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Abstract

In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little
is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when
they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the
probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict
their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of
probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the
currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions
belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to
explain the engagement of the default mode network in probability learning. A BOLD response relating to value was
detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal
cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.
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Introduction

In an uncertain environment, probabilities are crucial informa-

tion because they improve prediction of future events. For

humans, information about the likelihood of events can be

described with abstract symbols, for instance with a verbal

sentence or a pie chart. But in many situations, probabilities are

learned through experience by observing the occurrence of events

[1]. Animals can only learn probabilities through experience as

they have no access to language. Thus understanding how

information about probabilities is acquired in the brain is a

fundamental question in decision neuroscience for both humans

and animals.

In the present study, we focused on the probability of events

independently of their value. The motivation came from the

observation that people can memorize, make predictions, and

decide in the absence of immediate reinforcements. This ability to

build a representation of the environment independently of the

rewards to be received is made explicit in model-based reinforce-

ment learning [2]. In addition, a separate estimation of probability

and value is necessary to ensure rational choices [3,4]. This

principle called ‘‘probabilistic sophistication’’ might seem counter-

intuitive because probabilities are combined with values to

estimate expected value in many decision models (e.g., expected

utility). Nevertheless, the fact that probabilities and values are

multiplied does not contradict the necessity to estimate them

independently. The concept of probabilistic sophistication is

illustrated in Fig. 1.

In psychology, there has been a long tradition of research

showing that people can learn the probabilities of stimuli with no

value like neutral words or symbols [5–7]. In neuroscience, this

type of inference has been studied with categorization tasks [8]. In

the weather prediction task for instance, participants have to

predict the occurrence of two probabilistic outcomes through trial

and error (e.g., sunshine or rain). The probability of the outcome is

conditional on a set of four symbols. When comparing this task to

a control condition, authors have found activation in a large

network including the medial and lateral prefrontal cortex, inferior

parietal cortex, posterior cingulate cortex and striatum [9–11]. A

limitation of these studies is the use of a subtraction instead of a

parametric approach. It is thus unknown if regions in the brain

encode the probability of the outcome in this task.

Following a parametric approach, authors have observed a

larger BOLD response in striatum and ventro medial prefrontal

cortex when the probability of an anticipated reward increased

[12–14]. These results have been interpreted in terms of value

because for a single and uncertain reward, probability and

expected value are positively correlated. Other regions of the

brain, like the parietal cortex and the amygdala, have been found

to increase with the probability of an upcoming punishment
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[15,16]. To support probabilistic sophistication however, one has

to identify structures in the brain which encode probability

independently of value.

The effect of value can be controlled for by relating brain

activity to the probabilities of events and making sure these

probabilities do not covary with reward expectation. An event can

be defined as a stimulus, its omission, a feed-back and so on. In

reinforcement learning studies, authors have shown a larger

BOLD response to the occurrence of rare events [17–19]. Activity

has generally been found in the lateral parietal and prefrontal

cortex. Using EEG, numerous studies have shown an enhanced

brain response (P300) to rare target in the odd ball paradigm

[20,21]. It should be noted that in these fMRI and EEG studies,

brain activity was not always related to the probability of the

outcome, but to other measures like surprise or ‘‘state’’ prediction

error (one minus the estimated probability of the outcome).

However, these measures are highly and negatively correlated with

probability. If the surprise or state prediction error is large, the

outcome probability is low.

The brain response to rare events has been explained by

associative learning theory (as a prediction error) [18,19] or

statistical inference (as a Bayesian surprise) [17,21,22]. In a

learning context however, we are not aware of experiments

showing a positive correlation between brain activity and event

probabilities. This is surprising because several models explain

choices as the result of evidence accumulation [23,24]. When the

environment is stable (probabilities do not change overtime), the

past occurrence of an uncertain stimulus constitutes evidence for

its future occurrence.

In a perceptual decision-making task, the agent has to make a

decision based on a noisy signal. Several studies in monkeys have

shown that the firing rate of neurons in the lateral intraparietal

cortex increased over time as a function of the proportion of dots

moving in the same direction [25,26] and this pattern is well

explained with artificial neural networks [27]. In these studies,

accumulation of evidence is observed by recording the firing rates

of neurons with a specific response field [26,28]. With fMRI, the

researcher only has access to the activation of a large population of

neurons and evidence accumulated by neurons of one response

field (e.g left direction) might cancel out the evidence accumulated

by neurons sensitive to a different response field (e.g. right

direction).

In a probability learning task evidence is not presented

simultaneously but one after another. This offers the opportunity

to relate brain activity to the characteristic of the currently observed

evidence (which serves as a probe). If the evidence has been

observed many times, retrieval models based on accumulation

processes predict a stronger brain response because the probe

matches numerous traces of past outcomes in memory [29,30]. In

neuroscience, it has been proposed that the inferior parietal cortex

plays the role of a mnemonic accumulator because this area is more

activated during the successful recognition of old versus new items

[31–33]. Other regions of the default mode network (medial

temporal lobes, medial prefrontal cortex, posterior cingulate cortex)

have been found to be more activated for objects which are easily

associated to a specific context compared to objects eliciting weak

association [34,35]. According to the principle of an accumulation

of evidence in memory, a positive BOLD response can be expected

for likely events, particularly in the default mode network.

Overall, studies have identified regions in the brain where activity

increased with the probability of a single and random reward.

BOLD response related to reward probability has been observed,

mainly in striatum [12,36] and ventro medial prefrontal cortex

[13,37]. However, when the effect of value was controlled for, an

increase of activity in response to unlikely outcomes has been found

in lateral parietal and lateral prefrontal cortex [17–19]. As such,

previous studies on learning have shown that the brain reacts to

rewarding or rare events but not to likely events. This conflicts with

models of perception and memory [27,29] where activity increases

with the accumulation of evidence. In a probability learning task, we

found that activity in bilateral inferior parietal and medial prefrontal

cortex increased for events which had been observed many times

and were likely to occur again.

