatory range towards which the input changes during

downsteps (to the left of the center of the oscillatory range when

the input increases during upsteps and decreases during down-

steps, and to the right of the oscillatory range when the input

decreases during upsteps and increases during downsteps). The

effect that downsteps have on the net input of the motor neurons is

a function of the input/output relationship between changes in

concentration and changes in output of AIZ (positive relationship,

increase in concentration leads to increase in AIZ output and vice

versa; negative relationship, increase in concentration leads to

decrease in AIZ output) and the polarity of the AIZ-SMB

connection. Second, in the majority of motor neurons the sensitive

part of the SSIO curve falls within the bounds of the oscillatory

range. This means that each motor neuron can react to upsteps

and downsteps by increasing or decreasing the difference between

the dorsal and ventral cells. Because there are two pairs of dorsal/

ventral motor neurons, a left and right pair, in most successful

networks one of the pair of motor neurons was more sensitive to

upsteps (i.e., most of the sensitive region was within the oscillatory

range) while the other pair was more sensitive to downsteps (i.e.,

most of the sensitive region is outside of the oscillatory range).

Third, the SSIO curve of the majority of motor neurons was

unistable (self-connection ,4). Crucially, all solutions had at least

one unistable pair of motor neurons. Therefore, motor neurons

react smoothly to different changes in concentrations. In the few

cases where the bistable motor neurons were found, the abrupt

change was in reaction to large decreases in concentration. We

also performed individual ablations on the motor neurons. We

observed a wide variance in the decrease of performance when

ablating individual motor neurons (Figure 11). No subsets of motor

neurons were responsible for the modulation of the turning across

the entire population. Furthermore, for the majority of the

networks (18 out of 27), ablations to all four motor neurons

affected klinotaxis substantially. For the rest of the networks, at

least two of the motor neurons were crucial.

Figure 11. Effects of simulated neuron ablations on klinotaxis performance. Neuron activation set to resting potential (such that neuron
output is 0) during assay. The middle bar inside the box is the statistical median. The outer edges of the box represent the 0.25 and 0.75 quantiles.
The lines that extend out of the box span the full dataset.
doi:10.1371/journal.pcbi.1002890.g011

Figure 12. Interneuron comparison. A, Unique information about the sensory input in the interneurons. The coverage of a cell measures the
range of the sensory stimuli over which it is sensitive to changes. When the left and right cells specialize over a different range of possible sensory
stimuli, their combined coverage can be greater than their average independent coverage. The x-axis represents the gain in coverage when the left
and right AIY cells are considered jointly from when each cells is considered independently. The y-axis represents the same information for the AIZ
pair. B, Role of gap junctions in the interneurons. Effects of simulated blocked gap junction on coverage of the interneurons over the range of step
changes in concentration for AIY and AIZ cells. The x-axis represents the loss in coverage when the AIY gap junction is blocked, compared to when it
is functioning normally. The y-axis represents the same information for the AIZ pair. Each point represents a network from the successful population.
doi:10.1371/journal.pcbi.1002890.g012
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Discussion

In this paper, we used evolutionary algorithms to set the

unknown electrophysiological parameters of a minimal salt

klinotaxis circuit extracted from the C. elegans connectome such

that a simple brain-body-environment model of the worm

exhibited efficient chemotaxis. We first analyzed in detail the

operation of a high-performing solution and then explored the

extent to which similar principles were operating throughout the

ensemble of high-performing solutions. Due to the undercon-

strained nature of the problem, the particular parameter sets found

by different runs of the evolutionary algorithm varied widely even

when producing very similar chemotaxis behavior. However,

several broad classes of patterns observed in the ensemble of high-

performing solutions suggest new experiments that need to be

carried out in order to select between these possibilities and further

refine the model.

First, a more systematic analysis of turning as a function of the

gradient in the translational direction in the worm is required. In

our models, we observed larger magnitude turns for negative

translational gradients than for positive translational gradients

across all successful networks (Figure 4C). Although this was not a

criteria set forth in our definition of klinotaxis, it is an efficient

supplement to the strategy, exploited by the evolved model worms.

Essentially, the magnitudes of the corrections are larger when the

worm is heading away from the peak than when the worm is

heading towards the peak. This has not yet been analyzed in the

worm.

