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Abstract

DNA modifications such as methylation and DNA damage can play critical regulatory roles in biological systems. Single
molecule, real time (SMRT) sequencing technology generates DNA sequences as well as DNA polymerase kinetic
information that can be used for the direct detection of DNA modifications. We demonstrate that local sequence context
has a strong impact on DNA polymerase kinetics in the neighborhood of the incorporation site during the DNA synthesis
reaction, allowing for the possibility of estimating the expected kinetic rate of the enzyme at the incorporation site using
kinetic rate information collected from existing SMRT sequencing data (historical data) covering the same local sequence
contexts of interest. We develop an Empirical Bayesian hierarchical model for incorporating historical data. Our results show
that the model could greatly increase DNA modification detection accuracy, and reduce requirement of control data
coverage. For some DNA modifications that have a strong signal, a control sample is not even needed by using historical
data as alternative to control. Thus, sequencing costs can be greatly reduced by using the model. We implemented the
model in a R package named seqPatch, which is available at https://github.com/zhixingfeng/seqPatch.
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Introduction

Modifications to individual bases like 5-methylcytosine, 5-

hydroxymethylcytosine, and N6-methyladenine in DNA sequenc-

es are an important epigenetic component to the regulation of

living systems, from individual genes to cellular function. Single

molecule, real time (SMRT) sequencing provides a high through-

put platform for direct DNA modification detection without the

need for special sample preparation procedures such as bisulphite

treatment or restriction enzyme digestion [1–3]. In SMRT

sequencing, each base identity is read when fluorescently labeled

nucleotides are incorporated into a DNA sequence being

synthesized by DNA polymerase [4]. In this case, because the

incorporation events are being directly observed in real time, the

duration between the pulses of light (referred to as inter-pulse

duration or IPD) that indicate an incorporation event can be

precisely measured. IPD measures are a direct reflection of the

DNA polymerase kinetics. This kinetic parameter for the enzyme

has been shown to be sensitive to a wide range of DNA

modification events, including 5-methylcytosine, 5-hydroxy-

methylcytosine, and N6-methyladenocine [1–3], where variations

in the kinetics are predictive of modification events.

For each position in the DNA sequence being synthesized, the

IPD distribution is empirically determined as each read covering a

given position yields an IPD value for that position, so that for

each position there are a number of IPD observations. In these

previous demonstrations [1,2], kinetic variations were detected

using a case-control method in which the IPDs at a given site in

the native DNA from a sample of interest (case group) are

compared to the IPDs in whole-genome amplified (WGA) DNA

corresponding to the native DNA (control group). The WGA

process erases all of the modifications by replacing any modified

base with the corresponding standard base. The null IPD

distribution can be determined from the IPDs in the control

group and then the IPD distribution for the case group can be

compared to this null distribution (Figure 1A). If the IPD values

between cases and controls differ significantly, then a kinetic

variation event is called. Because SMRT sequencing reads are

strand specific with respect to the detection of these kinetic

variation events, modifications can be inferred in a strand specific

manner. This approach to detecting kinetic variation events works

well when there is sufficiently high numbers of reads covering each

position, but is much less reliable in low coverage cases due to the

high variability of IPD measures (the IPDs are exponentially
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distributed). In addition, this case-control method requires

sequencing a sample twice, so making these detections come at a

significant cost.

In this paper, we examine the correlation between polymerase

kinetics and sequence context to demonstrate that polymerase

kinetics can be well predicted by local sequence context, suggesting

that baseline kinetics can be established for any sequence context

to use as a null distribution in testing for base modification events.

We demonstrate that this correlation between local sequence

context and enzyme kinetics is highly consistent across indepen-

dent experiments carried out on DNA from different species.

