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Abstract

The principles by which networks of neurons compute, and how spike-timing dependent plasticity (STDP) of synaptic
weights generates and maintains their computational function, are unknown. Preceding work has shown that soft winner-
take-all (WTA) circuits, where pyramidal neurons inhibit each other via interneurons, are a common motif of cortical
microcircuits. We show through theoretical analysis and computer simulations that Bayesian computation is induced in
these network motifs through STDP in combination with activity-dependent changes in the excitability of neurons. The
fundamental components of this emergent Bayesian computation are priors that result from adaptation of neuronal
excitability and implicit generative models for hidden causes that are created in the synaptic weights through STDP. In fact,
a surprising result is that STDP is able to approximate a powerful principle for fitting such implicit generative models to
high-dimensional spike inputs: Expectation Maximization. Our results suggest that the experimentally observed
spontaneous activity and trial-to-trial variability of cortical neurons are essential features of their information processing
capability, since their functional role is to represent probability distributions rather than static neural codes. Furthermore it
suggests networks of Bayesian computation modules as a new model for distributed information processing in the cortex.
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Introduction

Numerous experimental data show that the brain applies

principles of Bayesian inference for analyzing sensory stimuli, for

reasoning and for producing adequate motor outputs [1–5].

Bayesian inference has been suggested as a mechanism for the

important task of probabilistic perception [6], in which hidden

causes (e.g. the categories of objects) that explain noisy and

potentially ambiguous sensory inputs have to be inferred. This

process requires the combination of prior beliefs about the

availability of causes in the environment, and probabilistic

generative models of likely sensory observations that result from

any given cause. By Bayes Theorem, the result of the inference

process yields a posterior probability distribution over hidden causes

that is computed by multiplying the prior probability with the

likelihood of the sensory evidence for all possible causes. In this

article we refer to the computation of posterior probabilities

through a combination of probabilistic prior and likelihood models

as Bayesian computation. It has previously been shown that priors

and models that encode likelihoods of external stimuli for a given

cause can be represented in the parameters of neural network

models [6,7]. However, in spite of the existing evidence that

Bayesian computation is a primary information processing step in

the brain, it has remained open how networks of neurons can

acquire these priors and likelihood models, and how they combine

them to arrive at posterior distributions of hidden causes.

The fundamental computational units of the brain, neurons and

synapses, are well characterized. The synaptic connections are

subject to various forms of plasticity, and recent experimental

results have emphasized the role of STDP, which constantly

modifies synaptic strengths (weights) in dependence of the

difference between the firing times of the pre- and postsynaptic

neurons (see [8,9] for reviews). Functional consequences of STDP

can resemble those of rate-based Hebbian models [10], but may

also lead to the emergence of temporal coding [11] and rate-

normalization [12,13]. In addition, the excitability of neurons is

modified through their firing activity [14]. Some hints about the

organization of local computations in stereotypical columns or so-

called cortical microcircuits [15] arises from data about the

anatomical structure of these hypothesized basis computational

modules of the brain. In particular, it has been observed that local

ensembles of pyramidal neurons on layers 2/3 and layers 5/6

typically inhibit each other, via indirect synaptic connections

involving inhibitory neurons [16]. These ubiquitous network

motifs were called soft winner-take-all (WTA) circuits, and have

been suggested as neural network models for implementing

functions like non-linear selection [16,17], normalization [18],

selective attention [19], decision making [20,21], or as primitives

for general purpose computation [22,23].

A comprehensive theory that explains the emergence of

computational function in WTA networks of spiking neurons

through STDP has so far been lacking. We show in this article that
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STDP and adaptations of neural excitability are likely to provide

the fundamental components of Bayesian computation in soft

WTA circuits, yielding representations of posterior distributions

for hidden causes of high-dimensional spike inputs through the

firing probabilities of pyramidal neurons. This is shown in detail

for a simple, but very relevant feed-forward model of Bayesian

inference, in which the distribution for a single hidden cause is

inferred from the afferent spike trains. Our new theory thus

describes how modules of soft WTA circuits can acquire and

perform Bayesian computations to solve one of the fundamental

tasks in perception, namely approximately inferring the category

of an object from feed-forward input. Neural network models that

can handle Bayesian inference in general graphical models,

including bi-directional inference over arbitrary sets of random

variables, explaining away effects, different statistical dependency

models, or inference over time require more complex network

architectures [24,25], and are the topic of ongoing research. Such

networks can be composed out of interconnected soft WTA

circuits, which has been shown to be a powerful principle for

designing neural networks that can solve arbitrary deterministic or

stochastic computations [22,23,25]. Our theory can thus be seen

as a first step towards learning the desired functionality of

individual modules.

At the heart of this link between Bayesian computation and

network motifs of cortical microcircuits lies a new theoretical

insight on the micro-scale: If the STDP-induced changes in

synaptic strength depend in a particular way on the current

synaptic strength, STDP approximates for each synapse exponen-

tially fast the conditional probability that the presynaptic neuron

has fired just before the postsynaptic neuron (given that the

postsynaptic neuron fires). This principle suggests that synaptic

weights can be understood as conditional probabilities, and the

ensemble of all weights of a neuron as a generative model for high-

dimensional inputs that - after learning - causes it to fire with a

probability that depends on how well its current input agrees with

this generative model. The concept of a generative model is well

known in theoretical neuroscience [26,27], but it has so far

primarily been applied in the context of an abstract non-spiking

neural circuit architecture. In the Bayesian computations that we

consider in this article, internal generative models are represented

implicitly through the learned values of bottom-up weights in

spiking soft-WTA circuits, and inference is carried out by neurons

that integrate such synaptic inputs and compete for firing in a

WTA circuit. In contrast to previous rate-based models for

probabilistic inference [28–30] every spike in our model has a

clear semantic interpretation: one spike indicates the instantaneous

assignment of a certain value to an abstract variable represented

by the firing neuron. In a Bayesian inference context, every input

spike provides evidence for an observed variable, whereas every

output spike represents one stochastic sample from the posterior

distribution over hidden causes encoded in the circuit.

We show that STDP is able to approximate the arguably most

powerful known learning principle for creating these implicit

generative models in the synaptic weights: Expectation Maximi-

zation (EM). The fact that STDP approximates EM is remarkable,

since it is known from machine learning that EM can solve a

fundamental chicken-and-egg problem of unsupervised learning

systems [31]: To detect - without a teacher - hidden causes for

complex input data, and to induce separate learning agents to

specialize each on one of the hidden causes. The problem is that as

long as the hidden causes are unknown to the learning system, it

cannot tell the hidden units what to specialize on. EM is an

iterative process, where initial guesses of hidden causes are applied

to the current input (E-step) and successively improved (M-step),

until a local maximum in the log-likelihood of the input data is

reached. In fact, the basic idea of EM is so widely applicable and

powerful that most state-of-the art machine learning approaches

for discovering salient patterns or structures in real-world data

without a human supervisor rely on some form of EM [32]. We

show that in our spiking soft-WTA circuit each output spike can be

viewed as an application of the E-step of EM. The subsequent

modification of the synaptic weights between the presynaptic input

neurons and the very neuron that has fired the postsynaptic spike

according to STDP can be viewed as a move in the direction of the

M-step of a stochastic online EM procedure. This procedure

strives to create optimal internal models for high-dimensional spike

inputs by maximizing their log-likelihood. We refer to this

interpretation of the functional role of STDP in the context of

spiking WTA circuits as spike-based Expectation Maximization

(SEM).

This analysis gives rise to a new perspective of the computa-

tional role of local WTA circuits as parts of cortical microcircuits,

and the role of STDP in such circuits: The fundamental

computational operations of Bayesian computation (Bayes Theo-

rem) for the inference of hidden causes from bottom-up input

emerge in these local circuits through plasticity. The pyramidal

neurons in the WTA circuit encode in their spikes samples from a

posterior distribution over hidden causes for high-dimensional

spike inputs. Inhibition in the WTA accounts for normalization

[18], and in addition controls the rate at which samples are

generated. The necessary multiplication of likelihoods (given by

implicit generative models that are learned and encoded in their

synaptic weights) with simultaneously learned priors for hidden

causes (in our model encoded in the neuronal excitability), does

not require any extra computational machinery. Instead, it is

automatically carried out (on the log scale) through linear features

of standard neuron models. We demonstrate the emergent

computational capability of these self-organizing modules for

Bayesian computation through computer simulations. In fact, it

turns out that a resulting configuration of networks of spiking

neurons can solve demanding computational tasks, such as the

discovery of prototypes for handwritten digits without any

Author Summary

How do neurons learn to extract information from their
inputs, and perform meaningful computations? Neurons
receive inputs as continuous streams of action potentials
or ‘‘spikes’’ that arrive at thousands of synapses. The
strength of these synapses - the synaptic weight -
undergoes constant modification. It has been demonstrat-
ed in numerous experiments that this modification
depends on the temporal order of spikes in the pre- and
postsynaptic neuron, a rule known as STDP, but it has
remained unclear, how this contributes to higher level
functions in neural network architectures. In this paper we
show that STDP induces in a commonly found connectivity
motif in the cortex - a winner-take-all (WTA) network -
autonomous, self-organized learning of probabilistic mod-
els of the input. The resulting function of the neural circuit
is Bayesian computation on the input spike trains. Such
unsupervised learning has previously been studied exten-
sively on an abstract, algorithmical level. We show that
STDP approximates one of the most powerful learning
methods in machine learning, Expectation-Maximization
(EM). In a series of computer simulations we demonstrate
that this enables STDP in WTA circuits to solve complex
learning tasks, reaching a performance level that surpasses
previous uses of spiking neural networks.

Emergence of Bayesian Computation through STDP
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supervision. We also show that these emergent Bayesian compu-

tation modules are able to discover, and communicate through a

sparse output spike code, repeating spatio-temporal patterns of

input spikes. Since such self-adaptive computing and discrimination

capability on high-dimensional spatio-temporal spike patterns is not

only essential for early sensory processing, but could represent a

generic information processing step also in higher cortical areas, our

analysis suggests to consider networks of self-organizing modules for

spike-based Bayesian computation as a new model for distributed

real-time information processing in the brain.

