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Abstract

The Ion Torrent Personal Genome Machine (PGM) is a new sequencing platform that substantially differs from other
sequencing technologies by measuring pH rather than light to detect polymerisation events. Using re-sequencing datasets,
we comprehensively characterise the biases and errors introduced by the PGM at both the base and flow level, across a
combination of factors, including chip density, sequencing kit, template species and machine. We found two distinct
insertion/deletion (indel) error types that accounted for the majority of errors introduced by the PGM. The main error source
was inaccurate flow-calls, which introduced indels at a raw rate of 2.84% (1.38% after quality clipping) using the OneTouch
200 bp kit. Inaccurate flow-calls typically resulted in over-called short-homopolymers and under-called long-homopolymers.
Flow-call accuracy decreased with consecutive flow cycles, but we also found significant periodic fluctuations in the flow
error-rate, corresponding to specific positions within the flow-cycle pattern. Another less common PGM error, high
frequency indel (HFI) errors, are indels that occur at very high frequency in the reads relative to a given base position in the
reference genome, but in the majority of instances were not replicated consistently across separate runs. HFI errors occur
approximately once every thousand bases in the reference, and correspond to 0.06% of bases in reads. Currently, the PGM
does not achieve the accuracy of competing light-based technologies. However, flow-call inaccuracy is systematic and the
statistical models of flow-values developed here will enable PGM-specific bioinformatics approaches to be developed,
which will account for these errors. HFI errors may prove more challenging to address, especially for polymorphism and
amplicon applications, but may be overcome by sequencing the same DNA template across multiple chips.
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Introduction

The last decade has seen dramatic advances in sequencing

technology that have relied on highly-parallel optical sensing of

polymerisation reactions. These advances have substantially

reduced sequencing costs, however further reduction in cost is

limited by the dependence of these platforms on photo-receptive

sensors and their associated reagents. In 2011, Life technologies

began distribution of the Ion Torrent Personal Genome Machine

(PGM). The PGM leverages advances in semi-conductor technol-

ogy and ion-sensitive transistors to sequence DNA using only

DNA polymerase and natural nucleotides, with each polymerisa-

tion event recognised by pH changes alone [1].

The PGM requires similar library preparation steps to Roche

454 shotgun libraries, where an adapter and key () is ligated to the

DNA templates, and under optimal conditions, a single DNA

template is affixed to a bead and clonally amplified using emulsion

PCR. The beads are then loaded onto the chip, where, on average,

each well contains less than a single bead.

Deoxynucleotide triphosphates (dNTPs) are flowed over the

surface of the bead in a predetermined sequence, with zero or

more dNTPs ligating during each flow. While the first generation

of the PGM cycled through the four nucleotides in a step-wise

fashion (as does the Roche 454 pyrosequencer), this cycle was

modified to have a period of 32, with a pattern that repeats some

nucleotides in a period shorter than four. This more complex flow

cycle, referred to as the Samba, was implemented to improve

synchronicity of clonal templates on the bead at the cost of a flow-

sequence not optimised for read length. A single proton is released

for every nucleotide incorporated during the flow, resulting in a

net decrease of the pH in the surrounding solution. This pH

change is measured by an ionic sensor and then converted to a

flow value using a physical model of the cell and its contents. The

PGM base-caller takes these flow-values and corrects for phase

and signal loss, and also normalizes the raw flow-values to the key

sequence (the key is a known four-base DNA molecule appended

to the 59 region of every read sequence). Finally, quality assurance

procedures are applied to the data, filtering polyclonal and noisy

reads, and clipping adapters and low quality regions from the 39

end of the remaining reads.

An assessment of the PGM sequencing technology was provided

with the publication of the sequencing platform [1]. However, this
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analysis was conducted using quality-trimmed data (rather than

raw reads) and reported accuracy based on a consensus rather

than individual read accuracy. In addition, substantial changes

have been made to the platform since the initial publication,

including the change of flow order (Samba), quality control and

base calling, which are likely to influence the error rates and biases

in PGM data. Two studies comparing benchtop sequencers,

including the PGM, were recently published [2,3], both focusing

on the assembly prospects of benchtop platforms on single isolate

genomes. Consistent with the scope of these studies, they used the

quality-trimming recommended by each distributor and did not

generate sufficient replicate data to understand variability in

accuracy. No study of PGM data to date has attempted to robustly

evaluate error rates or explored the possible causal factors of errors

at the flow-level. Here, we characterise the nature of errors

produced by the PGM, including sequencing kit, chip type,

machine variability, template G+C%, and chip, read and flow

positional effects. Our findings contribute to a more comprehen-

sive understanding of the errors and biases inherent in PGM data,

and will enable the bioinformatics community to develop

appropriate algorithms for this new platform.

Results

Datasets
In this study, we considered the influence of both technological

(template preparation kit, chip, machine) and DNA template

factors on sequencing output using a full factor statistical design

(see Methods). We evaluated three template preparation kits,

listed in chronological release order, Ion OneTouch Template Kit

(100 bp OneTouch kit), Ion Xpress Template 200 Kit (200 bp

manual kit), Ion OneTouch 200 Template Kit (200 bp OneTouch

kit), two chip densities, 314 (1.2M sensors, density 200,000 reads)

and 316 (6.1M sensors, density 1 million reads) and two PGM

machines (named here a and b). Two species, Sulfolobus tokodaii (33

G+C%) and Bacillus amyloliquefaciens (46% G+C%), both with

relatively small, sequenced genomes and no extra-chromosomal

DNA, were selected to represent different G+C% templates. A

third organism, Deinococcus maricopensis (69% G+C), was selected for

its high G+C content, however library preparation consistently

failed using the 200 bp kits, and read throughput was extremely

low for the 100 bp OneTouch kit, consequently it was excluded

from subsequent analyses. Fifteen datasets were generated

(Table 1) and used to evaluate the effects and interactions

between template preparation kit, chip and machine on the

measured error rate (see Methods).

For the 100 bp OneTouch kit and 200 bp manual kit, the great

majority of reads (94–100%) had adapter sequences detected by

the PGM software. The newest kit considered here, the 200 bp

OneTouch Kit, had a very low percentage of reads with detected

adapters (7–12%), which may be due to library construction

differences (longer inserts used). We applied the 39 clipping of

adapter sequences as specified in the Standard Flowgram File

(SFF), however we did not apply the recommended 39 quality

clipping – allowing more realistic calculation of raw error rates.

Datasets larger than 300,000 reads were randomly subsampled

down to 300,000 reads as this provided sufficient information for

downstream analyses (Table 1).

On average, 9363.5% of all analysed reads mapped to their

respective reference genomes, with the poorest performance

obtained with the 200 bp OneTouch kits on 314 chips. Mean

read quality across all the datasets was 32.8861.20 s.d.

The distribution of read lengths (Figure S1) shows that both

the 100 bp and 200 bp One Touch kits were bi-modal with a

smaller secondary peak ,100 bp greater than the expected length,

which was more prominent in runs using the 314 chip. These

longer reads did not exhibit any deviation in mean G+C content

or homopolymer composition from the dominant read length peak

for their respective runs. However the majority of these longer

reads did not map to the reference genome, but those that could

be mapped had an error rate double that of the mean base-error

rate across all datasets. Considering these reads have a substan-

tially higher error rate, we recommend the removal of unexpect-

edly long reads prior to analysis.