Given this, we hypothesized that IPDs from positions with the

same sequence context, referred to as homologous positions,

including those from historical control data, could be used jointly

to better estimate the null IPD distribution. Towards that end, we

develop a hierarchical model to combine IPDs across homologous

positions to enhance the detection of kinetic variation events. The

hierarchical model can work with or without control data. When

control data are available, for a given position, the hierarchical

model combines IPDs of control data and IPDs of homologous

positions to estimate the null IPD distribution. We refer to this

type of model as a hierarchical model with control data. When

there is no control data available, for a given position, the

hierarchical model estimates the null IPD distribution using only

IPDs of homologous positions from historical data. We refer to this

as a hierarchical model without control data. We test these two

hierarchical models on two high coverage plasmid datasets and a

medium coverage E. coli K-12 MG 1655 dataset: 1) plasmid DNA

isolated from a strain of E. coli engineered to methylate the 4th

carbon in cytosine residues, referred to as 4-mC, in the GATC

context; 2) plasmid DNA isolated from a strain of E. coli

engineered to methylate the A residue in the GATC context,

referred to as 6-mA; and 3) DNA isolated from a wild type E. coli

reference strain (K-12) (Table 1). We show that the hierarchical

model with control data significantly increases the detection

accuracy compared with the case-control design on all of the

datasets. The hierarchical model without control data also

achieves a good accuracy for N6-methyladenocine, which has a

Figure 1. Movie effects and an IPD profile example. (A) IPD distributions of positions 327–357 in the native and control samples (Plasmid m4C
native and Plasmid m4C control in Table 1). The middle and bottom panels show IPD distributions(Boxplot) of the native and control sample
respectively. The top panel shows ratio of the average IPD between native sample and control sample. Position 342 is modified, and its ratio of the
average IPD values between native sample and control sample is much higher than the other positions. In addition, a single modified nucleotide can
affect IPD distributions at several flanking bases. Here, the average IPD of position 346 in the native sample is higher than that of the control sample
because of the modification event at position 342. (B) Boxplots of IPD distributions of 45 movies of E. coli WGA-FCR in Table 1 show that the IPD
distribution can undergo large overall shifts across different movies.
doi:10.1371/journal.pcbi.1002935.g001

Author Summary

DNA modifications have been found in a wide range of
living organisms, from bacteria to human. Many existing
studies have shown that they play important roles in
development, disease, bacteria virulence, etc. However, for
many types of DNA modification, for example N6-
methyladenine and 8-oxoG, there is not an efficient and
accurate detection method. Single molecule real time
(SMRT) sequencing not only generates DNA sequences,
but also generates DNA polymerase kinetic information.
The kinetic information is sensitive to DNA modifications in
the sequenced DNA template, and therefore can be used
for detecting a wide range of DNA modification types. The
usual detection strategy is a case-control method, which
compare kinetic information between native sample and a
control sample whose modifications have been removed.
However, generating a control sample doubles the cost.
We proposed a hierarchical model, which can incorporate
existing SMRT sequencing data to increase detection
accuracy and reduce coverage requirement of control
sample or even avoid the need of a control sample in some
cases. We tested our method on SMRT sequencing data of
plasmids with known modified sites and E. coli K-12 strain
to demonstrate our method can greatly increase detection
accuracy and reduce sequencing cost.

Detecting Epigenetic Changes with SMRT Sequencing
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strong signal-to-noise ratio (i.e. impact on the enzyme kinetics), but

does not work well for methylcytosine, whose signal-to-noise ratio

is relatively weak. In the case of the E. coli K-12 dataset, we were

able to detect roughly 80% of the 6-mA events in the GATC

context at a 5% FDR (False Discovery Rate) using the hierarchical

model with control data, a context known to be methylated in a

vast majority of the occurrences of the GATC motif in this strain

[5]. In addition to detecting these known methyladenine events in

the GATC context, we demonstrate the detection of thousands of

kinetic variation events that occur at positions not previously

described as having known methylation motifs, suggesting more

extensive patterns of modification than had been previously

observed.

Results

Box-Cox transformation and normalization
We note that while the IPDs are observed to be exponentially

distributed, tests based on this assumption are more sensitive to

extreme outliers. Thus, we adopt a Box-Cox transformation to

make the IPDs follow an approximate normal distribution (Figure 2),

making it more robust to outliers. Formally, we used the following

transformation,

IPDT~
(IPDza)l{1

l

Because the chemistry of SMRT sequencing is being constantly

improved, there are two different types of chemistry, FCR and C2,

represented in our datasets. The IPD characteristics of these

different chemistries are quite different, so we used different a and l,

which were estimated for each set. For data using the FCR

chemistry, we used a~0:02 and l~{0:08. For data using the C2

chemistry, we used a~0:005 and l~0:16. The a and l parameter

values were chosen empirically such that the skewness distribution

was approximately centered at 0.

A number of factors can influence enzyme kinetics in addition to

sequence context (see below) and DNA modification, including

reagent lot, temperature, SMRTcell lot and instrument operator.