Results

Rational of the task
We developed a task where evidence for future outcomes were

balls drawn from a bin. The bin contained balls of different colors

and each color was associated to a payoff (Fig. 2a). The

Figure 1. Probabilistic sophistication. A separate estimation of
probability and value is necessary to guarantee rational choices in
decision theory. This separation also offers more flexibility in goal
oriented decisions. Indeed, the subjective values of events change with
our goals but not their probabilities of occurrence which are controlled
by the environment (or the response of the environment to our
actions). For instance, a person is trying to estimate the probability that
it will rain. On the left side of the figure, she wants to water her garden.
Thus ‘‘rain’’ is a positive event relative to her goal. On the right side, she
wants to go for a bike ride. Thus ‘‘rain’’ is a negative event. It can be
seen that the subjective value of ‘‘rain’’ changes with personal goals but
not the chance it will rain. Therefore, it would be adaptive for the brain
to encode the probabilities and values of events separately.
doi:10.1371/journal.pcbi.1002895.g001

Author Summary

In order to make adaptive choices, people need to gather
evidence to predict what will happen next. In general, the
more frequently an event is observed, the more likely it
will occur in the future. Thus the probability of an event is
useful to predict its future occurrence. Previous studies
have identified regions in the brain that react to rewarding
or surprising events, but not to likely events. In the present
study, participants had to predict payoffs by observing
their repeated occurrence. Functional imaging showed
that brain activity in inferior parietal and medial prefrontal
cortex increased if the currently observed payoff had been
seen many times before. This suggests that these two
cortical regions accumulate evidence to predict future
events. Further analyses revealed that they belonged to
the larger default mode network. This network is involved
in introspection and remembering. The inferior parietal
and medial prefrontal cortex might thus support the
prediction of future events by activating memories of past
events.

Accumulation of Evidence for Probabilistic Events
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composition of the bin was hidden, therefore payoff probabilities

were unknown to the participants. However, they had the

opportunity to learn these probabilities by observing 10 to 14

drawings from the bin. Balls were sampled one after another with

replacement and shown in the center of the bin. The sample

payoff was displayed but not the color of the ball. Thus colors were

hidden states and payoffs were stimuli (Top insert, Fig. 2b). Colors

could be inferred from payoffs because the color-payoff association

was shown to the participants in the periphery of the bin. After the

10 to 14 draws, this association changed while color probabilities

remained constant. In this resampling phase, 10 to 14 balls were

drawn again.

At the end of the sampling and resampling phases, participants

had to decide to buy or not a gamble for a certain price. After their

choice, the payoff was determined by drawing an additional ball

from the bin. If participants decided to buy, they earned the price

minus the payoff (this net payoff could be negative). If they decided

to pass, the net payoff was 0. To maximize their earning, it was

optimal for them to predict the payoffs (stimuli) based on the colors

(hidden states). Participants learned the probability of 2, 5, or 10

payoffs (Histograms, Fig. 2b).

For the main analysis, brain activity in the sampling stages was

regressed on the probability of the currently observed stimulus,

that is the probability of seeing the evidence. Probabilities of

stimuli were orthogonal to their values and the value to be

expected at the end of the sampling or resampling period. For

instance, if a red ball was associated with a low payoff, sampling a

red ball increased the probability of seeing this low payoff, but it

decreased the expected payoff. The independence between

probability and value was obtained by randomly assigning payoffs

to colors.

Behavioral choice
To decide whether to buy the gamble for a certain price or to

pass it, participants had to predict the gamble payoff at the end of

each sampling stage. Analysis was conducted to determine from

gamble choices whether participants estimated probabilities based

on the color or payoff history (Fig. S1 in Text S1). If inference is

based on colors (hidden states), it can be concluded that people are

able to make abstraction of rewards when estimating the likelihood

of future outcomes. When extracting probabilities from choices,

one needs to control for attitudes towards uncertainty. We did so

in a generally accepted way, using prospect theory, which allows

one to separately control for loss aversion (‘‘losses loom larger than

gains’’) and differential risk attitudes.

When a new bin was introduced, initial beliefs were set to

equiprobable priors, and subsequent updating was assumed to

follow Bayes’ law. The posterior stimulus probability increased

with the accumulation of evidence. At the end of each sampling

stage, probabilities and payoff magnitudes (net of the price) were

combined to compute gamble expected value according to

prospect theory principles. The decision to buy was predicted

from valuation with a logistic regression. We compared models

with the Bayesian Information Criterion (BIC), because it can be

used with non-nested models and limits the risk of over-fit by

penalizing free parameters (a lower BIC is better). Models are

indexed by the number of free parameter (M2, M3, etc.) and are

presented in the Methods section below.

The most efficient model (the best compromise between

parsimony and fitting) was a model with payoff probabilities

calculated conditional on the colors of the balls drawn since the

presentation of a new bin (model M4, BIC = 1250, Table 1).

Colors were hidden states but could be inferred from the

observed payoffs. It was more efficient than a model with payoff

probabilities calculated conditional on the payoffs observed

since the beginning of the sampling or resampling stage (M4a,

BIC = 1271). In this model, participants ignore colors and have

to re-estimate probabilities after the payoff-color association

changed. Further analyses at the individual level showed that

model M4 offered a better fit than M4a for all participants

(section Behavioral choice & Fig. S2 in Text S1). Thus all

participants appeared to be ‘‘sophisticated’’: their inference

was indirect, based on the hidden states behind the observed

payoffs, rather than on the observed payoffs directly. Model M4

was more efficient than a model which did not update payoff

probabilities (M4b, BIC = 1354). In this latter model,

Figure 2. Task design. (a) Payoffs were determined by the colors of balls drawn from a bin. In two sampling stages, participants had the
opportunity to learn probabilities by observing several drawings. Payoffs were shown in the center of the screen (stimuli). Colors were not displayed
(hidden states). After each sampling stage, participants had to decide to buy the gamble or not for a certain price. In the initial sampling stage, both
the composition of the bin and the color-payoff association were new. In the resampling stage, the composition of the bin remained the same (same
color probabilities) but the associated payoffs were new. (b) Top insert. The color-payoff association changed in the resampling stage.
Histograms. These are the true probabilities used to generate the drawings for bins with 2, 5, or 10 colors.
doi:10.1371/journal.pcbi.1002895.g002

Accumulation of Evidence for Probabilistic Events
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participants used equiprobable payoffs to make decisions

(absence of learning).