Second, ablations of individual AIY and AIZ cells (as opposed to

both members of a class simultaneously) should be performed. The

variance in klinotaxis performance for AIY-ablated model worms

was higher than for AIZ-ablated model worms in the successful

population. Our analysis revealed that the distribution of the

information about the sensory stimuli was better distributed across

AIZ cells and AIY cells, where sometimes all of the information

resided in only one of the cells, and none of the information in the

other one. This is influenced by the neuroanatomy of the circuit,

where AIY cells have access to information from both the ON cell

and the OFF cell, enabling an individual cell to integrate most of

the necessary information to perform the task. AIZ cells, on the

other hand, receive already integrated information from the AIY

cells, and have to distribute the information to other AIZ cell, via

the gap junction, in order to have an effect on all four motor

neurons. So far klinotaxis experiments involving AIY and AIZ

have been performed only while ablating the left and right cells

simultaneously [63]. Unfortunately, simulated ablations of the

whole class do not make sense in this minimal model because there

are no alternative pathways, thus making it difficult to compare

the existing experimental results to simulated ablations. Neverthe-

less, the results of the model are consistent with the ablation

experiments in the real worm, where killing AIY also has higher

variance than killing AIZ [63]. The variation, of course, could be

attributed to different reasons in the model and the worm. The

variance in the simulation data arises from the different

parameters of each of the successful klinotaxis networks. There

are at least two possible sources of variation in the worm data:

experimental ‘noise’ created by variability in the observational and

experimental techniques, and natural variability in the worms

[31].

Third, a more refined set of ablation experiments could also test

which pattern of AIY sensitivities that we observed in our model

ensemble is utilized by C. elegans. Analysis of the dynamics of model

AIY interneurons revealed three types of successful networks

within the population: networks where only one AIY cell was

sensitive to the full range of changes in concentration, networks

where left and right cells had a different range of sensitivities to

changes in concentration, and networks where both cells covered

the full range of changes in concentration. Ablation experiments to

individual AIY cells could distinguish between all three scenarios

in the worm. In the first scenario, ablating one of the AIY cells

would lead to a major decrease in performance, whereas ablating

the other AIY cell would have no effect on performance. In the

second scenario, killing either AIY cell individually would not

decrease performance entirely, but the behavioral deficiency

between ablating left and right cells would be significantly

different. In the third scenario, the behavioral deficiency when

ablating left and right cells would be similar. The majority of

networks exhibit a different range of sensitivity over the sensory

input in the left and right cells. This is similar to what has been

observed in ASE [69]. Our analysis could help distinguish the AIY

cells further. A study of the resulting behavioral pattern of left and

right ablations could allow us to infer the difference in the range of

sensitivities between the two cells. Networks without sensitivity to

upsteps produce less efficient spiral tracks towards the peak, but

just as reliably. On the other hand, networks without sensitivity to

downsteps produce efficient paths straight towards the peak, but

only for some orientations.

Fourth, any additional physiological analysis of the relationship

between changes in concentration and interneuronal activity

would help to narrow down the arithmetic sign possibilities in this

circuit. From our analysis, we know the paths from ASEL to the

motor neurons and from ASER to the motor neurons are

antagonistic: an upstep in concentration increases the net input to

the neck motor neurons, and a downstep in concentration

decreases the net input, or vice versa. Crucially, we know from

our analysis which of the two it ought to be based on how the

sensitive region of the motor neurons is biased with respect to the

oscillatory range. Essentially, the polarities of the connections must

be such that an increase in concentration shifts the input towards

the most saturated part of the range and a decrease in

concentration shifts the input towards the sensitive part of the

range. Because there are three chemical synapses between the

chemosensory neuron and the motor neuron, there are a total of 8

possibilities. Of course, direct electrophysiological study of these

connections in the worm would be ideal, but other experimental

possibilities exist. For example, characterizing the sensitivity of the

motor neurons with respect to the locomotory oscillation would

help to narrow down the set of possible polarities that can result in

successful klinotaxis to half.

Fifth, blocking individual gap junctions between the two

interneuron classes, AIY and AIZ, would provide insight into

the relationship between number of contacts and functionality.

