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Abstract

Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external
stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the
response to external stimuli. To better understand this role, we proposed a viewpoint, ‘‘memories-as-bifurcations,’’ that
differs from the traditional ‘‘memories-as-attractors’’ viewpoint. Memory recall from the memories-as-bifurcations viewpoint
occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input,
known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics.
Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an
attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a
sequential learning process. Using a simple Hebbian-type learning, the model is able to memorize a large number of input/
output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested
targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with
occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the
bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for
learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent
experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously
applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-
output patterns in a similar manner to those designed in our previous study.
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Introduction

The way in which neural processing of sensory inputs leads to

cognitive functions is one of the most important issues in

neuroscience. Neural activity in the presence of sensory stimuli

[1–4] and during the execution of cognitive tasks in response to

sensory inputs have been measured experimentally [5,6], and

neural network models that exhibit the requested responses to the

inputs have been investigated theoretically [7–12]. Learning

algorithms have also been proposed to memorize several input/

output (I/O) mappings [12–16].

The response activity has been the main focus both in modeling

studies and experiments, while pre-stimulus, i.e., spontaneous,

activity has been dismissed simply as background noise. However,

spontaneous activity has recently been garnering more attention

since experimental measurements have revealed that the sponta-

neous activity is not random noise and that it shows characteristic

spatiotemporal patterns [17–19]. Furthermore, many observations

have revealed that the response activities to external stimuli

[20,21] or cognitive tasks depend on the spontaneous activity

[22,23]. Evoked responses are generated not only by external

inputs but also through the interplay of the spontaneous activity

and external stimuli. Thus, to establish a neural basis for the

cognition and computation in a neural system, it is important to

understand the nature of this interplay.

Spontaneous activity has been analyzed theoretically over the

last few decades by using neural network models of rate-coding or

spiking neurons with random, designed, or biologically realistic

connections [24–28]. However, apart from a few publications

[29,30], the relationship between the spontaneous activity and

response to external input has rarely been investigated. Further-

more, how the learning shapes the spontaneous activity and its

response to an input is still an open question, but recent

experimental studies suggest that learning and developmental

processes modify and shape the spontaneous activity [31,32]. In

the present paper, we analyze how the spontaneous activity is

formed when I/O mappings are memorized. We do this by

introducing a simple learning rule to the neural dynamics in order

to study the interplay between the spontaneous activity and input-

evoked response.

To analyze the formation of the spontaneous activity and its

response to the memorized input through the learning of I/O

mappings, we previously proposed a novel view on memory in

[33,34], which we called ‘‘memories as bifurcations’’ in contrast to
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the traditional theoretical viewpoint of ‘‘memories as attractors.’’

According to the memories-as-attractors viewpoint, each memory

is embedded in one of the attractors in a unique neural dynamical

system [11]. An input specifies an initial condition of the

dynamical system, and from that initial state, the neural activity

reaches an attractor that matches the target corresponding to the

given input. Thus, the initial states are determined by the given

inputs, but the neural activity in the absence of inputs is not

examined. In contrast, according to the memories-as-bifurcations

viewpoint, an input modifies the neural dynamics as a parameter,

and the flow structure of the neural activity is also changed from

that without an input. In the absence of input, the neural activity

evolves and corresponds to spontaneous activity. In the presence of

a learned input, the flow structure in the neural dynamics changes

and an attractor that matches the requested target corresponding

to the applied input emerges. With an increase in the input

strength, the flow structure changes via a sequence of bifurcations

in terms of dynamical systems theory. Here, the flow structure can

be changed substantially by applying different memorized inputs.

Thus, for this viewpoint, memories are embedded in the flow

structure of the neural dynamics such that they enable appropriate

bifurcations to appear upon input application.

Previously, we designed a neural-network connection matrix

through correlations among memorized inputs and targets so that

an output that matches a target is generated, as a result of

bifurcations from the spontaneous activity, by applying the

corresponding input [34]. In the model, similarity between the

spontaneous and evoked activities was demonstrated and is

consistent with recent observations in experimental studies

[32,35–37]. Although the simplicity of the model is an advantage

for analyzing the relationship between spontaneous and evoked

neural activities, it remains unclear whether the simplistic structure

in the designed network in [34] is the only way to store associative

memories or if there exists a variety of networks that show similar

behavior and generate a sufficient memory capacity. Also, how

such network structures for memorizing I/O mappings are formed

by learning through a widely-accepted synaptic plasticity rule,

such as the Hebbian rule, is still open for debate.

In the present study, we introduce a sequential learning model

with a simple Hebbian-type learning rule that changes the synaptic

strength according to the activities of the pre- and postsynaptic

neurons. From extensive numerical simulations, we have con-

firmed that through this learning the networks memorize *0:2N
mappings (where N is the number of elements) satisfying the

memories-as-bifurcations viewpoint. Here, spontaneous activity

shows chaotic behavior with approaches to memorized output

patterns. By applying each memorized input, this activity is

transformed (after a sequence of bifurcations) into different

attractors that generate the target pattern corresponding to the

applied input.

In spite of the sequential learning scheme, the neural network

does not lose the memory it learned earlier; it has a capacity of

up to 0:2N. This capacity is not so small, and interestingly it is

not possible in conventional sequential learning models in

which the learning of a new I/O mapping easily pushes out

previous memories. As long as the memorized targets are

attractors in the same dynamical system, the formation of a new

attraction to a novel attractor will easily destroy the attraction

to earlier target patterns. Our model differs in that the different

targets are attractors in the presence of the corresponding

input, i.e., they are embedded in different neural dynamical

systems, so that attractors for earlier targets are not destroyed.

Here, the spontaneous activity is flexible; it is possible to apply

an input so that a new target is embedded in the network

structure without destroying the information of the previous

targets.

Remarkably, the network generated through the learning

process to obtain a high memory capacity is found to have a

similar structure to the network designed in [18]. Although the

learning process can generate a huge variety of networks, which

are not similar to the designed network, a common structure is

generated by the learning. A simple learning rule for synaptic

change is sufficient for generating such a network.

Model

We consider a system composed of N continuous rate-coding

neurons whose activity xi (i~1,2, � � � ,N) lies between 21 and 1

and evolves according to

_xxi~Fj(fxig,fJijg)~tanh(b(
XN

j=i

Jijxjzcgm
i )){xi, ð1Þ

where Jij denotes a connection from the j-th to i-th neuron, cgm is

an input pattern gm with input strength c and m is index of learned

mappings. c can represent the strength of sensory input, for

example, the contrast of visual stimulus and the concentration of

odorant.

For each input pattern gm, we set a pattern jm as the target, and

the input and target patterns are generated as random N-bit

binary patterns, with probabilities P(ji~+1)~P(gi~+1)~1=2.

We postulate that by applying each input pattern gm, the

corresponding target pattern jm is recalled, i.e., an attractor

matching the target jm is generated. We adopt the following

learning procedure to embed the postulated I/O mappings.

