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Abstract

Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how
fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the
fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system
over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error,
which occurs when the network responds on average to other features of the input trajectory as well as to the signal of
interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are
stochastic. Trade-offs between these two errors can determine the system’s fidelity. By developing mathematical
approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical
noise (mechanistic error) can improve fidelity and that both negative and positive feedback degrade fidelity, for standard
models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell
and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system
has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our
approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular
behavior in natural, dynamic environments.

Citation: Bowsher CG, Voliotis M, Swain PS (2013) The Fidelity of Dynamic Signaling by Noisy Biomolecular Networks. PLoS Comput Biol 9(3): e1002965.
doi:10.1371/journal.pcbi.1002965

Editor: Jason M. Haugh, North Carolina State University, United States of America

Received September 12, 2012; Accepted January 17, 2013; Published March 28, 2013

Copyright: � 2013 Bowsher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: We acknowledge support from a Medical Research Council and Engineering and Physical Sciences Council funded Fellowship in Biomedical Informatics
(CGB) and a Scottish Universities Life Sciences Alliance chair in Systems Biology (PSS). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: c.bowsher@bristol.ac.uk (CGB); peter.swain@ed.ac.uk (PSS)

Introduction

Cells are continuously challenged by extra- and intracellular

fluctuations, or ‘noise’, [1–3]. We are only starting to unravel how

fluctuating inputs and dynamic interactions with other stochastic,

intracellular systems affect the behavior of biomolecular networks

[4–9]. Such knowledge is, however, essential for studying the

fidelity of signal transduction [10,11] and therefore for under-

standing and controlling cellular decision-making [12]. Indeed,

successful synthetic biology requires quantitative predictions of the

effects of fluctuations at the single-cell level, both in static and

dynamic environments [13]. Furthermore, sophisticated responses

to signals that change over time are needed for therapeutics that

involve targeted delivery of molecules by microbes [14,15] or the

reprogramming of immune cells [16]. Here we begin to address

these challenges by developing a general framework for analysing

the fidelity with which dynamic signals are represented by, or

‘encoded’ in, the output of noisy biomolecular networks.

Results

Two types of fidelity loss in dynamic signaling
For cellular signaling to be effective, it should maintain sufficient

fidelity. We wish to quantify the extent to which the current output

of an intracellular biochemical network, Z(t), can represent a

particular feature of a fluctuating input (Fig. 1). This signal of

interest, s(t), is generally a function of the history of the input,

denoted uHt . By its history, we mean the value of the input u at

time t and at all previous times. The signal s(t) could be, for

example, the level of the input at time t or a time average of the

input over a time window in the most recent past. The output of

the signaling network, Z(t), is able to perfectly represent the signal

s(t) if s(t) can be inferred exactly from Z(t) at all times, t. The

system then has zero fidelity error. However, for a stochastic

biochemical mechanism, a given value of s(t) will map to multiple

possible values of the output, Z(t).

We will assume that the conditional mean, E½Z(t)Ds(t)�, is an

invertible function of s(t): it takes different values for any two

values of s(t). It is then a perfect representation of s(t). The output

Z(t) will, however, usually be different from E½Z(t)Ds(t)� and have

a fidelity error, defined as the difference between Z(t) and

E½Z(t)Ds(t)�. The notation Z(t)Ds(t) is read as Z(t) conditioned on,

or given, the value of the variable s at time t. We use E, as for

example in E½Z(t)Ds(t)�, to denote averaging over all random

variables except those given in the conditioning. Therefore

E½Z(t)Ds(t)� is itself a random variable: it is a function of the

random variable s(t) (we give a summary of the properties of

conditional expectations in the SI).

Many response functions, E½Z(t)Ds(t)�, in biochemistry and

physiology (for example, Hill functions) satisfy the requirement of

invertibility or can be made to do so by defining s(t)
appropriately—for example, when a response exactly saturates
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for all input values above a threshold, those values can be grouped

to form a single input state. Furthermore, we know from the

properties of conditional expectations that Z(t) is closer to

E½Z(t)Ds(t)� in terms of mean squared fidelity error than to any

other representation (function) of s(t) (SI).

The difference between the conditional expectations

E½Z(t)DuHt � and, for example, E½Z(t)Du(t)� is important. The

former, E½Z(t)DuHt �, is the average value of the output at time t

given a particular history of the input u. It will often coincide with

the deterministic (macroscopic) solution when the same input

trajectory is applied to the network. The output Z(t) shows

random variation around this average, E½Z(t)DuHt �, for identical

realisations of the trajectory of u. By contrast, E½Z(t)Du(t)� is the

average value of Z(t) given that the trajectory of u up to time t

ends at the value u(t). By the properties of conditional

expectations, this is also the average value of E½Z(t)DuHt � over all

trajectories ending in the value u(t): that is,

EfE½Z(t)DuHt �Du(t)g~E½Z(t)Du(t)�. These mathematical defini-

tions are illustrated diagrammatically in Fig. 2.