Our analysis revealed that the functional role of the AIZ gap

junction was more crucial than the role of the AIY gap junction in

the successful population. The anatomy of the chemical synapses

in the network is likely to be playing a key role. AIY has access to

the full range of input from the incoming chemical synapses of

ASER and ASEL, whereas AIZ cells depend only on the nonlinear

output of the AIY cells upstream from it. This was also reflected in

the evolved strength of the gap junctions in the successful

population, with a median ratio of 0.69 between the strength of

the AIY/AIZ. This result is roughly consistent with the

corresponding ratio derived from the known neuroanatomy in

the worm: the AIY gap junction has one contact whereas the AIZ

gap junction has two contacts [1].

Not all of the experiments we have proposed are equally

feasible. The first experiment could be performed using detailed

behavioral data from chemotaxis assays. Experiments 2 through 4

Neuroanatomical Models of C. elegans Klinotaxis
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require individual cellular ablations that are currently possible.

The last experiment, testing the role of the gap junction and the

way in which information is shared in the interneurons, AIY and

AIZ, is not currently feasible in C. elegans.

It is important to reiterate that the current minimal model is not

the ultimate model of the actual klinotaxis circuit, only a useful

starting point for the modeling-experimental cycle. There are

several directions in which our minimal klinotaxis model could be

extended. First, as limitations of this minimal model are

encountered, additional interneuronal pathways should be con-

sidered. For example, Figure 13 shows the circuit obtained by

relaxing the contact threshold constraint in our C. elegans

connectome search; it contains an additional 13 neurons and 18

feedforward paths between ASE and SMB. Similar extensions

could be obtained by relaxing the path length constraint. Second,

as additional experimental observations are made, neurons should

be added or deleted from the network. For example, a recent study

shows that RIA encodes head movement [83]. A subsequent

model could explore the paths between ASE and the neck motor

neurons, through RIA. Third, more biological realism can be

introduced to the model as necessary to account for new

experimental results. As more neurophysiological information

becomes available about C. elegans neurons, neuromodulation, and

the relationship between contact number and strength of

interaction [48], [69], [84], [85], more biophysically-grounded

neural models can be employed. In addition, more realistic models

of the body musculature could be employed [86], [87]. Finally, a

neuroanatomically-grounded model of C. elegans klinotaxis could

serve as a springboard for other future modeling efforts, including

the interaction of klinotaxis with klinokinesis [64], [71], its

integration with locomotion [87], associative learning [66], [88],

and its relationship with other taxes such as odortaxis and

thermotaxis [78], [89]. In the long run, a model such as the one we

have described here may represent an initial step along a path to

the ultimate goal of having a brain-body-environment model of a

complete animal.

In this paper, we have shown how a stochastic optimization

technique such as evolutionary algorithms can be used as a kind of

semi-automated hypothesis generator. By combining known

neuroanatomical constraints from the C. elegans connectome with

reasoned simplifications of its body and environment, optimization

can fill in missing electrophysiological parameters in plausible ways

so as to produce worm-like klinotaxis. Since our knowledge of any

biological system is always partial, this methodology can be

applied more generally: optimization can be used to explore the

possibilities for what is unknown in ways consistent with what is

known. A key feature of this approach is that the result is not a

unique model, but rather an ensemble of models that are

consistent with current knowledge of the system of interest. By

studying the structure of this ensemble, one can formulate new

experiments that can distinguish between the various classes of

possibilities. The results of these experiments can then be used as

Figure 13. Neuroanatomical network connecting ASE to SMB, constrained to paths of length 3, but without a contact threshold.
White disks, chemosensory neurons; gray disks, interneurons; dark gray disks, motor neurons. (Note: ADFR is a chemosensory neuron, but it is not
shown in white because it is not in the original target set. Similarly, RMGL is a motor neuron, but it is not shown in black because it is not in the motor
target set). Black connections represent chemical synapses; red connections represent electrical gap junctions.
doi:10.1371/journal.pcbi.1002890.g013
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additional constraints for subsequent optimizations in an iterative

cycle of model refinement. In this way, productive interactions

between modeling and experiment can begin very early in the

lifecycle of a biological modeling project, when very little data is

available, and carry through to a mature project when the system

has been very well-characterized experimentally.