Learning procedure
We first select two random binary patterns, g and j, as the input

and target patterns, respectively. The neural activity evolves in the

presence of g whose strength c is constant during the learning

process for j. The synaptic connection Jij also evolves according to

Author Summary

The neural activity without explicit stimuli shows highly
structured patterns in space and time, known as sponta-
neous activity. This spontaneous activity plays a key role in
the behavior of the response to external stimuli generated
by the interplay between the spontaneous activity and
external input. Studying this interplay and how it is shaped
by learning is an essential step toward understanding the
principles of neural processing. To address this, we
proposed a novel viewpoint, memories-as-bifurcations, in
which the appropriate changes in the activity upon the
input are embedded through learning. Based on this
viewpoint, we introduce here an associative memory
model with sequential learning by a simple Hebbian-type
rule. In spite of its simplicity, the model memorizes the
input/output mappings successively, as long as the input
is sufficiently large and the synaptic change is slow. The
spontaneous neural activity shaped after learning is shown
to itinerate over the memorized targets in remarkable
agreement with the experimental reports. These dynamics
may prepare and facilitate to generate the learned
response to the input. Our results suggest that this is the
possible functional role of the spontaneous neural activity,
while the uncovered network structure inspires a design
principle for the memories-as-bifurcations.

Embedding Responses in Spontaneous Activity
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_JJij~a(jm
i {xi)xj , ð2Þ

where aw0 is a learning parameter that is the inverse of the time

scale ratio of the synaptic to neural dynamics. The above synaptic

dynamics are determined by correlations between the activities of

the pre- and postsynaptic neurons. This learning rule takes a

similar form as the perceptron learning rule where the synaptic

connection is changed by correlations between activities of

elements in the input and output layers [16].

Here, although the validity of this learning rule is not

mathematically proven in contrast to the perceptron, it is expected

by the following argument. According to Eq. 1, the change in the

neural activity during Dt with the connection modified by the

learning, JijzDJij , is given by

x(tzDt){x(t)~F (fxig,fJijzDJijg)Dt ð3Þ

~(F (fxig,fJijg)z(LF=LJij)DJij)Dt: ð4Þ

Following the synaptic dynamics in Eq. 2, the change in the neural

activity due to DJij is given by

(LF=LJij)DJij~A(jm
i {xi(t))x

2
j (t)Dt, ð5Þ

where A is a positive value determined by a and differential

coefficient. Thus, when jm
i is larger (smaller) than xi(t), xi(tzDt)

increases (decreases), respectively. Hence, the change in the

synapses will drive the successive activity toward the target ji.

Note, however, that the distance between the neural activity and

the target is not necessarily guaranteed to decrease monotonically

through the learning, because the total change in the neural

activity xi(tzDt){xi(t) depends also on F (fxig,fJijg)Dt.

The learning process stops automatically when the neural

activity matches the target since in this case _JJij~0, otherwise, the

learning process continues. Here we impose several I/O mappings

to be successively learned, and after learning the preceding

mapping, another input pattern with the same strength as the

previous learning is applied while giving a new target pattern. The

learning process for each single I/O mapping is called a learning

step in what follows. In this learning algorithm, which belongs to a

class of palimpsest learning models [38–40], each mapping is

learned sequentially and previously learned mappings are over-

written by the latest mapping. Thus, it is possible that older

mappings are forgotten through the learning process.

During the learning process, double (neural and synaptic)

dynamics run concurrently, and the neural and synaptic states

have to be set as initial states: the neural and synaptic states are

randomly selected from xi[({1,1) with a uniform probability and

from a binary ensemble of +1 with equal probability, respectively.

In this model, fully-connected networks without self-connections

are used. Through different learning processes, different sets of

mappings are learned so that the generated networks are also

different. For a statistical analysis, we take an average over many

networks shaped through different learning processes.

As our purpose in this study is to analyze the relationship

between the spontaneous and evoked dynamics, we analyze the

neural dynamical system in the absence and presence of input after

learning. After the learning is completed, the synaptic connections

are fixed and only the neural activities evolve. Note that there is no

need for the input strengths for learning and memory recall to be

identical: we can set the input strength c used during the recall

process after the learning and independently of the input strength

used during the learning process. For example, after learning with

c~1, we can analyze the evoked dynamics by applying the input

with c~0:5. To distinguish the two clearly, the input strength used

in the learning process is denoted by clrn and that used in the

analysis of the neural activities after learning is denoted by crcl .

The spontaneous and evoked dynamics are given by crcl~0 and

crcl=0, respectively.

Definition of memory
As recall and memory for the memories-as-bifurcations

viewpoint are defined differently from those for the memories-

as-attractors viewpoint, we outline the definitions of recall and

then memory here. A network succeeds in recalling a target jm for

an input of gm, if, on application of input gm for clrn = crcl , the

overlap of the evoked activity with the target txfm=N is higher

than the overlap with any other pattern txj=N. Here, tx is a

transposed vector of x and the inner product txj=N is given byPN
i xiji=N. By considering a case in which the evoked attractor is

not a fixed-point attractor, the temporal average overlap is taken

as this criterion. By denoting the temporal average overlap with

the target jm as txjm=N, the criterion for the successful recall of jm

corresponding to the applied input gm is given by

Dm(m)~txjm=N{txf=Nw0, ð6Þ

where we measure the avaraged overlaps in the presence of the

input gm and f is the pattern that has the largest overlap with the

activity among other targets and inputs, as well as other random

patterns.

Memory is defined as the ability of a network to recall a target

for most initial states. The condition for whether a network

memorizes an I/O (gm/jm) mapping is

vDm(m)w~v
txjm=Nw{v

txf=Nww0, ð7Þ

where v . . . w represents the average over the initial states of this

network. By extending this criterion, we adopt a condition for

determining whether networks memorize the I/O mapping for a

certain parameter as

½vDmw�w0, ð8Þ

where ½. . .� denotes the average over different networks.

Results

To examine whether a network shaped through the learning

process memorizes the I/O mapping(s), we measure the evoked

activity. Then we analyze the possible relationship between the

spontaneous and evoked activities, and also analyze the charac-

teristic features of the connection matrix J that allows for memory.

Due to the high dimensionality of neural dynamics, it is difficult

to directly analyze the time evolution in the entire phase space.

Instead, we mainly use the overlaps of the neural activities with

some patterns: that with the target txjm=N, that with the input
txgm=N , and that with a randomly selected pattern txf=N . The

behaviors of these overlaps are characteristics of the neural

dynamics. We focus on the dependence of the neural and synaptic

dynamics on two parameters: the learning parameter a and the

input strength clrn. We begin by examining the dependences after

Embedding Responses in Spontaneous Activity
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one learning step of only one mapping and then examine the

dependences after multiple learning steps.