High frequency polymorphisms between sequenced
reads and reference genomes

Prior to assessing PGM error profiles, we determined if there

were any genuine polymorphisms between the PGM determined

and reference genomes, which may be the result of accumulated

mutations in the genome [4] or sequencing errors in the original

genome project. We tested each base difference between the reads

and their respective reference genome to identify whether the

number of observed differences was significantly higher than the

expected error rate (see Methods). Across all datasets, there were

a large number of significant differences, predominantly high-

frequency insertion and deletion (indel) polymorphisms (Table 2).

While the number of polymorphisms appear to be lower for

100 bp OneTouch kits, this is likely due to lower coverage

reducing the sensitivity of our ‘polymorphism’ detection. It has

been previously reported that the majority of indel polymorphisms

detected in PGM reads are false-positives, even when the ‘putative’

indel was present across a large number of reads [3,5]. We would

expect that if the indels in our datasets were bona fide polymor-

phisms they would be observed across all datasets for the same

species. Analysis of the 200 bp kits revealed that 87% of high-

frequency indels across the B. amyloliquefaciens datasets, and 82%

across S. tokodaii were unique to a single run (Figure S2a and
S2b). As the data were derived from the same DNA template, this

strongly indicates that these indels are due to PGM-based error as

Author Summary

DNA sequencing is used routinely within biology to reveal
the genetic information of living organisms. In recent
years, technological advances have led to the availability of
high-throughput, low-cost DNA sequencing machines
(‘sequencers’). In 2011, Life Sciences released a new
sequencer, the Ion Torrent Personal Genome Machine
(PGM). This is the first sequencer to measure changes in pH
rather that emitted light to register sequencing reactions.
Consequently, this unique technology is both cost-effec-
tive and advertised to have high accuracy, making it
attractive for many laboratories. However, every sequenc-
ing technology introduces unique errors and biases into
the resulting DNA sequences, and understanding PGM-
specific characteristics is crucial to determining suitable
applications for this new technology. We comprehensively
examine the types of errors and biases in PGM-sequenced
data across several experimental variables, including chip
density, template kit, template DNA and across two
machines. Using statistical approaches, we quantify the
influence of experimental variables, as well as DNA
sequence-specific effects, and find that the PGM has two
types of technology-specific errors. We also find that the
accuracy of the PGM is poorer than that of light-based
technologies, and we make recommendations for this
technology as well as provide statistical models for
overcoming PGM sequencing errors.

Characterising Errors in Ion Torrent PGM Data
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opposed to genuine polymorphisms. While few high frequency

indel (HFI) sites were shared amongst all 200 bp runs for the same

species, the size of the intersection between pairs of runs suggests

that the HFI (or a subset of them) are not random (i.e. they may be

more prevalent in or around a particular sequence motif) (Figure
S2a and S2b). HFIs have been observed previously in PGM data,

with some evidence to suggest the HFI were asymmetrically

distributed across reads in the forward versus reverse orientation

(or vice versa) [3]. We investigated whether any of the HFIs in our

data were asymmetrically distributed across the forward and

reverse oriented reads aligning across that site (see Methods).

This test was only performed on the 200 bp kits as the 100 bp kits

had insufficient coverage for evaluation. Significant indel-strand

asymmetry was detected in 7.4% (897/12,107) of the testable

putative indel sites across the 200 bp datasets (Table 2), with

some datasets having a substantially higher percentage of

Table 2. Number of genomic locations where a significant proportion of reads disagreed with the reference.

Treatment Substitutions Deletion Insertion
Asymmetric Deletion
(# significant/# tested)

Asymmetric Insertion
(#significant/#tested)

314-B-a-100 24 107 40 N/A N/A

314-S-a-100 18 45 38 N/A N/A

316-S-a-100 21 162 98 N/A N/A

316-B-a-100 9 110 79 N/A N/A

314-B-a-200M 553 761 1303 12/618 5/644

314-S-a-200M 483 1105 2446 165/365 33/529

316-S-a-200M 568 337 911 35/247 30/561

316-S-b-100 13 131 161 N/A N/A

314-B-b-100 11 92 83 N/A N/A

316-B-a-200M 534 246 546 1/159 0/294

314-S-b-200M 309 409 1014 24/365 13/529

316-B-b-200 164 979 717 32/905 0/315

314-S-b-200 292 1579 2189 398/1533 21/1041

316-S-a-200 198 398 1100 64/350 7/623

314-B-a-200 170 1127 1214 53/1049 4/554

The last two columns show the number of significant strand-specific error instances out of the total testable instances (testable defined here as having reads aligning in
both orientations over the site).
doi:10.1371/journal.pcbi.1003031.t002

Table 1. Sequencing runs generated for this study.

Treatment # Reads
% Wells
with ISPs

% With
adaptors

#Reads
Used

% Reads
mapping

Mean
length

Mean
Length (AT) Mean quality

314-B-a-100 275,058 54% 96% 275,058 96% 146.8 116.1 32.9

314-S-a-100 188,925 63% 94% 188,925 94% 153.6 125.2 32.5

316-S-a-100 2,135,728 55% 97% 300,000 97% 149.9 121.4 33.5

316-B-a-100 2,364,054 67% 98% 300,000 98% 145.2 114.2 33.1

314-B-a-200M 453,539 66% 100% 300,000 95% 267.7 248 33.6

314-S-a-200M 286,106 45% 100% 286,106 94% 269.40 254.5 33.9

316-S-a-200M 1,321,709 51% 100% 300,000 91% 268.40 254.2 30.9

316-S-b-100 1,442,952 51% 98% 300,000 98% 151.3 121.4 32.7

314-B-b-100 441,037 68% 92% 300,000 91% 152.9 123.3 33.7

316-B-a-200M 1,124,128 95% 100% 300,000 92% 267.4 248.2 29.5

314-S-b-200M 197,811 36% 100% 197,811 93% 271.7 256.7 33.4

316-B-b-200 2,345,739 95% 5.7% 300,000 94% 298.9 250.5 33.2

314-S-b-200 426,411 94% 15% 300,000 85% 318.2 278.4 34.0

316-S-a-200 2,586,746 82% 6.7% 300,000 93% 305.0 258.5 32.1

314-B-a-200 373,256 50% 12% 300,000 87% 307.9 263.9 34

The name for each run is comprised of the chip (314, 316), species (B – Bacillus amyloliquefaciens, S – Sulfolobus tokodaii), machine (a, b), and kit (100 - Ion OneTouch
Template Kit, 200M - Ion Xpress Template 200 kit, 200 - Ion OneTouch 200 Template kit). Runs are listed in chronological order. ‘% Wells with ISPs’ describes the
percentage of wells on the chip which contained a bead. Mean Length AT denotes length after 39 adapter trimming.
doi:10.1371/journal.pcbi.1003031.t001

Characterising Errors in Ion Torrent PGM Data
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asymmetric indels than others (i.e. 314-S-b-200, 314-S-a-200M).

As with the HFI superset, these strand-asymmetric HFIs have

more sites in common between runs than expected for a random

event (Figure S2c and S2d).

The majority of HFI errors were single-base insertions or

deletions and only 29% of these occurred in homopolymeric

regions, in contrast, 82% of strand-asymmetric HFIs occurred in a

homopolymer of length two to three. In general, HFI errors

manifested most commonly as insertions of A/T or deletions of C/

G (Figure S3a). Strand-asymmetric HFIs were dominated by

deletions of C and G (Figure S3b). There was no relationship

between the base or flow positions of these errors across the reads

with the same HFI. It will require further experimentation to

identify whether HFIs are introduced by the library preparation,

template preparation or the sequencer itself. The HFI error rate

relative to the reference genome was approximately 1 in 1000 to 1

in 2000 bp, and HFIs accounted for 0.03%–0.09% of all bases in

each dataset. Given that it is difficult to distinguish HFIs from bona

fide polymorphisms without sequencing the same template over

multiple chips, PGM sequencing may be compromised in

polymorphism detection and amplicon sequencing projects. Here,

we mask the HFIs from downstream analyses, as they are unlikely

to be the consequence of individual flow-call inaccuracy, and will

introduce bias into modeling of base and flow-call accuracy.