We distinguish between two types of error that reduce fidelity

between Z(t) and s(t).
Dynamical error becomes significant when the response time

of the signaling network is comparable to or longer than the

timescale on which the signal of interest, s(t), fluctuates. On

average, the output Z(t) then responds to other features of the

input history as well as to s(t). We define the dynamical error

therefore as the difference between the average level of the output

given a particular history of the input, uHt , and the average level of

the output given the signal of interest (a function of uHt ):

ed (t)~E½Z(t)DuHt �{E½Z(t)Ds(t)�: ð1Þ

The magnitude (variance) of the dynamical error is equal to

E½VfE½Z(t)DuHt �Ds(t)g�, [7].

For example, if the signal of interest is the current value of the

input, u(t), then ed (t) records a catch-up error if the network still

‘remembers’ (is still responding to) previous values of the input

(Fig. 3). Since E½Z(t)DuHt � will generally be different for different

input trajectories, it will generally differ from E½Z(t)Du(t)� (which is

an average over all input trajectories that end at u(t), Fig. 2).

We can write the dynamical error as

ed (t)~fE½Z(t)DsHt �{E½Z(t)Ds(t)�g

zfE½Z(t)DuHt �{E½Z(t)DsHt �g:
ð2Þ

If fluctuations in s(t) are slower than the response time of the

system, then s(t) will be effectively constant over the ‘portion’ of its

history detected by the output and the first term becomes zero

because E½Z(t)DsHt �^E½Z(t)Ds(t)�. We note that the magnitude

(variance) of ed (t) is always non-zero if the magnitude of this first

term is non-zero because the two terms in Eq. 2 are uncorrelated

(Methods). The second term quantifies the difference between the

average effect on the output, Z(t), exerted by the history of the

signal of interest and the average effect on the output exerted by the

history of the input. This term would be non-zero, for example, if

the input u consists of multiple ligands that influence Z, perhaps

because of cross-talk between signaling pathways, but the signal of

interest is only a function of the history of one of those ligands. This

second term is zero, however, for the systems we will consider.

Mechanistic error is generated by the inherent stochasticity of

the biochemical reactions that comprise the signaling network. We

define mechanistic error as the deviation of the current value of the

output from its average value given a particular history of the input:

em(t)~Z(t){E½Z(t)DuHt �: ð3Þ

Figure 1. The dynamics of the protein output can result in a
faithful representation of the current biological environment.
We consider a 2-stage model of gene expression [22]. The extracellular
environment or input, u(t), gives the current rate of transcription and
the signal of interest s(t)~u(t). We model u(t) as either a 2-state Markov
chain with equal switching rates between states (the states each have
unconditional probability of 1=2) (A&C); or as proportional to a
Poissonian birth-death process for a transcriptional activator (B&D;
proportionality constant of 0.025). The transformed signals E½Z(t)Du(t)�
(in red, lower panels) are a perfect representation of u(t), although
protein levels Z(t) (in blue) are not. E½u(t)�~0:25 s{1, the lifetime d{1

u

of u(t) equals 1 hr, and the translation rate v~0:05s{1. Degradation
rates of mRNA and protein are chosen to maximize the fidelity, Eq. 7.
The units for Z(t) are chosen so that its variance equals one.
doi:10.1371/journal.pcbi.1002965.g001

Author Summary

Cells do not live in constant conditions, but in environ-
ments that change over time. To adapt to their surround-
ings, cells must therefore sense fluctuating concentrations
and ‘interpret’ the state of their environment to see
whether, for example, a change in the pattern of gene
expression is needed. This task is achieved via the noisy
computations of biomolecular networks. But what levels of
signaling fidelity can be achieved and how are dynamic
signals encoded in the network’s outputs? Here we
present a general technique for analyzing such questions.
We identify two sources of signaling error: dynamic error,
which occurs when the network responds to features of
the input other than the signal of interest; and mechanistic
error, which arises because of the inevitable stochasticity
of biochemical reactions. We show analytically that
increased biochemical noise can sometimes improve
fidelity and that, for genetic autoregulation, feedback
can be deleterious. Our approach also allows us to predict
the dynamic signal for which a given signaling network
has highest fidelity and to design networks to maximize
fidelity for a given signal. We thus propose a new way to
analyze the flow of information in signaling networks,
particularly for the dynamic environments expected in
nature.

Dynamic Signaling in Biomolecular Networks
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Z(t) departs from its average (given the realised input history)

because of biochemical stochasticity (Fig. 2). The magnitude of

mechanistic error is given by E½em(t)2�, which equals

EfV ½Z(t)DuHt �g.
Mechanistic error is related to intrinsic noise. Intrinsic variation

measures the expected variation in Z(t) given the history of all the

extrinsic variables [7,8]. Extrinsic variables describe the influence

of the rest of the cell and of the extracellular environment on, say,

expression of a gene of interest [17] and would include, for

example, levels of ATP and ribosomes as well as extracellular

signals such as the input u. The magnitude of the mechanistic

error measures, however, the expected variation in Z(t) given the

history of just one extrinsic variable, the input u. Mechanistic

variation therefore also includes the effects of fluctuations in the

levels of ATP and ribosomes on the signalling mechanism and is

always greater than or equal to the intrinsic variation.

We then define the fidelity error, ef (t), to be the sum of these

two errors:

ef (t)~ed (t)zem(t), ð4Þ

which has zero mean, as do ed (t) and em(t). Fig. 1 shows

fluctuating protein output levels, Z(t), for a network that has high

fidelity (small errors) for the signal of interest, there the current

state of the environment, u(t).