Neural dynamics formed through one learning step
Fig. 1 exhibits a learning process shown as a raster plot and the

time series of the overlap with the target txj=N for

(clrn,a)~(16,0:01). After wandering over many neural activity

patterns, the neural activity reaches the target pattern and the

learning process is completed. The learning process does not stop

by becoming trapped in a local minimum, nor does it continue to

wander over the neural patterns. We confirmed that in all trials

with parameters of a[½10{3,1�,clrn[½1,16�, the learning was

completed.

During a learning process, the flow structures of the spontane-

ous and evoked activities change. Hence, the recall process also

changes through the learning process. Fig. 2 shows a recall process

before and after learning for (clrn,a)~(16,0:01) and (1,0:5).
Before learning, an attractor matching the applied input pattern is

generated when that input is applied (100vtv200 in Fig. 2A), but

the overlap with the required target is not high and the network

thus fails to recall the target. After learning, two types of neural

dynamics are generated depending on the parameter values (clrn,a)

(see also Table 1):

(i) The spontaneous activity shows chaotic behavior around the

origin, while the evoked activity shows stationary activity,

which matches the target pattern (shown in Fig. 2B(i)), and

the neural activity responds to the applied input. This regime

is referred to as the ‘‘response’’ (R) regime.

(ii) Only fixed-point attractors that match the target and the

‘‘reverse’’ target patterns exist both in the absence and

presence of the input (shown in Fig. 2B(ii)). Here, the reverse

target pattern represents a neural pattern in which all the

variables take the opposite sign of those of the target pattern.

The neural activity in this case does not respond to the input,

and the regime is referred to as the ‘‘non-response’’ (NR)

regime.

We now analyze the spontaneous and evoked neural dynamics

in these two regimes. First, to reveal the dependence of the evoked

dynamics on the parameters, ½vtxj=Nw� as a function of clrn and

a, is shown in Fig. 3A. In the R regime, for larger clrn and smaller

a values, only the target attractor exists and the average overlap is

equal to one, while in the NR regime, both the target and reverse-

target attractors exist and the average overlap is lower than that in

the R regime. As clrn decreases or a increases, the volume of the

reverse-target attractor basin increases and that of the target

attractor decreases so that the average overlap with the target

½vtxj=Nw� also decreases. The dotted line in Fig. 3A represents

the boundary between the R and NR regimes computed using the

spontaneous activity, as discussed below.

To analyze the spontaneous dynamics, we note that due to the

symmetry, the mean overlap for each target over time is generally

zero because the orbit can approach both the target and reverse-

target with equal probability. Thus, we measure the standard

deviation (SD) of the overlap to quantify the approach to each

target. The SD(m) of an overlap with the m-th target over time is

computed as ½v((txjm=N)2{(txjm=N)2)1=2
w�. If this SD is much

larger than that for the overlap with a random pattern, then the

spontaneous activity selectively approaches the target (and its

reverse). A numerical computation of the SD as a function of clrn

and a is plotted in Fig. 3B. In the R regime, chaotic behavior

appears and the SD takes a finite positive value, while in the NR

regime, fixed-point attractors exist and so the SD is zero.

Interestingly, a band that has a higher SD, which stretches from

(2.6, 0.001) to (16,1), and whose ridge divides the R and NR

regimes appears in the figure. In Fig. 3B, the ridge is shown as the

dotted line, which is also plotted as a reference in Fig. 3A.

Around the ridge, the SD of the spontaneous activity is much

higher than that in other areas, and the chaotic spontaneous

activity shows switching behavior between the target and reverse

target. While the target and reverse-target attractors are unstable,

their ruins still exist and the neural dynamics intermittently visit

them.

In Figs. 3A and B, the boundary defined by the SD might be

slightly ambiguous because of the finite-size effect. However, by

extrapolating the result for larger system sizes (to be discussed

later), it is expected that, in the absence of inputs, all the networks

in the NR regime show fixed-point behavior and those in the R

regime show chaotic behavior, in the thermodynamic limit. By

increasing clrn or decreasing a, the minimum distance between the

activity and the target (or the reverse-target) increases in the R

regime. Thus, in this limit, the SD in the NR regime is zero. It

suddenly increases to nearly one at the transition point, and then

gradually decreases in the R regime. The ridge of the SD thus

indicates the transition between the NR and R regimes well. The

area with the average overlap taking nearly one above the dotted

line in Fig. 3A is expected to remain even in the thermodynamic

limit. However, this area is included in the NR regime, since

according to the analysis of the neural dynamics after multiple

learning steps, to be discussed later, no more than a single pattern

is recalled, as in the rest of the NR regime.

We also show how spontaneous activity changes into evoked

activity with an increase in crcl in each regime, as shown in Fig. 3C.

In the R regime, by increasing crcl from zero, the neural activity

shows successive bifurcations such that the overlap with the target

Figure 1. Learning process for one mapping. A. A raster plot of
the activity xi(t) for (clrn,a)~(16,0:01) and for 25 of N~100 neurons. B.
The temporal evolution of the overlap with the target txj=N for the
learning process in A.
doi:10.1371/journal.pcbi.1002943.g001

Embedding Responses in Spontaneous Activity
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txj=N increases to approach unity at crcl~clrn. The fixed-point

attractor matching the target appears at crcl~clrn. In the NR

regime, the target and reverse target attractors do not change on

application of the input, but the basin volumes of the attractors

increase.

Connection matrix shaped through the learning process
We analyze the connection matrix that is shaped through the

learning process, in the R and NR regimes, by measuring the

element of the matrix C which is projected onto x and y, as

defined by

Cxy~
txJ y=N �JJ, ð9Þ

where �JJ=N = v(Jij)
2
w

1=2. Note that for a given binary pattern x,

if the system has a large matrix element Cxx, then pattern x is

more stable in the absence of inputs for the neural dynamics in Eq.

(1). Similarly, when Cyx is larger, x is less stable. Fig. 4 shows a

time series of the elements Cjj,Cgj,Cjg, and Cgg for the NR,

(clrn,a)~(1,0:01) and R, (clrn,a)~(16,0:01) regimes. In the NR

regime, only the Cjj element is much larger than the others after

learning, while in the R regime, both Cjj and Cjg take salient

positive values and Cgj and Cgg take salient negative values.

The result that Cjj dominates in the NR regime means that

the generated connection matrix takes a similar form to that of

the Mattis model in a spin system [41], which corresponds to the

Hopfield network with only one memorized pattern. In the

network where Cjj is larger and the other elements are much

smaller, the target j and reverse-target patterns j remain highly

stable. This is consistent with the above analysis in the NR

regime. In the R regime, in contrast, the connection matrix shows

a form distinct from those of the matrices in Mattis and Hopfield-

type networks. Remarkably, the matrix takes a similar form to

that of the model in [34], where Cjj*Cjgw0wCgj*Cgg was

adopted. Indeed, the behaviors of the spontaneous and evoked

activities in this regime agree with that observed in that model

[34].

In general, the behaviors are strongly dependent on the matrix

elements. In Fig. 5, the elements as a function of clrn are plotted.

For (clrn,a)~(16,0:01), all of the elements deviate saliently from

Table 1. Characteristics of each regime.

