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Abstract

Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into cells from all germ lineages, making
them a potentially robust cell source for regenerative medicine therapies, but difficulties in predicting and controlling ESC
differentiation currently limit the development of therapies and applications from such cells. A common approach to induce
the differentiation of ESCs in vitro is via the formation of multicellular aggregates known as embryoid bodies (EBs), yet cell
fate specification within EBs is generally considered an ill-defined and poorly controlled process. Thus, the objective of this
study was to use rules-based cellular modeling to provide insight into which processes influence initial cell fate transitions in
3-dimensional microenvironments. Mouse embryonic stem cells (D3 cell line) were differentiated to examine the temporal
and spatial patterns associated with loss of pluripotency as measured through Oct4 expression. Global properties of the
multicellular aggregates were accurately recapitulated by a physics-based aggregation simulation when compared to
experimentally measured physical parameters of EBs. Oct4 expression patterns were analyzed by confocal microscopy over
time and compared to simulated trajectories of EB patterns. The simulations demonstrated that loss of Oct4 can be
modeled as a binary process, and that associated patterns can be explained by a set of simple rules that combine baseline
stochasticity with intercellular communication. Competing influences between Oct4+ and Oct42 neighbors result in the
observed patterns of pluripotency loss within EBs, establishing the utility of rules-based modeling for hypothesis generation
of underlying ESC differentiation processes. Importantly, the results indicate that the rules dominate the emergence of
patterns independent of EB structure, size, or cell division. In combination with strategies to engineer cellular
microenvironments, this type of modeling approach is a powerful tool to predict stem cell behavior under a number of
culture conditions that emulate characteristics of 3D stem cell niches.
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Introduction

Pluripotent embryonic stem cells (ESCs) have the unique ability

to differentiate into cells of the three germ lineages that form all of

the tissues and organs of a mature organism. Differentiation of

pluripotent ESCs can be induced in vitro via a variety of existing

approaches to emulate aspects of the developmental program.

One of the most widely used techniques relies upon the formation

of multicellular aggregates composed of undifferentiated ESCs in

suspension culture, commonly referred to as embryoid bodies

(EBs) [1,2], that spontaneously induce the differentiation of ESCs

within the 3D aggregate [3,4]. Due to the fact that EBs mimic the

physical structure and cellular composition of the morphogenic

embryonic microenvironment, they have been used to study

aspects of development in vitro as well as the formation of primitive

tissue complexes [3–5]. Despite the utility of the approach, robust

methods to control EB differentiation in vitro remain limited due to

an incomplete understanding of the complex interactions within

the 3D multicellular aggregates that mitigate cell fate decision

[6,7]. The development of techniques to control ESC differenti-

ation in vitro requires an improved understanding of cellular cues

that regulate differentiation and the means to precisely control

these complex signals.

Considerable effort has focused on ascertaining the role of

individual components of the cellular microenvironment in

regulating cell fate decisions. The extent to which cell-cell

communication via paracrine [8,9], autocrine [9–11], or direct

contact signaling [12–14] enhance or inhibit differentiation have

been investigated in various contexts. Exogenous manipulation has

been used to control differentiation by the addition or removal of

various soluble factors in a temporally regulated manner in an

effort to mimic morphogenic cues. Factors that preserve pluripo-

tency (e.g. LIF [15–17], BMP-4 [15]) and factors that can initiate

differentiation (e.g. Activin A [18], FGF-2 [18], and retinoic acid

[19]) have been thoroughly examined, both in terms of the

appropriate doses and their temporal administration. In many

cases, the signaling pathways and modes of action of these growth

factors are also known but the effects of combinatorial treatments

can be difficult to predict a priori [16,20]. Although exogenous

factors have proven necessary for the in vitro and in vivo

maintenance or differentiation of ESC populations, they are not

the only factors regulating stem cell behaviors. The biochemical
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composition of the cellular microenvironment [9,21] and extra-

cellular matrix (ECM) [22–24] have also been implicated in the

regulation of cellular niches. In addition, the mechanics and

physical properties of the microenvironment can also impact cell

phenotype [25]. Given that cell fate transitions occur in complex

environments where biochemical and physical cues coexist,

elucidating the role each of these combinatorial factors via

experimental studies alone remains a significant challenge.

Therefore, although the aforementioned studies can provide

information about certain individual factors in isolation, new

approaches that allow systematic investigation of combinations of

parallel factors that regulate stem cell differentiation are needed to

more accurately predict cell response to complex microenviron-

mental cues.

In many instances, computational modeling strategies have

been successfully used to recapitulate the integration of complex

signals that direct cell fate decisions and correctly predict the

resulting phenomena. Depending on the desired resolution of the

system, ordinary differential equations can be used to model a

variety of processes in stem cells including - but not limited to -

cellular signaling events [26–28], protein interaction networks

[29], and genetic networks [30]. Partial differential equations can

be used to assess spatial changes introduced via diffusion of

molecules; this approach has been extensively studied to examine

gradients of nutrients in cancer cell spheroids [31], as well as mass

transfer limitations in EBs [32]. Alternatively, to model the

structure of cellular aggregates [33–35], cellular division and tissue

formation [36–43], and pattern formation in biological systems

[38,39], agent-based modeling has been applied to overlay rules-

based and physical modeling approaches [34]. Moreover, agent-

based models have been used to investigate dynamic processes of

multicellular systems, such as morphogenesis [43,44] and forma-

tion of physical tissues [45]. Investigation of the spatial and

temporal regulation of stem cell differentiation using agent based

model approaches has not been attempted, yet the ability to

examine how structural features of the stem cell niche influence

the spatial patterns associated with loss of pluripotency is attractive

for studying differentiation in 3D EB systems. This study

demonstrates the utility of computational rules-based modeling

to predict emergent spatial patterns associated with one pluripo-

tent transcription factor in EBs (Oct4) and investigate macroscopic

principles that can play important roles in determining cell fate

transitions.