Model M4 included a prospect theory value function. It was

more efficient than a simpler model using a linear value function

(M2, BIC = 1312). The shape of the estimated non-linear function

revealed diminishing sensitivity for large payoffs (either positive or

negative) and greater importance of losses compared to gains.

Decision parameters found in previous studies are reported in the

footnote of Table 1. Loss aversion was close to the estimation by

Tversky and Kahneman in a study made on decisions from

description [38]. Diminishing sensitivity was more pronounced in

the present study (Fig. 3a).

Model M4 was more efficient than a model that included a

prospect theory probability weighting function (M5, BIC = 1251).

Indeed, the later model led to a quasi-linear function. We also

report the estimation found in decisions from description by

Tversky and Kahneman [38] and in decisions from experience by

Hau et al. [39]. Probability weighting appears to be minimal in

decisions from experience (Fig. 3b).

Finally a reinforcement learning algorithm was estimated (M3).

The first payoff observed at the beginning of the sampling or

resampling period defined the initial forecast. Then each new

payoff was compared to the previous forecast to compute a

prediction error. This prediction error multiplied by a learning

rate was added to the previous forecast to find the new forecast.

This model used a linear value function and bypassed probabilities

in order to directly estimate the expected payoff of the gamble.

Results showed it had the lowest efficiency (BIC = 1428). Thus

probability-based models offered a better explanation of decisions

than a reinforcement algorithm.

In sum, the analysis of choices indicated that participants were

loss and risk averse (non-linear value function), but there was no

indication of a distortion of probabilities (linear probability

weighting function). Supporting the principle of probabilistic

sophistication, participants learned probabilities based on the

hidden states and not simply the observed payoffs. A reinforce-

ment learning model tracking payoffs to estimate gamble values

performed worse than any of the probability-based models.

Brain response to stimulus probabilities
The threshold for significance was set at pv:001, uncorrected,

cluster w100 voxels for voxel-based analyses (including the

identification of ROIs). False Discovery Rates (FDRs) are reported

in tables, to gauge the risk of false-positive results. Coordinates are

given in MNI space [mm]. The threshold was set to pv:05 to

analyze mean activation in ROIs. Circularity in ROI analysis was

avoided with cross-validation. Subject variability was modeled as a

random factor in voxel-based and ROI analyses. Details on the

GLMs (GLM1, GLM2, etc.) are given in the Brain analysis section

of Text S1.

The display of a new payoff in the center of the bin is referred as

a stimulus and gives evidence for future outcomes. Stimuli were

defined as 1 [s] events and led to a significant activation in the

occipital cortex and bilateral hippocampus (GLM1, Table S1 in

Text S1).

Probabilities inferred from the history of the hidden states were

entered as a covariate to modulate the effect of stimuli (model M4).

For instance in Fig. 2a (Resampling), when ‘‘68’’ was displayed the

probability of seeing ‘‘68’’ was used as a parametric covariate.

When ‘‘46’’ was displayed the probability of seeing ‘‘46’’ was used

instead. Thus analyses were conducted with the probability of the

currently observed stimulus. Probabilities estimated with model

M4 ranged from 0.08 to 0.92. The probability of the stimulus did

not correlate with its associated payoff magnitude (r~{:02,

p~:27) or the gamble expected payoff (r~{:01, p~:48). This is

because payoffs were randomly assigned to colors which in turn

were randomly assigned to probabilities. For example, in Fig. 2a

(Resampling), the stimulus ‘‘46’’, which was the lowest payoff in

the bin, could have a low or high probability of occurrence

because it was randomly assigned to the color blue. There is thus

no confound between probability and value in our design.

Results showed a positive and significant effect of stimulus

probabilities medially in the prefrontal cortex and bilaterally in the

angular gyrus (Fig. 4a+b, Table S2 in Text S1). In these regions,

brain activity increased when a stimulus was likely to be observed

(confirmatory signal). A negative and significant effect of

probabilities was also observed in the occipital, superior parietal,

and middle frontal gyrus. Activity in the middle frontal gyrus was

posterior and reached the precentral gyrus (Fig. S3a in Text S1). A

significant effect was also observed in the bilateral hippocampus

(Table S3 in Text S1). In these regions, brain activity increased

when a stimulus – learned to be rare – was observed (surprise

signal). Activation related to stimulus probabilities survived

correction for multiple comparisons, except in the hippocampus

(FWE, a~:05).

When a payoff was displayed in the sampling or resampling

period, it generated a prediction error. This prediction error was

calculated with model M4 as the change in expected value before

Table 1. Choice models.