Preliminary ideas for a spike-based implementation of EM were

already presented in the extended abstract [20], where we

analyzed the relationship of a simple STDP rule to a Hebbian

learning rule, and sketched a proof for stochastic online EM. In

the present work we provide a rigorous mathematical analysis of

the learning procedure, a proof of convergence, expand the

framework towards learning spatio-temporal spike patterns, and

discuss in detail the relationship of our STDP rule to experimental

results, as well as the interpretation of spikes as samples from

instantaneous posterior probability distributions in the context of

EM.

Results

In this section we define a simple model circuit and show that

every spiking event of the circuit can be described as one

independent sample of a discrete probability distribution, which

itself evolves over time in response to the spiking input. Within this

network we analyze a variant of a STDP rule, in which the

strength of potentiation depends on the current weight value. This

local learning rule, which is supported by experimental data, and

at intermediate spike frequencies closely resembles typical STDP

rules from the literature, drives every synaptic weight to converge

stochastically to the log of the probability that the presynaptic

input neuron fired a spike within a short time window ½tf {s,tf �,
before the postsynaptic neuron spikes at time tf :

w?log p(presynaptic neuron fired within½tf {s,tf �

jpostsynaptic neuron fires at tf ):
ð1Þ

We then show that the network model can be viewed as

performing Bayesian computation, meaning that every spike can

be understood as a sample from a posterior distribution over

hidden causes in a generative probabilistic model, which combines

prior probabilities and evidence from current input spike trains.

This understanding of spikes as samples of hidden causes leads

to the central result of this paper. We show that STDP implements

a stochastic version of Expectation Maximization for the

unsupervised learning of the generative model and present

convergence results for SEM. Importantly, this implementation

of EM is based on spike events, rather than spike rates.

Finally we discuss how our model can be implemented with

biologically realistic mechanisms. In particular this provides a link

between mechanisms for lateral inhibition in WTA circuits and

learning of probabilistic models. We finally demonstrate in several

computer experiments that SEM can solve very demanding tasks,

such as detecting and learning repeatedly occurring spike patterns,

and learning models for images of handwritten digits without any

supervision.

Definition of the network model
Our model consists of a network of spiking neurons, arranged in

a WTA circuit, which is one of the most frequently studied

connectivity patterns (or network motifs) of cortical microcircuits

[16]. The input of the circuit is represented by the excitatory

neurons y1, . . . ,yn. This input projects to a population of

excitatory neurons z1, . . . ,zK that are arranged in a WTA circuit

(see Fig. 1). We model the effect of lateral inhibition, which is the

competition mechanism of a WTA circuit [33], by a common

inhibitory signal I(t) that is fed to all z neurons and in turn

depends on the activity of the z neurons. Evidence for such

common local inhibitory signals for nearby neurons arises from

numerous experimental results, see e.g. [16,34–36]. We do not a

priori impose a specific functional relationship between the

common inhibition signal and the excitatory activity. Instead we

will later derive necessary conditions for this relationship, and

propose a mechanism that we use for the experiments.

The individual units zk are modeled by a simplified Spike

Response Model [37] in which the membrane potential is

computed as the difference between the excitatory input uk(t)
and the common inhibition term I(t). uk(t) sums up the excitatory

inputs from neurons y1, . . . ,yn as

uk(t)~wk0z
Xn

i~1

wki
:yi(t): ð2Þ

wki
:yi(t) models the EPSPs evoked by spikes of the presynaptic

neuron yi, and wk0 models the intrinsic excitability of the neuron

zk. In order to simplify our analysis we assume that the EPSP can

be modeled as a step function with amplitude wki, i.e., yi(t) it takes

on the value 1 in a finite time window of length s after a spike and

is zero before and afterwards. Further spikes within this time

window do not contribute additively to the EPSP, but only extend

the time window during which the EPSP is in the high state. We

will later show how to extend our results to the case of realistically

shaped and additive EPSPs.

We use a stochastic firing model for zk, in which the firing

probability depends exponentially on the membrane potential, i.e.,

p(zk fires at time t)!exp(uk(t){I(t)), ð3Þ

which is in good agreement with most experimental data [38]. We

can thus model the firing behavior of every neuron zk in the WTA

as an independent inhomogeneous Poisson process whose

instantaneous firing rate is given by rk(t)~exp(uk(t){I(t)).

In order to understand how this network model generates

samples from a probability distribution, we first observe that the

combined firing activity of the neurons z1, . . . ,zk in the WTA

circuit is simply the sum of the K independent Poisson processes,

and can thus again be modeled as an inhomogeneous Poisson

process with rate R(t)~
PN

k~1 rk(t). Furthermore, in any

infinitesimally small time interval ½t,tzdt�, the neuron zk spikes

with probability rk(t)dt. Thus, if we know that at some point in

time t, i.e. within ½t,tzdt�, one of the neurons z1, . . . ,zK produces

an output spike, the conditional probability qk(t) that this spike

originated from neuron zk can be expressed as

qk(t)~
rk(t)dt

R(t)dt
~

euk (t)PK
k’~1 euk’(t)

: ð4Þ

Every single spike from the WTA circuit can thus be seen as an

independent sample from the instantaneous distribution in Eq. (4)

at the time of the spike. Although the instantaneous firing rate of

every neuron directly depends on the value of the inhibition I(t),
the relative proportion of the rate rk(t) to the total WTA firing rate

Emergence of Bayesian Computation through STDP
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R(t) is independent of the inhibition, because all neurons receive

the same inhibition signal I(t). Note that qk(t) determines only the

value of the sample at time t, but not the time point at which a

sample is created. The temporal structure of the sampling process

depends only on the overall firing rate R(t).
This implementation of a stochastic WTA circuit does not

constrain in any way the kind of spike patterns that can be

produced. Every neuron fires independently according to a

Poisson process, so it is perfectly possible (and sometimes desirable)

that there are two or more neurons that fire (quasi) simultaneously.

This is no contradiction to the above theoretical argument of

single spikes as samples. There we assumed that there was only one

spike at a time inside a time window, but since we assumed these

windows to be infinitesimally small, the probability of two spikes

occurring exactly at the same point in continuous time is zero.
Synaptic and intrinsic plasticity. We can now establish a

link between biologically plausible forms of spike-based learning in

the above network model and learning via EM in probabilistic

graphical models. The synaptic weights wki of excitatory

connections between input neurons yi and neurons zk in the

WTA circuit change due to STDP. Many different versions of

STDP rules have emerged from experimental data [8,39,40]. For

synaptic connections between excitatory neurons, most of them

yield a long term potentiation (LTP) when the presynaptic neuron

yi fires before the postsynaptic neuron zk, otherwise a long term

depression (LTD). In our model we use a STDP rule in which the

shape of the positive update follows the shape of EPSPs at the

synapses, and in which the amplitude of the update Dwki depends

on the value of the synaptic weight wki before the update as in

Fig. 2. Specifically, we propose a rule in which the ratio of LTP

and LTD amplitudes is inversely exponentially dependent on the

current synaptic weight. LTP curves that mirror the EPSP shape

are in accordance with previous studies, which analyzed optimal

shapes of STDP curves under different mathematical criteria

[41,42]. The depression part of the rule in Fig. 2 is a flat offset that

contrasts the potentiation. We will show later that this form of

LTD occurs in our simulations only at very low repetition

frequencies, and instead at natural frequencies our model gives rise

to a form of STDP with spike-timing dependent LTD that is very

similar to plasticity curves observed in biology [40,43]. We will

also analyze the relationship between this rule and a biologically

more realistic STDP rule with an explicit time-decaying LTD part.

We can formulate this STDP-rule as a Hebbian learning rule

wki/wkizgDwki - with learning rate g - which is triggered by a

spike of the postsynaptic neuron zk at time tf . The dependence of

Dwki on the synaptic activity yi(t) and the current value of the

synaptic weight is given by

Figure 1. The network model and its probabilistic interpretation. A Circuit architecture. External input variables are encoded by populations
of spiking neurons, which feed into a Winner-take-all (WTA) circuit. Neurons within the WTA circuit compete via lateral inhibition and have their input
weights updated through STDP. Spikes from the WTA circuit constitute the output of the system. B Generative probabilistic model for a multinomial
mixture: A vector of external input variables x1, . . . ,xm is dependent on a hidden cause, which is represented by the discrete random variable k. In
this model it is assumed that the xi ’s are conditionally independent of each other, given k. The inference task is to infer the value of k, given the
observations for xi . Our neuronal network model encodes the conditional probabilities of the graphical model into the weight vector w, such that the
activity of the network can be understood as execution of this inference task.
doi:10.1371/journal.pcbi.1003037.g001

Figure 2. Learning curves for STDP. Under the simple STDP model
(red curve), potentiation occurs only if the postsynaptic spike falls
within a time window of length s (typically 10ms) after the presynaptic
spike. The convergence properties of this simpler version in conjunction
with rectangular non-additive EPSPs are easier to analyze. In our
simulations we use the more complex version (blue dashed curve) in
combination with EPSPs that are modeled as biologically realistic a-
kernels (with plausible time-constants for rise and decay of 1
respectively 15 ms).
doi:10.1371/journal.pcbi.1003037.g002

Emergence of Bayesian Computation through STDP
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Dwki~
ce{wki {1, if yi(t

f )~1, i:e: yi fired in ½tf {s,tf �
{1, if yi(t

f )~0, i:e: yi did not fire in tf {s,tf �

(
:ð5Þ

Since yi(t) reflects the previously defined step function shape of the

EPSP, this update rule is exactly equivalent to the simple STDP

rule (solid red curve) in Fig. 2 for the case of the pairing of one pre-

and one postsynaptic spike. The dependence on the presynaptic

activity yi is reflected directly by the time difference tpost{tpre

between the pre- and the postsynaptic spikes. According to this

rule positive updates are only performed if the presynaptic neuron

fired in a time window of s ms before the postsynaptic spike. This

learning rule therefore respects the causality principle of LTP that

is implied in Hebb’s original formulation [44], rather than looking

only at correlations of firing rates.

