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Abstract: Fitting models to behav-
ior is commonly used to infer the
latent computational factors respon-
sible for generating behavior.
However, the complexity of many
behaviors can handicap the interpre-
tation of such models. Here we
provide perspectives on problems
that can arise when interpreting
parameter fits from models that
provide incomplete descriptions of
behavior. We illustrate these prob-
lems by fitting commonly used and
neurophysiologically motivated rein-
forcement-learning models to simu-
lated behavioral data sets from
learning tasks. These model fits can
pass a host of standard goodness-of-
fit tests and other model-selection
diagnostics even when the models
do not provide a complete descrip-
tion of the behavioral data. We show
that such incomplete models can be
misleading by yielding biased esti-
mates of the parameters explicitly
included in the models. This problem
is particularly pernicious when the
neglected factors are unknown and
therefore not easily identified by
model comparisons and similar
methods. An obvious conclusion is
that a parsimonious description of
behavioral data does not necessarily
imply an accurate description of the
underlying computations. Moreover,
general goodness-of-fit measures are
not a strong basis to support claims
that a particular model can provide a
generalized understanding of the
computations that govern behavior.
To help overcome these challenges,
we advocate the design of tasks that
provide direct reports of the compu-
tational variables of interest. Such
direct reports complement model-
fitting approaches by providing a
more complete, albeit possibly more
task-specific, representation of the
factors that drive behavior. Compu-
tational models then provide a
means to connect such task-specific
results to a more general algorithmic
understanding of the brain.

The use of models to infer the neural

computations that underlie behavior is

becoming increasingly common in neuro-

science research, especially for cognitive

and perceptual tasks involving decision

making and learning. As their sophistica-

tion and usefulness expand, these models

become increasingly central to the design,

analysis, and interpretation of experiments.

We consider this development to be

generally positive but provide here some

perspectives on the challenges inherent to

this approach, particularly when behavior

might be driven by unexpected factors that

can complicate the interpretation of model

fits. Our goal is to raise awareness of these

issues and present complementary ap-

proaches that can help ensure that our

understanding of the brain does not

become overly conditioned to the quality

of existing models fit to particular data sets.

We illustrate these challenges using a set

of models that describe the ongoing

process of learning values to guide actions

and that are used extensively in the field of

cognitive neuroscience [1–13]. These

models adjust expectations about future

outcomes according to the difference

between actual and predicted outcomes,

known as the prediction error. Originally

developed in parallel in both animal- and

machine-learning fields [14–16], this rela-

tively simple form of reinforcement-learn-

ing algorithm (often referred to as a ‘‘delta

rule’’ because the prediction error is

typically represented by the Greek symbol

delta (h) in the equations) has: 1) provided

efficient solutions to a broad array of

biologically relevant problems [15]; 2)

accounted for many, but not all, learning

phenomena exhibited by both human and

nonhuman subjects [17,18]; 3) provided a

generative architecture that has been used

to predict behavior across tasks, compare

brain activity to learning variables within a

single task, and explore the range of

possible behaviors that one might expect

to find in a variable population [19,20];

and 4) guided an understanding of the

neural computations expressed by the

brainstem dopaminergic system [21].

These successes have led to the proposal

that the interpretation of delta-rule model

parameters fit to behavioral data from

human subjects performing simple learn-

ing tasks might serve as a more precise

diagnostic tool for certain mental disorders

than existing methods [22–24]. Thus

reinforcement-learning models are becom-

ing highly influential in guiding and

filtering our understanding of normal

and pathological brain function.

Here we focus on the interpretation of a

term in most delta-rule models called the

learning rate. The learning rate, a,

determines the amount of influence that

the prediction error, d, associated with a

given outcome has on the new expectation

of future outcomes, E:

Etz1~Etza|dtz1 ðEQ1Þ

As its name implies, the learning rate

determines how quickly the model adapts
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to errors. A fixed value near zero implies

that expectations are updated slowly,

essentially averaging over a long history

of past outcomes. In contrast, a fixed value

near one implies that expectations are

updated quickly to match the most recent

outcomes. Thus, the learning rate can be

interpreted as the amount of influence

each unpredicted outcome exerts on the

subsequent expectation. These updated

expectations can, in turn, be used to select

actions, often through a soft-max function

with an inverse-temperature parameter.

This parameter can be adjusted to opti-

mize the trade-off between exploiting

actions known to be valuable in the

present (emphasized at higher inverse

temperatures) and exploring actions that

might be valuable in the future (empha-

sized at lower inverse temperatures)

[12,13,15,25].