Just as we observe batch effects and other experimental noise

factors with other technologies such as microarrays and RNA-seq

that impact gene expression values, so these different effects can

have strong effects on the IPD. Therefore, IPDs from different

experiments are not necessarily directly comparable. For the

current version of the Pacific Biosciences RS DNA sequencing

instrument, DNA molecules are sequenced in zero mode

waveguides (ZMWs) located on a SMRTcell [6], with pulses of

light in different color channels corresponding to the bases being

incorporated into the sequence being synthesized. These signals

are detected and recorded by a CCD camera operating at 100 Hz,

resulting in a movie containing up to 150,000 pulse streams

corresponding to the different ZMWs on the SMRTcell. Overall,

the IPD distribution can be significantly different between movies

even for identical DNA samples (Figure 1B). Therefore, we applied

a simple centering approach to normalize the IPD data before

modification detection.

ynorm
k ~yk{

1

N

XN

k~1

yk

where yk is any Box-Cox transformed IPD in a movie, and N is

the number of alignable bases in that movie. In the rest of the

paper, we refer to the normalized IPD as simply the IPD.

Dependence of polymerase kinetic on sequence context
The kinetic rate of DNA polymerase is known to be sensitive to

sequence context [7]. Given the ability of SMRT sequencing to

observe many thousands of individual molecules of DNA

polymerase as they carry out DNA synthesis, we examined the

relationship between the kinetic rate (estimated from the IPDs) and

sequence context. For each position, the position-specific kinetic

rate is defined as the mean of its Box-Cox transformed IPDs

(Methods). Sequence context is defined as the sequence flanking

the incorporation site of interest, the boundaries of which are

explored below. To avoid ambiguity caused by modification

events, we explored enzyme kinetics using whole-genome ampli-

fied (WGA) E. coli K-12 data (E. coli WGA-FCR in Table 1), given

the WGA process erases all chemical modifications. From the K-

12 dataset, we extracted positions in which the single strand

coverage was greater than 35 reads. We then applied MART [8],

a non-linear tree based regression method, to estimate the

relationships between polymerase kinetics and sequence context.

Here, position-specific kinetic rate is the response variable and

sequence context is the predictor variable. The proportion of the

variation in the response variable that can be explained by the

predictor variable (i.e., the R2 value), was used as the measure of

dependence of enzyme kinetics on sequence context. We explored

these relationships over different sequence context lengths and

found that R2 grows as the number of bases upstream of the

Table 1. Samples.

Sample names Genome size Coverage per strand Chemistry NCBI SRA ID

Plasmid m4C native 3,589 nt 752x FCR SRX209633

Plasmid m4C control 3,589 nt 1557x FCR SRX209634

Plasmid m6A native 3,591 nt 186x FCR SRX188834

Plasmid m6A control 3,591 nt 1486x FCR SRX188835

M. pneumoniae WGA-FCR 816,394 nt 15x FCR SRX209646

E. coli WGA-FCR 4,639,675 nt 8x FCR SRX209658

E. coli native 4,639,675 nt 12x C2 SRX209659

E. coli WGA-N 4,639,675 nt 12x C2 SRX209660

E. coli WGA-C 4,639,675 nt 13x C2 SRX209661

M. pneumoniae WGA-C2 816,394 nt 40x C2 SRX209662

doi:10.1371/journal.pcbi.1002935.t001

Detecting Epigenetic Changes with SMRT Sequencing
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incorporation site increases, but becomes saturated at 7 bases

upstream. The bases downstream from the incorporation site have

much smaller impact on the enzyme kinetic rate, with positions

more than 2 bases downstream from the incorporation site having

no observable impact on the R2 values (Figure 3A). Roughly 80%

of the IPD variation can be explained by a 10 base pair sequence

context (7 bases upstream and 2 bases downstream from the

incorporation site).

We refer to the average Box-Cox transformed IPDs corre-

sponding to positions with the same sequence context as the

context effect. We examined the consistency of the context effect

between two independent experiments: 1) WGA data from the E.

coli K-12 strain, and 2) WGA data from M. pneumoniae (E. coli

WGA-C and M. pneumoniae WGA-C2 in Table 1). While these

experiments were performed completely independently, carried

out by two different groups at two geographically separated sites,

Figure 2. Skewness and kurtosis distribution. For each position, the skewness and kurtosis of its Box-Cox transformed IPDs are plotted. (A) The
distribution of skewness of all positions is approximately centered at 0. (B) The distribution of kurtosis is approximately centered at 3.
doi:10.1371/journal.pcbi.1002935.g002

Figure 3. Impact of sequence context on position-specific kinetic rates. (A) Heatmap of R2 for the position-specific kinetic rate variance
explained by sequence context suggests that 7 bases upstream and 2 bases downstream, [27,+2], of the incorporation site are the most informative.
Bases beyond this region do not provide much information about polymerase kinetics. (B) Scatter plot of the [27,+2] context effect in whole genome
amplified E. coli and M. pneumoniae (E. coli WGA-C and M. pneumoniae WGA-C2 in the Table 1) shows that context effects are highly consistent
between these experiments, with a Pearson’s correlation coefficient is 0.91.
doi:10.1371/journal.pcbi.1002935.g003

Detecting Epigenetic Changes with SMRT Sequencing
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the context effects were strikingly similar (Figure 3B), with 80% of

the IPD variation in one set explained by variation in the second

set. Importantly, we compared context effects between two

experiments using the same chemistry (FCR chemistry), as the

consistency of context effects will not hold when comparing

experiments using different chemistries. Thus, in all the exper-

iments carried out herein, only datasets with the same chemistry

are used together.