Results

Modeling Embryoid Body Structure
Embryoid bodies (EBs) are 3D multicellular spheroidal aggre-

gates that self-assemble via E-cadherin mediated interactions in

suspension conditions [46,47]. Our first goal in constructing a

model description of EBs was to accurately recapitulate the overall

multicellular structure based on the physical properties of

individual mouse embryonic stem cells (mESCs). Prior models of

multicellular structures have described the individual cellular

agents as incompressible objects consisting of ellipsoids [48]. We

opted to use a physics-based modeling approach in which cells

were modeled as incompressible rigid spheres as this is a powerful

and portable method for representing complex aggregate shapes.

To determine if modeling mESCs as spheres was appropriate, the

effective surface area (Fig. 1A) and radii (Fig. 1B) of individual

ESCs were experimentally determined via Coulter counter

analysis. The average surface area to volume ratio of the mESC

line was 3.26+/20.15, which is only ,8% higher than the

theoretical value of 3.00 for a spheroid. Due to the increased

computational costs associated with an ellipsoid collision detection

algorithm and the relatively low error in the surface area-to-

volume ratio (,10%), we proceeded by representing each cellular

agent as a sphere. The distribution of cell radii from the Coulter

counter measurements (Fig. 1A, B) were used to create the

population of spheres for each agent in the EB simulations. These

cell agents were randomly seeded into a box, which served as an

initial boundary for the simulation, and then forced to aggregate

using a gravitational point source into a multicellular spheroidal

structure.

The structures of in silico and in vitro aggregates were assessed for

aggregates of 250 and 1000 cells using four parameters: radius,

circularity, connection count, and connection lengths. Size and

circularity were used to assess the entire aggregate structure and

were experimentally determined through the analysis of phase

contrast images, while similar measurements were obtained using

projections of the in silico EBs onto a 2-dimnesional plane (Fig. 1D).

The results indicated that the model appropriately captured the

macroscopic features of the relative EB aggregates since there were

no statistical differences between the model and experimental

metrics (Fig. 1E, 1F). The connection count and connection length

parameters were calculated from the spatial distribution of

individual cells comprising the aggregates and serve as quantifiable

metrics for assessing local micro-scale organization within EBs.

These parameters were assessed by individual cell labeling

performed in confocal microscopy images and via computational

algorithms for the in silico EBs (Fig. 1G). As an example, the blue

box in Fig. 1G highlights a cell with an average connection length

of 14.87+/22.07 microns and connection number of 4. For in silico

EBs, the aggregates were ‘‘virtually sectioned’’ (at a 10 mm

thickness) to perform similar analysis on a 2D projection, and

neither the average circularity nor the connection lengths differed

statistically from the experimentally derived EB values (Fig. 1H,

1I). Overall, these results quantitatively comparing four different

physical parameters indicated that the model was able to

accurately create the structure of individual EBs on both the

aggregate and cellular scales, providing an accurate structural

framework for our subsequent analysis of spatial patterning.

Author Summary

Pluripotent embryonic stem cells can differentiate into all
cell types making up the adult body; however, this process
occurs in a complex three dimensional environment with
many different parameters present that are capable of
influencing cell fate decisions. A model that can accurately
predict the strengths of factors influencing cell fate would
allow examination of spatial and temporal patterns of cell
phenotype. For this study, we focused on the earliest fate
transition that occurs in 3D clusters of embryonic stem cells
by monitoring the presence of a transcription factor (Oct4)
associated with stem cell pluripotency. After experimentally
classifying patterns that arise en route to a fully differen-
tiated aggregate in vitro, we constructed a computational
model to deduce how stem cells integrate cues from their
surrounding environment to give rise spatial patterns. We
used a rules-based modeling approach in which informa-
tion exchanged by cells with their nearest neighbors
regulated cell fate decisions. This parsimonious model
captured the spatial dynamics of early cell lineage commit-
ment in a 3D multicellular structure. In combination with
strategies to modulate cellular environments, our model
provides a flexible tool for elucidating the extra- and
intercellular interactions regulating spatially organized
differentiation of stem cells in 3D.

Spatial Patterns of Stem Cell Oct4 Expression
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Spatial Patterns Associated with Loss of Pluripotency
Throughout the subsequent discussion of the results, pluripotent

cells that exhibit loss of Oct4 expression are simply referred to as

‘‘differentiated’’, acknowledging the caveat that Oct42 cells are

not terminally differentiated. As Oct4 is concomitant with loss of

pluripotency, it was used to monitor the pluripotent state of the

cells [49–52]. This process has been modeled as a bi-stable

transition, which causes an all or none response [52]. The

temporal patterns of loss of pluripotency were evaluated in 250-

and 1000-cell EBs via confocal microscopy to examine Oct4

expression. Starting from a homogeneous population of undiffer-

entiated cells, spatial heterogeneity (as defined by loss of Oct4

expression) was observed over the course of the multiple days of

evaluation. In order to capture the diversity of spatial pattern

heterogeneity, a classification system was developed. Based on

preliminary results from both the experimentally derived EBs and

the model, six different categories of patterns were proposed:

Oct4+, inside-out, outside-in, connected, random, and Oct42

(Fig. 2). These patterns can be loosely grouped into three larger

categories: Oct4+, transitioning, and Oct42. The outside-in,

inside-out, connected, and random patterns were all considered

transition patterns as they captured intermediate stages of the

differentiation process. Inside-out patterns are characterized by

differentiation in the middle of the EB and undifferentiated cells

on the outside; conversely outside-in patterns exhibit differentia-

tion on the outside, and undifferentiated cells in the middle.