Recent work has highlighted the advan-

tages of using learning rates that, instead of

remaining fixed, are adjusted adaptively

according to environmental dynamics [9–

11,26–28]. For example, adaptive learning

rates can help ensure that expectations

remain relatively stable in stationary envi-

ronments but change rapidly in response to

abrupt environmental changes. Consistent

with this idea, human behavior in tasks

containing abrupt changes conforms to

models in which the influence of each

outcome depends on the statistics of other

recent outcomes. Such rational adjustments

of learning rate are most prominent after

changes in action-outcome contingencies

that lead to surprisingly large prediction

errors [9–11].

Here we consider in detail two of these

change-point tasks. The first, an estima-

tion task, requires subjects to predict the

next in a series of outcomes (randomly

generated numbers) [9]. Each outcome is

drawn from a normal distribution with a

fixed mean and variance. However, the

mean of this distribution is occasionally

reset at random times, producing abrupt

change-points in the series of outcomes.

Learning rates can be measured directly

on a trial-by-trial basis, using predictions

and outcomes plugged into Eq. 1. Previ-

ous work showed that subjects performing

this task tended to use learning rates that

were consistent with predictions from a

reduced form of a Bayesian ideal-observer

algorithm, including a positive relation-

ship between error magnitude and learn-

ing rate. However, the details of this

relationship varied considerably across

individual subjects. Some subjects tended

to use highly adaptive learning rates,

including values near zero following small

errors and values near one following

surprisingly large prediction errors. In

contrast, other subjects used a much

narrower range of learning rates, choos-

ing similar values over most conditions.

This across-subject variability was de-

scribed by a flexible model that could

generate behaviors ranging from that of a

fixed learning-rate delta rule to that of the

reduced Bayesian algorithm, depending

on the value of a learning rate ‘‘adaptive-

ness’’ parameter.

The second task is a four-alternative

forced-choice task that includes occasion-

al, unsignaled change-points in the prob-

abilistic associations of monetary rewards

for each choice target [11]. Learning rates

are not measured directly, as in the

estimation task, but rather inferred from

model fits. The best-fitting models incor-

porate learning rates that increase tran-

siently after unexpectedly large errors,

although the magnitude of this increase

differs across subjects. The existence of this

kind of across-subject variability can have

dramatic effects on the interpretation of

best-fitting parameters from models that

do not account for this variability explic-

itly. Here we illustrate this problem by

fitting behavioral data corresponding to

different forms of adaptive learning with

delta-rule models that neglect adaptive

learning entirely. However, we emphasize

that this problem is not limited to adaptive

learning but can also arise when neglecting

other factors that can influence perfor-

mance on learning tasks, such as a

tendency to repeat choices [29,30], and

more generally whenever oversimplified

models are fit to complex behavioral data.

We used simulations of the two tasks to

illustrate how fitting models with fixed

learning rates to behavior that is based on

adaptive learning rates can lead to mis-

leading conclusions. For each task, behav-

ioral data were simulated using a delta-

rule inference algorithm with different

levels of learning-rate adaptiveness cou-

pled with a soft-max function for action

selection. These simulated data were then

fit, using maximum-likelihood methods,

with a simpler model that included two

free parameters: a fixed learning rate and

the inverse temperature of a soft-max

action-selection process (see Text S1). In

all cases, the simpler, fixed learning-rate

model was preferred over a null model

constituting random choice behavior, even

after penalizing for additional complexity

(e.g., using BIC or AIC; see Text S1).

Despite passing these model-selection cri-

teria, we highlight two misleading conclu-

sions that might be drawn from these fits:

biased estimates of adaptive learning and

of exploratory behavior.

The problem of misestimating adaptive

learning is depicted in Figure 1A & B.

Panel A shows simulations based on the

estimation task. For this task, learning

rate is measured directly as the proportion

of the current prediction error used to

update from the current prediction to the

next prediction [9]. As expected, variabil-

ity in measured learning rates tended to

increase with learning-rate adaptiveness.

The average value of measured learning

rates also tended to decrease with learn-

ing-rate adaptiveness, because change-

points that dictate high values of adaptive

learning rates were relatively rare in our

simulated tasks (black circles and error

bars reflect median and interquartile

range, respectively, across 800 simulated

trials).

The model fits, however, tell a different

story. When behavior was simulated using

a fixed learning rate (learning-rate adap-

tiveness = 0), the best-fitting models natu-

rally captured the appropriate value.

However, when behavior was simulated

using increasingly adaptive learning rates,

the fixed learning-rate models returned

systematically larger estimates of learning

rate than were actually used by the

simulated subjects (Figure 1A, gray

points).

Panel B shows simulations based on the

four-choice task, for which we determined

the learning rate on each trial based on its

value in the internal, generative process

used in the simulations. Data from this

task tell a similar story. Simulated learn-

ing rates were lower but more variable for

more adaptive models (black circles and

error bars reflect median and interquar-

tile range), yet fit learning rates were

higher for these same models (Figure 1B,

gray points). These data suggest that

periods of rapid learning (i.e., following

change-points) are more influential than

periods of slow learning on maximum-

likelihood fits of the fixed learning-rate

parameter, which thus becomes biased

upwards when the underlying learning

rate is adaptive.