Coverage and G+C bias
Initial studies characterising the PGM reported that there was

little correlation between genomic coverage and G+C% content.

More recently it was claimed that, based on visual comparisons of

the theoretical versus empirical genomic coverage, there was

Figure 1. Relationship between G+C% and the observed mean coverage for 100 bp bins in the reference genome. Panel (a) is a
boxplot of the distribution of the square-root normalized mean read depth across the 100 bp windows for each reference genome, broken down
further by sequencing kit and G+C% bin. The coverage for each run was normalised by the mean coverage –the boxplots show the square-root fold-
change from the mean genomic coverage for each combination of species, kit and G+C% bin. Thus a value of 2 means the coverage was four times
that of the mean for that sequencing run. The boxes display the central 50% of the values in each treatment, with the median represented by the
solid black horizontal bar. The whiskers each extend for 1.56 the inter-quartile range, and the black dots represent extreme individual observations
which fall outside this range. The variability observed in the high G+C bins are likely due to the small sample size for these G+C regions, shown in
panel (b). The outliers are potentially due to repetitive content in the genome that failed to be masked by our perfect match repeat approach.
doi:10.1371/journal.pcbi.1003031.g001

Characterising Errors in Ion Torrent PGM Data
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substantially less read coverage in A+T rich regions [3]. Here, we

attempt to quantify the magnitude and significance of the

relationship between coverage and G+C content. Inspection of

the data suggested that the relationship between G+C% and

coverage differs for the two species used in this study (Figure 1a).

While B. amyloliquefaciens has a higher mean G+C (46.1%)

compared to S. tokodaii (32.8%), both have a large number of

100 bp windows within the range of 20–50% G+C content,

allowing direct comparison (Figure 1b). The positive correlation

between G+C and coverage in S. tokodaii versus the negative

correlation with B. amyloliquefaciens is clear even when restricting to

this 20–50% G+C range. This suggests that the relationship

between G+C% and coverage is influenced by the DNA template

from which the sequences are derived. We fitted a linear model to

the normalised coverage to evaluate the significance and

magnitude of the relationship between G+C% and coverage, as

well as the influence of species (DNA template) on this relationship

(see Methods). All terms in the regression were significant

(p,0.0001), and inspection of the linear model diagnostic plots

revealed no dramatic deviations from normal model assumptions

(Figure S5). This model can be split into two linear regressions,

one for B. amyloliquefaciens,

nc~1:12{0:290 gc

and the second for S. tokodaii,

nc~0:552z1:32 gc

where nc is the normalised coverage and gc, the proportion G+C%

in a 100 bp window. The B. amyloliquefaciens model describes a

small negative effect for increasing G+C% on coverage, whereas S.

tokodaii has a larger, positive effect. This relationship requires

further investigation with a wider range of species, but it is

replicated across the various kits, chips and machines used in this

study. While we had originally intended to include the high

G+C% organism, Deinococcus maricopensis (Methods), the inconsis-

tency in read throughput across chips for this species necessitated

its exclusion. However, we analysed the highest throughput run for

D. maricopensis (kit - 200 bp Manual Kit, chip - 316) and observed

an extreme bias against high G+C% regions, with lower G+C

content regions (45%) having 2.56 the mean genomic coverage,

but higher G+C regions (80%) receiving only 0.26 the mean

coverage (Figure S6).

Both PCR and gel extraction processes have been implicated in

G+C% coverage biases in Illumina sequencing [6,7]. PCR has

been shown to preferentially amplify mid-G+C% fragments, and

size selection using gel extraction approaches, which heat the

DNA, often leading to underrepresentation of low G+C%

sequences. In this study, size selection was performed using the

Pippin Prep (see Methods) circumventing gel extraction, leaving

the PCR steps as the likely cause of the coverage biases observed in

low and high G+C% regions. As PCR biases are exerted only on

sequences processed together, it is expected that the observed

relationship between G+C% and coverage will depend on the

mean and range of G+C% in the DNA template. As demonstrated

here, organisms with 100 bp G+C% windows within the 20%–

80% G+C range will experience little bias in coverage, whereas

organisms with G+C% regions outside this ‘safe’ range will suffer

substantial G+C biases. The G+C% bias appears asymmetric, with

the bias against high G+C% regions (i.e. D. maricopensis) more

pronounced than low G+C% regions (i.e. S. tokodaii). In fact this

bias against extremely high G+C% templates may explain why

sequencing D. maricopensis libraries, as well as Streptomyces sp. and

Burkholderia sp. libraries, either failed during library preparation or

produced insufficient sequence data. PGM sequencing of organ-

isms with low or high G+C% will experience substantial read-

depth biases, however, more concerning is this failure to produce

libraries from high G+C% templates. This bias will likely result in

inaccurate representation of organisms in metagenomic and

metatranscriptomic data generated on the PGM.

Replicate bias
The artificial introduction of large groups of exact or near exact

duplicate reads which share the same start site was first observed in

Roche 454 pyrosequencing data [8]. This ‘replicate bias’ is

generally attributed to issues within the emulsion PCR (emPCR)

step [9,10]. Ion Torrent library preparation also uses emPCR,

making it potentially susceptible to this bias. For each run, we

evaluated the distribution of read start positions, and found no

obvious deviations from the uniform distribution. Consistent with

Rothberg et al. [1], we find that despite the use of emulsion PCR,

PGM sequences do not exhibit replicate bias.

Overview of PGM sequencing error
Across the three kits, insertion/deletion (indel) errors were the

dominant form of error in the reads (Figure 2). Insertions were

more common (0.84%, 2.69%, 1.76% of untrimmed bases in the

100 bp One Touch, 200 bp Manual, and 200 bp One Touch)

than deletions (0.80%, 1.98%, 1.07% of untrimmed bases in the

100 bp One Touch, 200 bp Manual, and 200 bp One Touch).

Substitutions errors were an order of magnitude less frequent than

insertion/deletion errors, with a mean rate of 0.04%, 0.17% and

0.07% in the 100 bp OneTouch, 200 bp Manual and 200 bp

OneTouch kits. In total, the mean error rate for each kit based on

the sum of these error types is 1.68%, 4.84% and 2.90% for the

100 bp OneTouch, 200 bp manual and 200 bp OneTouch kits,

with homopolymer errors responsible for between 96–97% of the

total error. Substitution errors had the highest variation in

frequency, with a standard deviation ranging from 26%–56% of

the mean substitution rate. The standard deviation of indel errors

was between 19%–34% of the mean indel rates. The raw indel

error rates observed in our study (1.62%, 4.66% and 2.83% for

each of the 100 bp One Touch, 200 bp Manual and 200 bp

OneTouch kits) are substantially higher than reported for quality

trimmed data (100 bp OneTouch – 1.1% [1] using simple flow-

cycle, 1.5% [2] using Samba, 1.78% [3] for the 200 bp manual

using Samba flow-cycle). We attribute these differences to two

factors, (1) our indel tolerance in read mapping which allows more

of the data to map to the reference, and (2) the effect of quality

trimming (discussed below).