Connected patterns were defined as multiple distinct connected

regions of cells of the same state, whereas random patterns were

classified as no identifiable pattern based on a lack of connectivity.

In the smaller 250-cell EBs, Oct4 expression persisted for up to

six days (Fig. 3A). Rapid loss of Oct4 was observed between days 3

and 5 (Fig. 3C) and the patterns associated with differentiation

were classified entirely as ‘‘connected’’ (Fig. 3D). In 1000-cell EBs,

differentiation patterns were assessed over a 7-day period (Fig. 3B).

Differentiation was observed to occur at a later time than the

smaller 250-cell EBs, with transition patterns occurring from days

4 to 7 (Fig. 3E). The spatial patterns in the 1000-cell EBs

associated with differentiation were more varied than the 250-cell

EBS but also were primarily classified as ‘‘connected’’ (Fig. 3F). At

each time point, pattern classification for each EB size was

Figure 1. Aggregate modeling methodology. Dissociated mouse embryonic stem cells (mESCs) were analyzed via Coulter counter for surface
area (A) and radius (B). In silico aggregates were generated in a physical modeling process in which cells were generated and then forcibly
aggregated (C). Embryoid bodies (EBs) were formed via ultra-high throughput methods for two initial cell numbers: 250 and 1000 - a representative
image for 1000 cell EB is shown (D). The black box in first column is digitally enlarged in the second column. Circularity was calculated by fitting the
EB to an ellipse and taking the ratio of the two radii labeled R1 and R2 respectively. EBs were analyzed for two macro scale aggregate properties:
radius (E) and circularity (F). Confocal images were used to analyze local aggregate properties –a representative 1000 cell EB image is shown (G).
Aggregate local properties were assessed by two metrics: connection length (H) and number of connections (I).
doi:10.1371/journal.pcbi.1002952.g001

Spatial Patterns of Stem Cell Oct4 Expression

PLOS Computational Biology | www.ploscompbiol.org 3 March 2013 | Volume 9 | Issue 3 | e1002952



performed to generate temporal differentiation profiles for each

time point (Fig. 3D, 3F). The trajectories of differentiation were

calculated by assessing how the number of differentiated,

undifferentiated, and transitioning patterns changed over time.

Although the types of patterns associated with differentiation only

changed slightly with EB size (Fig. 3D, 3F), the kinetics of the

process did appear to change appreciably. The 250-cell EBs began

differentiating at , day 3 and finished within one day, whereas the

1000-cell EBs started a similar process later at , day 4, and took

nearly 3 days to fully exhaust Oct4 expression (Fig. 3C, 3E).

Static Rules-Based Modeling of the Cellular
Microenvironment

After validating the generation of an appropriate 3D geometry

of EB aggregates, rules-based modeling was performed by creating

network structures, in which ‘‘nodes’’ represented individual cells,

and ‘‘connections’’ represented physical interactions between

adjacent cells; nodes were allowed to convey information with

the macrostructure along the defined connections. The goal was to

determine if simple rules accurately produced the distribution of

spatial patterns observed experimentally. During these initial

simulations the macro-structures were assumed to be static (i.e. no

proliferation, migration or apoptosis). Cells could exist in either of

two states: undifferentiated (Oct4+) or differentiated (Oct42). The

transition between these two states was chosen as binary based on

previous modeling work [52] and occurred based on different rule

formulations: ‘‘random’’, ‘‘positive feedback’’ or ‘‘competing

feedback’’ (Fig. 4). The random rule configuration represented a

stochastic, basal differentiation probability (Fig. 4A). The positive

feedback rule was based on a paradigm in which differentiated

cells bias neighboring cells to differentiate (Fig. 4B) and was

inspired by differentiation induced via direct cell-cell interactions

[13,53]. Finally, the competing feedback rule depicts a situation

where differentiated cells promote subsequent differentiation of

neighboring cells while undifferentiated cells inhibit this transition

(Fig. 4C). Positive feedback in this rule was based upon the known

role of soluble factors to maintain pluripotency [54], while

negative feedback comes from the differentiation induced via the

cell-cell interactions discussed above [13,53].

Representative outcomes for each of the rules are shown for 250

(Fig. S1) and 1000 cells (Fig. 5) per EB. The patterns represented

by different rules did not differ significantly across EB sizes (Fig. 5

and Fig. S2); however, differences in the distribution of the

patterns were observed between different rule configurations. The

random rule transitioned through largely random patterns (Fig. 5I,

S2I), whereas both the positive feedback and the competing

feedback exhibited an enrichment in the connected patterns

(Fig. 5F, S2F and Fig. 5C, S2C respectively). Because the

experimental EBs differentiated largely through connected pat-

terns (Fig. 3D,F) based on the pattern classification, it was difficult

to evaluate which rule configuration(s) best emulated the

experimental data. To ensure these results were not an artifact

of the multicellular aggregate structure, resultant patterns of 250

and 1000 cell EBs were evaluated for each of the three rules (Fig.