We can interpret the learning behavior of this simple STDP rule

from a probabilistic perspective. Defining a stationary joint

distribution p�(y,z) over the binary input activations y at the

times of the postsynaptic spikes, and the binary vector z, which

indicates the source of the postsynaptic spike by setting one zk~1,

we show in Methods that the equilibrium condition of the

expected update E½Dwki� leads to the single solution

E½Dwki�~0 u wki~log p�(yi~1Dzk~1)zlog c: ð6Þ

This stochastic convergence to the log-probability of the presynaptic

neuron being active right before the postsynaptic neuron fires is due

to the exponential dependence of the potentiation term on the

current weight value. Log-probabilities are necessarily negative

values, whereas for biological neural networks we typically expect

excitatory, i.e. positive weights from the excitatory input neurons.

The parameter c shifts the range of the values for the weights wki

into the positive regime for cw1. For the sake of simplicity we

assume that c~1 for the following theoretical analysis and we show

in Methods that all results remain true for any positive value of c.

In analogy to the plasticity of the synaptic weights we also

explore a form of intrinsic plasticity of the neurons. We interpret

wk0 as an indicator for the excitability of the neuron zk and apply a

circuit-spike triggered update rule wk0/wk0zgDwk0 with

Dwk0~e{wk0zk{1: ð7Þ

Whenever a neuron zk fires, the excitability is increased and the

amount of increase is inversely exponentially dependent on the

current excitability. Otherwise the excitability is decreased by a

constant. Such positive feedback through use-dependent changes

in the excitability of neurons were found in numerous experimen-

tal studies (see e.g. [14,45]). This concrete model of intrinsic

plasticity drives the excitability wk0 towards the only equilibrium

point of the update rule, which is log p�(zk~1). In Methods (see

‘Weight offsets and positive weights’) we show that the depression

of the excitability can be modeled either as an effect of lateral

inhibition from firing of neighboring neurons, or as a constant

decay, independent of the instantaneous circuit activity. Both

methods lead to different values wk0, it is true, but encode identical

instantaneous distributions qk(t).

Note, however, that also negative feedback effects on the

excitability through homeostatic mechanisms were observed in

experiments [13,46]. In a forthcoming article [47] we show that

the use of such homeostatic mechanisms instead of Eq. (7) in an,

otherwise unchanged, network model may be interpreted as a

posterior constraint in the context of EM.

Generative probabilistic model. The instantaneous spike

distribution qk(t) from Eq. (4) can be understood as the result of

Bayesian inference in an underlying generative probabilistic model

for the abstract multinomial observed variables x1, . . . ,xm and a

hidden cause k. We define the probability distribution of the

variables k and x, as shown by the graphical model in Fig. 1B, as

p(k,xDh)~p(kDh):Pm
j~1 p(xj Dk,h). The parametrization h of the

graphical model consists of a prior p(kDh)on k, and conditional

probabilities p(xDk,h) for every xj .

The probabilistic model p(k,xDh) is a generative model and

therefore serves two purposes: On the one hand, it can be used to

generate samples of the hidden variable k and the observable

variables x1, . . . ,xm. This is done by sampling k from the prior

distribution, and then sampling the xj ’s, which depend on k and

can be generated according to the conditional probability tables.

The resulting marginal distribution p(xDh) is a special case of a

multinomial mixture distribution.

On the other hand, for any given observation of the vector x,

one can infer the value of the hidden cause k that led to the

generation of this value for x. By application of Bayes’ rule one can

infer the posterior distribution p(kDx,h) over all possible values of

k, which is proportional to the product of the prior p(kDh) and the

likelihood p(xDk,h).

We define population codes to represent the external observable

variables x1, . . . ,xm by the input neurons y1, . . . ,yn, and the

hidden variable k by the circuit neurons z1, . . . ,zK : For every

variable xj and every possible (discrete) value that xj can adopt,

there is exactly one neuron yi which represents this combination.

We call Gj the set of the indices of all yi’s that represent xj , and we

call v(i) the possible value of xj that is represented by neuron yi.

Thus we can define an interpretation for the spikes from the input

neurons by

neuron yi fires at tf [xj(t
f )~v(i), for i[Gj : ð8Þ

A spike from the group Gj represents an instantaneous evidence

about the observable variable xj at the time of the spike. In the

same way every neuron z1, . . . ,zK represents one of the K possible

values for the hidden variable k, and every single spike conveys an

instantaneous value for k. We can safely assume that all neurons -

including the input neurons - fire according to their individual

local stochastic processes or at least exhibit some local stochastic

jitter. For the theoretical analysis one can regard a spike as an

instantaneous event at a single point in time. Thus in a continuous

time no two events from such local stochastic processes can

happen at exactly the same point in time. Thus, there is never

more than one spike at any single point in time within a group Gj ,

and every spike can be treated as a proper sample from xj .

However, the neurons zk coding for hidden causes need to

integrate evidence from multiple inputs, and thus need a

mechanism to retain the instantaneous evidence from a single

spike over time, in order to learn from spatial and temporal

correlations in the input.

In our framework this is modeled by postsynaptic potentials on

the side of the receiving neurons that are generated in response to

input spikes, and, by their shape, represent evidence over time. In

the simple case of the non-additive step-function model of the

EPSP in Eq. (2), every spike indicates new evidence for the

encoded variable that remains valid during a time window of s,

after which the evidence is cleared. In the case that there is no

spike from one group Gj within a time window of length s, this is

interpreted as missing evidence (or missing value) for xj in a

subsequent inference. In practice it may also occur that EPSPs

Emergence of Bayesian Computation through STDP
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within a group Gj of input neurons overlap, which would indicate

contradicting evidence for xj . For the theoretical analysis we will

first assume that spikes from different input neurons within the

same group Gj are not closer in time than s, in order to avoid such

conflicts. We will later drop this restriction in the extension to

more realistically shaped additive EPSPs by slightly enhancing the

probabilistic model.

In our experiments with static input patterns we typically use

the following basis scheme to encode the external input variables

xj(t) by populations of stochastic spiking neurons yi: at every point

in time t there is exactly one neuron yi in every group Gj that

represents the instantaneous value of xj(t). We call this neuron the

active neuron of the group, whereas all other neurons of the group

are inactive. During the time where a neuron yi is active it fires

stochastically according to a Poisson processes with a certain

constant or oscillating rate. The inactive neurons, however,

remain silent, i.e. they fire with a rate near 0. Although not

explicitly modeled here, such an effect can result from strong

lateral inhibition in the input populations. This scheme certainly

fulfills the definition in Eq. (8).

Here and in the following we will write y(t) to denote the input

activation through the EPSPs of the network model, and y to

denote a variable in the probabilistic model, which models the

distribution of y(t) over all time points t. We will also use notations

like p(zDy(t),w), which refers to the variable y in the probabilistic

model taking on the value y(t). We can then reformulate the

abstract probabilistic model p(x,kDh) using the above population

codes that define the binary variable vectors y and z, with k s.t.

zk~1 as:

p(z,yDw)~
1

Z

XK

k~1

zk
:ewk0z

Pn
i~1

wki :yi : ð9Þ

Under the normalization conditions

XK

k~1

ewk0~1 and Vk,j :
X
i[Gj

ewki ~1, ð10Þ

the normalization constant Z vanishes and the parametrization of

the distribution simplifies to wki~log p(yi~1Dzk~1,w) and

wk0~log p(zk~1Dw). Even for non-normalized weights, the

definition in Eq. (9) still represents the same type of distribution,

although there is no more one-to-one mapping between the

weights w and the parameters of the graphical model (see Methods

for details). Note also that such log-probabilities are exactly (up to

additive constants) the local equilibrium points in Eq. (6) of the

STDP rule in Fig. 2. In the section ‘‘STDP approximates

Expectation Maximization’’ we will discuss in detail how this

leads to unsupervised learning of a generative model of the input

data in a WTA circuit.

Spike-based Bayesian computation. We can now formu-

late an exact link between the above generative probabilistic

model and our neural network model of a simplified spike-based

WTA circuit. We show that at any point in time tf at which the

network generates an output spike, the relative firing probabilities

qk(tf ) of the output neurons zk as in Eq. (4), are equal to the

posterior distribution of the hidden cause k, given the current

evidences encoded in the input activations y(tf ). For a given input

y(tf ) we use Bayes’ rule to calculate the posterior probability of

cause k as p(kDy(tf ),w). We can identify the prior p(kDw) with the

excitabilities wk0 of the neurons. The log-likelihood

log p(y(tf )Dk,w) of the current evidences given the cause k
corresponds to the sum of excitatory EPSPs, which depend on

the synaptic weights wki. This leads to the calculation

p(kjy(tf ),w)~
ewk0

z}|{prior p(kjw)

: e
P

wkiyi (t
f )

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{likelihood p(y(tf )jk,w)

XK

k’~1

ewk’0z
P

wk’iyi (t
f )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p(y(tf )jw)

~
euk (tf )PK

k’~1 euk’(t
f )

~qk(tf ):

ð11Þ

This shows that at all times tf every spike from the WTA circuit

represents one sample of the instantaneous posterior distribution

p(kDy(tf ),w).

The crucial observation, however, is that this relation is valid at

any point in time, independently of the inhibitory signal I(t). It is

only the ratio between the quantities euk(t) that determines the

relative firing probabilities qk(t) of the neurons zk.

Background oscillations and learning with missing

values. We will now show that for the case of a low average

input firing rate, a modulation of the firing rate can be beneficial,

as it can synchronize firing of pre- and post-synaptic neurons.

Each active neuron then fires according to an inhomogeneous

Poisson process, and we assume for simplicity that the time course

of the spike rate for all neurons follows the same oscillatory

(sinusoidal) pattern around a common average firing rate.

Nevertheless the spikes for each yi are drawn as samples from

independent processes. In addition, let the common inhibition

signal I(t) be modulated by an additional oscillatory current

Iosc(t)~A:sin(vtzw) with amplitude A, oscillation frequency v
(same as for the input oscillation), and phase shift w. Due to the

increased number of input neurons firing simultaneously, and the

additional background current, pre- and post-synaptic firing of

active neurons will synchronize. The frequency of the background

oscillation can be chosen in principle arbitrarily, as long as the

number of periods per input example is constant. Otherwise the

network will weight different input examples by the number of

peaks during presentation, which might lead to learning of a

different generative model.