Similar to Roche 454 pyrosequencing [11,12], indel-error rates

increase with distance from the read start (Figure 3a). We also

find that the substitution error rate increases towards the 39 end of

the read (Figure 3b). Error rates were higher on the 316 chips,

and the low G+C% organism (S. tokodaii) had a higher error rate

than the mid G+C% organism (B. amyloliquefaciens) across all

datasets. The high mean indel error rate in the 200 bp manual kit

appears to be due to a more rapid deterioration in base calling

accuracy along the length of the read relative to the 200 bp

OneTouch kit (Figure 3a).

Homopolymer errors
It has been previously reported that ‘homopolymer errors’ (a

term originating from Roche 454 pyrosequencing) are the

dominant error type in PGM data [2,3]. Homopolymer errors

are a consequence of inaccurate flow-values resulting in over

Characterising Errors in Ion Torrent PGM Data
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(insertion/s) or under-calling (deletion/s) the length of homopol-

ymeric regions. For consistency with the literature, we refer to

these as homopolymer errors, but emphasise that over and under-

called flows are not always associated with homopolymers of

length two or more [13], illustrated in Figure 4. This distinction is

particularly pertinent for PGM data, where over-calling any flow-

position can lead to the insertion of additional bases, even in flows

where a ‘negative flow-value’ (,0.50) should have been called.

On average, 52.5% of reads generated with the OneTouch

100 bp kit had no observed homopolymer errors. Using the

200 bp manual kit, the average percentage of error-free reads

drops to 8.3%, but this is markedly improved by using the 200 bp

OneTouch kit, with ,22.2% of reads, on average, free of

homopolymer errors (Figure S7). Both 200 bp kits had a lower

mean percentage of error-free reads when run on the 316 chip

(4.4%–200 bp manual, 17.9%–200 bp OneTouch) versus the 314

(11.1%–200 bp manual, 26.7%–200 bp OneTouch). This differ-

ence suggests that even though only the size of the chip was varied,

global well accuracy appears to be compromised by higher well

densities. The 99th percentile for the number of errors per read

was between 11–14 for the 100 bp kit, 33–38 for the 200 bp

manual kit and 32–38 for the 200 bp OneTouch kit.

As with Roche 454 [11,14,15], base-calling accuracy decreases

with the length of the homopolymer, with 6-mer calling accuracy

approaching 68%66.9% s.d using the OneTouch 200 bp kit

(Figure 5). However, unlike Roche 454, insertions are more likely

than deletions when the ‘homopolymer’ length is less than two

(Figure S8). In fact, the accuracy of calling a zero length

homopolymer was between 98.75% and 99.72% across the kits (a

substantial contributor to the overall high insertion-rate). While

insertions are the dominant error-type, they are more common for

homopolymer lengths less than two, but are rapidly overtaken by

deletions for homopolymers of length two or more (Figure S8).

The accuracy in calling a homopolymer is highly variable, even for

short homopolymers (s.d of 0.5%–1.7% for 2-mer accuracy)

suggesting that base-calling accuracy is not dependent on

homopolymer length alone.

While initially measured at the base level, over-call/under-call

errors are the consequence of inaccuracy at the flow-value level.

Thus, relationships between error occurrence and features of the

read and sequencing parameters are best examined directly at the

flow-value level [15]. Inspection of the error rate by flow position

also shows a positive correlation between the homopolymer error

rate and the flow position (Figure S9). However, the error rates

per flow are substantially higher than those observed per base,

with homopolymer error rates approaching 20–30% at flow

position 350 onwards for the 200 bp One Touch kit. Surprisingly,

there is also an observed periodicity in the error rate, with the

period remaining approximately constant, however the amplitude

increases with distance from the first flow. Intuitively, this

periodicity suggests that the error rate may be influenced by the

position-within-a-flow cycle (PIC) in a non-linear way. Inspection

Figure 2. Mean rates of insertion, deletion and substitution errors across the three sequencing kits. Each box-plot shows the
distribution of error rates for the specified type across the runs for the specified kit (species are aggregated).
doi:10.1371/journal.pcbi.1003031.g002
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Figure 3. Relationship between base position and error rate for homopolymer (over-call/under-call) versus substitution errors.
Panel (a) shows the homopolymer error rate (insertion+deletion) by read base position, and panel (b) shows the substitution error rate by base
position. Each line is the raw mean error rate for a single data-set with the kit and species as specified by the colour key.
doi:10.1371/journal.pcbi.1003031.g003

Figure 4. Examples of over-call/under-call errors in homopolymers of length less than 2. By aligning the read (derived from the rounded
flow-values), and its corresponding reference sequence (considered the ‘true’ sequence) at the flow level, we can identify examples of over-calling a
zero-length homopolymer (Flow Cycle #2), and under-calling a one-length homopolymer (Flow Cycle # 6). Flow Cycle #5 demonstrates a zero-
length homopolymer being correctly called as zero.
doi:10.1371/journal.pcbi.1003031.g004
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of the relationship between PIC and error rate suggested no

obvious parameterised function, so each PIC (0–31) is considered a

different ‘factor’.

Rather than directly modelling the errors, a double-generalised

linear model (DGLM) was fitted to the flow-values. For a given

homopolymer length and other factors, flow-values were approx-

imately Gaussian distributed, however with a non-homogenous

dispersion; that is, the mean and variance showed dependence on

the explanatory variables, particularly homopolymer length

(Table 3, Table S1). The mean effects for species, chip,

homopolymer length, flow cycle and PIC were found to be

important, however the machine used, and the read X and Y

coordinates were not, and subsequently were removed from the

model (Methods). The same set of factors were also found to

significantly contribute to the dispersion. The model can be

expressed as

f*N m,egð Þ,

where f is the flow-value, m is the mean and g is the log-variance.

Both the mean and log variance are linear-predictors, that is,

m~azbszbczb1Hzb2FzbPIC

where here bs,bc and bPIC are coefficients taking a different value

for each species, chip and PIC respectively; b1 and b2 are

multipliers of the homopolymer length and flow cycle respectively;

and a is a constant. g is similarly defined, with different values of

the coefficients and the exponentiation to ensure a positive

variance. Unlike Roche 454 pyrosequencing, where the preva-

lence of errors are a consequence of increasing variance in flow-

calls (with insertions and deletions approximately equally likely

[14]), it would seem that both the mean and variance are

contributing to the over-call/under-call rate in Ion Torrent PGM

sequences.

As expected, the homopolymer length was the main contributor

to the mean of the flow-value distribution (Table 3). Contrary to

expectation, the coefficient for homopolymer length was not 1, but

0.975. Thus, with each additional base in a homopolymer, we see

a decrease in the mean flow value of 0.025 (i.e. 0.975 main effect

for a homopolymer of length 1, 1.95 for length 2 and so on). This

shift downwards drives the increasing ‘gap’ between the deletion-

rate versus the insertion-rate with increasing hompolymer length,

consistent with our observation that deletions are the dominant

error-type on longer homopolymers (Figure S8).

The cycle number imposed little influence on the mean of the

flow-value distribution, but given its large dispersion coefficient

and that it is a numeric variable as opposed to a factor, its

contribution to the overall variance is the second largest from the

third flow-cycle on. Interestingly, the chip, and kit made only small

contributions to the mean of the flow-value distribution, but had

large and substantial influences on the dispersion (Table 3). The

newest template kit considered here, the 200 bp One Touch,

exhibited significantly less dispersion (variance) in flow-value in

contrast to the older kits.

All PIC terms were found to significantly contribute to the

mean, with some positions shifting the mean by 20.10 to +0.05,

however the fitted effects were not consistent across PIC

corresponding to the same nucleotide (Figure 6a, Table S1).