Methods

Our model utilized the same chemosensory model, neuron

model, chemical synapse model, and simplified head model as the

previous klinotaxis model [77]. The primary difference was that

the new model included interneuronal pathways derived from an

analysis of the C. elegans connectome. In addition, the new model

also included electrical synapses.

Connectome data mining
Neuronal connectivity data for C. elegans was assembled by

White et al., [1] from 5 animals, and later revisited [2], [24]. For

each neuron, data exists for the total number of chemical synapses.

There is also information about the synapse type: gap junction,

where there is no directionality; an unambiguous chemical synapse

from one neuron to another, also called a monadic synapse; and a

joint chemical synapse between one neuron and more than one

recipient, which can be dyadic or triadic. The C. elegans

connectome data set is not 100% complete. Connectivity data

for 39 of the 302 neurons is partially missing, including the most

posterior 21 of the 75 motor neurons. Current theoretical and

experimental studies are aimed at estimating and reconstructing

missing data [90], [91]. The klinotaxis network focuses on neurons

that are in the head and neck, which is where the data is most

complete. While it is possible for the missing data to change the

results, there is no reason to wait for its full reconstruction to begin

to develop the methods of analysis to link the connectome to

behavior.

In order to search the connectome, we developed code that

finds paths connecting two sets of neurons in the C. elegans

connectome. Using existing online tools (e.g., [92], [93]), it is

possible to manually examine the connections between pairs of

neurons. However, no tool was available to systematically search

the connectome for all pathways connecting two sets of neurons

that satisfy a flexible set of search criteria. Our code recursively

performs a breadth-first search of the C. elegans connectome

database from a Root Set of sensory neurons to a Target Set of motor

neurons subject to a set of constraints. At each step of the search,

two constraints were applied. A Depth Limit constraint terminated

the search at a specified pathway length. A Contact Threshold

constraint only considered connections that involved more than a

given number of chemical synapses or gap junctions.

Sensory neurons
Changes in salt concentration were encoded by ON and OFF

chemosensory cells [69] using an instantaneous function of a

derivative operator applied to the recent history of attractant

concentration [94]:

yON(t)~

Pt
t{N c(t)

N
{

Pt{N
t{(NzM) c(t)

M
ð1Þ

where c(t) is the concentration at time t, and N and M are the

durations of the two intervals over which the concentration is

averaged. In response to a concentration step of infinite duration

at t~0, yON yields a linear rise to a peak at t~N , and a linear

decay to base line at t~NzM; accordingly, N and M are referred

to as the ‘‘rise time’’ and the ‘‘decay time’’ of the sensory neurons.

In the case of the OFF cell, yOFF, the signs were inverted so that

decreases in concentration yielded positive activations. In both

ON cells and OFF cells negative activations were set to zero.

Interneurons
Interneurons were modeled as passive, isopotential nodes

according to:

ti
dyi

dt
~{yiz

XN

j~1

wjis(yjzhj)z
XN

k~1

gki(yk{yi)zIi ð2Þ

where y represents the membrane potential (or neuron activation)

relative to the resting potential (thus y can assume positive and

negative values), t is the time-constant, the first sum term is the

input from the chemical synapses, the second sum term is the input

from the electrical synapses, and the third term represents external

input to the neuron.

The model assumed chemical synapses release neurotransmitter

tonically and that steady-state postsynaptic voltage is a sigmoidal

function of presynaptic voltage [56]:

s(x)~1=(1ze{x) ð3Þ

where s(x) is the synaptic potential or output of the neuron. The

chemical synapse has two parameters: hj is a bias term that shifts

the range of sensitivity of the output function, and wji represents

the strength of the chemical synapse. We can interpret the

strength as the product of the number and size of the chemical

synapses.

The importance of electrical synapses has been shown in several

C. elegans behaviors, including locomotion and touch-withdrawal

behaviors [95], [96]. Electrical synapses are generally described as

rectifying (current passes preferentially in one direction) or non-

rectifying (current is passed equally efficiently in both directions).

Unfortunately, there is no concrete evidence about the nature of

electrical synapses in C. elegans. Until more evidence is available,

and in line with previous models [97], the model assumes electrical

synapses in C. elegans are nonrectifying, with gij as a conduct

conductance between cell i and j (gij.0).