S2) across numerous different simulated structures without

discernible changes in outcome.

Quantitative Pattern Analysis
To glean insight into the evolution of the connected patterns, we

used two quantitative metrics, undifferentiated cluster number

(UCN) and differentiated cluster number (DCN), to assess pattern

formation and simulation trajectories against a normalized time (t)
axis. Analyzing the cell phenotype transitions by the UCN and

DCN metrics revealed distinct paths of pattern formation for each

of the different rules. The qualitative shape of the trajectories was

independent of EB sizes (Fig. S3). From such curves, critical points

(t= .2, t= .4, and t= .6) representing rapid changes or important

regions across all rules were chosen and representative EB slices

were displayed (Fig. 5B,E,H)). Analysis of the trajectories

themselves revealed insight about the types of clusters being

formed in the ‘‘connected’’ patterns. In the ‘‘positive feedback’’

scenario, the loss of Oct4 expression was characterized by a high

number of differentiated or undifferentiated clusters, suggesting

localized intercellular neighbor influences regulating phenotype

transition (Fig. 5D, Fig. S1D). The peak in UCN at t= .6 was

characterized by a large number of isolated pockets of undiffer-

entiated cells. In contrast, the ‘‘competing feedback’’ rule peaked

through a high number of differentiated clusters, but never

Figure 2. Classification of differentiation spatial patterns within EBs. Six classifications are used to described Oct4 expression patterns:
undifferentiated, inside-out, outside-in, connected, random, and differentiated. Confocal images shown on top are stained with DAPI (blue),
phalloidin (red) and Oct4 (green) (with a scale bar of 25 mm). The model generates patterns similar to confocal images with Oct42 cells (dark blue)
and Oct4+ cells (cyan). Scale bar represents 25 mm.
doi:10.1371/journal.pcbi.1002952.g002

Spatial Patterns of Stem Cell Oct4 Expression
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amassed a high undifferentiated cluster number (Fig. 5G, Fig.

S1G) which matched the larger isolated and persistent clusters of

Oct4 positive cells experimentally observed in both the 250- and

1000-cell EBs. Taken together, these data indicate that the

‘‘competing feedback’’ rule matched the patterns observed

biologically with the highest fidelity for the different size EBs

examined.

Furthermore, the trajectory analysis provided novel information

about the evolution of certain patterns. For example, random

differentiation can be characterized by a high initial spike in the

DCN as this signifies the emergence of several small clusters of

differentiated cells (Fig. 5A, Fig. S1A), and the duration of this

spike represents how long the random patterns persist throughout

the duration of the model. If the UCN remains fairly low, the

pattern transitions into a connected phenotype, again evidenced

by the low number of undifferentiated clusters of cells (Fig. 5B, Fig.

S1B). When the UCN remains at 1, this signifies either an inside-

out, or outside-in pattern. However, if the UCN transitions

towards a high value, this signifies that the differentiation is still

largely governed by random patterns (Fig. 5A, Fig. S1A). Overall,

these metrics provide quantitative metrics for assessing the types of

patterns formed, and the evolution of these patterns over time.

One limitation of the model, however, was that the kinetics of

pattern formation could not explain the differences in kinetics

experimentally observed between different EB sizes (Fig. 3D,F).

This suggested that although a static size aggregate modeling

approach was sufficient for predicting the prevalence of different

spatial pattern classifications, it did not fully capture the kinetics of

experimental Oct4 loss. In order to further investigate the kinetics

of the pattern transitions, we modified our modeling framework to

include cell division and embryoid body growth.

Dynamic Rules-Based Modeling
We hypothesized that dynamic processes, such as cell division

and growth of the EB aggregate, influence spatial patterns of Oct4

expression loss. To investigate the effect of cell division on this loss

of pluripotency transition, a revised model which could simulate

growing EB structures was created in which the Oct4+ cells

divided at a faster rate than the Oct42 cells. With this approach,

cells were modeled as rigid spheres while cell-cell connections were

represented by springs which helped maintain the overall macro-

structure of the aggregate (Fig. 6A). We observed experimentally

that the size of differentiating ESCs did not change appreciably

with time, which reduced complexity from the model description

(Fig. 6B). The first step was to determine an estimated cellular

division rate for Oct4+ and Oct2 cells. This was accomplished

using experimental growth data approximated from the size of the

embryoid bodies (Fig. 6C), yielding a rate of ,18 hours for

division of our stem cells and ,51 hours for division of the

differentiated cells which is consistent with the literature [55].

Figure 3. Transition times for differentiation patterns within EBs vary as a function of size. Confocal images of EBs stained with DAPI
(blue), phalloidin (red), and Oct4 (green) shown at a depth of 25 mm for EBs of (A) 250 and (B) 1000 cells. (C, E) Temporal dynamics of observed
patterns for 250 cell EBs (C) and 1000 cell EBs (E). (D, F) the overall distribution of observed patterns for 250 cell EBs over 6 days in culture (D) and
1000 cell EBs over 7 days in culture (F). Scale bars on all images are 25 mm.
doi:10.1371/journal.pcbi.1002952.g003

Spatial Patterns of Stem Cell Oct4 Expression
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Using these division rates, we applied the rules we derived in the

former static model to the new dynamic model. As an internal

control, we ran division simulations with no rules to monitor any

bias introduced by the model (Fig. S4) and found that the cells

grew in an exponential manner (Fig. S4A), while the density of the

aggregates remained constant (Fig. S4C). Furthermore, the

average connection number and connection lengths of the network

remained constant with time (Fig. S4 E). Connection length

remained constant as a function of the aggregate radius, whereas

the connection number decreased on the outer layer of the

aggregate, as was expected (Fig. S4E). Taken together these results

suggest that structurally no bias was introduced into the model by

introducing cell division.