Orthogonal signal and error components
We can decompose the output Z(t) into the sum of the faithfully

transformed or transmitted signal, E½Z(t)Ds(t)�, the dynamical

error, and the mechanistic error:

Z(t)~E½Z(t)Ds(t)�zed (t)zem(t), ð5Þ
for all times t§0. Eq. 5 is an orthogonal decomposition of the

random variable Z(t)—each pair of random variables on the

right-hand side has zero correlation (Methods). The variance of

Z(t) therefore satisfies

V ½Z(t)�~VfE½Z(t)Ds(t)�gzE½ed (t)2�zE½em(t)2�, ð6Þ

where the magnitude of the fidelity error is given by E½ef (t)2�,
which is E½ed (t)2�zE½em(t)2� because of the orthogonality. This

Figure 2. Dynamical error as the difference between two conditional expectations. To illustrate, we consider a 2-stage model of gene
expression with the input, u(t), equal to the current rate of transcription, and the signal of interest s(t)~u(t). We model u(t) as a 2-state Markov chain
and show simulated trajectories of the protein output, Z, corresponding to four different input trajectories, uHt . These input trajectories (or histories)
all end at time t in the state u(t)~uhigh (not shown) and differ according to their times of entry into that state (labelled t(2),t(3),t(4) on the time axis; t(1)

is off figure). E½Z(t)DuHt � (black lines) is the average value of Z at time t given a particular history of the input u: the random deviation of Z(t) around
this average is the mechanistic error em (shown at time t’ for the first realisation of Z). E½Z(t)Du(t)� is the average or mean value of Z(t) given that the
trajectory of u ends in the state u(t) at time t. E½Z(t)Du(t)~uhigh� (red line) can be obtained by averaging the values of E½Z(t)DuHt � over all histories of u
ending in uhigh . The mean is less than the mode of the distribution for Z(t)Du(t)~uhigh because of the distribution’s long tail. E½Z(t)Du(t)~ulow�, not

shown, is obtained analogously. The dynamical error, ed , is the difference between E½Z(t)DuHt � and E½Z(t)Du(t)� and is shown here for the first

trajectory, uH
(1)
t . Fig. 3B shows data from an identical simulation model (all rate parameters here as detailed in Fig. 3B).

doi:10.1371/journal.pcbi.1002965.g002

Dynamic Signaling in Biomolecular Networks
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magnitude of the fidelity error is also equal to the expected

conditional variance of the output, EfV ½Z(t)Ds(t)�g. We note that

we can generalize this decomposition, and thus extend our

approach, for example, to study different components of the

mechanistic error (Methods).

To compare signaling by different biochemical mechanisms, we

normalize Z(t) by the square root of its variance, writing
~ZZ(t)~Z(t)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ½Z(t)�

p
, and define the fidelity as a signal-to-noise

ratio:

fidelity~
VfE½Z(t)Ds(t)�g

E½e2
f (t)�

~
V ½Z�{E½e2

f (t)�
E½e2

f (t)�

~
1{E½~ee2

f (t)�
E½~ee2

f (t)�
,

ð7Þ

for some signal of interest, s(t). Eq. 7 is dimensionless and a

montonically decreasing function of E½~ee2
f (t)�. Indeed, we have

shown that the maximal mutual information between Z(t) and s(t)
across all possible signal distributions is bounded below by a

decreasing function of E½~eef (t)2� (and so an increasing function of

our fidelity), for a suitable choice of distribution of the signal s(t)
and when E½Z(t)Ds(t)� is an invertible function of s(t) [7].

Comparing biochemical systems using the fidelity measure is

equivalent to comparison based on the magnitude of the fidelity

error, E½~ee2
f (t)�, where ~eef (t)~~ZZ(t){E½~ZZ(t)Ds(t)� and the error is

measured in units of the standard deviation of the output. Eq. 7 is

maximized when E½~ee2
f (t)� is minimized. One minus the magnitude

of the fidelity error is the fraction of the variance in the output that

is generated by the signal of interest. In information theoretic

approaches, normalizing the output by its standard deviation is

also important, because the normalization allows determination of

the number of ‘unique’ levels of output that can be distinguished

from one other despite the stochasticity of the output, as least for

Gaussian fluctuations [18].

When s(t) and Z(t) have a bivariate Gaussian distribution, the

instantaneous mutual information, I ½s(t); Z(t)�, is monotonically

related to the fidelity and exactly equal to

{
1

2
lnfE½~ee2

f (t)�g~{
1

2
lnf1{Corr½s(t),Z(t)�2g [7], where Corr

denotes the correlation coefficient. Also in this Gaussian case,

E½~ee2
f (t)� is equal to the minimum mean squared error (normalised

by V ½s(t)�) between s(t) and the linear, optimal estimate,

E½s(t)DZ(t)�. (This is the optimal ‘filter’ when only the current

output Z(t) is available, although typically a filter such as the

Wiener filter would employ the entire history of Z up to time t.)
Gaussian models of this sort for biochemical signalling motifs were

considered in [19], with instantaneous mutual information

expressed in terms of a signal-to-noise ratio equivalent (for their

models) to the fidelity of Eq. 7. Such Gaussian models (if taken

literally, rather than used to provide a lower bound on the

information capacity [19]) would imply that the input-output

relation, E½Z(t)Ds(t)�, is linear and that V ½Z(t)Ds(t)� does not

depend on s(t) (by the properties of the multivariate normal

distribution). Our approach requires neither assumption.