The effect of a synchronization of pre- and post-synaptic firing

can be very beneficial, since at low input firing rates it might

happen that none of the input neurons in a population of neurons

encoding an external variable xj fires within the integration time

window of length s of output neurons zk. This corresponds to

learning with missing attribute values for xj , which is known to

impair learning performance in graphical models [48]. Our novel

interpretation is therefore that background oscillations can reduce

the percentage of missing values by synchronizing presynaptic

firing rates. This agrees with previous studies, which have shown

that it is easier for single detector neurons learning with

phenomenological STDP rules to detect spike patterns embedded

in a high-dimensional input stream, if the patterns are encoded

relative to a background oscillation [49], or the patterns consist of

dense and narrow bursts of synchronous activity [50]. These

results still hold if only a small part of the afferents participates in

the pattern, or spikes from the pattern are missing, since the

increased synchrony facilitates the identification of the pattern.

Although we show in experiments that this increased synchroni-

zation can improve the learning performance of spike-based
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probabilistic learners in practice, it is important to note that

background oscillations are not necessary for the theory of spike-

based Expectation Maximization to hold. Also, brain oscillations

have previously been associated with various fundamental

cognitive functions like e.g. attention, memory, consciousness, or

neural binding. In contrast, our suggested role for oscillations as a

mechanism for improving learning and inference with missing

values is very specific within our framework, and although some

aspects are compatible with higher-level theories, we do not

attempt here to provide alternative explanations for these

phenomena.

Our particular model of oscillatory input firing rates leaves the

average firing rates unchanged, hence the effect of oscillations does

not simply arise due to a larger number of input or output spikes.

It is the increased synchrony of input and output spikes by which

background oscillations can facilitate learning for tasks in which

inputs have little redundancy, and missing values during learning

thus would have a strong impact. We demonstrate this in the

following experiment, where a common background oscillation for

the input neurons yi and the output neurons zk significantly speeds

up and improves the learning performance. In other naturally

occurring input distributions with more structured inputs,

oscillations might not improve the performance.

Example 1: Learning of probabilistic models with STDP
Fig. 3 demonstrates the emergence of Bayesian computation in

the generic network motif of Fig. 1A in a simple example. Spike

inputs y (top row of Fig. 3D) are generated through four different

hidden processes (associated with four different colors). Each of

them is defined by a Gauss distribution over a 2D pixel array with

a different center, which defines the probability of every pixel to be

on. Spike trains encode the current value of a pixel by a firing rate

of 25 Hz or 0 Hz for 40 ms. Each pixel was encoded by two input

neurons yi via population coding, exactly one of them had a firing

rate of 25 Hz for each input image. A 10 ms period without firing

separates two images in order to avoid overlap of EPSPs for input

spikes belonging to different input images.

After unsupervised learning with STDP for 500 s (applied to

continuous streams of spikes as in panel D of Fig. 3) the weight

vectors shown in Fig. 3F (projected back into the virtual 2D input

space) emerged for the four output neurons z1,z2,z3,z4, demon-

strating that these neurons had acquired internal models for the

four different processes that were used to generate inputs. The four

different processes for generating the underlying 2D input patterns

had been used with different prior probabilities (0:1, 0:2, 0:3, 0:4).

Fig. 3G shows that this imbalance resulted in four different priors

p(k) encoded in the biases ewk0 of the neurons zk. When one

compares the unequal sizes of the colored areas in Fig. 3H with the

completely symmetric internal models (or likelihoods) of the four

neurons shown in panel F, one sees that their firing probability

approximates a posterior over hidden causes that results from

multiplying their learned likelihoods with their learned priors. As a

result, the spike output becomes sparser, and almost all neurons

only fire when the current input spikes are generated by that one

of the four hidden processes on which they have specialized

(Fig. 3D, bottom row). In Fig. 3I the performance of the network is

quantified over time by the normalized conditional entropy

H(kDfout)=H(k,fout), where k is the correct hidden cause of each

input image y in the training set, and fout denotes the discrete

random variable defined by the firing probabilities of output

neurons zk for each image under the currently learned model. Low

conditional entropy indicates that each neuron learns to fire

predominantly for inputs from one class. Fig. 3E as well as the

dashed blue line in Fig. 3I show that the learning process is

improved when a common background oscillation at 20 Hz is

superimposed on the firing rate of input neurons and the

membrane potential of the output neurons, while keeping the

average input and output firing rates constant. The reason is that

in general it may occur that an output neuron zk receives during

its integration time window (40 ms in this example) no information

about the value of a pixel (because neither the neuron yi that has a

high firing rate for 40 ms if this pixel is black, nor the associated

neuron yi’ that has a high firing rate if this pixel is white fire during

this time window). A background oscillation reduces the percent-

age of such missing values by driving presynaptic firing times

together (see top row of Fig. 3E). Note that through these

oscillations the overall output firing rate R(t) fluctuates strongly,

but since the same oscillation is used consistently for all four types

of patterns, the circuit still learns the correct distribution of inputs.

This task had been chosen to become very fast unsolvable if

many pixel values are missing. Many naturally occurring input

distributions, like the ones addressed in the subsequent computer

experiments, tend to have more redundancy, and background

oscillations did not improve the learning performance for those.

STDP approximates Expectation Maximization
In this section we will develop the link between the unsupervised

learning of the generative probabilistic model in Fig. 1B and the

learning effect of STDP as defined in our spiking network model in

Fig. 1A. Starting from a learning framework derived from the

concept of Expectation Maximization [31], we show that the

biologically plausible STDP rule from Fig. 2 can naturally

approximate a stochastic, online version of this optimization

algorithm. We call this principle SEM (spike-based EM).

SEM can be viewed as a bootstrapping procedure. The relation

between the firing probabilities of the neurons within the WTA

circuit and the continuous updates of the synaptic weights with our

STDP rule in Eq. (5) drive the initially random firing of the circuit

in response to an input y towards learning the correct generative

model of the input distribution. Whenever a neuron zk fires in

response to y, the STDP rule increases the weights wki of synapses

from those presynaptic neurons yi that had fired shortly before zk.

In absence of a recent presynaptic spike from yi the weight wki is

decreased. As a consequence, when next a pattern similar to y is

presented, the probability for the same zk to fire and further adapt

its weights, is increased. Since zk becomes more of an ‘‘expert’’ for

one subclass of input patterns, it actually becomes less likely to fire

for non-matching patterns. The competition in the WTA circuit

ensures that other z-neurons learn to specialize for these different

input categories.

In the framework of Expectation Maximization, the generation

of a spike in a z-neuron creates a sample from the currently

encoded posterior distribution of hidden variables, and can

therefore be viewed as the stochastic Expectation, or E-step.

The subsequent application of STDP to the synapses of this

neuron can be understood as an approximation of the Maximi-

zation, or M-step. The online learning behavior of the network

can be understood as a stochastic online EM algorithm.

Learning the parameters of the probability model by

EM. The goal of learning the parametrized generative proba-

bilistic model p(y,kDw) is to find parameter values w, such that the

marginal distribution p(yDw) of the model distribution approxi-

mates the actual stationary distribution of spike inputs p�(y) as

closely as possible. We define p�(y) as the probability to observe

the activation vector y(t) at some point t in time (see Eq. (72) in

Methods for a precise mathematical definition). The learning task

can thus be formalized as the minimization of the Kullback-

Leibler divergence between the two distributions, p(yDw) and
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p�(y). A mathematically equivalent formulation is the maximiza-

tion of the expected likelihood L(w)~Ep� ½log p(yDw)� of the inputs

y, drawn from p�(y). The parametrization of the generative

probabilistic model p(y,kDw) is highly redundant, i.e. for every w
there is a continuous manifold of w0, that all define identical

generative distributions p(y,kDw0) in Eq. (24). There is, however,

exactly one w0 in this sub-manifold of the weight space that fulfills

the normalization conditions in Eq. (10). By imposing the

normalization conditions as constraints to the maximization

problem, we can thus find unique local maxima (see ‘‘Details to

Learning the parameters of the probability model by EM’’ in

Methods).

Figure 3. Example for the emergence of Bayesian computation through STDP and adaptation of neural excitability. A, B: Visualization
of hidden structure in the spike inputs y shown in D, E: Each row in panels A and B shows two results of drawing pixels from the same Gauss
distribution over a 28628 pixel array. Four different Gauss distributions were used in the four rows, and the location of their center represents the
latent variable behind the structure of the input spike train. C: Transformation of the four 2D images in B into four linear arrays, resulting from
random projections from 2D locations to 1D indices. Black lines indicate active pixels, and pixels that were active in less than 4% of all images were
removed before the transformation (these pixels are white in panel H). By the random projection, both the 2D structure of the underlying pixel array
and the value of the latent variable are hidden when the binary 1D vector is encoded through population coding into the spike trains y that the
neural circuit receives. D: Top row: Spike trains from 832 input neurons that result from the four linear patterns shown in panel C (color of spikes
indicates which of the four hidden processes had generated the underlying 2D pattern, after 50 ms another 2D pattern is encoded). The middle and
bottom row show the spike output of the four output neurons at the beginning and after 500 s of unsupervised learning with continuous spike
inputs (every 50 ms another 2D pattern was randomly drawn from one of the 4 different Gauss distributions, with different prior probabilities of 0.1,
0.2, 0.3, and 0.4.). Color of spikes indicates the emergent specialization of the four output neurons on the four hidden processes for input generation.
Black spikes indicate incorrect guesses of hidden cause. E: Same as D, but with a superimposed 20 Hz oscillation on the firing rates of input neurons
and membrane potentials of the output neurons. Fewer error spikes occur in the output, and output spikes are more precisely timed. F: Internal
models (weight vectors w) of output neurons z1, . . . ,z4 after learning (pixel array). G: Autonomous learning of priors p(k)&ewk0 , that takes place
simultaneously with the learning of internal models. H: Average ‘‘winner’’ among the four output neurons for a test example (generated with equal
probability by any of the 4 Gaussians) when a particular pixel was drawn in this test example, indicating the impact of the learned priors on the
output response. I: Emergent discrimination capability of the output neurons during learning (red curve). The dashed blue curve shows that a
background oscillation as in E speeds up discrimination learning. Curves in G and I represent averages over 20 repetitions of the learning experiment.
doi:10.1371/journal.pcbi.1003037.g003
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The most common way to solve such unsupervised learning

problems with hidden variables is the mathematical framework of

Expectation Maximization (EM). In its standard form, the EM

algorithm is a batch learning mechanism, in which a fixed, finite

set of T instances of input vectors y(1), . . . ,y(T) is given, and the

task is to find the parameter vector w that maximizes the log-

likelihood L(w)~
PT

l~1 log p(y(l)Dw) of these T instances to be

generated as independent samples by the model p(yDw).