Regime Response (R) Non-response (NR)

Spontaneous activity Chaotic behavior wandering among targets Fixed points that match
the target and reverse
target

Evoked activity Target fixed point No change from the
spontaneous activity

Capacity ww1 (0:2N) 0 or 1

Network structure Asymmetric based on input/output correlations [34] Mattis type

doi:10.1371/journal.pcbi.1002943.t001

Figure 2. Recall processes before and after the learning. Neural activities plotted as a time series of the overlaps with the target (txj=N), the
input (txg=N), and a random pattern (txf=N). The random pattern is generated from the same ensemble of targets and inputs. A. The recall process
before the learning for crcl~16. B. The recall processes after the learning for (i) (clrn,a) = (16,0.01) and (ii) (clrn,a) = (1,0.5). The activity is spontaneous
(0vtv100) or evoked (100vtv200) as indicated by the dotted and filled red bars, respectively, above the plots. The evoked activity is introduced by
the application of an input of strength crcl~clrn. In (ii), the time series from two initial conditions that lead to the two different attractors are plotted.
doi:10.1371/journal.pcbi.1002943.g002

Embedding Responses in Spontaneous Activity
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zero, and as clrn decreases, the elements, Cjg,Cgj, and Cgg

decrease rapidly, while Cjj does not change. The regime changes

from the R to NR regime as this occurs.

We now analyze why such connection matrices are formed

through the learning process. The evolution of the matrix element

Cjj is also determined by Eq. (2) as follows:

C_
jj~

tj _JJj=N�JJ ð10Þ

~atj(j{x)txj=N�JJ~a(N{tjx)tjx=N�JJ: ð11Þ

Although �JJ also evolves temporally, we set �JJ as a constant value,

because relative scale of the elements is relevant for understanding

the behavior. In the same way, the evolutions of the other elements

are determined by

C_
jg~a(N{tjx)tgx=N�JJ, ð12Þ

C_
gj~a(tgj{tgx)tjx=N�JJ, ð13Þ

C_
gg~a(tgj{tgx)tgx=N�JJ: ð14Þ

In both the regimes, the activity x approaches a target j and thus
txj is greater than zero (and smaller than N ) for most of the

learning process. Thus, C_
jj is positive for most of the learning

process and then, Cjj takes a large positive value. In contrast, the

change in the other elements is distinct between both regimes,

which is explained by the initial behavior of the learning process.

In the R regime, the overlap with the input txg increases in the

early stage of the learning process as x is directed toward g by the

input, as shown in Fig. 4A(ii). It is estimated that tgx=N is O(1)

and positive, which is much larger than tjg=N*O(N{1=2). Thus,
_CCgg and _CCgj are negative in the R regime, while _CCjg is positive.

These estimates of the sign of the elements are consistent with the

matrix elements in Fig. 4B. For the NR regime, in which clrn is

smaller and a is larger, the increase in the overlap with the input
txg=N in the early stage is much smaller than that in the R

regime; if clrn is small, the neural activity does not respond strongly

to the input, whereas if a is large, the learning is completed before

the overlap with the input increases. Thus, the temporal changes

Figure 3. Phase diagram of the evoked and spontaneous dynamics and bifurcation diagram. A. The quenched average of the overlap
with the target ½vtxj=Nw� in the evoked dynamics. B. The standard deviation (SD) of the overlap averaged over time and over the networks

½v((txj=N)2{(txj=N)2)1=2
w�. Average values in A and B are computed over 100 networks and over 100vtv1000. The dotted curves in A and B,

plotted for reference, show the boundary between the R and NR regimes and, which are computed by the ridge of SD in B with smoothing the line.
C. The local maxima in the 100vtv200 time series of the overlap with the target txj=N as a function of the input strength in (i) the NR regime for
(clrn,a)~(1,0:5) and (ii) the R regime (clrn,a)~(16,0:01) showing the bifurcations.
doi:10.1371/journal.pcbi.1002943.g003
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in _CCjg, _CCgg, and _CCgj are much smaller. Hence, only Cjj takes a

large value, and thus the Mattis-type network is generated.

Neural dynamics formed through multiple learning steps
Neural activities that are shaped through multiple learning steps

are analyzed for I/O mappings that are learned sequentially, as

shown in Fig. 6. In the presence of each input (as indicated by the

colored bars above the plot), the neural activity converges to the

target to be memorized in the same way as in the learning process

of a single mapping (shown in Fig. 1). Note that although the

learning process changes the synaptic connections and flow

structure of the neural activity, some of the structure generated

in earlier learning steps is preserved because the change in the flow

structure in each learning step occurs in the presence of a different

input pattern. We mainly present the results after the learning of

40 mappings and analyze the behaviors of spontaneous and

evoked activities for later 30 mappings in the following analysis.

(We choose 30 mapping because memory capacity is almost 20 as

shown later. The number 30 and 40 can be arbitrary, as long as

they are chosen to be larger than the many capacity.)

Corresponding to each phase in the one-step learning, we also

found two distinct behaviors in the multiple learning: (i) Neural

activity responds to multiple inputs so that an attractor that

matches each learned pattern is generated respectively upon each

input. Thus, multiple mappings are successfully memorized. (ii)

The neural activity does not respond to any input. The two

attractors that match the latest learned target and its reverse

pattern exist in the absence and presence of the input. Recall in

response to an input is not observed either. We call these the R

and NR regimes, respectively, in the same manner as the analysis

for one-learning step.

In Fig. 7, we plot the neural dynamics in the presence and

absence of inputs after 40 learning steps for (clrn,a)~(16,0:01) in

the R regime. The recall processes of 1st, 5th, and 30th targets are

shown by the overlaps with txjm=N for m~1,5, and 30 in the

absence and presence of the 1st, 5th, and 30th input, respectively.

From here on, the index m (m~1, 5, and 30 in this case) denotes

the order of the I/O mapping beginning with the most recent, i.e.,

the 1st mapping is the latest learned one, while the 5th is that

learned 5 steps earlier, and so forth.