Probability
Model Value Probability Inference BIC b0 b1 l a c

M2 Linear Linear Hidden states 1312 20.49 0.38 - - -

M4* Non-linear Linear Hidden states 1250 0.95 0.54 2.57 0.69 -

M4a Non-linear Linear Observations 1271 1.00 0.53 2.66 0.68 -

M4b Non-linear Linear No learning 1354 0.51 1.31 1.69 0.44 -

M5 Non-linear Non-linear Hidden states 1251 1.00 0.59 2.55 0.63 0.89

Reinforcement
Model

Value Probability Inference BIC b0 b1 k

M3 Linear Ignored Observations 1428 20.39 0.31 0.17 - -

*Best efficiency; Nbr. data = 1648; b0 = intercept, b1 = slope, l = loss aversion, a = diminishing sensitivity, c = probability weighting, k = learning rate; Tversky et al., 1992:
l = 2.25, a = 0.88/0.88 (gain/loss), c = 0.61/0.69; Hau et al., 08: a = 0.94/0.86, c = 0.99/0.93.
doi:10.1371/journal.pcbi.1002895.t001

Accumulation of Evidence for Probabilistic Events
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and after the new payoff was revealed. Results indicated that

prediction errors did not increase or decrease the effect of stimuli

on the brain (GLM2, no table or figure was reported for this non-

significant covariate). Thus, the brain encoded stimulus probabil-

ities but not values during the learning phase. We used the sign of

the prediction error to define positive and negative stimuli

(GLM3). Results showed BOLD response to probabilities in the

angular gyri and medial prefrontal cortex for both positive and

negative stimuli (Tables S4 & S5 in Text S1). Thus, the encoding

of probabilities was comparable for positive and negative stimuli.

In short, it appeared that during the learning phase the brain

ignored values (probabilistic sophistication) and focused on

probabilities.

A BOLD response to unlikely stimuli has been reported in the

literature [17,19]. The BOLD response to likely stimuli is novel. We

will focus on this positive correlation in the rest of the results. ROIs

were defined as the cluster of voxel significantly activated for a given

variable of interest (GLM4) and mean activations in ROIs (GLM5)

were further analyzed with mixed effect regressions. ROIs analyses

revealed that BOLD response in angular gyrus and medial

prefrontal cortex was better explained by stimulus probabilities

inferred from the hidden states (model M4) rather than the observed

payoffs (model M4a), in line with the behavioral results. The

interaction of probabilities with ROI location was not significant.

The effect of stimulus probabilities is thus similar in the three ROIs

(Table S6 in Text S1, see [40] for the necessity to test interactions

before making simple contrasts). The number of colors did not

interact with stimulus probabilities, meaning that the effect of

probabilities was not influenced by the number of states (Table S6 in

Text S1). When the effect of probabilities was estimated for each

number of states, it was found to be significant for 2 (pv:001), 5

(p~:003), and 10 states (p~:006, Table S7 in Text S1).

Analysis of choices revealed that expected utility was linear

relative to probabilities. We also tested whether BOLD responses

in the three ROIs increased linearly with probabilities. The first

model included only an intercept and yielded to a BIC of 78707.

In the second model, we added a linear effect for stimulus

probabilities. This linear effect of probabilities was significant

(Table S8 in Text S1) and the BIC fell to 78491, showing an

increase in efficiency. Finally, a non linear weighting function was

added. The linear effect was again significant (pv:001). In

contrast with the inverted-S shape of prospect theory, there was a

slight diminution of sensitivity for probabilities close to 0 and 1

(Fig. 3c) but this non-linear effect was not significant (c~1:49,

p~:22, Table S9 in Text S1). The BIC of this model was 78542,

showing a decrease in efficiency compared to the previous model.

Similar results were found when the non-linear model was tested

on each ROI separately (no table was reported for the separate

Figure 3. Value and probability functions. (a) Value function as estimated from participants’ decisions (red, model M4.) Estimation obtained by
Tversky and Kahneman (1992) in a study on decisions from description. (b) Probability weighting inferred from choices (red, model M5) and
comparison with estimations from other studies in the gain and loss domains (Gain - Hau et al., 2008 is confounded with the linear function.) (c) Top
insert. To avoid circularity, ROIs for each individual were determined based on the data of all other participants. ROI voxels common to all
participants are shown in yellow. ROI voxels belonging to at least one participant are shown in red. This representation shows to which extent the ROI
definitions vary in the cross-validation. Main. Increase of BOLD response with stimulus probabilities in medial prefrontal cortex and angular gyri
during the learning phase. Data of the 3 ROIs has been merged. The y axis indicates the effect the presentation of new stimulus (payoff) had in the
ROIs. The effect increased with the probability of the currently observed stimulus. The non-linear regression (red) includes a probability weighting
function.
doi:10.1371/journal.pcbi.1002895.g003

Figure 4. Learning phase. (a~:001, uncorr.) Volume (a) and
sectional (b) views of the BOLD response to stimulus probabilities in
medial prefrontal cortex and bilateral angular gyrus. Activity increases
with the probability of the currently observed stimulus. (c) Voxels
showing increased connectivity with angular gyri and medial prefrontal
cortex ROIs compared to the resting phase.
doi:10.1371/journal.pcbi.1002895.g004

Accumulation of Evidence for Probabilistic Events

PLOS Computational Biology | www.ploscompbiol.org 5 January 2013 | Volume 9 | Issue 1 | e1002895



analyses). Thus, we found no evidence for a non-linear encoding of

stimulus probabilities when learned from experience.

Connectivity analysis was conducted to explore the functional

link between the ROIs encoding stimulus probabilities and the rest

of the brain. Each of the ROIs was taken as a seed region in three

separate analyses. Results showed that during the learning phase

(compared to the resting phase) the correlation increased between

each ROI and voxels in the two other ROIs. Correlations also

increased between each ROI and the posterior cingulate (no table

or figure was reported for the separate analyses). Connections with

posterior cingulate cortex were also observed when voxels of the

three ROIs were merged to define a single seed region (Fig. 4c,

GLM6, Table S10 in Text S1).

Brain response to value and uncertainty
Comparing the active phase (when choices were made without

knowing the outcome in advance) to the control phase (when the

outcome was known before making choices), significant activity

was observed in the occipital cortex, suggesting that visual

exploration of the bin was more intense when the outcome was

unknown (GLM1, Table S11 in Text S1). In addition, BOLD

responses in the right anterior insula and bilateral caudate were

significant. These regions have been involved in risky decision-

making, which is present in the active phase but not in the control

phase [41].