Whenever E½Z(t)Ds(t)� is a linear function of s(t), that is

E½Z(t)Ds(t)�~czgs(t) for constants c and g, we consider g to be

the gain for the signal of interest s(t) [19]. The fidelity then

depends on the ratio of the squared gain to the fidelity error and is

given by g2V ½s(t)�=(E½e2
d (t)�zE½e2

m(t)�).
The dynamic signal with maximum fidelity for a given

input process. Suppose that the input process u(t) is given and

we want to choose from among all functions or statistics of the

input history that ‘signal of interest’, s(t), for which the network

achieves the highest fidelity. An immediate implication of Eq. 7 is

that it identifies the signal of interest with the highest fidelity. Since

Figure 3. As the protein lifetime decreases, a trade-off between dynamical and mechanistic error determines fidelity. We consider a
2-stage model of gene expression with the input, u(t), equal to the current rate of transcription, and the signal of interest s(t)~u(t). (A) The
magnitude of the relative fidelity errors as a function of the protein degradation rate, dZ (from Eqs. 11, 12 and 13), using a logarithmic axis. (B–D)

Simulated data with u(t) as in Fig. 1A. The units for Z(t) are chosen so that its variance equals one in each case (hence Z(t)~~ZZ(t) and e:(t)~~ee:(t)). Pie
charts show the fractions of the protein variance due to the mechanistic (m) and dynamical (d) errors and to the transformed signal. The latter equals
1{E½~ee2

f (t)�. In B, the relative protein lifetime, tZu
~dud{1

Z , is higher than optimal (tZu
~0:37) and fidelity is 2.2; in C, tZu

is optimal (tZu
~0:02) and

fidelity is 10.1; and in D, tZu
is lower than optimal (tZu

~0:003) and fidelity is 5.3. Dynamical error, ed (t), is the difference between E½Z(t)DuHt � (black)
and the faithfully transformed signal E½Z(t)Du(t)� (red), and decreases from B to D, while mechanistic error increases. The lower row shows the
magnitudes of the relative dynamical error (black) and relative mechanistic error (orange). All rate parameters are as in Fig. 1 A&C with dM~0:013s{1,
unless otherwise stated.
doi:10.1371/journal.pcbi.1002965.g003
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EfZ(t) D E½Z(t)DuHt �g~E½Z(t)DuHt �, the dynamical error is zero

when

s(t)~s�(t)~E½Z(t)DuHt �, ð8Þ

from Eq. 1. This choice of s(t) therefore maximizes fidelity for all

signaling networks: it minimizes the magnitude of the fidelity error

(Eq. 6), because E½e2
m(t)�~EfV ½Z(t)DuHt �g and V ½Z(t)� do not

depend on s(t). The variance of Z only changes with the

biochemistry of the network and the input process. We will give an

example of such a signal of interest that maximizes fidelity in Eq.

9.

Analyzing networks with fluctuating inputs
Methods of analysis of stochastic systems with dynamic inputs

are still being developed. We argue that deriving expectations of

network components conditional upon the histories of stochastic

inputs is a powerful approach. We have developed three methods

to determine components of Eqs. 5 and 6 (SI):

(i) An exact analytical method, applicable to linear cascades

and feedforward loops, based on the observation that

moments calculated from a chemical master equation with

propensities that are the appropriate functions of time are

conditional moments, where the conditioning is on the

history of the inputs at time t and on the initial conditions.

(ii) A Langevin method that can include non-linearities,

requires stationary dynamics, and whose accuracy as an

approximation improves as typical numbers of molecules

grow.

(iii) A numerical method, applicable to arbitrary biomolecular

networks and signals of interest—based on a modification of

the Gillespie algorithm allowing time-varying, stochastic

propensities—that uses a ‘conjugate’ reporter to estimate the

mechanistic error [7] and a simulated sample from the

distribution of the signal-output pair, ½s(t),Z(t)�, to estimate

the conditional means, E½Z(t)Ds(t)�.

We note that our methods require that the inputs can be

modeled as exogenous processes that are unaffected by interac-

tions with the biochemistry of the signaling network (a distinction

emphasised in [20]). By an exogenous process we mean one whose

future trajectory is independent, given its own history, of the

history of the biochemical system. This model for an input is

reasonable, for example, when the input is the level of a regulatory

molecule, such as a transcription factor, that has relatively few

binding sites in the cell.

Analyzing signal representation by gene expression
Transcriptional regulation is a primary means by which cells

alter gene expression in response to signals [21]. We now provide

an exact, in-depth analysis of a two-stage model of gene expression

[22] where the fluctuating input, u, is the rate (or propensity) of

transcription and the signal of interest, s(t), equals the current

value of the input, u(t). For example, u(t) may be proportional to

the extracellular level of a nutrient or the cytosolic level of a

hormone regulating a nuclear hormone receptor.