Detecting DNA modifications by incorporating sequence
context information

Given that a large percentage of variability of position specific

enzyme kinetic rates can be explained by sequence context

(Figure 3A), IPDs of homologous positions can be combined

together to estimate the null IPD distribution. In addition, because

of the high consistency in context effects across different

experiments, IPDs of homologous positions in historical WGA

datasets can also be incorporated to enhance the power to detect

kinetic variation events (Figure 4). However, the IPD distributions

of homologous positions will not be exactly the same, and so, false

positive calls may be introduced if the null IPD distribution is

estimated without considering the heterogeneity in the IPD

distributions that can exist between homologous positions. To

deal with this type of heterogeneity, we developed an hierarchical

model to incorporate IPDs of homologous positions in a robust

fashion. In the hierarchical model, Box-Cox transformed IPDs of

homologous positions were assumed to follow normal distribu-

tions, with differences in mean and variance allowed between

these distributions. The mean and variance parameters were

treated as random variables and were assumed to follow the same

prior distribution. For the hierarchical model with control data,

the model was fitted by both IPDs from the control data and as

well as IPDs from all homologous positions. For the hierarchical

model without control data, the model was fitted using only

homologous positions in historical data. Then, we adopt a

likelihood ratio to evaluate how likely a position is modified (See

Methods).

To assess the utility of the hierarchical model in detecting

kinetic variation events, we compared the naive case-control

design with the hierarchical model using data from two data sets in

which the sites that were modified were known a priori. The first

set was generated from plasmid DNA isolated from a strain of E.

coli engineered to methylate the 4th carbon of cytosine residues in

each GATC context (referred to as the 4-mC set), and the second

was generated from plasmid DNA isolated from a strain of E. coli

engineered to methylate adenine residues in each GATC context

(referred to as the 6-mA set). We use E. coli WGA-FCR and M.

pneumoniae WGA-FCR in Table 1 as historical data and only

contexts that have more than 5 positions with larger than 10x

coverage in the historical data are used. We explored both the

[27,+2] contexts (7 bp upstream, 2 bp downstream of the

incorporation site) and [26,+1] contexts, and found that their

Figure 4. Schematic diagram of the hierarchical model. The red letter A represents the test base, with each read covering this position
contributing an IPD, denoted by yc~(yc1,yc2,:::,ycn0

) and y0~(y01,y02,:::,y0n0
) for native and control samples(if available), respectively, where nc and

n0 indicate the sequence coverage. IPDs of homologous positions in historical data are denoted by yi~(yi1,yi2,:::,yini
), where i~1,2,:::,m and m is the

number of homologous positions.
doi:10.1371/journal.pcbi.1002935.g004

Detecting Epigenetic Changes with SMRT Sequencing
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performances were similar (Figure 5). However, roughly one third

of the positions in these datasets did not have the corresponding

[27,+2] context in the historical data. Therefore, to make the

comparisons fair, we only considered positions that had a

corresponding context in the historical data. To maximize the

number of sequence contexts in one dataset that would be

represented in another, we restricted the sequence context to 8

bases(the [26,+1] context) for the remainder of our study. For the

hierarchial model with control data (see Methods), when the

sequence coverage of the control sample is relatively low

(15x*35x single strand coverage), the hierarchical model

compared to the case-control method is seen to increase the

sensitivity by 10%*30% under the same FDR (Figure 5).

Performance of the case-control method and hierarchical model

become similar as sequencing coverage of the control sample

increases. For the hierarchical model without control (See

Figure 5. Performance of the hierarchical model in plasmid data. The red, green and blue curves are ROC curves for the hierarchical model
with control data, the case-control method, and the hierarchical model without control data, respectively. These three methods were tested on two
different datasets: 1) a 3,589 bases long plasmid with 19 known 4-methylcytosines(4-mC) under single strand coverage 35x,50x,and 65x,
respectively(A,C,E), and 2) a 3,591 bases long plasmid with 23 known N6-methyladenines(6-mA) under single strand coverage 15x,20x,25x(B,D,F). The
solid lines are ROC curves using a [26,+1] sequence context and the dotted lines are ROC curves using the [27,+2] sequence context.
doi:10.1371/journal.pcbi.1002935.g005

Detecting Epigenetic Changes with SMRT Sequencing
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Methods), the accuracy is comparable to the case-control method

for 6-mA, but does not perform as good for 4-mC.