During the learning phase, we have reported above how brain

activity changed as a function of probabilities of a specific stimulus.

This approach was possible because stimuli (payoffs) were

presented one at a time. But the approach cannot be used when

the participants deliberated on their choice because all possible

outcomes should be contemplated at once. To study the link

between brain activity and probabilities during the decision epoch,

a measure that summarizes the set of outcome probabilities should

be used instead. Here, we chose entropy, which measures the

uncertainty reflected in a set of probabilities. Entropy increases as

the probability distribution approaches the uniform distribution.

During the deliberation preceding the decision to buy or pass,

the expected gamble value (net of the price) was related to activity

in the caudate and spread to other regions in the brain (Fig. S4a,

Table S12 in Text S1). At the same period, expected value

interacted with outcome entropy in the bilateral insula (Fig. 5a &

Table S13 in Text S1). An ROI analysis revealed a main and

positive effect of expected value in insula. The interaction showed

that this effect of value was stronger when the outcome entropy

was high (Fig. S4b+c & Table S14 in Text S1). Thus, the insula

seems to be especially sensitive to the value of gambles with

uncertain outcomes.

In order to quantify uncertainty regarding choices, we

computed the entropy of the probabilities (and complementary

probabilities) that participants bought into the gamble (as

predicted by model M4). Voxel-based analyses showed a

significant effect of choice entropy in dorsal anterior cingulate

cortex (Fig. 5b & Table S15 in Text S1). ROI analyses were

conducted to further test the double dissociation between outcome

and choice entropy in insula and anterior cingulate. Results

indicated that choice entropy was specifically encoded in anterior

cingulate and not insula. The dissociation was not significant for

outcome entropy. Finally, BOLD response in the bilateral striatum

(putamen and caudate) was related to the net payoff revealed at

the end of each decision phase (Fig. 5c & Table S16 in Text S1).

Resting phase
The three ROIs found to encode stimulus probabilities along

with the posterior cingulate are all key regions of the default mode

network. Regions forming the default network have two charac-

teristics: (1) their spontaneous activity is correlated when people

are at rest, (2) they are deactivated during tasks requiring attention

to external stimuli [42]. The default mode network includes the

inferior parietal cortex, the posterior cingulate cortex, the medial

prefrontal cortex, the lateral temporal cortex, and the hippocam-

pus.

To test the involvement of the default network in the present

study, we explored the spontaneous correlations between ROIs

encoding probabilities and the whole brain during the resting

phase (threshold Tw7). Results showed a functional link between

each ROI and voxels in the other two. Each ROI was also

connected to activity in the posterior cingulate cortex (no table or

figure was reported for the separate analyses). Connections with

the posterior cingulate cortex were also observed when voxels of

the three ROIs were merged to define a single seed region (Fig. 6a,

GLM7, Table S17 in Text S1).

Baseline activity was compared between the decision-making

task (learning and decision phases) and the resting phase. Results

showed an increase of BOLD response in occipital, superior

parietal cortex, supplementary motor areas, and lateral prefrontal

cortex (red voxels, Fig. 6b, GLM1, S18 in Text S1). Decreased

activity was found bilaterally in angular gyrus, supramarginal

gyrus, and middle and superior temporal gyri. Decreased activity

was also observed in cingulate and medial prefrontal cortex (blue

voxels, Fig. 6b, Table S19 in Text S1, similar results were found

when comparing the resting phase to the learning phase only).

There was a substantial overlap between the task-negative network

and voxels encoding stimulus probabilities during the learning

period (Fig. 6c). The results indicated that regions reacting to likely

events belonged to the default network. On the other hand, there

was a substantial overlap between the task-positive network and

voxels reacting to rare stimuli (Fig. S3b in Text S1). For a

schematic of the main findings, see Fig. 7.

Discussion

In a complex and uncertain environment, probabilities are

essential for predicting future events. To make consistent choices,

Figure 5. Active decision phase. (a~:001, uncorr.) (a) BOLD
response in the bilateral insula to gambles combining high outcome
entropy and high expected value. Outcome uncertainty increased with
entropy. (b) BOLD response to choice entropy in the dorsal anterior
cingulate. Participants faced a more difficult choice when the
probabilities to buy and pass the gamble were close, that is when
choice entropy was high. (c) Striatal activation related to the magnitude
of the total payoff received at the end of the decision phase (net of the
total price). Whereas activation related to outcome and choice entropy
were observed before participants made a choice (anticipation), BOLD
response to the net payoff was observed afterwards (feedback).
doi:10.1371/journal.pcbi.1002895.g005
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it is necessary for a decision maker to separate the chances of

objective events (‘‘it will snow’’) from the values that could

potentially be attached to those events (‘‘we can go skiing’’). With

such a strategy the decision maker can make inference in the

absence of immediate reinforcements and quickly adjust his

predictions when the reinforcing values of events change [43].

Here, we developed a paradigm in which the probability and value

of stimuli were statistically independent. This allowed us to identify

the regions in the brain encoding event probabilities and exclude a

confound with value.

Analysis of brain activity during the learning period revealed

both positive and negative correlations with stimulus probabilities.

BOLD response in angular gyrus and medial prefrontal cortex

increased for stimuli which had been observed many times in the

current trial. This relationship was significant in conditions with 2,

5, and 10 different stimuli. This shows that the brain can keep

track of the probabilities of multiple events. Comparison with the

resting state condition and connectivity analyses indicated that

these regions belonged to the default mode network and that their

baseline activity decreased during the task (task-negative network).

A negative correlation between stimulus probabilities was observed

in the occipital, superior parietal and lateral prefrontal cortex.

Here BOLD response increased for improbable stimuli. These

regions were more activated during the task (task-positive

network). Before a choice was made activity in striatum and

insula increased with gamble expected value. The effect of value in

insula was stronger when outcome entropy was high, that is when

the future was uncertain. Choice entropy which reflects decision

uncertainty was preferentially associated to a BOLD response in

dorsal anterior cingulate. After the decision, activity in the

striatum increased with the net payoff.