Neck motor neurons
Neck motor neurons were modeled similar to the interneurons,

except with self-connections. Biophysically, self-connections can be

interpreted as the voltage dependence of inward currents

underlying the graded regenerative potentials that are character-

istic of several C. elegans neurons, including the neck motor neurons

[48], [84]. The neck motor neurons also receive an additional

input from an oscillatory component, yOSC.

ti
dyi

dt
~{yiz

XN

j~1

wjis(yjzhj)zwOSCyOSC ð4Þ

where wOSC represents the strength of the connection from the

oscillatory component. Because the cellular mechanism by which

oscillations are generated during locomotion in C. elegans is

unclear, we did not explicitly model this mechanism; instead, we

represented its effect as a sine wave, yOSC~sin(2pt=T), with

T = 4.2 sec, the duration of a one cycle of locomotion on agar

[73]. The dorsal and ventral motor neurons receive out of phase

input from the oscillatory component.
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Body and behavior
In sinusoidal locomotion (without slip), each body segment

follows the one anterior to it. The worm was therefore represented

as a single point (x, y) with instantaneous velocity v. The angular

direction of movement m was measured relative to the positive x-

axis (Figure 14A). The biomechanics of locomotion were

represented in idealized fashion, with two main assumptions. (1)

Neck muscle length was proportional to motor neuron output. (2)

The turning angle w (Figure 14B) was proportional to the

difference in muscle length. After combining constants of

proportionality, this gives:

w~
dm

dt
~wNMJ s(yDzh){s(yV zh)ð Þ ð5Þ

where, yD and yV are activations of the dorsal and ventral neck

motor neurons, wNMJ is the strength of the connection from motor

neurons to muscles. It follows that the model worm’s position is

updated as:

~vv(t)~
dx

dt
,
dy

dt

� �
~ v cos m(t)ð Þ,v sin m(t)ð Þð Þ ð6Þ

where v is a constant speed of 0.022 cm/s [73]. To include

pirouettes, the model worm’s orientation was randomized with an

average frequency of 0.033 Hz, which matches the baseline

frequency of pirouettes in real worms [71]. In analysis, pirouette

frequency was set to zero.

We did not explicitly model the mechanism responsible for

generating the oscillations for forward thrust; instead, we

represented its effect as a sine wave. Movement in real worms

cannot occur without the thrust generated by undulations [98]; to

implement this constraint, the velocity of the model worm was set

to zero unless undulations were present.

Environment
The gradient during a typical salt chemotaxis assay has a

Gaussian shape [64]. In the context of evolution, however,

Gaussian gradients are problematic because local steepness is

systematically related to distance from the gradient peak. To avoid

this problem, we used conical gradients of varying steepness during

evolution. Accordingly, attractant concentration c(t) was propor-

tional to the Euclidean distance from the gradient peak,

c(t)~a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x(t)2zy(t)2

q
ð7Þ

where a determines the steepness of the gradient.

Evolutionary algorithm
The parameters of the model were evolved using a genetic

algorithm [99]. The optimization algorithm was run for popula-

tions of 60 individuals. We evolved the following parameters

(ranges are shown in brackets): wNMJ [1, 3]; h, wON, wOFF, and wS

[215, 15]; wOSC [0, 15], N and M [0.1, 4.2]. Network parameters

were symmetrical across the dorsal/ventral midline. Parameters

were encoded in a 20-element vector of real-values between [21,

1]; when needed, parameters were linearly mapped to their

corresponding ranges. Each time the algorithm was run,

individuals were initialized by random selection from the range

of each parameter. Populations were evolved for 300 generations.

At the end of a run, the parameters of the best performing

individual were stored for later analysis. The algorithm was run

100 times (using different random seeds), yielding 100 distinct

networks.

Evaluation of fitness
Fitness was evaluated in simulated chemotaxis assays. At the

start of each assay, the model worm was placed with a random

orientation at a point 4.5 cm from the peak of the gradient and

motor neuron activations were randomized over the range [0, 1].