This may explain why obvious groupings of nucleotides (GC

versus AT, pyrmidines versus purines) as a factor in the DGLM

were not significant. However, the three largest effects for a PIC

are attributed to T or A flows, and the magnitude of these effects

result in indel error rates up to double that of other PIC

(Figure 6b). This suggests that sequencing of low G+C% species

will result in a higher error rate than high G+C% species,

Figure 5. Calling accuracy decreases with homopolymer length. Lines show mean accuracy for each kit by reference homopolymer length,
across bases 10–100 and bases 10–200, the latter range only relevant for the two 200 bp kits.
doi:10.1371/journal.pcbi.1003031.g005
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consistent with the observation that S. tokodaii had a higher error

rate than B. amyloliquefaciens (Figure 3). While PIC 10 and 12 had

substantial mean-effects, the contribution of these factors to the

dispersion was less than fitted for other PICS that had substantially

smaller mean-effects. Thus, these PICs consistently introduce a

shift to the mean flow-value by 20.10 and +0.05 for PICS 10 and

12 respectively.

A caveat of our modelling approach (using the Gaussian model)

is that we could not include homopolymers of length zero due to

the difficulty of modelling a normal which can only take on

positive values. Based on the empirical error rates for over-called

zero flows, we found this error rate (similar to longer homopol-

ymers) increases by cycle, and in particular, is higher for PICS

with a large positive coefficient in the model (i.e. PIC 12, followed

by PICs 16, 23, 0 etc.), and very low for PICS with a negative

coefficient (PIC 10, 13, 26 etc.) (Figure S9).

We evaluated the fitted model visually, comparing predicted

density from the model versus the empirical distribution

(Figure 7). Overall, we find the model fit is adequate, although

we do note that there are some deviations from normality (less

variance in earlier cycles, overpopular flow-values, assymetry). The

empirical models are available from http://ecogenomic.org/

acacia. As we have identified clear chip and kit effects, we

recommend using the aforementioned models generated from the

same combination of chip and kit as to be analysed.

Substitution errors
The occurrence of substitution errors in Roche 454 pyrose-

quencing has previously been attributed to PCR processes [16],

with an expected substitution error every 105–106 bases [17].

While PCR does contribute to the substitution rate, the

substitution rates observed in this study (see above), can not be

explained by this alone. We found that a disproportionately large

number of substitution errors (between 16%–33% across the

datasets) had a low-confidence flow-value call of 0.51. This is in

contrast to the percentage of ‘correct’ 1-mer calls with a 0.51 flow-

value call (0.4%). All substitutions with the flow-value 0.51 had a

quality score lower than 20, 99% of them had a quality of 12 or

less, thus quality scores can be a reasonable indicator of PGM

introduced substitution errors.

While transitions (C ,-. T, G ,-. A) are the most prevalent

form of substitution reported in bacteria [18], transitions from C

to T and G to A were found to be equally likely with

transversions from C to A and G to C for both species

(Figure 8). As these rates have not been corrected for the

G+C% of the parent organisms (both with ,50% G+C), the

proportion of substitutions which transition/transverse in higher

G+C% organisms is likely larger than observed here. The novelty

of this observation, in light of accepted substitution mechanisms,

suggests that these substitutions are a consequence of the PGM

sequencer, which is further reinforced by the prevalence of low

confidence flow-calls for these substitutions. emPCR is an

unlikely source of these errors, as transitions are the dominant

substitution type for 454 GS FLX Titanium sequencing [16].

Considering that the PGM introduces substitution errors at a rate

of between 0.04%–0.1%, rare variants (single nucleotide poly-

morphisms) which occur at a frequency greater than 0.1% may

be detected using the PGM platform.

A closer look at PGM quality scores
Each quality score, q, generated by the PGM base-caller is

Phred-based, where q = 2106log10(perror). A quality score is

assigned to each base using a pre-computed quality lookup-table

distributed with each version of the PGM software. The lookup

table uses six predictors of local quality, described elsewhere (Life

Sciences Technical Note Version 2.0.1–2.20).

For each Ion Torrent quality score, we evaluated the empirical

rate of error for bases assigned to that quality score. Consistent

with previous reports [1,2], we observe that the PGM quality

scores underestimate the base accuracy, but observe that they have

become more accurate with sequential sequencing kit releases

(Figure 9). The relationship between the empirical quality and

the estimated quality is not strictly linear, potentially a conse-

quence of the quality score look-up table method. As with Roche

454 quality scores, the qualities can be only used to detect inserted

and substituted bases [11]. We evaluated whether there was any

relationship between position within the homopolymer and the

assigned confidence. We found that even in correctly called bases

within a homopolymer, there is a decrease in assigned quality

along the homopolymer length (Figure S10), as was found in

Roche 454 pyrosequencing [11], although, overall the quality

scores decrease more rapidly for inserted (error) bases. Counter

intuitively, it is possible for the first base in a homopolymer run to

have lower quality score than later bases, irrespective of whether

the homopolymer is the correct length or not (Figure S10). This

could originate from penalties for local or environmental noise (P1

and P6 in the documentation), which allow individual base

qualities to be adjusted if immediately upstream or downstream

calls are noisy.

Table 3. Estimated main and deviance effects for each explanatory variable in the double-generalised linear model.

Variable
Coefficient
(Mean effect)

P-value
(Mean effect)

Coefficient
(Dispersion)

P-Value
(Dispersion)

Intercept 4.405610202 p,0.0001 24.7120481 p,0.0001

Species (S.tokodaii) 22.606610203 p,0.0001 0.0309340 p,0.0001

Chip 316 22.527610203 p,0.0001 0.2013263 p,0.0001

200 bp Manual Kit 23.864610203 p,0.0001 0.0815632 p,0.0001

200 bp OneTouch Kit 6.304610203 p,0.0001 20.2425064 p,0.0001

Homopolymer Length 9.754610201 p,0.0001 0.4862209 p,0.0001

Cycle Number 27.071610204 p,0.0001 0.1471443 p,0.0001

Position-in-cycle (PIC) effects are in Table S1. The intercept represents the mean effect (or dispersion effect) for an observation with all settings at baseline (baseline
factors in this model taken to be B. amyloliquefaciens, 100 bp OneTouch Kit and Chip 314). The other coefficients are the differences from when their respective factor is
changed from baseline.
doi:10.1371/journal.pcbi.1003031.t003
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Figure 6. The influence of position in cycle (PIC, labelled 0–31) on flow-value distributions and consequently error rate and type.
Panel (a) shows the coefficient (main-effect) of each flow cycle position as predictors of mean of the flow-value distribution. Panel (b) shows the error
rate broken down by insertions and deletions for each PIC. These do not include flow-values for homopolymers where the reference homopolymer
length is zero.
doi:10.1371/journal.pcbi.1003031.g006
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How effective is Ion Torrent quality assurance?
The base-calling software in the Torrent Suite (version 2.0.1)

performs two quality assurance steps prior to outputting sequenc-

es. The first step evaluates the residual between observed flow

values and predicted flow values, based on a model of the flow cell.

Reads with residuals that produce a median absolute value greater

than a given threshold are filtered from both the SFF and the

FASTQ, as they are assumed polyclonal. The second step scans

non-polyclonal reads to identify undesirable 39 regions of the read,

which are subsequently trimmed. Undesirable regions are defined

as regions containing the adapter sequence (and beyond) as well as

low-quality regions. Should both adapter and quality trims be

specified, the more stringent trimming is used. The newly released

Torrent Suite (2.20) introduced a third trimming approach which

clips the read based on high-residual ionogram (HRI) 1-mer and

2-mer flow values, which may indicate ‘noisy’ flows. A high-

residual 1-mer is in the range [0.50, 0.59] or [1.40, 1.49], a high

residual 2-mer in the range [1.50, 1.59] or [2.41, 2.49] (Torrent

User Documentation Version 2.2.0).