In the R regime, by applying an input gm, the overlap with the

required target txjm=N increases and takes on the highest value of

Figure 4. The time evolution of the overlap and the matrix elements. A. The overlaps with the target txj=N and input txg=N during the
learning process (i) in the NR regime for (clrn,a)~(1,0:01) and (ii) in the R regime for (clrn,a)~(16,0:01). B. The matrix elements Cjj,Cgj,Cjg, and Cgg

in (i) the NR regime and (ii) the R regime with the same parameters as in A.
doi:10.1371/journal.pcbi.1002943.g004

Figure 5. Dependence of the matrix elements Cjj,Cgj,Cjg, and
Cgg on the learning parameter clrn. The matrix elements averaged
over 100 networks for a fixed a of 0.01 are shown, and the
corresponding regimes (NR and R) are indicated above the figure.
The error bars represent the standard deviation.
doi:10.1371/journal.pcbi.1002943.g005
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Figure 6. A learning process for five mappings. The time evolutions of jmx=N (m = 1, 2, 3, 4, and 5) are indicated by different colors for
(clrn,a)~(16,0:01). In the presence of each input (shown as the colored bar above the plot), the neural activity converges to the target to be learned.
After convergence, a new mapping is provided, and in the presence of the new input, the system starts to learn the new target.
doi:10.1371/journal.pcbi.1002943.g006

Figure 7. The neural dynamics after 40 learning steps in the response (R) regime. A. The time series of the neural activities shown by the
overlap with the 1st, 5th, and 30th targets j1,5,30x=N in the absence and presence of the 1st (red), 5th (green), and 30th (blue) inputs (shown by the

colored bars above the plot) for (clrn,a)~(16,0:01). B. The time-averaged overlaps with the learned targets txjm=N as a function of m (squares). The
overlaps with the targets and inputs averaged over the 100 networks are shown as the solid and dashed lines, respectively. C. The distributions of the
overlaps of the spontaneous activity with the targets. The black line represents the distribution averaged over 10 overlaps with 10 random patterns

as a control, and the others are distributions of the overlaps j1x=N , j5x=N , and j30x=N using the same colors as in A. D. The SD of the overlap with
the target for the temporal evolution (squares), and the SD of the target and random pattern averaged over the 100 networks shown as the right blue
and black lines, respectively.
doi:10.1371/journal.pcbi.1002943.g007
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all overlaps. In particular, in the presence of the latest input g1, the

overlap with the latest target txj1=N takes a much higher value, of

nearly one, and an attractor that matches the latest target is

generated. Thus, the latest target is successfully recalled by

applying the corresponding input. In the presence of earlier inputs,

the overlaps with the requested targets take smaller values than

that with the latest target, but they are still larger than the overlaps

with other patterns (see Fig. S1), as long as the retrieved mapping

is not one that was learned much earlier (as shown below). (The

overlaps with the applied inputs also take higher values than the

overlaps with other patterns, as well as the overlaps with the

required targets. Thus, we compare the overlaps with the targets

with those with the inputs in the following part.) For example, the

overlap with the 5th target txj5=N is highest among the overlaps

with others, in particular higher than that with the 5th input
txg5=N (Fig. 7B). Thus, the 5th target is also recalled according to

Eq. 4. From almost all initial values, the neural activity evolves to

an attractor that gives the corresponding target pattern upon

application of the appropriate input. Thus, the 1st and 5th targets

are always recalled. According to the definition of memory in Eq.

6, the 1st and 5th mappings are memorized in this network. In

contrast, the overlap with the 30th target txj30=N , which is

learned much earlier, takes a much smaller value and is lower than

the overlap with the 30th input txg30=N. Thus the network cannot

recall the 30th target, i.e., the target has not been memorized.

Hence the memory capacity of the present network lies between 5

and 30.

To examine the memory capacity, we compute the average

overlaps with the targets ½vtxjm=Nw� in the presence of each

earlier input, as well as the average overlap with the input itself

½vtxgm=Nw�, as shown in Fig. 7B. The overlap with an earlier

target txjm=N upon application of the corresponding input

gradually decreases with an increase in m, while the overlap with

the applied input increases. The difference between the average

overlaps with the m-th target and input under the m-th input

Dm = ½vtxjm=Nw�{½vtxgm=Nw� decreases with an increase in

m. Here, Dm eventually crosses 0 at around 20. According to

definition of memory in Eq. 8, the system in this regime succeeds

in recalling the target by applying the corresponding input to 20 I/

O mappings. To reduce the artifact from the fluctuations of the

overlap on memory capacity due to the finite size effect, we modify

the definition of the memory capacity Mc slightly as

Mc~
X

m

H(Dm{e): ð15Þ

Here, we set e~0:05, however, as long as the value is small, there

is no essential change in the memory capacity. According to this

modified definition, Mc is computed to be 19.

We also analyze the spontaneous neural dynamics that underlie

the responses to the learned inputs analyzed above in the R

regime. The spontaneous neural activity shows noisy behavior,

and no fixed pattern is stable, as shown in Fig. 7A. Irrespectively of

the noisy behavior, the overlaps with the memorized targets often

show high values from time to time. We compute the distributions

over time of these overlaps and present them in Fig. 7C. The

overlap distribution with the latest target txj1=N is much broader

than that with a random pattern txf=N, and thus, the neural

activity gets selectively closer to the latest target from time to time,

even in the absence of input. The distributions of the overlaps with

earlier targets are also broader than that with a random pattern,

even though the magnitude is smaller than that of the overlap with

the latest target. Following the analysis introduced in the single-

step learning, we measure the SDs of the distributions of the

overlaps with all the targets, as represented by dots in Fig. 7D. We

also compute the SD by averaging over the networks, as shown in

Fig. 7D as the light blue line. As shown, the SDs of the later targets

decrease as m increases. The major source of decrease in the SD

comes from a decrease in the amplitude of the overlap.

Therefore, the spontaneous activity approaches the learned

targets from time to time and the closeness to the target jm during

the spontaneous dynamics decreases with m. The SD decreases

approximately as a power law as m{ks , with ks*:25. This decay

rate roughly agrees with that of the evoked activity, which is

approximated by m{ke with ke*:27. Both of the exponents are

computed from a fit of the overlap and averaged SD to m{ke

and

am{ks

, respectively, by using the least-squares method. We will

analyze the dependence of the decay rates on the parameters a
and c below.

In the NR regime, in contrast, the latest target and its reverse

pattern exist as attractors in the absence and presence of inputs for

(clrn,a)~(1,0:5) (see Fig. S2). This is identical to the NR-regime

behavior after one learning step, for which D1 was nearly zero.

Due to the stability of the latest target attractor, the neural activity

does not respond to the earlier input gm (mw1) either, so that Dm is

also nearly zero. According to the definition of memory, Eq. 15,

Mc~0. By decreasing a or increasing clrn, the reverse target

attractor is less stable in the presence of the latest input, and loses

stability at some parameter values, while this attractor is still stable

in the absence of the input. In this region, D1 is equal to one, while

there is still no response to an earlier input, and thus in this region,

Mc = 1.

Bifurcation with an increase in the input strength
So far, we have analyzed the spontaneous neural activity with

crcl~0 and the evoked activity with crcl~clrn. We now examine

how the spontaneous activity is transformed into the evoked

activity with crcl~clrn, as crcl is increased. This change with

changing crcl is regarded as a bifurcation or a sequence of

bifurcations in terms of the dynamical system theory. The

bifurcations of the neural activity, revealed by increasing crcl for

the 1st, 5th, and 30th input strengths for the network given in

Fig. 7, are shown in Fig. 8.

In the R regime, the overlap with the 1st (i.e., latest) target
txj1=N increases monotonically and continuously by increasing

the strength of the 1st input. Finally, the fixed point that matches

the 1st target is generated for not only the network used in the

figure, but also most of the networks in the R regime. The change

to a fixed point is understood as a low-dimensional bifurcation,

while the whole sequence of neural activity changes involves

higher-dimensional dynamics. For the 5th and 30th inputs, the

overlap with the corresponding input is increased continuously

with an increase in the input strength, in a similar manner as the

bifurcation diagram for the 1st input. In contrast to the latest

input, however, the attractor is not a fixed-point attractor even for

crcl~clrn, where the evoked activity still shows chaotic behavior.