The principle of a separation between probability and value,

namely probabilistic sophistication [3,4], was supported by several

results. In the learning period, the effect of probabilities was

significant for both positive and negative events and the main

effect of probability did not interact with event value. No

significant effect of value was observed during the learning period.

These results suggest that when reinforcements are delayed, the

Figure 6. Default mode network. (a) Voxels showing connectivity
with angular gyri and medial prefrontal cortex ROIs during the resting
phase. (Tw7, uncorr.) (b) Voxels showing activation (red, task-positive
network) and deactivation (blue, task-negative network) during the
learning and decision phases (a~:001, uncorr.) (c) Overlap between
voxels encoding stimulus probabilities (Fig. 4a+b) and the task-negative
network (panel b, blue voxels).
doi:10.1371/journal.pcbi.1002895.g006

Figure 7. Main findings. (a) During the resting phase, the spontaneous activity of the brain correlated between angular gyri, medial prefrontal
cortex, and posterior cingulate cortex. This constitutes the first characteristic of the default mode network. (b) During the task (learning & decision
phases), baseline activity in these regions decreased. This is the second characteristic of the default network. At the same time, activation in the
occipital, superior parietal, lateral prefrontal cortex, and other regions involved in visual attention increased. (c) During the learning phase,
participants only saw the payoff in the center of the bin (stimulus). Nevertheless, the brain encoded the probability of currently observed stimulus
inferred from the hidden states (colors). BOLD response for frequent stimuli increased in angular gyri and medial prefrontal cortex. BOLD response for
rare stimuli increased in occipital areas, superior parietal cortex, middle frontal gyri, and hippocampus (Fig. S3a in Text S1). (d) Compared to the
resting phase, correlations between these regions increased during learning. (e) When participants had to decide whether to buy the gamble or not,
BOLD response in the insula increased with with gamble expected value, especially for when outcome entropy was high. At the same time, the dorsal
anterior cingulate cortex signaled choice entropy (Fig. 5b). (f) After six choices, a feedback was displayed. The bilateral striatum encoded the net
payoff magnitude.
doi:10.1371/journal.pcbi.1002895.g007
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brain focuses on event probabilities while abstracting from

rewards. It is only during the decision period that activation in

relation with value was observed.

These results are relevant for the debate on value-based and

model-based reinforcement learning [18]. In value-based rein-

forcement learning, the agent learns the expected value associated

to a situation or action by updating his forecast with a reward

prediction error. Through this process, the agent acquires

information about value but remains ignorant of probabilities. This

stands in sharp contrast with model-based reinforcement learning.

There, in order to forecast future rewards, the agent forms a

representation of how the world ‘‘behaves’’ and this can be done

by learning the probabilities of all events given the current

situation (i.e. ‘‘state transition probabilities’’, [44]). A neural

signature of probabilities but not value was observed during the

learning period. In addition, model comparison showed that

choices were better explained by a probability rather than a

reinforcement learning algorithm. Thus both behavioral and

biological data favored model-based over value-based reinforce-

ment learning in our task. By showing both positive and negative

BOLD response to event probabilities, the present study add to the

previous literature on model-based reinforcement learning [45].

The functionality of the regions encoding probabilities deserves

further discussion. Based on prior literature and our own results,

we would argue that activation correlating with rare stimuli in

occipital cortex reflects the visual exploration of the bin, while that

in parietal and middle frontal gyrus captures the attention

triggered by surprising events. Activation in hippocampus

enhances encoding of rare stimuli. In contrast, the positive

correlation between probabilities and activation in angular gyrus

and medial prefrontal cortex would reflect the reactivation and

reinforcement of past events in memory.

BOLD activity increased in the occipital cortex for rare stimuli

and this could be due to visual exploration. When a rare payoff

was sampled, its probability of occurrence increased. This might

incite participants to identify its associated color and re-evaluate its

relative importance by looking at all the colors and payoffs in the

periphery of the bin. Previous studies have shown increased

activation in the occipital cortex for visually incongruent stimuli

and this effect seems to generalize to rare events in our study [46].

Rare events were also related to activation in the superior parietal

cortex and middle frontal gyrus and this could be explained by

attentional processes. Indeed, these regions were more activated

during the task compared to the resting period (task-positive

network) and have been related to attention or the oddball effect

[17,47]. Activity in the hippocampus was observed when a new

stimulus was displayed, and the effect was stronger when the

stimulus was rare. Lesions to the middle temporal area and the

hippocampus can lead to amnesia and the inability to retain new

information [48]. The BOLD response in the hippocampus

suggests that rare events benefit from a better encoding when they

occur. This is consistent with behavioural studies showing that

surprising stimuli are better memorized [49].

Activity in the default network has been found to increase

during tasks of theory of mind, mind wandering, and memory

[50,51]. On the contrary, it has been found to decrease when

participants pay attention to external stimuli (task-negative

network). This was also the case in our task because participants

had to pay attention to the sampled payoffs. While controlling for

the effect of the task, activity increased in several regions of the

task-positive network when a rare stimuli was displayed. On the

contrary, a BOLD response in angular gyrus and medial

prefrontal cortex increased for frequent stimuli. A possible

explanation for this novel result is that frequent stimuli attract

less attention and hence allow for more resting-state introspection,

the role traditionally assigned to the default mode network. This

switch would be consistent with optimal use of the limited amount

of energy available in the brain [52]. However, the switch would

have to take place within the time frame of display of our stimuli (1

[s]). If this interpretation is indeed true, our findings would amount

to evidence for high-frequency switching between elemental states

of the brain, namely, attention and rest. An alternative explanation

is that activity in angular gyrus and medial prefrontal cortex

reflects a distinct process, namely, evidence accumulation. This

process can be modeled as we did, in terms of learning of

probabilities. A drift-diffusion approach [53] could be used

instead, though this approach is fundamentally the same.