Next we examined the spatial patterns formed under the various

rule configurations during enlargement of the EB over a 5–7 day

period, with the pattern trajectories now normalized by the cell

number to account for cell growth. Trajectories simulated over the

6 day culture period indicated consistent pattern distributions and

their evolution over time (Fig. 6E–F). While few differences were

observed in the trajectories as a function of EB size, the cumulative

variance in the UCN and DCN metrics was greater for the 250

cell EBs (Fig. 6G), suggesting a more heterogeneous population of

differentiated cells. At later time points (.Day 5) the positive

feedback rule generated clusters of undifferentiated cells predom-

inantly on the outer edges of the EB. In contrast, the competing

feedback rule produced larger clusters of undifferentiated cells

localized towards the center of the EB. The trajectories of these

growth simulations matched the general shape of the trajectories

for the static simulations (Fig. S3), with a notable exception of the

random rule. Analysis of the percentage of undifferentiated

Figure 4. Overview of rule configurations. Three different rule configurations governing transition from the undifferentiated to differentiated
state are shown: random (A), positive feedback (B), and competing feedback (C). The random rule is governed by a constant probability of
differentiation denoted by a (A). The positive feedback rule takes into account Oct42 cells denoted by b, and allows them to positively influence the
differentiation probability (B). The competing feedback rule take into account b and also the number of Oct4+ cells denoted by c (C). In the case of
the positive feedback and competing feedback rules, the probability are combined using an or-gate logical operator. Representation of the probaility
density functions P(x) are shown for each rule.
doi:10.1371/journal.pcbi.1002952.g004

Spatial Patterns of Stem Cell Oct4 Expression
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trajectories revealed that over half the cells remained undifferen-

tiated at the seven day time point, which may explain the absence

of the DCN to UCN transition observed in the previous static

model simulations.

The motivation behind modeling a dynamic EB structure was to

more closely recapitulate the emergent morphogenic processes

occurring over the transitional 5–7 day period and to investigate

whether the inclusion of cell division and EB enlargement

influenced the rate of emergent spatial patterns (Fig. 6H). In the

case of the random and competing feedback rules, no observable

difference in the percentage of differentiated cells appeared,

however the positive feedback rule resulted in the percentage of

undifferentiated cells being lower in the 1000 cell versus 250 cell

EBs, likely due to the total number of cells present. Taken together

these results suggest that differential cell division does not

significantly influence the formation or evolution of phenotype

patterns over time and the pattern formation process is dominated

by the regulatory mechanisms encoded in the probabilistic rules.

Discussion

Differentiation is a complex biological process involving the

coordinated regulation of multiple genes by intrinsic and extrinsic

factors. Rather than attempt to model the intricate network of

genetic circuitry, signaling mechanisms, and environmental cues,

we approached the loss of pluripotency from a simplified

perspective designed to elucidate the most basic principles

dictating pattern formation in a spherical multicellular system.

We developed a modeling framework capable of recapitulating the

physical properties of embryoid bodies for multiple sizes and under

conditions of cell division and aggregate growth. This framework

allowed us to simulate how different probabilistic rules were

manifest in the emergence of spatial patterns and to examine the

evolution of these patterns over time. Through comparison of the

simulated pattern trajectories with the pattern classification

developed for our experimental data, we determined that all

possible pattern classes - as well as a similar distribution within

these classes - are possible with the agent rules employed.

Furthermore, from both static and dynamic frameworks, our

simulations indicate that aggregate structure, size, and growth are

physical features that do not dictate the distribution of spatial

patterns or their trajectories as a function of time.

Differentiation is classically thought of as a binary transition

from the undifferentiated pluripotent stem cell state to differen-

tiated phenotypes in embryoid body (EB) models [5,31,46].

Models of stem cell differentiation often consider these events on

Figure 5. Spatial pattern trajectories of differentiation for 1000 cell aggregates. (A, D, G) Pattern trajectories are shown for all three rules
for 1000-cell EBs plotted against a normalized time axis (t) where the time step was divided by the total number of time steps required for the
simulation to complete. (B, E, H) Representative ‘‘virtual sections’’ of aggregates over the course of a simulation. Cyan represents Oct4+ cells while
blue signifies Oct42 cells. (C, F, I) Differences in the kinetics of modeled differentiation for all three rules. All scale bars are 25 mm.
doi:10.1371/journal.pcbi.1002952.g005

Spatial Patterns of Stem Cell Oct4 Expression
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a population basis [56] or at an intracellular signaling level [57].

Here we have shown that the transition from Oct4+ to Oct42

states produces dynamic, spatially heterogeneous patterns in a

continuous manner. These results indicate that modeling embry-

onic stem cell (ESC) fate decisions as a stochastic, binary process is

sufficient to predict the dominant emergent spatial patterns of loss

of pluripotency. Additionally, 250- and 1000-cell EBs undergo loss

of pluripotency through the same intermediate patterns which

suggests that the macro processes governing this early stem cell

transition (while occurring at slightly different rates) are largely

independent of size. In addition, comparing static structures and

cell division models revealed that spatial transition patterns and

their evolution are not significantly affected by cell growth.