Starting from a random initialization for w, the algorithm

iterates between E-steps and M-steps. In the E-steps, the current

parameter vector w is used to find the posterior distributions of the

latent variables k(1), . . . ,k(T), each given by p(k(l)Dy(l),w).

In the M-steps a new parameter vector wnew is computed, which

maximizes the expected value of the complete-data log-likelihood

function, subject to the normalization constraints in Eq. (10). The

analytical solution for this M-step (compare [32]) is given by

wnew
ki :~log

PT
l~1 y

(l)
i p(kjy(l),w)PT

l~1 p(kjy(l),w)
and

wnew
k0 :~log

PT
l~1 p(kjy(l),w)

T
:

ð12Þ

The iterated application of this update procedure is guaranteed to

converge to a (local) maximum of L(w) [31]. It is obvious that

wnew fulfills the desired normalization conditions in Eq. (10) after

every update.

Although the above deterministic algorithm requires that the

same set of T training examples is re-used for every EM

iteration, similar results also hold valid for online learning

scenarios. In an online setup new samples y(l)!p�(y) are drawn

from the input distribution at every iteration, which is closer to

realistic neural network learning settings. Instead of analytically

computing the expected value of the complete-data log-

likelihood function, a Monte-Carlo estimate is computed using

the samples k(l), drawn according to their posterior distribution

p(kDy(l),w). Even though additional stochastic fluctuations are

introduced due to the stochastic sampling process, this stochastic

EM algorithm will also converge to a stable result in the limit of

infinite iterations, if the number of samples T is increased with

every iteration [51].

In order to simplify the further notation we introduce the

augmented input distribution p�w(y,z) from which we can sample

pairs Sy,zT and define

p�w(y,z)~p(zDy,w)p�(y): ð13Þ

Sampling pairs Sy(l),z(l)T with l~1, . . . ,T from p�w(y,z)
corresponds to online sampling of inputs, combined with a

stochastic E-step. The subsequent M-step

wnew
ki :~log

PT
l~1 y

(l)
i z

(l)
kPT

l~1 z
(l)
k

, wnew
k0 :~log

PT
l~1 z

(l)
k

T
ð14Þ

essentially computes averages over all T samples: exp(wnew
k0 ) is the

average of the variable zk; exp(wnew
ki ) is a conditional average of yi

taken over those instances in which zk is 1.

The expected value of the new weight vector after one iteration,

i.e., the sampling E-step and the averaging M-step, can be

expressed in a very compact form based on the augmented input

distribution as

Ep�w ½w
new
ki �~log p�w(yi~1Dzk~1) Ep�w ½w

new
k0 �~log p�w(zk~1): ð15Þ

A necessary condition for a point convergence of the iterative

algorithm is a stable equilibrium point, i.e. a value w at which the

expectation of the next update wnew is identical to w. Thus we

arrive at the following necessary implicit condition for potential

convergence points of this stochastic algorithm.

wki~log p�w(yi~1Dzk~1) wk0~log p�w(zk~1): ð16Þ

This very intuitive implicit ‘‘solution’’ is the motivation for relating

the function of the simple STDP learning rule (solid red line in Fig. 2)

in the neural circuit shown in Fig. 1A to the framework of EM.

Spike-based Expectation Maximization. In order to

establish a mathematically rigorous link between the STDP rule

in Fig. 2 in the spike-based WTA circuit and stochastic online EM

we identify the functionality of both the E- and the M-steps with

the learning behavior of the spiking WTA-circuit with STDP.

In a biologically plausible neural network setup, one cannot

assume that observations are stored and computations necessary

for learning are deferred until a suitable sample size has been

reached. Instead, we relate STDP learning to online learning

algorithms in the spirit of Robbins-Monro stochastic approxima-

tions, in which updates are performed after every observed input.

At an arbitrary point in time tf at which any one neuron zk of

the WTA circuit fires, the posterior p(kDy(t),w) according to Eq.

(4) gives the probability that the spike at this time tf has originated

from the neuron with index k. The pair Sy(t),kT can therefore be

seen as a sample from the augmented input distribution p�w(y,k).

Hence, we can conclude that the generation of a spike by the

WTA circuit corresponds to the generation of samples Sy,kT
during the E-step. There are additional conditions on the

inhibition signal I(t) that have to be met in order to generate

unbiased samples y(tf ) from the input distribution p�(y). These

are discussed in depth in the section ‘‘Role of the Inhibition’’, but

for now let us assume that these conditions are fulfilled.

The generation of a spike in the postsynaptic neuron zk triggers

an STDP update according to Eq. (5) in all synapses from

incoming presynaptic neurons yi, represented by weights wki. We

next show that the biologically plausible STDP rule in Eq. (5) (see

also Fig. 2) together with the rule in Eq. (7) can be derived as

approximating the M-step in stochastic online EM.

The update in Eq. (14) suggests that every synapse wki collects

the activation statistics of its input yi (the presynaptic neuron),

given that its output zk (the postsynaptic neuron) fires. These

statistics can be gathered online from samples of the augmented

input distribution p�w(y,z).

From this statistical perspective each weight can be interpreted

as wki~log
aki

Nki

, where aki and Nki are two local virtual counters

in each synapse. aki represents the number of the events

Syi~1,zk~1T and Nki represents the number of the events

Szk~1T, i.e. the postsynaptic spikes. Even though all virtual

counters Nki within one neuron zk count the same postsynaptic

spikes, it is easier to think of one individual such counter for every

synapse. If we interpret the factor
1

Nki

as a local learning rate gki,

we can derive Eq. (5) (see Methods) as the spike-event triggered

stochastic online learning rule wnew
ki ~wkizgkizk(yie

{wki {1) that

approximates in the synapse wki the log of the running average of

yi(t
f ) at the spiking times of neuron zk. The update formula shows
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that wki is only changed, if the postsynaptic neuron zk fires,

whereas spike events of other neurons Szk’~1T with k’=k are

irrelevant for the statistics of wki. Thus the learning rule is purely

local for every synapse wki; it only has to observe its own pre- and

postsynaptic signals. Additionally we show in the Methods section

‘‘Adaptive learning rates with Variance tracking’’ a very efficient

heuristic how the learning rate etaki can be estimated locally.

Analogously we can derive the working mechanism of the

update rule in Eq. (7) as updates of the log of a fraction at the

respective points in time.

The simple STDP rules in Eq. (5) and Eq. (7) thus approximate

the M-step in a formal generative probabilistic model with local,

biologically plausible computations. It remains to be shown that

these STDP rules actually drive the weights w to converge to the

target points in Eq. (16) of the stochastic EM algorithm.

We can conclude from the equilibrium conditions of the STDP

rule in Eq. (6) that convergence can only occur at the desired local

maxima of the likelihood L(w) subject to the normalization

constraints. However, it remains to be shown that the update

algorithm converges at all and that there are no limit cycles.

Proof of convergence. Even though we successfully identi-

fied the learning behavior of the simple STDP rule (Fig. 2) in the

circuit model with the E- and the M-steps of the EM algorithm,

this is not yet sufficient for a complete proof of convergence for the

whole learning system. Not only are the single updates just

approximations to the M-step, these approximations, in addition,

violate the normalization conditions in Eq. (10). Although the

system - as we will show - converges towards normalized solutions,

there is always a stochastic fluctuation around the normalization

conditions. One can therefore not simply argue that Eq. (5)

implements a stochastic version of the generalized EM algorithm;

instead, we have to resort to the theory of stochastic approxima-

tion algorithms as presented in [52]. Under some technical

assumptions (see Methods) we can state

Theorem 1: The algorithm in Eq. (5,7) updates w in a way that it

converges with probability 1 to the set of local maxima of the likelihood function

L(w)~Ep� ½log p(yDw)�, subject to the normalization constraints in Eq.

(10).

The detailed proof, which is presented in Methods, shows that

the expected trajectory of the weight vector w is determined by

two driving forces. The first one is a normalization force which

drives w from every arbitrary point towards the regime where w is

normalized. The second force is the real learning force that drives

w to a desired maximum of L(w). However, this interpretation of

the learning force is valid only if w is sufficiently close to

normalized.

The role of the inhibition
We have previously shown that the output spikes of the WTA

circuit represent samples from the posterior distribution in Eq.

(11), which only depends on the ratios between the membrane

potentials uk(t). The rate at which these samples are produced is

the overall firing rate R(t) of the WTA circuit and can be

controlled by modifying the common inhibition I(t) of the neurons

zk.

Although any time-varying output firing rate R(t) produces

correct samples from the posterior distribution in Eq. (11) of z, for

learning we also require that the input patterns y(t) observed at

the spike times are unbiased samples from the true input

distribution p�(y). If this is violated, some patterns coincide with

a higher R(t), and thus have a stronger influence on the learned

synaptic weights. In Methods we formally show that R(t) acts as a

multiplicative weighting of the current input ~yy(t), and so the

generative model will learn a slightly distorted input distribution.

An unbiased set of samples can be obtained if R(t) is

independent of the current input activation y(t), e.g. if R(t)~R
is constant. This could in theory be achieved if we let I(t) depend

on the current values of the membrane potentials uk(t), and set

I(t)~{log Rzlog
PK

k~1 euk(t). Such an immediate inhibition is

commonly assumed in rate-based soft-WTA models, but it seems

implausible to compute this in a spiking neuronal network, where

only spikes can be observed, but not the presynaptic membrane

potentials.

However, our results show that a perfectly constant firing rate is

not a prerequisite for convergence to the right probabilistic model.

Indeed we can show that it is sufficient that R(t) and y(t) are

stochastically independent, i.e. R(t) is not correlated to the

appearance of any specific value of y(t). Still this might be difficult

to achieve since the firing rate R(t) is functionally linked to the

input y(t) by R(t)~e{I(t) Z p(y(t)Dw), but it clarifies the role of the

inhibition I(t) as de-correlating R(t) from the input y, at least in

the long run.