We consider the influence of PGM quality and HRI trimming

methods on error rates and other metrics for each of the

sequencing kits (Methods, Table 4). For consistency, we initially

apply our trimming, where we only consider the first 100 bp for

the 100 bp OneTouch kit, and the first 200 bp for the 200 bp

Manual and 200 bp OneTouch kits. We used the quality clip as

specified in the SFF file, and calculated the clip points for HRI

trimming. Very little improvement was gained by applying the

quality clip after our analysis trimming. This suggests that only

unmappable reads are removed by PGM quality clipping, and/or

quality trimming is occurring after base 100 for the 100 bp

OneTouch kit, and 200 for the 200 bp kits. This is to be expected,

considering that only a long, consistently noisy region of the read

could violate the quality threshold (mean of Q9 or less across

30 bp, i.e. 87.5% mean base accuracy). The addition of HRI

trimming results in a substantial improvement over our ‘analysis’

treatment, with an absolute decrease in insertion and deletion rates

by 0.23% to 1%, with generally greater improvements in the

insertion rate over the deletion rate (Table 4). While there is

asymmetry in the insertion versus deletion rate, we did not expect

a disproportionate decrease in the insertion rate compared to the

deletion rate after trimming. In an attempt to improve the deletion

rate, we considered whether the addition of HRI 3-mers to this

metric would account for our previous observation that deletions

are more common in longer homopolymers, however this did not

yield substantial improvements (Table 4).

After default HRI clipping, the vast majority of reads in the

200 bp kits contained at least one error (Table 4), with the top

99th percentile as high as 6 for the 100 bp OneTouch kit, and 12–

13 for both 200 bp kits (an error-rate of ,6%). No obvious global

metrics could be identified to filter these error-prone reads.

Discussion

As with any new sequencing technology, exploring the nuances

of the data lays an essential foundation for developing platform-

specific bioinformatics methods. The goal of this study was to

provide a comprehensive evaluation of the types of errors and

biases introduced during PGM library preparation and sequenc-

ing. Previous studies which used the manufacturers aligner, ‘tmap’,

Figure 7. Comparison of predicted versus empirical distributions of flow-values for homopolymers of length 1–5. Predicted (solid line)
and empirical distributions (dotted line) of flow-values for homopolymers of length 1–5 (colours - black, red, green, blue and teal), for flow cycles 2,5,9
(rows) and PIC 1,10 and 12 (columns) for species B. amyloliquefaciens. The low number of observations of homopolymers of length 5 is the likely
cause for abnormal distributions for this homopolymer length. The ‘shoulders’ observed in the data are often due to unexpectedly high popularity of
boundary flow-values (eg. 0.51, 1.49, 1.51…).
doi:10.1371/journal.pcbi.1003031.g007

Figure 8. Breakdown of substitution type as a proportion of all substitutions for each sequencing kit.
doi:10.1371/journal.pcbi.1003031.g008
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on default settings implicitly removed reads with two or more

indels prior to data analysis [2,3]. As these filtered reads can only

be distinguished with the benefit of a reference genome, such

studies are more relevant for re-mapping applications. By using an

indel-tolerant mapping approach, we were able to map almost

100% of the reads, which largely explains why the global base

error-rates calculated in this study are higher than previously

reported.

Even after applying the quality trimming used for the initial Ion

Torrent studies, we found that our estimate of quality-clipped

accuracy for the 100 bp OneTouch kit was substantially lower

than first reported. The first Ion Torrent study was conducted

prior to the changes in the flow-cycle pattern, a change

implemented to improve synchronicity between reads on the

same bead. By analysing the flow-values, we are able to show that

this change in the flow-pattern results in specific positions within

the flow cycle being more susceptible to over-call/under-call error

than others. Error-prone cycles tend to be ‘A’ or ‘T’ flows, and

unlike Roche 454, over-calls of zero length homopolymers and

under-calling homopolymers of length one are not improbable.

We find that insertions are more common than deletions overall,

however, under-calling (deletions) rapidly becomes the dominant

error type with increasing homopolymer length. The variance of

flow-values with respect to homopolymer length, cycle number,

and position-within a cycle (PIC) will present challenges to studies,

such as indel variant detection, which often assume a global base

error rate. Consequently, higher read coverage and use of PGM

flow-specific error rates will be required for applications to

confidently distinguish PGM indel errors from genuine variants.

However, the substitution error rate, which occurs at an order of

magnitude lower than the indel error rate (0.04%–0.1%), suggests

that Ion Torrent could be used to detect SNP variants that occur

at frequencies greater than 0.1%.

Through the use of replicates and modelling of flow-values, we

are able to identify high frequency indel (HFI) errors that could

easily be mistaken for polymorphisms in the absence of replicates.

Flow-level analyses suggest that these errors do not correlate with

factors implicated in over-call/under-call errors. The frequency of

HFIs with respect to the reference genome will yield undesirable

results for a number of applications. For example, in polymor-

phism detection, HFI regions will yield false positives [5]. In

assembly, these regions yield unresolvable differences [2] or frame-

shifts. Amplicon sequencing will suffer both from run-specific HFI

errors and synchronised over-call/under-call errors; it is expected

that amplicons from closely related species will be synchronised in

their called flows, thus exposing them to much higher error rates

as a result of noisy PICs. Given the difficulty of detecting HFIs in

isolation, we recommend generating two or more datasets from

the same starting DNA to resolve the majority of HFI errors (i.e.

run-specific HFIs).

Consistent with previous results, we find the PGM introduces

coverage bias against low and high G+C% sequences, with

Figure 9. Ion Torrent quality scores versus empirically estimated quality score for base. The grey cloud surrounding the LOESS smoother
function indicates the 95% confidence interval for the conditional mean. Individual observations for each quality are plotted as black points.
doi:10.1371/journal.pcbi.1003031.g009
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evidence suggesting that attempts to sequence high G+C%

organisms (greater than 65% G+C%) may even fail during the

PGM library preparation. Although the mechanisms behind these

failed libraries are not evaluated here, we anticipate they will bias

representation of high G+C% organisms in metagenomes and

metatranscriptomes.

As expected for a new technology, there have been marked

improvements in the PGM since its limited release in January,

2011. The newest kit considered in this study, the 200 bp

OneTouch, has substantially reduced the error rates observed in

the 200 bp Manual kit.

Furthermore, the accuracy of PGM quality scores has improved

markedly with each kit release. The addition of HRI-based

clipping (as of Torrent Server 2.2.0) to complement the relatively

lax quality trim has proven extremely effective at removing the

error-prone 39 end of the reads, albeit at a cost of 20–30 bp of read

length. For datasets processed with older versions of Torrent

Server, we highly recommend re-running the PGM analysis to

improve run quality. However, trimming cannot remove all errors.

Thus, we recommend that researchers who intend to use or

develop methods for analysing PGM data take into account that

the PGM has a higher error-rate than both Illumina and 454, and

that PGM global base error rates are poor substitutes for flow error

rates. Armed with the models developed in this study, bioinfor-

maticians can develop platform-specific approaches for the PGM

that adequately account for the majority of errors introduced by

this platform.