We further tested our method on datasets with partial

modifications in which only a fraction of the molecules with

respect to a given position were modified. Given one of the

limitations with the modeling approach presented herein is that it

assumes in the native sample a given position is either fully

modified or not, understanding the sensitivity of this assumption

on the detection rates is important. For each of the 6-mA set and

4-mC datasets, we constructed an artificial native sample, where

only a certain proportion of reads were sampled from the native

sample (referred to as the modification proportion), while others

were sampled from the control data. We tested the performance of

our method on three different modification proportions: 50%,

70% and 90%. As expected, the detection accuracy decreases as

the modification proportion decreases, however, in all cases our

method was still able to make detections even when the fully

modified assumption was clearly violated. We further note that it is

possible to achieve accuracy that is comparable to the case of fully

modified positions by increasing the sequence coverage of the

native sample (Figure S1).

Detecting DNA modifications in E. coli K-12
To further evaluate the performance of the hierarchical model,

we explored data from the E. coli K-12 strain in which there are

not only modifications that are known to occur in certain sequence

motifs (e.g. GATC), but also potentially novel modification events

that cannot be explained by known motifs. We applied both

hierarchical modeling with and without control data to the SMRT

sequencing data from native the E. coli K-12 MG 1655 strain (E.

coli native in Table 1). For the hierarchical model with control

data, we used data from a WGA E. coli K-12 MG 1655 sample as

control (E. coli WGA-C in Table 1) and a WGA M. pneumoniae data

(M. pneumoniae WGA-C2 in Table 1), which is generated in another

unrelated experiment, as historical data. For each given position,

the IPD distribution in the native sample was compared to the null

IPD distribution, which was estimated by fitting a hierarchical

model that combines the IPDs of the corresponding positions in

the control sample and IPDs of all of the homologous positions.

Homologous positions were identified in two different ways: 1) find

homologous positions in the WGA M. pneumoniae data, and 2) find

homologous positions in the control data. For the hierarchical

model without control, we estimated the null distribution by fitting

the hierarchical model by the homologous positions in the WGA

M. pneumoniae data only. A position was called modified if the

generated likelihood ratio exceeded a certain threshold (see

Methods).

As most adenines in the GATC context are expected to be

methylated in wild type E. coli K-12 MG 1655, we detected

modifications in the regions within 20 bp around adenine

positions in the GATC context to evaluate how well 6-mA could

be detected. Here, the FDR is estimated as the ratio between the

number of significant adenines detected that are not in the GATC

context and the total number of significant adenines detected. We

note that it is certainly possible that there are modified bases

outside of the GATC context, so that treating only adenines

detected in the GATC context as true positives and all other bases

as true negatives, out estimated FDR can be considered as a

conservative estimation, i.e. the actual FDR is lower than this. The

receiver operating characteristic (ROC) curve (Figure 6A) shows

that 95% of adenine of GATC can be detected under FDR of 5%

by using the hierarchical model with control. The hierarchical

model greatly increases the detection accuracy in this instance

compared to the case-control method. We can also detect 6-mA

without the control data, where the accuracy is lower than

hierarchical model with control, but the results are comparable to

the naive case-control method. If we apply this detection approach

on genome-wide scale, we detect many putative modification

events, with the ROC curve (Figure 6B) showing that at the 5%

FDR we not only detect 80% of the adenine in the GATC context

by using hierarchical model with control, but we also identify

about 2000 other positions in other contexts that may reflect off

Figure 6. Performance of the hierarchical model in E. coli K-12 data. The red, green and blue curves are ROC curves for the hierarchical model
with control data, the case-control method, and the hierarchical model without control data, respectively. (A) shows the ROC curve when the
detection region is restricted to 20 bp around the adenine residue in the GATC context, and (B) shows the ROC curve for the whole genome
detection.
doi:10.1371/journal.pcbi.1002935.g006

Detecting Epigenetic Changes with SMRT Sequencing
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target activity of the methyltransferase that makes the 6-mA

modifications in the GATC context or perhaps reflects the activity

of other enzymes capable of inducing base modifications. In the

genome-wide study, to estimate FDR, we detected DNA

modifications in another WGA sample (E. coli WGA-N in

Table 1), where no modification should be found, and FDR is

estimated by ratio between number of DNA modifications

detected in the WGA sample(E. coli WGA-N in Table 1) and

number of modifications detected in the native sample (E. coli

native in Table 1).