One possible biologically plausible mechanism for such a

decorrelation of R(t) and y(t) is an inhibitory feedback from a

population of neurons that is itself excited by the neurons zk.

Such WTA competition through lateral inhibition has been

studied extensively in the literature [16,33]. In the implemen-

tation used for the experiments in this paper every spike from

the z-neurons causes an immediate very strong inhibition signal

that lasts longer than the refractory period of the spiking

neuron. This strong inhibition decays exponentially and is

overlaid by a noise signal with high variability that follows an

Ornstein-Uhlenbeck process (see ‘‘Inhibition Model in Com-

puter Simulations’’ in Methods). This will render the time of the

next spike of the system almost independent of the value of

p(y(t)Dw).

It should also be mentioned that a slight correlation between

R(t) and p(y(t)Dw) may be desirable, and I(t) might also be

externally modulated (for example through attention, or neuro-

modulators such as Acetylcholin), as an instrument of selective

input learning. This might lead e.g. to slightly higher firing rates

for well-known inputs (high p(y(t)Dw)), or salient inputs, as opposed

to reduced rates for unknown arbitrary inputs. In general,

however, combining online learning with a sampling rate R(t)
that is correlated to p(yDw) may lead to strange artifacts and might

even prohibit the convergence of the system due to positive

feedback effects. A thorough analysis of such effects and of possible

learning mechanisms that cope with positive feedback effects is the

topic of future research.

Our theoretical analysis sheds new light on the requirements for

inhibition in spiking WTA-like circuits to support learning and

Bayesian computation. Inhibition does not only cause competition

between the excitatory neurons, but also regulates the overall

firing rate R(t) of the WTA circuit. Variability in R(t) does not

influence the performance of the circuit, as long as there is no

systematic dependence between the input and R(t).

Continuous-time interpretation with realistically shaped
EPSPs

In our previous analysis we have assumed a simplified non-

additive step-function model for the EPSP. This allowed us to

describe all input evidence within the last time window of length s
by one binary vector y(t), but required us to assume that no two

neurons within the same group Gj fired within that period. We will

now give an intuitive explanation to show that this restriction can

be dropped and present an interpretation for additive biologically

plausibly shaped EPSPs as inference in a generative model.

Emergence of Bayesian Computation through STDP
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The postsynaptic activation ~yyi(t) under an additive EPSPs is

given by the convolution

~yyi(t)~
X

f

K(t{t
f
i ), ð17Þ

where K describes an arbitrarily shaped kernel, e.g. an a-shaped

EPSP function which is the difference of two exponential functions

(see [37]) with different time constants. We use 1 ms for the rise

and 15 ms for the decay in our simulations. ~yyi(t) replaces yi(t) in

Eq. (2) in the computation of the membrane potential uk(t) of our

model neurons. We can still understand the firing of neurons in the

WTA circuit according to the relative firing probabilities qk(t) in

Eq. (4) as Bayesian inference. To see this, we imagine an extension

of the generative probabilistic model p(x,kDh) in Fig. 1B, which

contains multiple instances of x, exactly one for every input spike

from all input neurons yi. For a fixed common hidden cause k, all

instances of x are conditionally independent of each other, and

have the same conditional distributions for each xj (see Methods

for the full derivation of the extended probabilistic model).

According to the definition in Eq. (8) of the population code every

input spike represents evidence that xj in an instance x should take

on a certain value. Since every spike contributes only to one

instance, any finite input spike pattern can be interpreted as valid

evidence for multiple instances of inputs x.

The inference of a single hidden cause k in such extended

graphical model from multiple instances of evidence is relatively

straightforward: due to the conditional independence of different

instances, we can compute the input likelihood for any hidden

cause simply as the product of likelihoods for every single evidence.

Inference thus reduces to counting how often every possible

evidence occurred in all instances x, which means counting the

number of spikes of every yi. Since single likelihoods are implicitly

encoded in the synaptic weights wki by the relationship

wki~log p(yi~1Dk,w), we can thus compute the complete input

likelihood by adding up step-function like EPSPs with amplitudes

corresponding to wki. This yields correct results, even if one input

neuron spikes multiple times.

In the above model, the timing of spikes does not play a role. If

we want to assign more weight to recent evidence, we can define a

heuristic modification of the extended graphical model, in which

contributions from spikes to the complete input log-likelihood are

linearly interpolated in time, and multiple pieces of evidence

simply accumulate. This is exactly what is computed in ~yyi in Eq.

(17), where the shape of the kernel K(t{tf ) defines how the

contribution of an input spike at time tf evolves over time.

Defining ~yyi as the weight for the evidence of the assignment of xj

to value v(i), it is easy to see (and shown in detail in Methods) that

the instantaneous output distribution qk(t) represents the result of

inference over causes k, given the time-weighted evidences of all

previous input spikes, where the weighting is done by the EPSP-

function K(t). Note that this evidence weighting mechanism is not

equivalent to the much more complex mechanism for inference in

presence of uncertain evidence, which would require more

elaborate architectures than our feed-forward WTA-circuit. In

our case, past evidence does not become uncertain, but just less

important for the inference of the instantaneous hidden cause k.

We can analogously generalize the spike-triggered learning rule

in Eq. (5) for continuous-valued input activations ~yyi(t) according to

Eq. (17):

Dwki(t)~~yyi(t):c:e
{wki{1: ð18Þ

The update of every weight wki is triggered when neuron zk, i.e.

the postsynaptic neuron, fires a spike. The shape of the LTP part

of the STDP curve is determined by the shape of the EPSP,

defined by the kernel function K(t). The positive part of the

update in Eq. (18) is weighted by the value of ~yyi(t) at the time of

firing the postsynaptic spike. Negative updates are performed if

~yyi(t) is close to zero, which indicates that no presynaptic spikes

were observed recently. The complex version of the STDP curve

(blue dashed curve in Fig. 1B), which resembles more closely to the

experimentally found STDP curves, results from the use of

biologically plausible a-shaped EPSPs. In this case, the LTP

window of the weight update decays with time, following the shape

of the a-function. This form of synaptic plasticity was used in all

our experiments. If EPSPs accumulate due to high input

stimulation frequencies, the resulting shape of the STDP curve

becomes even more similar to previously observed experimental

data, which is investigated in detail in the following section.

The question remains, how this extension of the model and the

heuristics for time-dependent weighting of spike contributions

affect the previously derived theoretical properties. Although the

convergence proof does not hold anymore under such general

conditions we can expect (and show in our Experiments) that the

network will still show the principal behavior of EM under fairly

general assumptions on the input: we have to assume that the

instantaneous spike rate of every input group Gj is not dependent

on the value of xj that it currently encodes, which means that the

total input spike rate must not depend on the hidden cause k. Note

that this assumption on every input group is identical to the

desired output behavior of the WTA circuit according to the

conditions on the inhibition as derived earlier. This opens up the

possibility of building networks of recursively or hierarchically

connected WTA circuits. Note also that the grouping of inputs into

different Gj is only a notational convenience. The neurons in the

WTA circuit do not have to know which inputs are from the same

group, neither for inference nor for learning, and can thus treat all

input neurons equally.

Relationship to experimental data on synaptic plasticity
In biological STDP experiments that induce pairs of pre- and

post-synaptic spikes at different time delays, it has been observed

that the shape of the plasticity curve changes as a function of the

repetition frequency for those spike pairs [40]. The observed effect

is that at very low frequencies no change or only LTD occurs, a

‘‘classical’’ STDP window with timing-dependent LTD and LTP

is observed at intermediate frequencies around 20 Hz, and at high

frequencies of 40 Hz or above only LTP is observed, indepen-

dently of which spikes comes first.

Although our theoretical model does not explicitly include a

stimulation-frequency dependent term like other STDP models

(e.g. [53]), we can study empirically the effect of a modification of

the frequency of spike-pairing. We simulate this for a single

synapse, at which we force pre- and post-synaptic spikes with

varying time differences Dt~tpost{tpre, and at fixed stimulation

frequencies f of either 1 Hz, 20 Hz, or 40 Hz. Modeling EPSPs as

a-kernels with time constants of 1 ms for the rise and 15 ms for the

decay, we obtain the low-pass filtered signals ~yyi as in Eq. (17),

which grow as EPSPs start to overlap at higher stimulation

frequencies. At the time of a post-synaptic spike we compute the

synaptic update according to the rule in Eq. (18), but keep both the

weight and the learning rate fixed (at wki~3:5,c~e{5,g~0:5) to

distinguish timing-dependent from weight-dependent effects.

In Fig. 4A we observe that, as expected, at low stimulation

frequencies (1 Hz) the standard shape of the complex STDP rule

in Eq. (18) from Fig. 2 is recovered, since there is no influence from
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previous spikes. The shift towards pure LTD that is observed in

biology [40] would require an additional term that depends on

postsynaptic firing rates like in [53], and is a topic of future

research. However, note that in biology this shift to LTD was

observed only in paired recordings, neglecting the cooperative

effect of other synapses, and other studies have also reported LTP

at low stimulation frequencies [43]. At higher stimulation

frequencies (20 Hz in Fig. 4B) the EPSPs from different pre-

synaptic spikes start to overlap, which results in larger ~yyi compared

with isolated pre-synaptic spikes. We also see that the LTD part of

the STDP window becomes timing-dependent (due to overlapping

EPSPs), and thus the shape of the STDP curve becomes similar to

standard models of STDP and observed biological data [43,54].

For even higher stimulation frequencies the STDP window shifts

more and more towards LTP (see Fig. 4B and C). This is in good

accordance with observations in biology [40]. Also in agreement

with biological data, the minimum of the update occurs around

Dt~0, because there the new a-kernel EPSP is not yet effective,

and the activation due to previous spikes has decayed maximally.

Another effect that is observed in hippocampal synapses when

two neurons are stimulated with bursts, is that the magnitude of

LTP is determined mostly by the amount of overlap between the

pre- and post-synaptic bursts, rather than the exact timing of

spikes [55]. In Fig. 4D we simulated this protocol with our

continuous-time SEM rule for different onset time-differences of

the bursts, and accumulated the synaptic weight updates in

response to 50 Hz bursts of 5 pre-synaptic and 4 post-synaptic

spikes. We performed this experiment for the same onset time

differences used in Fig. 3 of [55], and found qualitatively similar

results. For long time-differences, when EPSPs have mostly

decayed, we observed an LTD effect, which was not observed in

biology, but can be attributed to differences in synaptic time

constants between biology and simulation.