Gradient steepness a was randomized over the range [20.38,

20.01]. The fitness score was quantified in terms of a chemotaxis

index CI defined as the time average of the distance to the peak of

the gradient,

CI~1{

ðT

0

h(t)

h(0)
dt ð8Þ

where h(t) is the Euclidean distance to the peak, h(0) is the model

worm’s initial distance from the peak (4.5 cm), and T is the total

Figure 14. Model worm. A, Idealized body. The model worm was
represented as a point (x, y) located at the center of the border between
idealized head and neck regions of the model. The quantity m is the
angle between the instantaneous velocity vector v and the positive x
axis. The dorsal (gray) and ventral (black) motor neuron pairs receive
out of phase oscillatory input from the body. B, Changes in orientation.
Between time steps i21 and i, the orientation of the velocity vector
changes by the turning angle w. The gray arc is the model worm’s path.
C, Terminology. Orientation vectors used in the analysis of sinusoidal
locomotion. Undulations occur in the x–y plane. The white circles
represent the start and end of one locomotion cycle. Solid section of
the trajectory represents ventral head sweeps. Dashed section of the
trajectory represents dorsal head sweeps.
doi:10.1371/journal.pcbi.1002890.g014
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simulated assay time (500 sec). For simplicity, negative CI values

were set to zero. The fitness of an individual was defined as the

average CI over 50 assays.

Terminology
A common measure of chemotaxis performance in C. elegans salt

chemotaxis assays is the proportion of worms that reach the

gradient peak [35], which we will refer to as reliability. In our

simulations, we defined the peak to be a region enclosed by a circle

with a radius of 0.1 cm centered on the peak.

A locomotion cycle consists of alternating ventral (solid

trajectory, Figure 14C) and dorsal (dashed trajectory, Figure 14C)

head sweeps. The principal orientation vector used was the direction of

translation, defined by any pair of points on a trajectory separated

by a phase difference of 2p, i.e. one cycle of locomotion

(Figure 14C). The vector 90 degrees counter-clockwise from the

direction of translation is the normal direction, which was used to

quantify the gradient as sensed by the model worm over a single

head sweep. The angle between the line of steepest ascent and the

direction of translation is the model worm’s bearing. The turning bias

was defined as the sum of the turning angle w over one cycle of

locomotion.

The evolved model neurons are sensitive to sensory input over a

certain range. The coverage of a neuron was defined as the

proportion of sensory input, over a specified range, where the

output of the model neuron was substantially different from the

output of the neuron over nearby stimuli. The range was

determined by the sensory input observed during a usual klinotaxis

run, 60.02. The average output of the neuron was recorded for

different steps in concentration over that range, in intervals of

561024. Each point was considered ‘covered’ only if the average

output of the neuron for that input was sufficiently different

(greater than 161024) than the average output during the previous

step in concentration.

Supporting Information

Figure S1 Parameter study for the best evolved network. We

tested the chemotaxis performance of the representative network

as individual parameters were modified between 610% of their

original value. On the y-axis is the chemotaxis index of the

network (shown between 0.75, the cutoff point used for the

successful population, and 0.89). The gray lines show the

degradation of the network’s performance as individual parame-

ters are independently perturbed away from the evolved values.

The thick black line shows the average degradation over all

parameters in the network. As expected, the network’s perfor-

mance is more sensitive to some parameters than others. The most

sensitive parameters were the self-weights and biases on the motor

neurons, and the weights from AIZ to SMB. All parameters

exhibit a graceful degradation over a larger range of perturbations

(0%–200%, points not shown).

(EPS)

Figure S2 Combined versus independent coverage across

interneuron pairs. Coverage of interneurons AIY (A) and AIZ

(B) over the range of step changes in concentration when the left

and right cells are considered independently versus combined.

Data shown for all individuals in the successful population. Gray

points represent the coverage of the left and right cells individually,

joined by a line to identify the network. Red points represent the

average coverage for that network in the two conditions:

individually and combined.

(EPS)

Figure S3 Role of gap junctions in the interneurons. Effects of

simulated blocked gap junction on coverage of the interneurons

over the range of step changes in concentration for AIY (A) and

AIZ (B) cells. Data shown for all individuals in the successful

population. Gray points represent the coverage of the left and right

cells individually, when the gap junction is functioning versus their

coverage when the gap junction is blocked. The data points for the

left and right cells are joined by a line to identify the network. Red

points represent the average coverage for that network in the two

conditions: normal and blocked.

(EPS)
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