The cellular response should account for not only the current

biological state of u but also future fluctuations. If we consider an

input that is a Markov process, future fluctuations depend solely

on the current value u(t), and the cell would need only to ‘track’

the current state as effectively as possible and then use the

representation in protein levels to control downstream effectors.

These ideas are related to those underlying predictive information

[23,24].

Our analysis requires only the stationary mean and variance of

the input u(t) and that u(t) has exponentially declining ‘memory’

(SI). Consequently, the autocorrelation function of u is a single

exponential with autocorrelation time d{1
u (the lifetime of

fluctuations in u). Examples include a birth-death process or a

two-state Markov chain. We can generalize using, for example,

weighted sums of exponentials to flexibly model the autocorrela-

tion function of u.

Solving the ‘conditional’ master equation with a time-varying

rate of transcription, we find that the conditionally expected

protein level is a double weighted ‘sum’ of past levels of the signal u

(SI):

E½Z(t)DuHt �~v

ðt

0

e{dZ (t{s)

ðs

0

u(r)e{dM (s{r)drds, tw0, ð9Þ

(where for simplicity the equation is stated for the case of zero

initial mRNA and protein). We denote the rate of translation per

molecule of mRNA by v, the rate of mRNA degradation per

molecule by dM , and the rate of degradation of protein per

molecule by dZ . The most recent history of the input u exerts the

greatest impact on the current expected output, with the memory

of protein levels for the history of the input determined by the

lifetimes of mRNA and protein molecules. Eq. 9 gives the signal of

interest, s(t) (a function of the history of the fluctuating

transcription rate), that gene expression transmits with the highest

fidelity to protein levels (see Eq. 8). Notice that the current value of

the input, u(t), cannot be recovered exactly from E½Z(t)DuHt �,
which is therefore not a perfect representation of u(t).

We find, by contrast, that E½Z(t)Du(t)� is an invertible, linear

function of u(t):

E½Z(t)Du(t)�~E½Z�z v(u(t){E½u�)
(duzdM )(duzdZ)

, ð10Þ

when the dynamics reach stationarity, and that the stationary

unconditional mean is E½Z�~vE½u�=dM dZ (SI). Notice that

E½Z(t)Du(t)� does not converge for large t to the average ‘steady-

state’ solution for a static u, but depends on du. The discrepancy

between Eqs. 9 and 10 results in dynamical error with non-zero

magnitude (Fig. 3B).

Using our solutions for the conditional moments, we can

calculate the variance components of Eq. 6 (SI). For the faithfully

transformed signal, when s(t)~u(t), we have

VfE½Z(t)Du(t)�g~
E½Z�2 V ½u�

E½u�2

(1ztMu )2(1ztZu )2
, ð11Þ

where tMu~du=dM is the ratio of the lifetime of mRNA to the

lifetime of fluctuations in u, and tZu~du=dZ is the ratio of the

lifetime of protein to the lifetime of fluctuations in u. The

magnitude of the dynamical error is in this case proportional to

Eq. 11

E½ed (t)2�~VfE½Z(t)Du(t)�g

|
t2

Zu
zt2

Mu
(1ztZu )2ztMu tZu (3z2tZu )

tMuztZu

,
ð12Þ
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and the magnitude of the mechanistic error satisfies

E½em(t)2�~E½Z�z E½Z�v
dMzdZ

: ð13Þ

When the autocorrelation time of u(t) becomes large (tMu and tZu

tending to zero), the dynamical error ed (t) therefore vanishes (Eq.

12). In this limit, the output effectively experiences a constant

input u(t) during the time ‘remembered’ by the system.

To gain intuition about the the effect of relative lifetimes on the

fidelity of signaling, we first suppose the mechanistic error is small

relative to V ½Z�. Eq. 7 then becomes simply t{1
Zu

if protein lifetime

is large relative to mRNA lifetime, tMu
=tZu

?0 (as expected for

many genes in budding yeast [25]). The fidelity thus improves as

the protein lifetime decreases relative to the lifetime of fluctuations

in u, and the output is able to follow more short-lived fluctuations

in the signal. This observation is only true, however, for negligible

mechanistic error.

Tradeoffs between errors can determine signaling fidelity
It is the aggregate behavior of dynamical and mechanistic errors

as a fraction of the total variance of the output that determines

signaling fidelity, Eq. 7. Effective network designs must sometimes

balance trade-offs between the two types of error.

Increasing biochemical noise can enhance signaling

fidelity. Predicting changes in fidelity requires predicting

whether changes in the magnitude of the dynamical error relative

to V ½Z�, denoted E½~ee2
d (t)�, either dominate or are dominated by

changes in the magnitude of the mechanistic error relative to

V ½Z�, denoted E½~ee2
m(t)�. For example, shorter protein lifetimes can

decrease the absolute value of both the dynamical error and the

mechanistic error (the output has a lower mean—Eq. 13). We

calculated for all parameter space the sensitivities of the magnitude

of the two (relative) errors with respect to changes in the protein

lifetime, d{1
Z (using Eqs. 11, 12, and 13). We found that although

the relative magnitude of the dynamical error decreases with

shorter protein lifetime, the relative magnitude of the mechanistic

error increases. The sign of the overall effect on the relative fidelity

error can therefore be positive or negative (Fig. 3A), and

consequently fidelity is maximized by a particular protein lifetime,

d{1
Z (Fig. 3B–D).