These results suggest that our STDP rule derived from

theoretical principles exhibits several of the key properties of

synaptic plasticity observed in nature, depending on the encoding

of inputs. This is quite remarkable, since these properties are not

explicitly part of our learning rule, but rather emerge from a

simpler rule with strong theoretical guarantees. Other phenom-

enological [56,57] or mechanistic models of STDP [58] also show

some of these characteristics, but come without such theoretical

properties. The functional consequence of reproducing such key

biological characteristics of STDP is that our new learning rule

also exhibits most of the key functional properties of STDP, like

e.g. strengthening synapses of inputs that are causally involved in

firing the postsynaptic neuron, while pruning the connections that

do not causally contribute to postsynaptic firing [10,13]. At low

and intermediate firing rates our rule also shifts the onset of

postsynaptic firing towards the start of repeated spike patterns

[49,50,59], while depressing synapses that only become active for a

pattern following the one for which the post-synaptic neuron is

responsive. If patterns change quickly, then the stronger depres-

sion for presynaptic spikes with small Dt in Fig. 4B enhances the

capability of the WTA to discriminate such patterns. With

simultaneous high frequency stimulation (Fig. 4C and D) we

observe that only LTP occurs, which is due to the decay of EPSPs

not being fast enough to allow depression. In this scenario, the

learning rule is less sensitive to timing, and rather becomes a

classical Hebbian measure of correlations between pre- and post-

synaptic firing rates. However, since inputs are encoded in a

population code we can assume that the same neuron is not

continuously active throughout, and so even at high firing rates for

active input neurons, the synapses that are inactive during

postsynaptic firing will still be depressed, which means that

convergence to an equilibrium value is still possible for all

synapses.

It is a topic of future research which effects observed in biology

can be reproduced with more complex variations of the spike-

based EM rule that are also dependent on postsynaptic firing rates,

or whether existing phenomenological models of STDP can be

interpreted in the probabilistic EM framework. In fact, initial

experiments have shown that several variations of the spike-based

EM rule can lead to qualitatively similar empirical results for the

learned models in tasks where the input spike trains are Poisson at

average or high rates over an extended time window (such as in

Fig. 3). These variations include weight-dependent STDP rules

that are inversed in time, symmetrical in time, or have both spike

timing-dependent LTD and LTP. Such rules can converge

towards the same equilibrium values as the typical causal STDP

rule. However, they will behave differently if inputs are encoded

through spatio-temporal spike patterns (as in Example 4:

Detection of Spatio-Temporal Spike Patterns). Further variations

Figure 4. Relationship between the continuous-time SEM model and experimental data on synaptic plasticity. A–C: The effect of the
continuous-time plasticity rule in Eq. (18) at a single synapse for different stimulation frequencies and different time-differences between pre- and
post-synaptic spike pairs. Only time-intervals without overlapping pairs are shown. A: For very low stimulation frequencies (1 Hz) the standard shape
of the complex learning rule from Fig. 2 is recovered. B: At a stimulation frequency of 20 Hz the plasticity curve shifts more towards LTP, and
depression is no longer time independent, due to overlapping EPSPs. C: At high stimulation frequencies of 40 Hz or above, the STDP curve shifts
towards only LTP, and thus becomes similar to a rate-based Hebbian learning rule. D: Cumulative effect of pre- and post-synaptic burst stimulation
(50 Hz bursts of 5 pre-synaptic and 4 post-synaptic spikes) with different onset delays of -120, -60, 10, 20, 30, 80 and 140 ms (time difference between
the onsets of the post- and pre-synaptic bursts). As in [55], the amount of overlap between bursts determines the magnitude of LTP, rather than the
exact temporal order of spikes.
doi:10.1371/journal.pcbi.1003037.g004
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can include short-term plasticity effects for pre-synaptic spikes, as

observed and modeled in [60], which induce a stimulation-

frequency dependent reduction of the learning rate, and could

thus serve as a stabilization mechanism.

Spike-timing dependent LTD
Current models of STDP typically assume a ‘‘double-exponen-

tial’’ decaying shape of the STDP curve, which was first used in

[54] to fit experimental data. This is functionally different from the

shape of the complex STDP curve in Fig. 2 and Eq. (5), where the

LTD part is realized by a constant timing-independent offset.

Although not explicitly covered by the previously presented

theory of SEM, the same analytical tools can be used to explain

functional consequences of timing-dependent LTD in our

framework. Analogous to our approach for the standard SEM

learning rule, we develop (in Methods) an extension of the simple

step-function STDP rule from Fig. 2 with timing-dependent LTD,

which is easier to analyze. We then generalize these results towards

arbitrarily shaped STDP curves. The crucial result is that as long

as the spike-timing dependent LTD rule retains the characteristic

inversely-exponential weight-dependent relationship between the

strengths of LTP and LTD that was introduced for standard SEM

in Eq. (5), an equilibrium property similar to Eq. (6) still holds (see

Methods for details). Precisely speaking, the new equilibrium will

be at the difference between the logarithms of the average

presynaptic spiking probabilities before and after the postsynaptic

spike. This shows that spike-timing dependent LTD also yields

synaptic weights that can be interpreted in terms of log-

probabilities, which can thus be used for inference.

The new rule emphasizes contrasts between the current input

pattern and the immediately following activity. Still, the results of

the new learning rule and the original rule from Eq. (5) in our

experiments are qualitatively similar. This can be explained from a

stochastic learning perspective: at any point in time the relative

spiking probabilities of excitatory neurons in the WTA circuit in

Eq. (4) depend causally on the weighted sums of preceding

presynaptic activities ~yyi(t). However, they clearly do not depend

on future presynaptic activity. Thus, the postsynaptic neuron will

learn through SEM to fire for increasingly similar stochastic

realizations of presynaptic input ~yyi(t), whereas the presynaptic

activity pattern following a postsynaptic spike will become more

variable. In the extreme case where patterns are short and

separated by noise, there will be no big difference between input

patterns following firing of any of the WTA neurons, and so their

relevance for the competition will become negligible.

Experimental evidence shows that the time constants of the LTP

learning window are usually smaller than the time constants of the

LTD window ([40,60]), which will further enhance the specificity

of the LTP learning as opposed to the LTD part that computes the

average over a longer window.

Note that the exponential weight dependence of the learning

rule implies a certain robustness towards linearly scaling LTP or

LTD strengths, which only leads to a constant offset of the weights.

Assuming that the offset is the same for all synapses, this does not

affect firing probabilities of neurons in a WTA circuit (see Methods

‘‘Weight offsets and positive weights’’).

Example 2: Learning of probabilistic models for
orientation selectivity

We demonstrated in this computer experiment the emergence

of orientation selective cells zk through STDP in the WTA circuit

of Fig. 1A when the spike inputs encode isolated bars in arbitrary

orientations. Input images were generated by the following

process: Orientations were sampled from a uniform distribution,

and lines of 7 pixels width were drawn in a 28628 pixel array. We

added noise to the stimuli by flipping every pixel with a 10%
chance, see Fig. 5A. Finally, a circular mask was applied to the

images to avoid artifacts from image corners. Spikes trains y were

encoded according to the same population coding principle

described in the previous example Fig. 3, in this case using a

Poisson firing rate of 20 Hz for active units.

After training with STDP for 200 s, presenting 4000 different

images, the projection of the learned weight vectors back into the

2D input space (Fig. 5B) shows the emergence of 10 models with

different orientations, which cover the possible range of orienta-

tions almost uniformly. When we plot the strongest responding

neuron as a function of orientation (Fig. 5C, D), measured by the

activity in response to 360 noise-free images of oriented bars in 10

steps, we can see no structure in the response before learning

(Fig. 5C). However, after unsupervised learning, panel D clearly

shows the emergence of continuous, uniformly spaced regions in

which one of the zk neurons fires predominantly. This can also be

seen in the firing behavior in response to the input spike trains in

Fig. 5E, which result from the example images in panel A. Fig. 5F

shows that the output neurons initially fire randomly in response to

the input, and many different zk neurons are active for one image.

In contrast, the responses after learning in panel G are much

sparser, and only occasionally multiple neurons are active for one

input image, which is the case when the angle of the input image is

in between the preferred angles of two output neurons, and

therefore multiple models have a non-zero probability of firing.

In our experiment the visual input consisted of noisy images of

isolated bars, which illustrates learning of a probabilistic model in

which a continuous hidden cause (the orientation angle) is

represented by a population of neurons, and also provides a

simple model for the development of orientation selectivity. It has

previously been demonstrated that similar Gabor-like receptive

field structures can be learned with a sparse-coding approach

using patches of natural images as inputs [61]. The scenario

considered here is thus substantially simplified, since we do not

present natural but isolated stimuli. However, it is worth noting

that experimental studies have shown that (in mice and ferret)

orientation selectivity, but not e.g. direction selectivity, exists in V1

neurons even before eye opening [62,63]. This initial orientation

selectivity develops from innate mechanisms and from internally

generated inputs during this phase [63], e.g. retinal waves, which

have different, and very likely simpler statistics than natural

stimuli. Our model shows that a WTA circuit could learn

orientation selectivity from such simple bar-like inputs, but does

not provide an alternative explanation to the results of studies like

[61] using natural image stimuli. Although beyond the scope of

this paper, we expect that later shaping of selectivity through

exposure to natural visual experience would not alter the receptive

fields by much, since the neurons have been primed to spike (and

thereby trigger plasticity) only in response to a restricted class of

local features.

Example 3: Emergent discrimination of handwritten
digits through STDP

Spike-based EM is a quite powerful learning principle, as we

demonstrate in Fig. 6 through an application to a computational

task that is substantially more difficult than previously considered

tasks for networks of spiking neurons: We show that a simple

network of spiking neurons can learn without any supervision to

discriminate handwritten digits from the MNIST benchmark

dataset [64] consisting of 70,000 samples (30 are shown in Fig. 6A).