A cognitive mechanism that could explain the positive

correlation between stimulus probability and brain activity is

memory [29]. Cognitive psychologists have developed models

centered on memory to explain how people judge the likelihood of

events [54]. In these models, each outcome is encoded as a trace in

memory. An event will be considered as probable if many traces

are retrieved from memory in response to a probe (the payoff in

our task). Neuroimaging studies have confirmed the involvement

of parietal and medial prefrontal cortex in memory: activity in

these areas predicts the successful recognition of items [31,55].

Furthermore, many studies have demonstrated involvement of the

default mode network in memory tasks [56,57]. As a consequence,

the positive brain response to stimulus probabilities in the angular

gyrus and medial prefrontal cortex might reflect the activation and

reinforcement of memory traces in reaction to a probe. This

hypothesis is compatible with an ‘‘attention to memory’’ model

developed in neuroscience [32,58]. In this model, activation in the

inferior parietal cortex reflects the attention captured by informa-

tion retrieved from memory. Still, because fMRI can only recover

correlation, other approaches like TMS are needed to determine

the causal role of angular gyrus and medial prefrontal cortex in the

acquisition and retrieval of event probabilities.

In decision neuroscience, the posterior cingulate and ventro-

medial prefrontal are often involved in the judgement of value

[59,60]. For instance the ventro-medial prefrontal cortex is more

activated when participants see the image of food they like [61,62].

A recent study has shown that the time spent watching an item

increased the likelihood to choose it and this type of behavior was

well formalized by drift-diffusion models [63]. Preferences depend

on the sensory characteristics of goods, but they are also shaped by

our past experience and memories [64]. The reactivation of

memory traces could partially explain why a key structure to

evaluate the value of goods, the ventro medial prefrontal cortex,

belongs to the default mode network and not to a task-positive or

saliency network like the striatum [65]. Accordingly, a recent study

has shown that affective value and associative processing shared a

common substrate in medial prefrontal cortex [66].

Our study sheds new light on decision making under

uncertainty when uncertainty is described as opposed to experi-

enced [1]. In a task where decisions were based on experience,

BOLD response to uncertain stimuli increased linearly with their

probabilities of occurrence. This was confirmed in behavior:

choices exhibited no bias is assessment of probabilities, in contrast

to decision making based on description of available gambles [67].

Our results therefore cast doubt on the generalizability of

probability weighting in prospect theory to decision making from

experience [68].

In addition to a better understanding of the neural foundation

of probability learning, the present study brings new knowledge

concerning the representation of various kind of uncertainties in

the brain [69]. Previous studies have linked uncertainty to activity
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in the insula [70,71], but also in the anterior cingulate cortex [72].

In the present study, we found that BOLD response in insula and

dorsal anterior cingulate were related to different forms of

uncertainty. Activity in the anterior cingulate correlated with

choice entropy which reflected uncertainty in making a choice.

The later interpretation matches previous studies reporting BOLD

response in dorsal anterior cingulate when a conflict existed

between several responses [73] (difficulty of choice).

Activity in the insula increased with the gamble expected value

and this effect was more pronounced when the outcome entropy

was high. Entropy corresponds to the notion of expected

uncertainty discussed by A. Yu and P. Dayan [74]. It is a function

of probabilities only and thus does not depend on the value

associated with the stimuli. An agent separating probability from

value would favor entropy over reward volatility to estimate risk.

When the outcome is a single and uncertain payoff, its standard

deviation and entropy covary. This might explain why previous

studies have found activation related to payoff standard-deviation

in the insula [71]. Another possibility is that the insula becomes

sensitive to entropy when participants learn state probabilities as in

the present study and rely less on summary statistics like payoff

mean and variance [75].

The general view that emerges from our study is that the brain

does not only react to rewarding or surprising events, but also to

likely events. When people observed uncertain stimuli, the average

activity in the default mode network decreased compared to a

resting condition. Nevertheless, the functional connectivity in this

network increased and stimulus probabilities were positively

correlated with BOLD response in angular gyrus and medial

prefrontal cortex. Thus activity in these two regions signalled the

accumulation of evidence (confirmatory signal). Brain response to

uncertain stimuli increased linearly in probability and there was no

evidence of probability weighting in choices. Further research is

needed to test if the brain response to likely events reflects an

activation of memory traces (internal world) or a lack of attention

to the environment (external world).

Methods

Participants
Twenty-five students from the Université de Lausanne and the

Ecole Polytechnique Fédérale de Lausanne were enrolled in the

study. One participant was removed from the analysis because of

significant head movements. Another, because her decisions to

buy the gamble were random. The analyzed sample included 23

participants (10 women, 13 men; median age = 22, min = 19,

max = 30; all right handed). The study took place at the University

Hospital of Lausanne and was approved by its institutional review

board. At the end of the experiment, students received 1/10 of

their net play money in real currency, in addition to a 10 Frs (Swiss

francs) participation reward.

To explain the task, the investigator read the instructions aloud

and students played with one demonstration bin. They completed

the task in a 3 Tesla MRI scanner. During the functional image

acquisition, participants watched the display through goggles and

indicated their decision to buy or to pass the gamble by pressing

the left or right button of a response box. Participants learned

probabilities and made decisions on 9 different bins. After bin 3

and 6, a resting phase of 60 [s] was introduced.

Task
Payoffs were determined by the colors of balls drawn from a bin.

Bins contained balls of different colors, with same-colored balls

yielding the same payoff. The composition of the bin was hidden

therefore probabilities were unknown. The time line for one

example bin is shown in Fig. 2a. During the first sampling stage,

10 to 14 balls were drawn from the bin one after another and the

associated payoff was displayed for 1 [s] at the center of the screen.

Balls were drawn with replacement. Only stimuli representing the

payoffs were shown. Colors were hidden states. These states could

be inferred from the colored balls displayed in the periphery of the

bin.