Apart from the change to a fixed-point attractor, the bifurcation

sequences involve a large degree of freedom in a high-dimensional

(N~100) space. Hence, plotting a few macroscopic variables, i.e.,

the overlaps of the neural activity with a few targets, is not

sufficient to capture the entire bifurcation sequence. Therefore, to

consider the chaotic dynamics, we measured the Lyapunov

spectrum for the neural activity dynamics. With an increase in

the input strength, the number of positive Lyapunov exponents

decreases, implying the existence of successive bifurcations from a

high-dimensional attractor to a lower-dimensional attractor (see

Fig. 8). Accordingly, the dimension of the neural-activity attractor

Embedding Responses in Spontaneous Activity
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also decreases. No positive Lyapunov exponents exist once the

fixed-point attractor is reached for the input that was just learned,

while even for the application of an earlier input, a decrease in the

number of positive exponents is observed but the number does not

reach zero.

In the NR regime, the latest target and reverse-target fixed-

point attractors exist with crcl~clrn. Even by increasing the input

strength, these attractors remain stable and no bifurcation

occurs.

Dependence of the learned neural activities on the input
strength and learning parameters

The dependence of the spontaneous and evoked activities on the

two parameters, clrn and a, are analyzed through the capacity and

SD. The dependence of the evoked activity is explored by

measuring the capacity Mc according to Eq. 15, with the results

shown in Fig. 9A. In the R regime with a larger clrn and smaller a,

a high capacity is observed, while in the NR regime with a smaller

clrn and larger a, the capacity is zero or one. Over the entire

parameter space, the overlap with the requested target in the

presence of an earlier input decreases, i.e., ½vtxjm=Nw�
decreases as m increases, while that with the corresponding input

increases. However, the decay rate of the overlap with the target as

a function of m and the growth rate of the overlap with the input

are dependent on clrn and a.

For a large clrn and small a, e.g., (clrn,a)~(16,0:01) as shown in

Fig. 7B, the decay rate of the overlap with the target as a function

of m is small, as well as the growth rate of the overlap with the

input. In general, when the capacity is higher, response to an

earlier input is higher and the decay rates are lower. As the

parameters approach the NR regime and the memory capacity

decreases with a decrease in clrn and increase in a, these rates

become larger (see Figs. 7B and 9D(i)). Finally, in the NR regime,

the rates reach maximal value, and the network responds only to

the most recently learned input and not to any other input, i.e.

Mc~1 (see Fig. 9D(ii)).

To explore the dependence of the spontaneous activity, we

measure the average SD of the spontaneous activity over the

learned mappings,

E(SD)~
XM

m~1

½v((txjm=N)2{(txjm=N)
2
)1=2

w�=M, ð16Þ

as shown in Fig. 9B, where M is set to 30. When E(SD) is larger,

the decay rate of SD(m) is smaller.

For a large clrn and small a, (clrn,a)~(16,0:01), where E(SD)
takes a higher value, the spontaneous activity approaches not only

the latest target, but also an earlier target from time to time, as

shown in Fig. 7D. The closeness to the target, as seen by the

decrease in the SD of the overlap with an earlier target, decreases

for targets memorized earlier. As clrn decreases and a increases,

and the system approaches the NR regime, the average SD

decreases and this decay rate increases; the spontaneous activity

approaches the latest target selectively as shown by the small

distance between the spontaneous activity and the latest target (see

Fig. 9C(i)). Finally, in the NR regime, the activity in the absence of

input falls on the latest target and reverse-target pattern (or the

localized fluctuations around these patterns) (see Fig. 9C(ii)).

The decay rates of the overlap with the evoked activity and the

SD of the spontaneous activity in the R regime were seen to obey

power laws of m{ks and m{ke , respectively, and the two exponents

ks and ke have a similar value for and dependence on clrn, as

shown in Fig. 9E. This suggests that the approach of the

spontaneous activity to the target is correlated with the activity

evoked in response to the corresponding input.

Both of the two exponents decrease for a larger clrn and smaller

a. For much larger clrn and much smaller a values, these decreases

become saturated, and the curves of ½vtxjm=Nw� and SD(m) as

functions of m no longer change with an increase in clrn. Thus, the

capacities for different clrn values become also saturated and take a

common value of *20 (Fig. 9F). In other words, for a sufficiently

large clrn and small a, the capacity in this model with N~100
takes a constant value of 20. Further, from results for

N~50,75,100,150,200, and 250, we have confirmed that this

capacity is proportional to N ; the capacity has a universal limit of

*0:2N (see Fig. S3).

Note that the R and NR regimes are clearly distinguishable

mathematically. Although the boundary between them might

Figure 8. Bifurcation diagram for (clrn,a) = (16,0.01) in the R regime. We use the network shaped after 40 learning steps. A. The local maxima
in the 50vtv1050 time series of the overlap with the target txjm=N in the presence of the corresponding input gm as a function of crcl . The overlaps
with (i) the 1st (m~1), (ii) 5th (m~5), and (iii) 30th (m~30) targets are plotted in red, green, and blue, respectively, while the data in black represent
the overlap with each input txgm=N (m~1,5,30). B. The number of positive Lyapunov exponents of these evoked dynamics as a function of crcl .
Lyapunov exponents are calculated from the time series 50vtv1050 according to the algorithm in [56].
doi:10.1371/journal.pcbi.1002943.g008
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slightly ambiguous, as seen in Figs. 9A and B for N~100 because

of the finite-size effect, it is clearer with the increase in N , and, in

the thermodynamic limit, it is expected that the memory capacity

is equal to one (or zero) as is the fixed-point spontaneous activity,

i.e., E(SD)~0, for all networks in the NR regime. In the R

regime, in contrast, spontaneous activity shows chaotic behavior,

i.e., E(SD)w0, for all networks, and the memory capacity

increases linearly with size N, as 0:2N. The proportion coefficient

0.2 may be slightly varied according to the criterion for the

memory capacity, but the proportionality to N is invariant. Hence,

the boundary between R and NR is clearly defined.