Methods

DNA
DNA for Bacillus amyloliquefaciens subsp. amyloliquefaciens DSM7,

Deinococcus maricopensis DSM 21211 and Sulfolobus tokodaii DSM

16993, was acquired from the Leibniz-Institut DSMZ – German

Collection of Microorganisms and Cell Cultures. These organisms

were selected as they had small genomes consisting of a single

chromosome, no plasmids, and complete reference genomes. They

were also selected to span a range of mean genomic G+C% (B.

amyloliquefaciens 46.1%, D. maricopensis 69.8%, S. tokodaii 32.8%).

The SFF files for all B. amyloliquefaciens and S. tokodaii datasets are

available from http://ecogenomic.org/acacia.

Library preparation and sequencing
For the 100 bp libraries, 100 ng of genomic DNA was sheared

by adaptive focused acoustics using a Covaris S2 (Covaris Inc.) and

Covaris Micro-tubes and using the method and shearing

conditions described in the Ion Fragment Library Kit (publication

4467320 Rev. B) protocol. For 200 bp libraries, 200 ng of

genomic DNA was also sheared using a Covaris S2, with

modification of the shearing conditions (intensity, 4; time,

27 sec). The remaining steps in the library preparation were

performed using the Ion Plus Fragment Library Kit, using the

corresponding User Guide (Publication 4471989 Rev. B), with

modification. Due to the shearing volume required for the Covaris

S2 micro-tubes, the sheared DNA samples were treated as if they

were 1 mg samples, in the end repair steps, as this catered for a

larger starting volume. From that point forward the library was

treated as if the input was 100 ng. Following adapter ligation and

nick repair, the library was size selected using a Pippin Prep (Sage

Science) instrument, followed by 6 cycles of amplification.

Using the Agilent 2100 Bioanalyzer (Agilent Technologies) with

the High Sensitivity DNA Kit (Agilent Technologies), the quality,

size and concentration of the libraries was determined and the

library was diluted, prior to template preparation, so as to keep

polyclonal values in the sequencing results to a minimum. For

100 bp libraries, the Ion OneTouch system (composed of the Ion

OneTouch Instrument and Ion OneTouch ES) was used to

prepare the template, using the methods outlined in the Ion

OneTouch Template Kit and associated User Guide (Publication

4468007 Rev. E). 200 bp libraries were prepared either manually,

using the Ion Xpress Template 200 Kit and associated User Guide

(Publication 4471974 Rev. C), or using the Ion OneTouch system,

using the Ion OneTouch 200 Template Kit and associated User

Guide (Publication 4472430 Rev C.).

100 bp templates were sequenced using the Ion Sequencing Kit

and user guide (Publication 4469714 Rev. C). Manually prepared

200 bp templates were sequenced using the Ion Sequencing 200

Kit, using methods outlined in the corresponding User Guide

(Publication 4471999 Rev. B), while 200 bp templates prepared

using the OneTouch system were sequenced using the Ion PGM

200 Sequencing Kit and the associated User Guide (Publication

4474246 Rev. B). The Ion Torrent Suite 2.0.1 was used for all

analyses and the SFF was subsequently downloaded for analysis.

Test runs for D. maricopensis either failed to produce viable libraries,

or produced very few reads of low quality, so sequencing this

species was no longer pursued.

A factorial design was used for estimating variability due to

Chip, Species and Kit, consisting initially of 8 sequencing runs

(Table S2). A second experiment using a randomised Plackatt-

Burman design consisting of 4 runs was conducted to help estimate

inter-machine variability (Table S3). However, the Ion Xpress

Template 200 kit was phased out during the experiment,

preventing the completion of the final experiment. The release

of a new kit part-way through the data-generation necessitated the

addition of four new datasets, also conducted using a Plackatt-

Burman design (Table S4). In total, 15 datasets were generated.

Read preparation and alignment
The unclipped reads, flows and qualities were extracted from

the SFF. The location of the predicted adapter sites for each read

was also extracted. Only reads with an adapter site were clipped to

the recommended length. All reads retained their flow key (the first

four called bases in every read, TACG) to maintain ease of moving

between a base and flow-value coordinate system. Flow and cycle

coordinate systems reported start from zero, and base positions

start from one.

The reference sequence for each genome was downloaded from

NCBI, and converted to run-length encoded [19] (RLE) form (S.

tokodaii - NC_003106.2, B. amyloliquefaciens NC_014551.1, and D.

maricopensis NC_014958.1). Each read was also collapsed to its

RLE form (i.e. homopolymers collapsed into a single base). This

reduces the influence of numerous homopolymer errors on the

alignment thresholds, as well as making it easier to transition

between flow and base coordinates.

Each read was aligned to its respective reference genome using

Segemehl version 0.1.2 [20], an InDel tolerant short-read aligner.

The alignment output was parsed and the aligned regions

extracted from both the read and reference RLEs. This was

necessary as both substitutions and identical bases are reported as

matches (‘M’) in the SAM format generated by this version of

Segemehl. Using the SeqOp string and the aligned sequence

segments, each position in the alignment was recorded as a match,

substitution, insertion or deletion. Using a set of in-house Perl

scripts and SQL databases, the alignment positions were mapped

to their relevant flow-value, base position/s and quality scores.

Read level attributes such as average quality, average G+C% in

100 bp windows and read length were also calculated. To avoid

over-inflation of the error rate due to (1) 59 misalignments and (2)

Characterising Errors in Ion Torrent PGM Data

PLOS Computational Biology | www.ploscompbiol.org 15 April 2013 | Volume 9 | Issue 4 | e1003031



homopolymers which overlapped the last base of the key and the

first base/s of the read, we only consider base positions 10 and

greater for analysis. Furthermore, analysis was restricted to the first

100 bp for the Ion OneTouch Template Kit (100 bp reads), and

200 bp for the Ion Xpress Template 200 and Ion OneTouch 200

Template kits, as the number of reads longer than this decreased

rapidly leading to exaggerated error rates at these base positions.

Statistical filtering and analysis
Repeats. MUMmer 3.22 [21] (program ‘repeat-match’ with

parameter –n 30) was used to identify regions of perfect match

repeats within the reference genomes. These regions were masked

from all downstream analysis.

Polymorphisms. While the sequenced type strains for each

species were used, there is still potential for polymorphic

differences between the cultured strains and the reference genome.

Classification and consequent masking of these genomic locations

in the reference allows more accurate modeling of error rates in

downstream analyses.

Beginning with substitution differences between the read and

reference, we simply modeled the observed number of differences,

X, at each reference position as a binomial, with the probability of

substitution estimated from the data (mean substitution rate). Due

to the large number of comparisons, the p-values were corrected

using Holm’s method [22]. The significance threshold was taken

to be 0.05. A similar approach was adopted for detecting insertion

and deletion polymorphisms, however, in the case of single-base

insertions (over-calls of zero) the coverage of the site was taken to

be the maximum coverage of the bases immediately adjacent to

the insert. The probability of an insertion or deletion was also

estimated from the data, but parameterised on the homopolymer

length, as previous reports have shown that the error rate increases

dramatically with homopolymer length [2].

Strand-asymmetry of high frequency indels was only evaluated

on the indel polymorphisms found in the 200 bp kits (both Manual

and OneTouch), and only for sites that had reads mapping in both

orientations. For each site, the data form a 262 table, namely

strand by presence/absence of indel. We therefore used Fisher’s

exact test to generate a p-value for every site, testing the null

hypothesis that indel frequency at that site was not orientation

specific. The p-values were then adjusted to control the family-

wise error rate using Holm’s method [22]. Only sites with

corrected p-values smaller than 5% were considered to demon-

strate significant evidence of orientation specific indel frequencies

at that site. Using this approach, the orientation specificity may

differ by site. (The analysis was repeated using a chi-squared test in

place of Fisher’s exact test with similar results).