Our modeling approach created in silico aggregates with similar

properties to in vitro EBs. The spring-based constraint represent-

ing cellular adhesions was able to accurately capture the evolution

of the aggregate architecture. Additionally, the high-level rules

described here were able to reproduce the emergence of a variety

of spatial patterns, all of which could be observed experimentally

in EBs. Both modeled and experimental EBs demonstrated

enrichment in connected patterns of cells. Quantification of model

simulation outputs by differentiated and undifferentiated cluster

number (DCN and UCN) allowed visual representation of the

time evolution of connected patterns in 3D multicellular aggregate

systems. The use of the UCN and DCN metrics provided

information about not only the types of connected patterns

formed, but also the transitions between the different types of

spatial patterns. A combination of analyses using these metrics and

manual pattern identification indicated that the ‘‘competing

feedback’’ rule scheme that accounted for opposing influences of

neighboring pluripotent and differentiated cells produced a

distribution of spatial patterns that most closely resembled the

experimentally observed spatial patterns for both 250- and 1000-

cell EBs. This was observed in both the static and dynamic division

models, and could be hypothetically represented biologically as a

combination of cell-cell signaling and the complex interplay of

local soluble factors and other chemical gradients that influence

pluripotent cell fate decisions. [17,53,58,59]. However, this is only

one possible explanation for a coarse-grained description, and a

variety of other signaling pathways and molecules are likely

involved in regulating this transition. Interestingly, none of the

rules were able to explain the observed emergent patterns if cells

were not allowed to also spontaneously differentiate at a low rate

random rate. Although for the positive feedback rule this follows

directly from the construction of the probability equations, the

formation of strongly connected patterns was also not observed in

Figure 6. The effects of cell division on spatial pattern trajectories. (A) Mass spring schema for modeling cellular division and adhesion. (B)
Coulter coulter data showing the radius of stem cells from embryoid bodies and how they change over the 6 day differentiation time course. (C)
Estimated sizes of embryoid bodies used to estimate growth rates. (D) Representative virtual slices of simulated 250 and 1000 cell dividing embryoid
bodies for the three different rules. Oct4+ cells are shown in teal and Oct42 cells in blue. UCN, DCN time plot trajecory for the 250 cell EBs (E) and
1000 cell EBs (F). (G) Summation of the variance in the UCN, DCN trajectories. (H) The percent of undifferetiated cells as a function of time.
doi:10.1371/journal.pcbi.1002952.g006
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the competing feedback rule without the inclusion of this low

stochastic rate (data not shown), suggesting this random rate is

important to capture the experimentally observed transition

patterns.

The static structure model predicted small differences in the

Oct4 expression kinetics of EBs with different cell seeding numbers

should exist; however, the slight changes observed did not capture

the full extent of the variation present in the experimental results.

The inclusion of cell division (with a faster division rate for

pluripotent cells) was also not able to explain the difference in the

kinetics of this process. These results indicate that additional

factors in the changing culture environment may modulate the

kinetics of Oct4 loss in a size-dependent manner; hydrodynamic

effects [60], diffusion limitations and/or local chemical gradients

may need to be taken into account for changing aggregates sizes

[32,61] in order to reproduce the experimentally observed

differences in differentiation kinetics. It is also possible that the

rules chosen are not descriptive of our system with a fine enough

resolution, thus explaining the ability to explain pattern formation

characteristics but not kinetics. Furthermore, we constructed the

model such that all cells have the same strength when affecting

other cells, which assumes that cells convey the same amount of

information regardless of the amount of cell connections or the

amount of shared cell area, an assumption that may need to be

refined as more detailed information about the nature of

intercellular communication is included. Future developments will

account for cell migration, local versus distal cell-cell communi-

cation and diffusion within the EB to investigate how these traits

affect the physical microenvironment. The top-down modeling

approach described in this study provides new insight into the

spatial pattern development associated with differentiation of

ESCs in 3D EB structures. Surprisingly, without explicitly

modeling diffusion gradients or specific signal transduction

mechanisms, features of temporal and spatial regulation were

elucidated. Transitions in cell phenotype can be modeled as a flow

of information between cells that is largely based on stochastic fate

changes that are influenced by the cells’ surrounding environment.

The model was able to identify a simple rule paradigm that is

biologically relevant and consistent with the current knowledge of

stem cell regulatory processes [17,53,58,59]. A comparison of

static and division models indicated that the proposed rule

schemes are not significantly affected by cell division. Conse-

quently, the proposed modeling technique developed thus far has

demonstrated validity for exploring the propensity of various

spatial patterns observed in EBs during the differentiation process.

This model can readily be extended to investigate what factors

influence differentiation into different germ layers, and eventually

used to predict optimal niche and microenvironment organization

for efficient stem cell maintenance and differentiation.

Materials and Methods

Cell Culture
A murine embryonic stem cell line (D3) transfected with an

Oct4-GFP construct were used (phOCT3-EGFP1; provided by

Wei Cui, Ph.D., Imperial College, London, UK). For this

particular experiment these cells were used after several passages

and splits, and thus did not show robust GFP activity under

confocal or flow cytometry; thus immunostaining was necessary to

visualize Oct4 expression. These cells were cultured in monolayer

on 100 mm tissue culture plates coated with 0.67% gelatin in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

15% fetal bovine serum(FBS) (Hyclone, Logan, UT), 2 mM L-

glutamine (Mediatech), 100 U/ml penicillin, 100 ug/ml strepto-

myocin, and 0.25 ug/ml amphotericin (Mediatech), 16 MEM

nonessential amino acis solcuiotn (Mediatech), 0.1 mM 2-mer-

captoethanol (FisherChecmical, Fairlawn, NJ), and 103 U/ml

leukemia inhibitory factor (LIF) (Chemicon Internation, Teme-

cula, CA). Cells were passaged every 2–3 days prior to reaching

70% confluence.