The problem of misestimating explor-

atory behavior is depicted in Figure 1C &

D. We first simulated behavior on both the

estimation task and the four-choice task

using a fixed learning rate and an action-

selection process governed by an inverse-

temperature parameter. In each case, fits

from a model with a fixed learning rate

and an inverse-temperature process re-

turned appropriate estimates of the inverse

temperature used in the generative process

(left-most circles in Figure 1C & D,

corresponding to learning-rate adaptive-

ness = 0).
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However, when the simulated subjects

used increasingly adaptive learning rates,

inverse-temperature fits from a fixed

learning-rate model substantially overesti-

mated the true variability in action

selection (circles in Figure 1C & D:

inferred inverse temperature decreases as

learning-rate adaptiveness increases). Such

biased parameter estimates were not

simply a problem with the fixed learning-

rate model. Fitting an alternative model

that used optimal (maximally adaptive)

learning rates [9,31] to the behavior of the

same simulated subjects yielded a comple-

mentary pattern of biases: the model

accurately inferred the level of exploratory

action selection for simulated subjects that

choose learning rates adaptively but over-

estimated this quantity for subjects that

used simpler strategies of less-adaptive, or

even fixed, learning rates (squares in

Figure 1C: inferred inverse temperature

decreases as learning-rate adaptiveness

decreases). For both models, these prob-

lems were not apparent from standard

analyses of best-fitting parameter values,

which had similar confidence intervals and

covariance estimates for biased and unbi-

ased fit conditions (see Text S1). These

problems also did not simply reflect

difficulties in estimating model parameters

when the inverse temperature was low and

behavior was more random, because the

Figure 1. Learning-rate adaptiveness can be misinterpreted as elevated fixed learning rates and decreased inverse temperatures
for the estimation (A,C) or four-alternative (B,D) tasks (see text). In all panels, the abscissa represents learning-rate adaptiveness (0 is
equivalent to using a fixed learning rate; higher numbers indicate higher adaptiveness to unexpected errors). A & B. Actual (black) and model-inferred
(gray) learning rates used by agents with different levels of learning-rate adaptiveness. Points and error bars represent the median and interquartile
range, respectively, of data from six simulated sessions. C & D. Best-fitting values of the inverse-temperature parameter, intended to describe
exploratory behavior, inferred using a fixed delta-rule (circles) or approximately Bayesian (squares) model. Shades of gray indicate the level of
exploratory behavior of the simulated agent, as indicated. Arrows indicate the actual value of the inverse-temperature parameter used in the
generative process. Points and error bars (obscured) represent the mean and standard error of the mean, respectively, of data from six simulated
sessions.
doi:10.1371/journal.pcbi.1003015.g001

PLOS Computational Biology | www.ploscompbiol.org 3 April 2013 | Volume 9 | Issue 4 | e1003015



Figure 2. Poor fits from models that ignore learning-rate adaptiveness are easily identified in the estimation, but not the four-
choice, task. A & B. Mean log-likelihood associated with a fixed learning-rate model, per simulated trial from the estimation (A) or four-choice (B)
task, aligned to change-points in the generative process. Lighter shades of gray represent data from simulated agents with higher levels of learning-
rate adaptiveness. C–F. Learning rates (C & D) or inverse temperatures (E & F) inferred from model fits that exclude log-likelihood information from
trials occurring 0–10 trials after change-points (abscissa) for estimation (C & E) and four-choice (D & F) tasks. The transient changes in A, C, and E
evident for all but the least adaptive simulated agents reflect the fixed learning-rate model’s inability to account for behavior just following change-
points on the estimation task; no comparable effects are evident for the four-choice task.
doi:10.1371/journal.pcbi.1003015.g002
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problem was also apparent when the

inverse temperature was high. Thus, subtle

differences in learning that were not

accounted for by the inference model

caused underestimation of the inverse-

temperature parameter, which might be

misinterpreted as increases in exploratory

action selection.

Diagnosing these kinds of problems is

difficult, especially when the subtle aspect of

behavior that is missing from the model is

unknown. Model-selection practices that

compare likelihoods of various models (after

either cross validation or penalization of

parameter numbers) are useful for identifying

the better of two or more models with respect

to particular data sets. However, these

practices require a priori knowledge of the

models to be tested and cannot, by them-

selves, indicate what might be missing from

the tested models. One might be tempted to

interpret likelihoods directly and set a

criterion for what might be considered a

‘‘good’’ model. However, these metrics

cannot say whether or not a model is correct

(or even sufficiently good, given that no fit

model is truly correct). For example, consider

a test of the suitability of a fixed learning-rate

model for simulated subjects that can vary in

terms of learning-rate adaptiveness and

exploratory behavior. Similar values of AIC,

BIC, and other likelihood-based quantities

are obtained for fixed delta-rule models fit to

two very different subjects: one who uses a

fixed learning rate, which is consistent with

the model, and relatively high exploration;

and another who uses a highly adaptive

learning rate, which is inconsistent with the

model, and relatively low exploration. Inter-

pretation of parameter fits from the latter case

would be misleading, whereas parameter fits

from the former would be asymptotically

unbiased and thus more informative.