Discussion

We examined the correlation between DNA polymerase kinetics

and sequence context quantitatively and found that roughly 80%

of the variation in the enzyme kinetics as measured by IPD

variance can be explained by sequence context. Our data support

that the most informative regions of sequence context for the

enzyme kinetics at a given incorporation site is the region 7 bp

upstream and 2 bp downstream of the incorporation site. In

addition, we found that this context dependence is extremely

consistent between independent SMRT sequencing experiments

carried out using the same chemistry. IPDs of homologous

positions, including those from historical control data can

therefore be incorporated to improve DNA modification detection

accuracy. However, because heterogeneity of the IPD distribution

within the same sequence context can cause false positive events,

we adopted a hierarchical model that can adaptively incorporate

information from homologous positions. The hierarchical model is

flexible in that it can be used with or without control data. We

demonstrated that the hierarchical model with control data can

greatly increase accuracy compared to the naive case-control

method. For the types of modifications that have a relatively weak

signal-to-noise ratio, such as 4-mC, the hierarchical model without

control does not perform as good as the case-control method. This

may be expected given the sequence context in such instances does

not appear to explain all of the kinetic variation, with other factors

such as fragment length and experimental condition perhaps

dominating the estimation of the null distribution from historical

data. However, for modification types with a strong signal-to-noise

ratio, noisy null IPD distributions have a relatively small impact on

accuracy.

Our results suggest that the hierarchical model can reduce the

requirement of control samples and thus provide a significant cost

benefit. For detecting modifications with a strong signal-to-noise

ratio, one can generate low coverage control data or even avoid

the generation of the control data altogether. It may be possible in

the future as more SMRT sequencing data obtains, given the

dependence of local sequence context on enzyme kinetics, to build

null models specific to each sequence context to leverage as a

control in detecting base modification events. We anticipate as

well that as more sequence data obtains across different species

with larger genomes than the prokaryotic genomes represented in

our study, that we will be able to re-evaluate whether a more

expanded sequence context around the incorporation site better

explains the DNA polymerase enzyme kinetics. It may be that with

an expanded set that considers 9 bases upstream of the

incorporation site and 3 bases downstream, for example, a better

explanation of the enzyme kinetics obtains. Further, as the

historical datasets get larger, we may also find that the historical

data on its own achieves the same results as the combined

historical and control data in all contexts and for all modification

types.

Methods

Characterizing the relationship between sequence
context and polymerase kinetics

For the kth position in the genome, we assume that its Box-Cox

transformed IPDs follow a normal distribution, which is

ykj*N(mk,s2
k)

where ykj is the jth Box-Cox transformed IPD of the kth position

in the genome, and mk is the position specific polymerase kinetic

rate, which is by its sequence context. We used m̂mk~
1

nk

Xnk

j~1
ykj

(nk is the single strand coverage of the kth position), which are the

estimated position specific polymerase kinetic rates, as the

response, and the corresponding sequence context as the predictor

to build a non-linear regression model using the MART method

[8]. The dataset we employed for this characterization is whole

genome amplified E. coli K-12 data after outlier removal and

coverage filtering. Each data point in the dataset is a pair of

estimated position specific polymerase kinetic rates and sequence

contexts, which represent the upstream and downstream bases of

the position of interest. Performance of the regression approach

was evaluated using 5-fold cross validation in which 80% of the

data points were randomly selected as the training set, MART was

trained on this set, and then the predicted responses were carried

out for the remaining 20% of the data set. The R2 was the statistic

used to measure the performance and was calculated as

R2~1{
PM

k~1 (m̂mk{m̂mpred
k )2=

PM
k~1 (m̂mk{�mmk)2, where M is the

sample size, �mmk~
1

M

XM

k~1
m̂mk, and m̂mpred

k is the predicted m̂mk.

Hierarchical model with control data
Alternative model. For a given position, the Box-Cox

transformed IPDs in the native and control samples were

yc~(yc1,yc2,:::,ycnc
) and y0~(y01,y02,:::,y0n0

), respectively, where

nc and n0 represent the sequence coverage of each. Box-Cox

transformed IPDs of the homologous positions are denoted by

yi~(yi1,yi2,:::,yini
), i = 1,…,m, where ni is the sequence coverage

and m is the number of homologous positions. We assume that the

Box-Cox transformed IPDs follow a normal distribution.

yij*N(mi,s
2
i )

where i~c,0,1,2,:::,m and j~1,2,:::,ni. We assume that (mi,s
2
i ),

i~0,1,2:::,m, come from the same conjugate prior distribution, i.e.