Connection matrix shaped through multiple learning
steps

Finally, we analyze the connection matrix by measuring the

elements of the matrix Cjmjm , Cjmgm , Cgmjm and Cgmgm as defined in

Eq. 9. In Fig. 10, we show the elements in both the R and NR

regimes and also in the border between them. The elements in the

Figure 9. Dependence of the evoked and spontaneous activities on clrn and a. A. The capacity (as defined in the main text). The dotted line
denotes the boundary of the R regime, computed by the line where the memory capacity goes beyond one, with smoothing the line. B. The average
SD of the spontaneous activity. In A and B, we computed the capacity and SD by averaging over 100 network and 50vtv1050. C. The temporal

evolution of the overlap with the latest target j1x=N in the absence (0vtv500) and presence (500vtv1000) of the latest input with crcl~clrn for
(clrn,a)~(2:6,0:01) in (i) and for (clrn,a)~(1:3,0:01) in (ii), indicated by (i), and (ii), for in A and B. For (ii), results from two initial conditions that lead to
differed attractors are plotted. D. The average of the overlap with the m-th target in the presence of the m-th input (magenta line) ½vtxjm=Nw� and
the SD of the spontaneous overlap (right blue line) plotted as a function of m for the parameter set indicated by (i) and (ii) in A and B. E. The
exponents ke and ks , computed from a fit of the overlap and averaged SD to m{ke

and am{ks

, respectively. Both ke and ks are computed for different
clrn by fixing a~0:01 as represented by the magenta and right blue lines, respectively. F. The capacity Mc for different clrn by fixing a~0:01.
doi:10.1371/journal.pcbi.1002943.g009
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R regime take comparable values for each m, and decrease with an

increase in m, but the decay rates are rather small compared with

those in the NR regime. Thus, for each mapping, the analysis of

the network structure in the R regime after a single learning step is

also valid after multiple learning steps. The network structure in

which Cjmjm*Cjmgmw0wCgmjm*Cgmgm underlies the chaotic

spontaneous activity with high closeness to the learned target

patterns and successful recall of the target upon application of the

corresponding input. At the border between the R and the NR

regimes, Cj1j1 is much larger, while Cjmjm for mw1 decreases

rapidly with an increase in m. This network structure makes the

approach of the spontaneous activity to the latest target (and

reverse-target pattern) much closer as shown in Fig. 9C(i).

In the NR regime (i.e., with a much smaller clrn and much

larger a), the decay rate of Cjmjm is much larger than that in the R

regime and, only Cj1j1 takes a significant value. For the latest

mapping, the network structure is similar to that in the NR regime

after one learning step as analyzed above. This is consistent with

the existence of only the latest target and reverse-target attractors

in the spontaneous activity and the absence of response to any

input.

Discussion

We have proposed an associative memory model with a simple

learning rule that realizes the viewpoint of memories-as-bifurca-

tions in which neural activities are transformed appropriately by

each input to generate the requested targets. Using this viewpoint,

we have analyzed the spontaneous activity and its response to a

memorized input. With a Hebbian-type synaptic change based on

the correlations between the pre- and postsynaptic neurons, the

model succeeds in memorizing I/O mappings by sequential

learning without losing earlier memories up to a capacity of 0:2N
for a sufficient large clrn and small a. In the absence of input, the

neural activity typically shows chaotic dynamics, while approaches

to memorized target patterns are repeated from time to time.

Upon inputs with adequate strength, e.g., the same as that used in

the learning, flow structure of the neural activity is changed and

the neural activity evolves into an attractor that matches the

requested target pattern corresponding to each input. The neural

activity dynamics change from spontaneous activity with a large

variability in a high-dimensional state space to a lower-

dimensional state that loses the variability with an increase in

the input strength, which we understand as successive bifurcations.

Interestingly, the synaptic connections generated by learning share

a common property as those that were previously designed based

on correlations in the input and target patterns [34]. We outline

here the significance of our viewpoint and the consequences of our

results for neuroscience.

Memories as a result of sequential learning
We introduced a sequential learning rule, to match the

memories as bifurcations viewpoint, by adopting a simple rule

based on the correlations between the activities of the pre- and

postsynaptic neurons; the rule is similar to the perceptron learning

rule [13,16].

Sequential learning or palimpsest learning have been studied

over a few decades [38–40,42,43], and it has been shown that

learning a new I/O mapping can easily destroy traces of

previously memorized target patterns to such an extent that the

memory capacity is lower than that for non-sequential learning.

Methods have been proposed to alleviate the decrease in the

capacity by decreasing the degree of synaptic plasticity, for

example, by decreasing the number of the synapses that change

simultaneously [42]. However, the destruction of earlier attractors

due to the formation of new attractors is still a general trend as

long as the memorized targets are attractors in the same dynamical

system.

From our viewpoint, in contrast, the attraction to a new learned

target is shaped under a ‘‘different’’ dynamical system because

each system exists in the presence of a different input pattern, and

as we demonstrated, the neural network does not completely lose

the memory learned earlier; the capacity is 0:2N for an input

strength clrn that is sufficiently large and a rate of synaptic change

a that is sufficiently smaller than that of the change in the neural

activity. For larger clrn values, the system under the new input

deviates farther from that without input and from that with the

previously learned inputs so that the traces of the previously

learned memories are not destroyed. For small clrn, in contrast, the

system under the input is close to that without input, so that the

traces are easily destroyed. For a larger a, on the other hand, the

change in the synaptic connection is larger so that traces of

previously learned memories are destroyed, while the synaptic

connection is enhanced and selectively stabilizes the new target

pattern. Indeed, for a larger a and smaller clrn area, only a highly

stable attractor that matches the latest target is generated by

removing earlier memories, and thus multiple mappings are not

memorized.

Figure 10. The matrix elements in the presence of the targets j and inputs g. The matrix elements Cjmjm , Cjmgm , Cgmjm , and Cgmgm plotted as
functions of m for A. (clrn,a) = (16, 0.01) in the R regime, B. (clrn,a) = (2.6, 0.01) in the boundary regime, and C. (clrn,a) = (1,0.5) in the NR regime. The
same colors as those used in Fig. 5 are used here. The error bars represent the standard deviation.
doi:10.1371/journal.pcbi.1002943.g010
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The simplicity of our learning scheme may have potential

applications for the learning algorithm of I/O mappings. A

limitation in our model is that the target information is supplied to

all neurons because we used all-to-all recurrent connections. This

limitation can be overcome by appropriately introducing a layered

network structure and reinforcement learning algorithm [33] into

the present learning algorithm. In addition, the present scheme is

based on Hebbian-type synaptic changes that use only the pre-

and postsynaptic neural activities and the target information under

the presence of input; this means it may be plausible to expect the

existence of such synaptic dynamics in biological neural system.

Spontaneous activity and bifurcation into evoked activity
There have been extensive experimental studies on the

responses of neural activities to external stimuli in the sensory

cortex [1–4] and higher cortex area [5,6]. Pre-stimuli, spontaneous

activity had been dismissed as a background noise in these studies,

but in recent experimental studies, it has been demonstrated that

spontaneous neural activity without sensory input is not simple

noise but is in fact highly structured in time and space [17,44]. In

particular, spontaneous activity is often found to exhibit transitory

behavior among several activity patterns that are similar to those

evoked by external stimuli [32,35,37,45,46]. In other words,

spontaneous activity includes some patterns evoked by external

stimuli [18]. Thus, spontaneous activity that is widespread and

wanders over many patterns converges to one patterns by applying

an input. If one observes a discontinuous change in the neural

activity by increasing the input strength, we expect that the change

will be interpreted as a bifurcation.