Similar trade-offs have been observed before in signal transduction.

For example, tuning the protein’s degradation rate can also maximize

the instantaneous mutual information, at least for Gaussian models

[19]. As the protein degradation rate increases, although the fidelity

error EfV ½Z(t)Du(t)�g decreases, there is a trade-off because the gain

also decreases. In our model the gain, v=(duzdM )(duzdZ) (Eq. 10),

is decreasing in dZ and we observe the same tradeoff.

Further, the trade-off between the two relative errors has some

similarities with trade-offs that occur with Wiener filtering [26].

There, however, the entire output history is used to optimally

estimate (or reconstruct) the signal of interest. In contrast, we

consider representation of s(t) only by the current output Z(t).

The rule-of-thumb that increasing stochasticity or noise in

signaling mechanisms reduces signaling fidelity is broken in this

example. Such statements typically ignore the effect of dynamical

error, but here reductions in relative dynamical error can more

than compensate for gains in relative mechanistic error. Both

errors should be included in the analysis.

Feedback can harm signaling fidelity. Intuitively we might

expect that feedback can improve signaling fidelity because

feedback affects response times. For example, autoregulation

affects the mean time to initiate transcription: it is reduced by

negative autoregulation [27] and increased by positive autoregu-

lation [28]. We introduce autoregulation into our model of gene

expression, interpreting again u(t) as proportional to the

fluctuating level of a transcriptional activator and allowing the

protein Z to bind to its own promoter. For negative feedback, the

rate of transcription becomes u(t)=½1zK1Z(t)�; for positive

feedback, it becomes ½wK1Z(t)zu(t)�=½1z(K1zK2)Z(t)�, with

w the rate of transcription from the active promoter (SI). We

impose u(t)vwK1=(K1zK2) so that the transcription rate

increases with Z(t) for a given u(t). Increasing K1 increases the

strength of the feedback in both cases. We note that other models

of autoregulation may give different conclusions, and that the

transcription rate depends linearly on u(t) in our models.

We let the signal of interest s(t) again be u(t). To proceed we

calculate the sensitivities of the magnitudes of the fidelity errors

using our Langevin method with the input an Ornstein-Uhlenbeck

process. We determine their signs with respect to changes in

feedback strength by randomly sampling a biophysically plausible

parameter space (SI). As we sample, the parameter space governing

fluctuations of u(t) is also explored. We find excellent agreement

between our Langevin and numerical, simulation-based approach

(SI). Since we calculate sensitivities, we are examining the effect of

changing feedback strength, K1, while holding other network

parameters constant. This process both imitates the incremental

change often expected during evolution and the way that network

properties tend to be manipulated experimentally. When compar-

ing the fidelity error of the signal representations for different K1

using Eq. 7, we implicitly normalise the variance of the output to

one in order to ensure fair comparison.

Consider first the static case where the fluctuations in u(t) are

sufficiently slow relative to the timescales of the transduction

mechanism that the input is effectively constant (du?0 with fixed

V ½u�). As expected (Eq. 1), ed converges to zero as du?0. With a static

input, negative autoregulation is expected to reduce the variances of

the response, Z(t), for each value of the input [29]. The mechanistic

variance is therefore expected to decrease, and does so in all models

sampled as K1 increases. We can show analytically (SI) that the

suppression of mean levels also decreases the variance of the

conditional mean, the ‘signal’ variance VfE½Z(t)Du�g, and so the

total variance of the output decreases. We find that the decrease in

mechanistic variance cannot outweigh the decreased signal

variance, and the fidelity always decreases with increasing feedback

(increasing K1). Such a reduction in information transfer through

negative feedback has recently been observed experimentally [10].

For positive autoregulation, the mechanistic variance increases with

K1, which dominates any increase in the signal variance observed at

low values of K1. Relative mechanistic error again rises and fidelity

therefore decreases.

For a static u, therefore, neither negative nor positive

autoregulation improves signaling fidelity. As the strength of

feedback becomes large, the transcriptional propensity tends to

zero for negative feedback and to the constant w for positive

feedback (with fixed positive Z), and the propensities for different u
become indistinguishable as functions of Z (SI). Signaling is

correspondingly compromised in both cases.

These findings essentially still hold when the input is dynamic. For

negative autoregulation, all three components of the output variance

decrease with K1. The relative dynamical error decreases with K1, but

this decrease is typically outweighed by an increase in the relative

mechanistic error, and the overall fidelity deteriorates (w85% of cases

sampled and Fig. 4). Any reduction in fidelity error, E½~eef (t)2�, was

negligible (the difference from the fidelity error when K1~0 was

always less than 0:001). We note that this conclusion is in

contradistinction to the finding (using a linear Gaussian model) that
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negative feedback does not affect information transfer between entire

input and output trajectories [30]. For positive feedback, both the

mechanistic variance and the relative mechanistic error increase with

K1 (for all models sampled). This mechanistic effect dominates the

relative dynamical error, which can change non-monotonically with

K1, and fidelity again deteriorates.