To overcome these limitations, it is

sometimes effective to look for indications

that a model is failing under specific sets of

conditions for which behavior is heavily

influenced by the assumptions of the

model. For the case of adaptive learning,

fixed learning-rate models fail to address

adaptive responses to inferred change-

points in the action-outcome contingency.

Thus, it can be instructive to examine the

likelihoods of these models computed for

choice data collected shortly after change-

points. For the case of the estimation task,

a fixed learning-rate model shows an

obvious inability to account for data from

trials just after a change-point for all but

the least adaptive simulated subjects

(Figure 2A; dip in log-likelihood at trial

1). However, this approach is not effective

for the four-choice task (Figure 2B).

Another potentially useful approach for

diagnosing misleading parameter fits is to

compute these fits using subsets of data

that might correspond to different best-

fitting values of certain parameters. For

the estimation task, eliminating data from

trials immediately following change-points

has dramatic effects on fits for both

learning rate (Figure 2C) and inverse

temperature (Figure 2E). However, this

diagnostic approach is far less effective for

the four-choice task, for which adjustments

in learning rate occur with a longer and

more variable time course following

change-points (Figure 2D & F). Thus, for

tasks like the estimation task that provide

explicit information about the subject’s

underlying expectations, the insufficiency

of the fixed learning-rate model can be

fairly simple to diagnose. However, for

tasks like the four-choice task in which

information about the subject’s expecta-

tions is limited to inferences based on less-

informative choice behavior, parameter

biases are still large (Figure 1B & D), but

model insufficiency is far less apparent.

A sobering conclusion that can be drawn

from these examples is that even when the

parameter fits from a computational model

are reasonably likely to produce a data set,

and even when this likelihood is robust to

perturbations in the specific trials that are

fit or the settings of other parameters in the

model, the model might still be missing

specific features of the data. Missing even a

fairly nuanced feature of the data (such as

adaptive learning) can lead the parameters

in the model to account for the feature in

surprising ways. These unexpected influ-

ences can lead to parameter fits that, if

interpreted naı̈vely, might suggest compu-

tational relationships that are unrelated to,

or even opposite to, the true underlying

relationships. Here we use an example from

reinforcement learning, but the lessons

apply to any model-fitting procedure that

requires the interpretation of best-fitting

parameter values. Certain parameters, like

the inverse-temperature parameter in rein-

forcement-learning models, are particularly

susceptible to this problem, because they

are always sensitive to other sources of

behavioral variability that are incompletely

described by the rest of the model.

These challenges highlight the narrow wire

on which the computational neuroscientist

walks. On one hand, we seek to generalize a

wide array of physiological and behavioral

data from different tasks onto a tractable set

of computational principles. On the other

hand, the results that we obtain from each

experiment are conditioned on assumptions

from the particular model through which

they are obtained. We believe that the goals

of computational neuroscience are possible

even in the face of this contradiction.

Obtaining generalizable results depends on

not only good modeling practices [32] but

also the extensive use of descriptive statistics

to dissect and interpret data from both

experiments and simulated model data. For

example, the estimation task described above

was designed to allow learning rates from

individual trials to be computed directly and

not inferred via model fits to resulting choice

behaviors. This approach revealed clear task-

dependent effects on adaptive learning [9]. In

principle, congruence between these kinds of

direct analyses of behavioral data and fit

model parameters can help support interpre-

tations of those parameters and has the

advantage of testing modeling assumptions

and predictions explicitly rather than via

comparisons of different model sets [8,33,34].

In contrast, inconsistencies between direct

analyses and fit model parameters can help

guide how the model can be modified or

expanded—keeping in mind, of course, that

adding to a model’s complexity can improve

its overall fit to the data but often by

overfitting to specious features of the data

and making it more difficult to interpret the

contributions of individual parameters [35].

In summary, model fits to behavioral

data can provide useful and important

insights into the neurocomputational prin-

ciples underlying such behavior but should

not replace good experimental designs that

explicitly isolate, manipulate, and/or mea-

sure the behavioral processes of interest.

Combining such designs with both model

fitting and other kinds of analyses can

support steady progress in attaining a more

general understanding of the neural basis

for complex behaviors that is not overly tied

to a particular model or behavioral test.

Supporting Information

Text S1 Provides methods for simulations

and model fitting as well as Bayesian informa-

tion criterion values for each set of models.

(DOCX)
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