In the present study, we analyzed the transformation of the

spontaneous to evoked activity from the memories-as-bifurcations

viewpoint; we found that spontaneous activity that is chaotic but

that often approaches the memorized targets is shaped by learning.

This is reminiscent of the similarity between the spontaneous and

evoked activities noted in the above experimental studies.

Interestingly, if the spontaneous activity makes a closer approach

to some target patterns, the inputs corresponding to those targets

generate a higher neural activity response. This correlation

between the responsiveness to a given input and the spontaneous

activity may suggest a possible role of the spontaneous activity in

preparing the response to the input.

There have been several studies of neural-network models of the

spontaneous activity in neural dynamics in random networks or

models of working memory [24–27]. Spontaneous activities that

visit several patterns have been investigated as chaotic itinerancy

over patterns [47,48] or heteroclinic channels [49]. Our focus here

lies in understanding whether such structure can be shaped by a

simple learning rule and elucidating the characteristic behavior of

the shaped spontaneous activity. Thus, our findings can also shed

some light on how such transitory neural dynamics are generated.

We should note that, as an alternative approach contesting the

memories-as-attractors viewpoint, the so-called liquid state

machine was proposed [12,50,51], where learning I/O mapping

was also achieved without multiple attractors. In this machine,

there is a ‘‘reservoir’’ that stores the trace of the input and a ‘‘read-

out unit’’ that detects this trace and transfers it to the desired

output, while learning modifies only the read-out unit to generate

the desired output. In our study, in contrast, there is no read-out

unit, but the internal neural-activity dynamics (which corresponds

to the reservoir) is modified during the learning process. With this

approach, we can study spontaneous neural activity dynamics and

evoked activity dynamics, which are not considered in the liquid-

state machine.

Simple learning rule can shape the spontaneous activity
wandering among the memorized targets

A recent study by Berkes et al., [32] has demonstrated that the

similarity between the spontaneous and evoked neural activities is

not an innate property but is shaped through a developmental

process; the dynamics of the activities are expected to be modified

by the experience-dependent synaptic plasticity, and as a result,

the similarity is believed to be shaped. We have shown that such a

similarity is shaped through sequential Hebbian learning. In

addition, we have found that in the network connection matrix,

the characteristic pattern of the matrix elements (Eq. 7) is also

shaped, although the learning rule can form another characteristic

pattern of network connections. In a parameter regime without

any memory capacity, only the Cj1j1 element is significant. In

striking contrast, in a regime with memory capacity of I=O

mappings, the values of the elements of Cjmjm ,Cjmgm ,Cgmjm , and

Cgmgm are of a comparable order, with the former two being

positive and the latter two being negative. This network structure

(the sign of each element) is found to be in common with the

network in [34], which was designed to achieve appropriate

bifurcations upon certain inputs by superposing connections

generated by the correlation between each target and input

pattern with equal weight. In the present study, such connections,

even though the weights are biased to recently memorized

patterns, are generated as a result of a simple learning rule. This

demonstrates the generality of the memories-as-bifurcation view-

point and the existence of a variety of connections for its

implementation.

Biological plausibility of the synaptic dynamics
Finally, we briefly discuss the biological plausibility of our

learning rule. Indeed, it does not follow the Hebbian unsupervised

learning adopted in standard models for the cerebrum cortex with

recurrent neural connections. Still, our learning rule also satisfies a

minimum requirement for a biological neural system [42]: a

learning rule needs only local information for pre- and postsyn-

aptic cells and does not require any global information, which is

difficult for each neuron to obtain. In fact, our learning model

given by Eq. 2 needs information on only the neural activity of the

pre- and postsynaptic cells and the target activity in the

postsynaptic cell.

The learning rule (Eq. 2) consists of two parts: an anti-Hebbian

part [52,53], {xixj , and the supervised part, jixj . First, a possible

interpretation of the anti-Hebbain rule can be provided by

introducing an interneuron. It is known that the excitatory

neurons (pyramidal neurons) are connected through inhibitory

neurons (interneurons) in the sensory cortex. When activations of

pre- and post excitatory neurons are correlated and synapses

between the presynaptic excitatory neuron and the inhibitory

interneuron and those between the interneuron and the postsyn-

aptic neuron are strengthened by the Hebbian rule, the efficacy

between the pre- and postsynaptic neurons is effectively weakened.

Instead of taking into account these intermediate neurons

explicitly, one could eliminate variables for the interneurons and

consider effective direct coupling between i and j, as in our model.

In this case, the coupling between i and j follows anti-Hebbian

plasticity of the synapse.

To discuss the plausibility of the supervised part, let us consider

another network whose activity represents target pattern j and

which projects onto the network in our model. Here, the target

pattern does not represent a signal to error of the output behavior,

as often used in supervised learning models in the cerebellum

cortex [54,55], but represents only the neural activity pattern to be

Embedding Responses in Spontaneous Activity
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learned. The term jixj represents a simple Hebbian change

between the presynaptic neurons in the network and the other

network representing the target. This Hebbian change enables

learning the correlation between the activities in the target

network and in the presynaptic neurons. This example is only one

possible way to implement our model in a biological neural

network, and future studies are needed to establish a link between

our learning rule and more biological neural-network dynamics.

Supporting Information

Figure S1 Overlap with the target and the input
patterns after 40 learning steps in the R regime. A. The

average overlap ½vtxjm=Nw� in the presence of the n-th input as

a function of m and n. B. The average overlap ½vtxgm=Nw� in the

presence of the n-th input as a function of m and n. We used the

same parameters as those in Fig. 7 and computed the overlap by

averaging over 100 network and 50vtv1050. One can find that,

upon application of an input k, the overlap with the requested

target k is selectively higher than the other overlaps.

(EPS)

Figure S2 The neural dynamics after 40 learning steps
in the non-response (NR) regime. A. The time series of the

neural activities shown by the overlap with the 1st, 5th, and 30th

targets j1,5,30x=N in the absence and presence of the 1st (red), 5th

(green), and 30th (blue) inputs (shown by the colored bars above

the plot) for (clrn,a)~(1,0:5). B. The time-averaged overlaps with

the learned targets as a function of m (squares). The time- and

ensemble-averaged overlaps with the targets and inputs are shown

as the solid and dashed lines, respectively. C. The average overlap

½vtxjm=Nw� in the presence of the n-th input as a function of m

and n. D. The average overlap ½vtxgm=Nw� in the presence of

the n-th input as a function of m and n. In all figures, we used the

time series 50vtv1050 as the time-averaged overlap and the

ensemble-averaged one.

(EPS)

Figure S3 Dependence of evoked neural activity on the
number of the elements. The overlap of evoked activity with

m-th target for different N is shown as a function of m divided by

N. The curves for Nw75 converge to a unique curve, by scaling

the index m of the learned mappings divided by N. We computed

the overlaps by averaging over time 50vtv1050 for all N and

over 100 networks for Nv200 and 50 networks for N§200.

(EPS)
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