Our results are consistent with the intuition that, although

negative feedback reduces the absolute mechanistic error (fewer

molecules) and absolute dynamical error (faster response times),

negative feedback also decreases the dynamic range of the output.

The fidelity therefore does not improve because the output

distributions corresponding to each value of u(t), despite being

tighter, are also located closer together (Fig. 4). Positive feedback

acts in the opposite way, with increasing variance in the

(conditional) output distributions overwhelming any increase in

the dynamic range of the output.

To explore what happens when the effect of feedback on the

dynamic range is directly controlled, we investigated the effect of

varying K1 in our negative feedback model while simultaneously

altering the translation rate (v) to hold the system’s ‘gain’ constant

(SI). In our model, the faithfully transformed signal is a linear

function of u(t): E½Z(t)Du(t)�~czgu(t), where g is the gain. If

only K1 is varied and the translation rate kept fixed, then the gain

is always less than the gain when K1 is zero. The signal variance or

‘dynamic range’, VfE½Z(t)Du(t)�g, is equal to g2V ½u(t)�, which is

also therefore held constant as we vary K1 at constant gain. The

fidelity is g2V ½u(t)�=(E½e2
d (t)�zE½e2

m(t)�).
For static signals, we again find the fidelity almost always

decreases with increasing negative feedback strength, K1: the

absolute mechanistic error now increases with increasing K1,

presumably because of the decreased rate of translation. For

dynamic signals we find, for the vast majority of cases, an optimal

feedback strength, K1, above and below which fidelity deteriorates.

With increased K1, although the absolute mechanistic error

increases, the absolute dynamical error decreases, when we

compare randomised initial parameterisations with the K1 that

maximises fidelity. When K1 decreases compared to its initial

value, these errors have the opposite behavior. At constant gain,

the tradeoff between dynamical and mechanistic error is thus still

observed, as is the harmful effect of too strong a negative feedback.

Combining outputs from multiple cells improves

fidelity. When a physiological response corresponds to the

average output of multiple cells, the magnitude of the mechanistic

error is that for a single cell divided by the number of cells in the

group (for identical and independent cells receiving the same

input). This reduction arises because the magnitude of the

mechanistic error is now the variance of the average mechanistic

error of the cells in the group. The dynamical error, Eq. 1,

however, is the same as the dynamical error of each individual cell:

expectations of the average response equal the expectations of the

response of each single cell when the cells are identical. Therefore

the fidelity for any signal of interest, s(t), increases if the average or

aggregate output of a group of cells is used (SI). Measuring the

collective response of small groups of cells, Cheong et al. indeed

found that information capacity increased significantly compared

to that of a single cell [10], and averaging of individual cellular

responses is believed to increase the precision of gene expression

during embryonic development [31].

Although negative feedback reduces relative dynamical error, it

increases relative mechanistic error in individual cells. At the level of

the collective response of multiple cells, the deleterious effect on

mechanistic error is attentuated (Fig. 5). Using a population of 100

independent and identical cells we find that adding negative feedback

now improves fidelity in the majority of cases, with moderate

reductions in (relative) fidelity error (ƒ0:10) for our parameter space.

Adding positive feedback never significantly improves overall fidelity

Figure 4. Increasing the strength of negative feedback decreases fidelity. We consider a 2-stage model of gene expression with the signal
of interest s(t)~u(t), and with u(t) proportional to the level of a transcriptional activator. We simulate u(t) as in Fig. 1A. Upper row compares the time
course of the protein output (blue) to the faithfully transformed signal (red), E½Z(t)Du(t)�. Lower row shows the distributions for the output, Z, that
correspond to each of the two possible values of the input, u (low and high). Vertical lines indicate the means of the distributions. Pie charts show the
fractions of the variance of each (conditional) distribution due to dynamical (d) and mechanistic (m) error, weighted by the probability of the input
state: summing these gives the overall magnitude (variance) of the dynamical and mechanistic errors. (A) No feedback (K1~0), fidelity equals 2.4. (B)
Intermediate feedback (K1~2), fidelity equals 2.0. (C) Strong feedback (K1~10), fidelity equals 1.3. As the strength of feedback increases, the
underlying state of the input is more difficult to infer (the conditional distributions overlap more) because increasing (relative) mechanistic error
dominates the decreasing (relative) dynamical error. Note the decrease in the (relative) dynamical error when u(t) is in its high state (yellow
conditional distribution) because stronger negative feedback gives faster initiation of transcription. Transcription propensities are given by
u(t)=½1zK1Z(t)�, and all parameters except K1 are as in Fig. 3B.
doi:10.1371/journal.pcbi.1002965.g004
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(all observed reductions ƒ0:02). Furthermore, negative feedback can

often significantly reduce the number of cells needed to achieve the

same fidelity as, say, 100 cells that lack feedback (less than 10 cells are

needed 22:5% of the time and less than 50 cells 48% of the time when

sampling from our parameter space).

Designing dynamic networks in synthetic biology
Our framework naturally adapts to the scenario of controlling a

network output to approach a desired ‘target’ response when, for

example, the cell’s environment changes. Combined with model

search procedures for synthetic design [32], it is a promising ap-

proach to the design of synthetic biomolecular networks. If the target

response is given by r(t), which is a function of the input history, then

to guide the design process, we can decompose the error Z(t){r(t)
analogously to Eq. 5 and find an equivalent to Eq. 6, a dissection of

the network performance into orthogonal components (SI).