Replicate bias. To prevent reference end-effects and repeat-

effects, we used repeat-masked data and ignored the first and last

120 bp of the reference genome. We visually identified whether

the distribution of read starting position (59 aligned position) on the

reference genome was uniformly distributed for each individual

run.

G+C% bias in read coverage. To evaluate whether there

was a relationship between G+C content and read depth, we

calculated the average coverage of bases within disjoint 100 bp

windows across the genome, as well as G+C% also calculated for

these windows. Areas expected to have high or low coverage for

processing reasons were masked from the analysis, these included

the first and last 120b of the reference genome, as well as genomic

100 bp bins that contained repetitive sequences. The coverage was

normalised for each run by dividing the coverage in each window

by the mean coverage across all windows for that run. A square-

root transformation was applied to the run-normalised coverage.

After initial inspection, we identified that a number of very large

coverage values were the result of an un-masked LSU rRNA in the

B. amyloliquefaciens genome. This small region was masked prior to

G+C modeling. The relationship between the square-root

normalised coverage and G+C% content was evaluated by fitting

linear models using the lm function in the R statistical package.

Error rates. Base-error rates were calculated as the number

of errors in the alignment, divided by the length of the alignment.

This was to ensure that deletion errors, which are quite common

on this platform, would be reflected by the error rate. Flow-error

rates were calculated as the number of incorrect flow-calls divided

by the total number of flow-calls. For specific break-downs (such as

error rate for homopolymer of length X), it was the number of

miscalled X-mer flows, divided by the total number of flows which

were, or should have been, an X-mer, according to the reference

genome.

Modeling flow values. Given RAM restrictions, a random

subset of 18 million observations (flows) were sampled from all

datasets as input to model fitting. Note that true zero calls and

over-calls of a zero were not included in the model, as zero-flows

were unlikely to be well-approximated by a Gaussian. The flow-

values were then modeled as normally distributed, using a variety

of read attributes (including chip, kit, machine, flow position, well

x-coordinate, well y-coordinate, nucleotide, position in cycle (PIC),

nucleotide, pyrimidine versus purine). As the flow-values for each

homopolymer length did not share a constant variance, these

needed to be modeled using a double generalised linear model

(DGLM), which simultaneously models the mean and dispersion.

In the DGLM used here, the mean was a Gaussian linear model

and the dispersion was linear on a log-scale. Only terms with an

effect size greater than 0.001 were retained in the model. While

the PIC showed the strongest relationship with the flow error-rate,

we considered the replacement of PIC with simpler terms, such as

the nucleotide flowed or pyrimidine versus purine, however this

was detrimental to the model. Based on these choices, a simpler

model was created and assessed against the full-model for

significance using ANOVA. Some terms removed were statistically

significant (x-pos, y-pos, machine), however were practically

unimportant contributing only a very small amount to the

modeled flow value. We emphasise that the purpose of this

statistical model is not to test for significant factors, but to produce

usable predictions.

Quality score analysis. Each run was analysed individually

to identify the accuracy of empirical quality scores. For each Ion

Torrent quality score, we examined the error rate of bases

assigned that score, and calculated the associated Phred score

based on the error rate. To analyse the relationship between

quality score and position within homopolymer, we sampled

20,000 reads from each run, and calculated the relative change in

quality score from the first base to later bases within each

homopolymer. We also recorded whether each of these consec-

utive bases was a correct call or an over-call.

Quality trimming. The PGM quality clip was extracted

from the SFF file produced from Torrent Server 2.0.1. To emulate

the PGM HRI trim approach, we calculated the percentage of

HRI 1-mers and 2-mers out of the total 1-mer and 2-mer calls in

the read, and continued clipping from the 39 end until this

percentage reached 3% or less (Torrent User Documentation

2.20). Our third HRI trim approach included HRI 3-mers

(defined as flow-values in [2.50, 2.59] or [3.40, 3.49] in this

calculation. As with the Torrent Server software, reads shorter

than 4 bp after clipping were ignored.

Graphs. Graphics used throughout this manuscript were

produced either using the R base package or ggplot2 package [23].
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Supporting Information

Figure S1 Read length density functions for kit and
species. Note that both One Touch kits produce a small peak

around 100 bp longer than the mode length.

(EPS)

Figure S2 Intersection of HFI sites across 200 bp runs
for each species. Panel a) shows the overlap between HFI sites

detected in B. amyloliquefaciens 200 bp runs, and panel b) shows the

HFI site overlaps for S. tokodaii 200 bp runs, panel, c) shows the

overlap between strand-asymmetric HFI sites detected in B.

amyloliquefaciens 200 bp runs, and d) shows the overlap between

strand-asymmetric HFI sites detected in S. tokodaii 200 bp runs.

Red font highlights the HFI instances unique to a given run.

(EPS)

Figure S3 Type and frequency of HFI by indel type.
Panel a) shows the HFI instances across all 200 bp runs (both

species), broken down by error type and nucleotide, and b) shows

the strand-asymmetric HFI instances broken down by error type

and nucleotide.

(EPS)

Figure S4 Linear model fit diagnostics plots for G+C%
versus coverage. Using a subset of data-points, these plots show

the standard linear model diagnostics for the G+C versus coverage

linear model. The data is not strictly normal as the response variable

(coverage) is based on count data. The small number of zero

coverage regions are the outliers in the ‘Residual versus Fitted’ plot,

and the deviation from the normal quantiles in the ‘Normal Q-Q’

plot. Unmasked repetitive regions are the likely cause for outliers

with high leverage ‘Residuals versus Leverage’ plot.

(TIFF)

Figure S5 Smoothed normalised coverage versus pro-
portion G+C content in 100 bp windows for three species.
(EPS)

Figure S6 Number of errors found within reads. These

plots exclude reads with more than 30 errors.

(EPS)

Figure S7 Error-rate for insertions versus deletions by
homopolymer length. Rows correspond to restriction on base

position considered for error-rate (maximum base 100 versus

maximum base 200) Columns correspond to the kit analysed.

Observations are the error-rate by flow position for the respective

homopolymer length.

(EPS)

Figure S8 Relationship between flow-call error-rate and
flow position. It is clear from these figures that the main effect is

increasing with the number of flow cycles. The 316 chip has a

higher error rate than the 314, and S. tokodaii is more error-prone

than B. amyloliquefaciens. Periodicity is observed in the error rate

with a peak and trough occurring regularly in each plot.

(EPS)

Figure S9 Over-call rates for zero length homopolymer
by position-in-cycle (PIC). Consistent with our DGLM based

on calls for 1-mers or longer, we find that over-calls of zero occur

in the PICs with a positive coefficient in the model. Most notable is

position-in-cycle 12.

(EPS)

Figure S10 Relationship between quality scores and
position in homopolymer. The x-axis shows the base number

in the homopolymer, the y-axis shows the relative change

(qual(base 1) – qual(base x)/qual(base 1)) from the quality of the

first base.

(EPS)

Table S1 Coefficients for main and dispersion for
position-in-cycle (PIC) effects in generalised linear
model for flow-values.

(DOCX)

Table S2 Sequencing runs in the full-factor design.

(DOCX)

Table S3 Randomised Plackatt-Burman design for
sequencing runs using OneTouch 100 kit and Ion
Express Template kit.

(DOCX)

Table S4 Randomised Plackatt-Burman design for
sequencing runs using OneTouch 200 bp kit.

(DOCX)
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