This learning phase was followed by a decision phase. The

participant had to decide whether to buy the gamble or not for a

certain price. After each choice, an additional ball was drawn. If

the participant bought the gamble, he earned the payoff written on

the ball minus the price. Otherwise, the payoff was 0 and the play

money remained unchanged. Four choices were made without

knowing the outcome in advance (active condition) and two

choices were made while knowing the outcome in advance (control

condition). For each of the six choices, a different price was posted.

Prices were drawn from a uniform distribution between the

minimum and maximum payoffs. After each decision, a message

indicating that the gamble was bought or passed was shown (but

the payoff was not shown to limit learning in the decision period).

The total net payoff of the current decision period was displayed

after the six choices.

The learning and decision phases were repeated with the same

bin after changing the color-payoff association. That is, color

probabilities remained unchanged (same composition of the bin),

but each color was associated with a new payoff. It was thus

adaptive to learn probabilities based on the color of the past

drawings. In Fig. 2, the color-payoff association in panel a is

reproduced in the top insert of panel b. For instance, red was

associated with 57 in the sampling stage and with 67 in the

resampling stage. Bins contained balls of 2, 5, or 10 different

colors. The probabilities used to generate the drawings are

represented by the histograms in Fig. 2b. Because balls were

drawn with replacement, these probabilities remained constant

during the sampling and resampling stages.

Nine different bins were presented in the task. Importantly, colors

were randomly assigned to probabilities at the beginning of each

new bin. Payoffs were randomly assigned to colors at the beginning

of each sampling stage. As a consequence, payoff probabilities are

orthogonal to payoff magnitudes and expected payoff. Uncertainty

at decision time increased with both the number of possible payoffs

and the payoff standard-deviation. To disentangle their effects, these

two factors were manipulated independently (Fig. S5). See section

Task in Text S1 for more details.

Choice modeling
Learning phase. During the learning phase, probabilities

were updated following Bayes’ rule. In the mathematical

formulation of the models, m indexes the states s in the bin,

m~1,2 � � �M, with M the number of states (2, 5 or 10 colors). So

s refers to a color (e.g., blue). The probability of state m at drawing

t is a random variable hmt, with t~1,2, � � �T1,T1z1, � � �T2 (with

1 and T1 referring to the first and last drawing the initial sampling

stage and T1z1 and T2 to the first and last drawing in the

resampling stage). The vector of probabilities~hht follows a Dirichlet

distribution D(~aat). The PDF of ~hht is given by:

pdf(~hht)~
C(At)

C(a1t) � � �C(aMt)
h

a1t{1

1t � � � haMt{1

Mt ,

with At~a1t � � �zaMt. Let p(sm) denote the true probability of

state m. The point estimation p̂p of this true probability is given by:
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p̂p(smDIt)~E(~hht)~
~aat

At

:

with It the information available at time t.
We use kmt to indicate the number of times state m was

observed at drawing t. Before any drawing, ~kkt~~00. To specify the

Dirichlet distribution at any time, we set ~aat~~aapriorz~kkt. Without

any knowledge of the composition of the bin, it is rational to

assume that all colors have the same chance of occurrence when a

new bin is encountered. Thus we chose ~aaprior~~11. As a result and

before any sample had been observed, p̂p(sm)~1=M for all state m.

E.g., for a bin with 5 colors, all probabilities are expected to equal

1=5. In model M4b (no probability learning), ~kkt~~00 for all t, thus

probabilities are not updated and remain equal to the priors. In

model M4a (probabilities inferred from observations),~kkt is set to~00
at the beginning of the sampling and resampling stages but it

records the occurrence of states. This is equivalent to learning the

probabilities without reference to colors. In model M4 (probabil-

ities inferred from hidden states), ~kkt is set to~00 at the beginning of

the initial sampling stage and it records the occurrence of states. It

is not reset to ~00 at the beginning of the resampling stage.
Decision phase. We first need to define a function f that

associate a payoff xm to each state sm. So this function links each

color to a payoff. In the task, we only show the payoff in the center

of the bin (stimulus), so the underlying state is inferred with the

inverse function sm~f {1(xm). In model M2, the identity function

was used to transform payoffs (net of the posted price z). In models

M4, M4a, M4b, and M5, a non-differentiable value function was

used instead:

v(xm,z)~
(xm{z)a if (xm{z)§0,

{lDxm{zDa otherwise,

�
ð1Þ

with a representing the diminishing sensitivity parameter and l
representing the loss aversion parameter.

In all models the identity function was used for probabilities,

expect for model M5 which had a probability weighting function:

w(p)~
pc

(pcz(1{p)c)
1
c

ð2Þ

where c controls the S shape.

Subjective values and probabilities were multiplied and then

summed over states to compute the expected value of the gamble:

V̂Vt~
XM

m

w(p̂p(f {1(xm)DIt))v(xm,z), ð3Þ

To convert estimated values into choices, we used the softmax

model. There, the probability that the gamble is bought is given

by:

logit(P(‘buy
;
))~b0zb1(V̂Vt),

where V̂Vt denotes the estimated value of the gamble at the end of

the learning phase (i.e., at t~T1 for the sampling stage, and t~T2

for the resampling stage). Nelder-Mead optimization was used to

find the maximum likelihood (MLL) of this logistic regression.

Search was repeated 5 times with different starting values. The

best fit was retained (restarts yielded to very close results).

Outcome entropy at the end of the learning phase was

computed with:

ĤHt~{
XM

m

p̂p(f {1(xm)DIt) log (f {1(xm)DIt), ð4Þ

with p̂p(:) log p̂p(:)~0 if p̂p(:)~0. To compute the entropy of choices,

state probabilities were replaced by choice probabilities derived

from the softmax function.

Supporting Information

Text S1 Supplementary information. Text S1 provides

additional methods, results, figures, and tables.
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