EB Formation and Culture
Undifferentiated embryonic stem cells were dissociated from

monolayer culture using 0.05% trypsin-EDTA solution (Media-

tech) to obtain a single cell suspension and added to AggreWells

(Stem Cell Technologies) [62] six well plate inserts to form six

thousand EBs of either 250 (1.5 million cells/ml) and 1000 (6

million cells/ml) cell per EB. EBs were allowed to form in the wells

for 20 hours, at which point they were removed and transferred

into a rotary culture at 60 RPM [63]. EBs were re-fed every 2

days, and 75% of the spent medium was replaced with fresh

medium at each exchange. EBs were cultured in this manner for

the entire 7 day culture period.

Analysis of EB Size
EBs were harvested at various time points and fixed for

45 minutes in 10% formalin. EBs were imaged using bright field

microscopy via a 46 objective on an EVOS microscope. Three

representative images were taken for each sample. Images were

analyzed by using threshold, watershed, and image particle

detection operations in ImageJ. EB radius was derived by

computing the cross sectional area, approximating the EB as a

circle, and calculating the radius accordingly. The circularity of

the EBs was calculated by fitting an ellipse to the area, and taking

the ratio of the minor and major axes.

Immunostaining and Confocal Microscopy
EBs were collected for staining and fixed in 10% formalin for

45 minutes. EBs were permeabilized for 30 minutes in 1.0%

TritonX-100, re-fixed in formalin for 15 minutes, and blocked in

blocking buffer (2% bovine serum albumin, 0.1% Tween-20 in

PBS) for 3 hours. Samples were stained with a goat Oct4-antibody

(Santa Cruz) overnight at 4uC. After three washes in blocking

buffer, EBs were subsequently stained with a secondary donkey

anti-goat Alexa Fluor 488 conjugated antibody (1:200 Santa Cruz)

for 4 hours. Staining with Alexa Flour 546 Phalloidin (1:20

Molecular Probes) and Hoescht (1:100) was performed concur-

rently for 25 minutes. Samples were washed, resuspended in

blocking buffer, and imaged using a Zeiss LSM 510 Confocal

Microscope using Ar, He, Ne and Chameleon lasers. A single

image was taken at the top of the EB and at a depth of 25 mm into

the EB. For each sample, 25 images were obtained.

Pattern Analysis
Spatial patterns of Oct4 expression were classified into six

different categories, random, inside-out, outside-in, connected,

differentiated, or undifferentiated. For an image to be classified as

undifferentiated, 90% or more of the cells in the image had to

positively express Oct4. Conversely, for an image to be classified as

differentiated only 10% of the cells could stain positive for Oct4. If

the number of positive Oct4 cells fell in between these two levels,

the pattern of differentiation was classified as either random,

inside-out, outside-in, or connected (Fig. 4). Inside-out patterns

were characterized by differentiation in the middle of the EB, and

undifferentiated cells on the outside. Conversely, outside-in

patterns had differentiation on the outside and undifferentiated

cells in the middle. Connected patterns were defined as multiple
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distinct connected regions of cells of the same state. Random

patterns were classified as no identifiable pattern. For each time

point 25 confocal images were analyzed. Pattern matching was

performed on the output from the model as well as the

experimental confocal images. Two blinded observers were used

to classify the experimental confocal images. In the case of the in

silico results, metrics such as the total number of differentiated cells,

and average number of distinct cell clusters were used to aid in

classifying patterns, with a total of 73 1000-cell aggregates and

66 250-cell aggregates analyzed. A cluster was defined as two or

more cells of the same type and clusters were identified throughout

the entire 3D aggregate.

Rules-Based Modeling
Rules-based modeling was carried out using probabilities to

govern states changes. Linear, hyperbolic and hill-type probabil-

ities have been previously examined in the context of stem cell

differentiation and robustness and thus we used similar probability

laws in this work [64]. All of these rules were designed to be

functions only of the number of nearest neighbors to reduce

complexity. For the ‘‘random’’ rule, a basal probability associated

with the state change was set to 1% (Fig. 4A). In the case of the

‘‘positive feedback’’ rule, the differentiation probability was

influenced according to equation 1:

P(x)~
b

e
, e~12 ð1Þ

where b represents the number of nodes connected in the

differentiated state, normalized by the total possible number of

neighboring nodes e, which for a face-centered cubic or hexagonal

close-packed spherical packing arrangement is 12 (Fig. 4B). In the

case of the ‘‘competing feedback rule’’ rule the probability was

determined according to equation 2:

P(x)~
1

1zec{b
ð2Þ

where b represents the number of neighboring nodes in the

differentiated state, and c represents the number of neighboring

nodes in the undifferentiated state (Fig. 4C). This function

produces a similar sigmoidal shape as the Hill function, but does

not require the inclusion of the additional hill coefficient.

Computational Tools
Rules-based modeling was achieved using a Python language

with the following freely available software packages: pyode,

numpy, matplotlib, python imaging library (PIL) and vpython.