p(s2
i Du,t2)~scaled inverse{x2(u,t2)

!
(u=2)u=2

C(u=2)
(t2)u=2(s2

i ){(u=2z1)exp({
ut2

2s2
i

)

p(mi Ds
2
i ,h,k)~N(h,

s2
i

k
)

!k
1
2(s2

i )
{1

2exp({
k(mi{h)2

2s2
i

)

where h, k, t2 and u are hyperparameters, and (mi,s
2
i ),

i~0,1,2,:::m, are independent and identically distributed given
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hyperparameters. In addition, we also assume the variance of the

Box-Cox transformed IPDs in the native sample, i.e. s2
c is

generated by the same prior distribution with s2
0,s2

1,:::,s2
m, is

p(s2
c Du,t2)~scaled inverse{x2(u,t2)

The means of the IPDs in the native sample, i.e. mc, is treated as

hyperparameters rather than being assumed to have the same

prior distribution with m0,m1,m2,:::,mm, given putative DNA

modification events may have an impact on mc and thus make it

deviate from that prior distribution. Therefore, given the

hyperparameters, the marginal log-likelihood function is

L(yc,y0,y1,:::,ym; h,k,u,t2,mc)~log(p(yc,y0,y1,:::,ymDh,k,u,t2,mc))

~log(p(ycDh,k,u,t2,mc))

z
Xm

i~0

log(p(yiDh,k,u,t2))

ð1Þ

By integrating out (m0,s2
0),(m1,s2

1),:::,(mm,s2
m) inPm

i~0 log(p(yiDmi,s
2
i )p(mi,s

2
i Dh,k,u,t2)), we get

Xm

i~0

log(p(yiDh,k,u,t2))~
Xm

i~0

½1
2

log(k)zlog(C(
uzni

2
))z

u

2
log(ut2)

{
1

2
log(kzni){log(C(

u

2
)){

uzni

2
log((uzni)ess2

i )

{
ni

2
log(p)�

where i = 0,1,…,m, and ess2
i is the scale parameter of the posterior

distribution of s2
i , which is [9]

p(s2
i Dyi,u,t2)~scaled inverse{x2(uzni,ess2

i )

where ess2
i is

ess2
i ~

1

uzni

(ut2z(ni{1)s2
i z

kni

kzni

(yi{h)2)

where �yyi~
1

ni

Xni

j~1
yij and s2

i ~
1

ni{1

Xni

j~1
(yij{�yyi)

2.

By integrating out s2
c in log(p(ycDs2

c ,h,k,u,t2,mc)p(s2
c Du,t2)), we

get

log(p(ycDh,k,u,t2,mc))~
u

2
log(ut2)zlog(C(

uzni

2
))

{
uzni

2
log(

Xnc

j~1

(ycj{mc)2zut2){log(C(
u

2
))

{
nc

2
log(p)

ð2Þ

It is obvious that given (h,k,u,t2), formula (2) can be maximized by

setting mc~
1

nc

Pnc
j~1 ycj , which is denoted by m̂mc 1ð Þ. By substituting

m̂mc 1ð Þ into the formula (1), L(yc,y0,y1,:::,ym; h,k,u,t2,mc) can be

maximized by Algorithm 1 in the Text S1. The solution is denoted

by (ĥh(1),k̂k(1),ûu(1),t̂
2
(1),m̂mc 1ð Þ).

To evaluate how likely a base is to be modified, we use the

marginal log-likelihood ratio, which is

LR~L(yc,y0,y1,:::,ym; ĥh(1),k̂k(1),ûu(1),t̂
2
(1),m̂mc 1ð Þ)

{L(yc,y0,y1,:::,ym; ĥh(0),k̂k(0),ûu(0),t̂
2
(0))

where (ĥh(0),k̂k(0),ûu(0),t̂
2
(0)) are hyperparameters maximizing the

marginal log-likelihood function, L(yc,y0,y1,:::,ym; h,k,u,t2), when

the null hypothesis, yc and y0 having the same distribution, is

true(null model). A base is called modified if LR exceeds a certain

threshold.