Discussion

Cells use the information conveyed by signaling networks to

regulate their behavior and make decisions. Not all features of the

input trajectory will, however, be relevant for a particular decision,

and we define the fidelity between the output of the network and a

signal of interest, s(t), which is a function of the input trajectory.

Information encoded in upstream fluctuations must eventually

either be lost or encoded in current levels of cellular constituents.

We have therefore focused on the fidelity with which s(t) is

represented by the current output, Z(t).

Using an orthogonal decomposition of the network’s output into

the faithfully transformed signal and error terms, we are able to

identify two sources of error – dynamical and mechanistic. We

assume the transformed signal, E½Z(t)Ds(t)�, to be an invertible

function of s(t). The aggregate behavior of the two types of error

determines the signaling fidelity, and ignoring either may cause

erroneous conclusions. We interpret Z(t) as the current cellular

estimate or ‘readout’ of the faithfully transformed signal. The

magnitude of the fidelity error relative to the variance in Z, Eq. 7, is

a dimensionless measure of the quality of that estimate since

E½~ee2
f (t)�~Ef(Z(t){E½Z(t)Ds(t)�)2g=V ½Z(t)�. Furthermore, we

have shown that E½~ee2
f (t)� is related to the mutual information

between the input and output [7].

To apply our approach experimentally, we can use microfluidic

technology to expose cells to the same controlled but time-varying

input in the medium [33], and a fluorescent reporter to monitor the

network output, Z(t). This reporter could measure, for example, a

level of gene expression or the extent of translocation of a transcription

factor. The transformed signal, E½Z(t)Ds(t)�, and its variance (for a

given probability distribution of the input process) can then be

estimated with sufficient amounts of data by monitoring Z(t) in each

cell and s(t) in the microfluidic medium. We can determine the

mechanistic error by measuring the average squared difference

between the output of one cell and that of another — because the

outputs of two cells are conjugate given the history of the input [7] –

and hence determine the dynamical error by applying Eq. 6.

Our analysis is complementary to one based on information theory

and the entire distribution of input and output [7]. Without making

strong assumptions about the network and the input, calculation of

mutual information is challenging for dynamic inputs. Previous work

has considered either the mutual information between entire input

and output trajectories with a Gaussian joint distribution of input and

output [19,34], or the ‘instantaneous’ mutual information between

input and output at time t [19] (applicable in principle to non-

Gaussian settings). Our approach, however, depends only on

conditional moments and avoids the need to fully specify the

distribution of the input process, which is often poorly characterized.

The environments in which cells live are inherently dynamic and

noisy. Here we have developed mathematical techniques to quantify

how cells interpret and respond to fluctuating signals given their

stochastic biochemistry. Our approach is general and will help underpin

studies of cellular behavior in natural, dynamic environments.

Methods

Orthogonality of transformed signal, dynamical error and
mechanistic error

Define es(t)~E½Z(t)Ds(t)�{E½Z(t)�, the transformed signal with

zero mean. Then the signal and error components of Eq. 5 are

pairwise uncorrelated:

E½es(t)ed (t)�~Efes(t)E½ed (t)Ds(t)�g~0,

E½es(t)em(t)�~Efes(t)E½em(t)DuHt �g~0,

E½ed (t)em(t)�~Efed (t)E½em(t)DuHt �g~0:

ð14Þ

Orthogonal decomposition of a random variable based
on a filtration

Eq. 5 is a special case of the following general decomposition for

any random variable (with finite expectation), here denoted Z.

Consider a filtration, or increasing sequence of conditioning

‘information sets’, fH0,H1,:::,Hkg, where k§1 and H0~fV,1g.
Let ei~E½ZDHi�{E½ZDHi{1� for i~1,:::,k, and let

ekz1~Z{E½ZDHk�. Then the decomposition

Z{E½Z�~
Xkz1

i~1

ei, ð15Þ

satisfies E½eiej �~0 for all i=j since the sequence

fei; i~1,:::,kz1g is a martingale difference sequence with respect

to the filtration (SI). Therefore, V ½Z�~
Pkz1

i~1 E½e2
i �.

Figure 5. The fidelity of the collective response of a group of
cells exceeds that of a single cell. We consider a 2-stage model of
gene expression with the signal of interest s(t)~u(t), and with u(t)
proportional to the level of a transcriptional activator and modeled as
an Ornstein-Uhlenbeck process. The unconditional distribution of u(t) is
therefore Gaussian. Pie charts show fractions of the protein variance
due to the mechanistic (m) and dynamical (d) errors and are computed
using our Langevin method (SI). (A) For a single cell with negative
autoregulation (K1~1), fidelity is low and equal to 0.2, with a dominant
mechanistic error. (B) For 100 identical and independent cells (given the
input’s history), with negative autoregulation (K1~1): fidelity between
u(t) and the average protein output for the group is higher and equal to
3.5. All parameters as in Fig. 3B except V ½u�~3:7|10{3s{2 .
doi:10.1371/journal.pcbi.1002965.g005
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