Physical aggregation simulations of structure were performed

using PyODE as the underlying physics engine. Results were

plotted via the aid of numpy and matplotlib. The 2D aggregate

slices were visualized using PIL. The 3D aggregate was visualized

using vpython.

Simulations were run until all of the cells had changed state or

500 time steps had elapsed. Cells were allowed to make fate

decisions ever time step according to the probabilities outlined in

the Rules-Based modeling section. The time-step cutoff was

arrived at by taking the average number of time steps the

‘‘random’’ rule simulations (as the ‘‘random’’ rule took the longest)

took to finish. Unless otherwise noted, 10 simulations were run for

each rule condition. Simulations were run on an Intel Core i7

X980 3.33 GHz CPU with 12.0 GB of RAM.

Determining Growth Rate
After aggregate sizes were determined, the number of cells in a

spheroid was approximated by first determining the volume of the

spheroid based upon known EB radii. Next we calculated the volume

of an average cell using our average cell diameter of 6.6+/

2.3287 mm. By assuming a maximal close packed configuration for

spheroids (.7408), the volume of the aggregate was adjusted to contain

the cells. Cell numbers were then arrived at by dividing the adjusted

aggregate volume by the volume of a single spheroid. To calculate the

growth rate equation 3 was applied between discrete time points.

c(t)~c0ekt ð3Þ

This method produced growth rates over the first time course which

closely matched the proliferation of mESC d3s in 2D. These growth

rates could then be fit to equation 4 to determine doubling times

which were used in the model for the different cell types.

t2~
ln(2)

ln(1zr)
ð4Þ

Dynamic Modeling
Modeling of dynamic cell movement and vision was accom-

plished using custom C# code with the aid of XNA package for

vector math and 3D visualization. Cells were modeled as rigid

spheres connected by spring to depict cell-cell physical connec-

tions. A complete collision detection algorithm was used to resolve

all possible collisions at each time step of the simulation.

Simulations were run for a period of 144 hours (6 days), until 99

percent of the cells had changed state or until forty thousand total

cells existed in the model. Cells were allowed to change fate

instantaneously. The kinetics of the simulations were fit to model

growth curves, thus the probabilities were given different weights

to assure pattern formation was observed. In the case of the

random and positive feedback rules, no weights were applied to

the rules. However, in the case of the competing feedback rule a

0.01 weight was applied. 10 simulations were run for each

condition. Simulations were run in parallel using on an Intel Core

i7 X980 3.33 GHz CPU with 12.0 GB of RAM.

Model Assumptions
The static and dynamic models were created with several key

assumptions. With regards to the probability rules themselves, it

was assumed that the rules were functions of the information from

immediate neighbors. The rule were derived from previous

literature which examined similar probability functions [64]. Also

it was assumed that the cells could be expressed in a binary state

based on previous work modeling differentiation as an all or none

response [52]. For the static model the following assumptions

apply: first, the probability functions are applied every time step as

the kinetics of pattern formation were not the focus of these

models. Second, neighboring cells were assumed to have the same

amount of influence over each other regardless of the number of

neighbors. That means that in the case where a cell only has one

connection, this connection still conveys the same weight as any

given connection in the rest to the network for conveying

information. The final assumption for this model was that the

cells change fate instantaneously as kinetics was again not a focus.

For the dynamic model the following assumptions were used:

first, it was assumed that the cells were not synchronized in terms

of division. Second, cell division was symmetrical, meaning that
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cells only produced cells of the same type upon division. Third,

cells were again assumed to have the same amount of influence

over their neighbors regardless of the number of connections.

Finally, the loss of pluripotency process was again modeled as an

instantaneous transition.
Statistical analysis. All experiments were performed in

triplicate and data was presented as the mean +/2 the standard

deviation. Significance was determined using a student’s t-test with

a significance level of p,0.05.

Supporting Information

Figure S1 Modeling spatial patterns of formation for
250-cell EBs. (A, D, G) Pattern trajectories are shown for all

three rules for 250 cell EBs plotted against a normalized time axis

(t) where the time step was divided by the total number of time

steps required for the simulation to complete. (B, E, H)

Representative ‘‘virtual sections’’ of aggregates over the course

of a simulation. Cyan represents Oct4+ cells while blue signifies

Oct42 cells. (C, F, I) Differences in the kinetics of modeled

differentiation for all three rules. All scale bars are 25 mm.

(TIF)

Figure S2 Initial aggregate structure has no effect on
simulated pattern formation. Trajectories from simulations

run with varying different starting strucutres of the same size were

compared to 10 simulations run on one structure to see if any

differences in pattern formation emerged. For 250- and 1000-cell

aggregates, the competing feedback (A, D), positive feedback (B, E)

and random (C, F) rules were analyzed for variability. No

observable differences were detected between different structures.

(TIF)

Figure S3 In silico rule pattern trajectories. Rule

trajectories are composed of 3D traces with the undifferentiated

cluster number (UCN), differentiated cluster number (DCN),

plotted against a normalized time (t) axis. Traces are plotted for

both 1000 (A) and 250 (B) cell EBs for each of the three rules:

competing feedback (green), positive feedback (red), and random

(blue).

(TIF)

Figure S4 Dynamic modeling does not alter network
structure. Control metrics for the dynamic cell simulations were

plotted as functions of time: cell number, (A), radius (B), density

(C), and circularity (D). Internal network parameters for the

average connection length and average number of connections as

a function of aggregate radius (E) behaved as expected. A

representative trace for the growth of an EB starting at 50 cells

shows a visual representation of the growing EB structrues (F).

(TIF)
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