Null model. By assuming the null hypothesis is true, we pool

yc and y0 together and denote the pooled sample as yp. We assume

ypj*N(mp,s2
p)

where j~1,2,:::,np, and np~nczn0. (mp,s2
p) are assumed to have

the same prior distribution with (m0,s2
0),(m1,s2

1),:::,(mm,s2
m), which

is

p(s2
pDu,t2)~scaled inverse{x2(u,t2)

p(mpDs
2
p,h,k)~N(h,

s2
p

k
)

By integrating out (mp,s2
p),(m1,s2

1),:::,(mm,s2
m) inPm

i~1 log(p(yiDmi,s
2
i )p(mi,s

2
i Dh,k,u,t2))zlog(p(ypDmp,s2

p)p(mp,s2
pDh,

k,u,t2)), we can get

L(yc,y0,y1,:::,ym; h,k,u,t2)

~L(yp,y1,:::,ym; h,k,u,t2)

~
X

i~p,1,2,:::,m

½1
2

log(k)zlog(C(
uzni

2
))z

u

2
log(ut2)

{
1

2
log(kzni){log(C(

u

2
)){

uzni

2
log((uzni)ess2

i )

{
ni

2
log(p)�

ð3Þ

Thus, L(yc,y0,y1,:::,ym; h,k,u,t2) can be maximized by Algorithm 1

described in the Text S1, and the solution is denoted as (ĥh(0),k̂k(0),ûu(0),t̂
2
(0))

Hierarchical model without control data
The hierarchical model without control data is a special case of

the hierarchical model with control data, i.e. n0~0 or vector y0 is

empty.

Alternative model. By simply removing y0 in (1), we can get

the hierarchical model without control data, and the marginal log-

likelihood is

L(yc,y1,:::,ym; h,k,u,t2,mc)~log(p(yc,y1,:::,ymDh,k,u,t2,mc))

~log(p(ycDh,k,u,t2,mc))

z
Xm

i~1

log(p(yiDh,k,u,t2))
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The L(yc,y1,:::,ym; h,k,u,t2,mc) can be maximized by Algorithm 1

in the Text S1, and the solution is (ĥh(1),k̂k(1),ûu(1),t̂
2
(1),m̂mc 1ð Þ).

Null model. By assuming the null model is true, i.e.(mc,s2
c) are

generated by the same prior distribution with (m1,s2
1),:::,(mm,s2

m),

the likelihood function L(yc,y1,:::,ym; h,k,u,t2) could be got by

setting yp~yc in (3). Thus, we use

LR~L(yc,y1,:::,ym; ĥh(1),k̂k(1),ûu(1),t̂
2
(1),m̂mc 1ð Þ)

{L(yc,y1,:::,ym; ĥh(0),k̂k(0),ûu(0),t̂
2
(0))

to evaluate how likely the base is modified. where ĥh(0),k̂k(0),ûu(0),t̂
2
(0) is

the parameter maximizing likelihood L(yc,y1,:::,ym; h,k,u,t2) when

null model is true.

Evaluation of DNA modification detection methods
We evaluated case-control method and hierarchical model on

two different datasets: 3589 bases long plasmid with 19 known 4-

methylcytosines, and 3591 bases long plasmid with 23 known N6-

methyladenines (Plasmid m4C native/control and Plasmid m6A

native/control in Table 1). Whole genome amplified E. coli and M.

pneumoniae data were used as historical data (E. coli WGA-FCR and

M. pneumoniae WGA-FCR in Table 1). A detection is called correct

only if its distance to the nearest true modified position is less than

or equal to 5 bp. Different thresholds of LR were set, and the

corresponding false discovery rate and true positive rate were

calculated. False discovery rate and true positive rate are defined

as

FDR~
number of false detected positions

total number of detected positions

TPR~
number of detected true positive positions

total number of true positive positions

respectively. To get the ROC under different coverage, we

randomly sampled reads without replacement 100 times to get

average FDR under different TPRs.

Data access
The raw sequence data listed in Table 1 are available at http://

www.ncbi.nlm.nih.gov/sra, under accession number SRA062773

and SRA058893. (SRA058893 was published in [10]).

Supporting Information

Figure S1 Performance of the hierarchical model in
partially modified plasmid data. The red, green and blue

curves are ROC curves for the hierarchical model with control

data, the case-control method, and the hierarchical model without

control data, respectively. These three methods were tested on two

different datasets: 1) a 3,589 bases long plasmid with 19 known 4-

methylcytosines(4-mC) where 50%, 70%, and 90% molecules

from the modified site are actually modified on average (single

strand coverage of native sample and control sample are 200x and

65x, respectively)(A,C,E), and 2) a 3,591 bases long plasmid with

23 known N6-methyladenines(6-mA) where 50%, 70%, and 90%

molecules from the modified site are actually modified on average

(single strand coverage of native sample and control sample are

100x and 20x, respectively) (B,D,F).

(TIFF)

Text S1 EM algorithm for fitting the hierarchial model.
Text S1 provides a detailed description of the EM (Expectation-

Maximization) algorithm used for estimating hyperparameters of

the proposed hierarchical model.

(PDF)
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