This is one of the most frequently used benchmark tasks in

machine learning. It has mostly been used to evaluate supervised
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or semi-supervised machine learning algorithms [27,65], or to

evaluate unsupervised feature learning approaches [66,67].

Although the MNIST dataset contains labels (the intended digit)

for each sample of a handwritten digit, we deleted these labels

when presenting the dataset to the neural circuit of Fig. 1A,

thereby forcing the K~100 neurons on the output layer to self-

organize in a completely unsupervised fashion. Each sample of a

handwritten digit was encoded by 708 spike trains over 40 ms (and

10 ms periods without firing between digits to avoid overlap of

EPSPs between images), similarly as for the task of Fig. 3. Each

pixel was represented by two input neurons yi, one of which

produced a Poisson spike train at 40 Hz during these 40 ms. This

yielded usually at most one or two spikes during this time window,

demonstrating that the network learns and computes with

information that is encoded through spikes, rather than firing

rates. After 500 s of unsupervised learning by STDP almost all of

the output neurons fired more sparsely, and primarily for

handwritten samples of just one of the digits (see Fig. 6E).

The application to the MNIST dataset had been chosen to

illustrate the power of SEM in complex tasks. MNIST is one of

the most popular benchmarks in machine learning, and state-of-

the-art methods achieve classification error rates well below 1%.

The model learned by SEM can in principle also be used for

classification, by assigning each neuron to the class for which it

fires most strongly. However, since this is an unsupervised

method, not optimized for classification but for learning a

generative model, the performance is necessarily worse. We

achieve an error rate of 19:86% on the 10-digit task on a

previously unseen test set. This compares favorably to the 21%
error that we obtained with a standard machine learning

approach that directly learned the mixture-of-multinomials

graphical model in Fig. 1B with a batch EM algorithm. This

control experiment was not constrained by a neural network

architecture or biologically plausible learning, but instead

mathematically optimized the parameters of the model in up

to 200 iterations over the whole training set. The batch method

achieves a final conditional entropy of 0:1068, which is slightly

better than the 0:1375 final result of the SEM approach, and

shows that better performance on the classification task does not

necessarily mean better unsupervised model learning.

Figure 5. Emergence of orientation selective cells for visual input consisting of oriented bars with random orientations. A Examples
of 28|28-pixel input images with oriented bars and additional background noise. B Internal models (weight vectors of output neurons zk) that are
learned through STDP after the presentation of 4000 input images (each encoded by spike trains for 50 ms, as in Fig. 3). C, D Plot of the most active
neuron for 360 images of bars with orientations from 0 to 3600 in 10 steps. Colors correspond to the colors of zk neurons in B. Before training (C), the
K~10 output neurons fire without any apparent pattern. After training (D) they specialize on different orientations and cover the range of possible
angles approximately uniformly. E: Spike train encoding of the 10 samples in A. F,G: Spike trains produced by the K~10 output neurons in response
to these samples before and after learning with STDP for 200 s. Colors of the spikes indicate the identity of the output neuron, according to the color
code in B.
doi:10.1371/journal.pcbi.1003037.g005
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Example 4: Detection of Spatio-Temporal Spike Patterns
Our final application demonstrates that the modules for

Bayesian computation that emerge in WTA circuits through

STDP can not only explain the emergence of feature maps in

primary sensory cortices like in Fig. 5, but could also be viewed as

generic computational units in generic microcircuits throughout

the cortex. Such generic microcircuit receives spike inputs from

many sources, and it would provide a very useful computational

Figure 6. Emergent discrimination of handwritten digits through STDP. A: Examples of digits from the MNIST dataset. The third and fourth
row contain test examples that had not been shown during learning via STDP. B: Spike train encoding of the first 5 samples in the third row of A.
Colors illustrate the different classes of digits. C, D: Spike trains produced by the K~100 output neurons before and after learning with STDP for
500 s. Colored spikes indicate that the class of the input and the class for which the neuron is mostly selective (based on human classification of its
generative model shown in F) agree, otherwise spikes are black. E: Temporal evolution of the self-organization process of the 100 output neurons (for
the complex version of STDP-curve shown in Fig. 1B), measured by the conditional entropy of digit labels under the learned models at different time
points. F: Internal models generated by STDP for the 100 output neurons after 500 s. The network had not received any information about the
number of different digits that exist and the colors for different ways of writing the first 5 digits were assigned by the human supervisor. On the basis
of this assignment the test samples in row 3 of panel A had been recognized correctly.
doi:10.1371/journal.pcbi.1003037.g006
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operation on these if it could autonomously detect repeatedly

occurring spatio-temporal patterns within this high-dimensional

input stream, and report their occurrence through a self-

organizing sparse coding scheme to other microcircuits. We have

created such input streams with occasionally repeated embedded

spike patterns for the computer experiment reported in Fig. 7.

Fig. 7D demonstrates that sparse output codes for the 5 embedded

spike patterns emerge after applying STDP in a WTA circuit for

200 s to such input stream. Furthermore, we show in the

Supplement that these sparse output codes generalize (even

without any further training) to time-warped versions of these

spike patterns.

Even though our underlying probabilistic generative model

(Fig. 1B) does not include time-dependent terms, the circuit in this

example performs inference over time. The reason for this is that

synapses that were active when a neuron fired become reinforced

by STDP, and therefore make the neuron more likely to fire again

when a similar spatial pattern is observed. Since we use EPSPs that

smoothly decay over time, one neuron still sees a trace of previous

input spikes as it fires again, and thus different spatial patterns

within one reoccurring spatio-temporal pattern are recognized by

the same neuron. The maximum length for such patterns is

determined by the time constants of EPSPs. With our parameters

(1 ms rise, 15 ms decay time constant) we were able to recognize

spike patterns up to 50–100 ms. For longer spatio-temporal

patterns, different neurons become responsive to different parts of

the pattern. The neuron that responds mostly to noise in Figs. 7D

did not learn a specific spatial pattern, and therefore wins by

default when none of the specialized neurons responds. Similar

effects have previously been described [59,68], but for different

neuron models, classical STDP curves, and not in the context of

probabilistic inference.

For this kind of task, where also the exact timing of spikes in the

patterns matters (which is not necessarily the case in the examples

in Figs. 3, 5, and 6, where input neurons generate Poisson spike

trains with different rates), we found that the shape of the STDP

kernel plays a larger role. For example, a time-inverted version of

the SEM rule, where pre-before-post firing causes LTD instead of

LTP, cannot learn this kind of task, because once a neuron has

learned to fire for a sub-pattern of the input, its firing onset is

shifted back in time, rather than forward in time, which happens

with standard SEM, but also with classical STDP [50,59]. Instead,

with a time-inverted SEM rule, different neurons would learn to

fire stronger for the offsets of different patterns.

Figure 7. Output neurons self-organize via STDP to detect and represent spatio-temporal spike patterns. A: Sample of the Poisson
input spike trains at 20 Hz (only 100 of the 500 input channels are shown). Dashed vertical lines mark time segments of 50 ms length where spatio-
temporal spike patterns are embedded into noise. B: Same spike input as in A, but spikes belonging to five repeating spatio-temporal patterns
(frozen Poisson spike patterns at 15 Hz) are marked in five different colors. These spike patterns are superimposed by noise (Poisson spike trains at
5 Hz), and interrupted by segments of pure noise of the same statistics (Poisson spike trains at 20 Hz) for intervals of randomly varying time lengths.
C, D: Firing probabilities and spike outputs of 6 output neurons (z-neurons in Fig. 1A) for the spike input shown in A, after applying STDP for 200 s to
continuous spike trains of the same structure (without any supervision or reward). These 6 output neurons have self-organized so that 5 of them
specialize on one of the 5 spatio-temporal patterns. One of the 6 output neurons (firing probability and spikes marked in black) only responds to the
noise between these patterns. The spike trains in A represent test inputs, that had never been shown during learning.
doi:10.1371/journal.pcbi.1003037.g007
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Such emergent compression of high-dimensional spike inputs

into sparse low-dimensional spike outputs could be used to merge

information from multiple sensory modalities, as well as from

internal sources (memory, predictions, expectations, etc.), and to

report the co-occurrence of salient events to multiple other brain

areas. This operation would be useful from the computational

perspective no matter in which cortical area it is carried out.

Furthermore, the computational modules that we have analyzed

can easily be connected to form networks of such modules, since

their outputs are encoded in the same way as their inputs: through

probabilistic spiking populations that encode for abstract multi-

nomial variables. Hence the principles for the emergence of

Bayesian computation in local microcircuits that we have

exhibited could potentially also explain the self-organization of

distributed computations in large networks of such microcircuits.

Discussion

We have shown that STDP induces a powerful unsupervised

learning principle in networks of spiking neurons with lateral

inhibition: spike-based Expectation Maximization. Each applica-

tion of STDP can be seen as a move in the direction of the M-step

in a stochastic online EM algorithm that strives to maximize the

log-likelihood log p(yDw) of the spike input y. This is equivalent to

the minimization of the Kullback-Leibler divergence between the

true distribution p�(y) of spike inputs, and the generative model

p(yDw) that is implicitly represented by the WTA circuit from the

Bayesian perspective. This theoretically founded principle guar-

antees that iterative applications of STDP to different spike inputs

do not induce a meaningless meandering of the synaptic weights w
through weight space, but rather convergence to at least a local

optimum in the fitting of the model to the distribution p�(y) of

high-dimensional spike inputs y. This generation of an internal

model through STDP provides the primary component for the

self-organization of Bayesian computation. We have shown that

the other component, the prior, results from a simple rule for use-

dependent adaptation of neuronal excitability. As a consequence,

the firing of a neuron zk in a stochastic WTA circuit (Fig. 1A) can

be viewed as sampling from the posterior distribution of hidden

causes for high-dimensional spike inputs y (and simultaneously as

the E-step in the context of online EM): A prior (encoded by the

thresholds wk0 of the neurons zk) is multiplied with a likelihood

(encoded through an implicit generative distribution defined by

the weights wk1, . . . ,wkn of these neurons zk), to yield through the

firing probabilities of the neurons zk a representation of the

posterior distribution of hidden causes for the current spike input

y. The multiplications and the divisive normalization that are

necessary for this model are carried out by the linear neurons in

the log-scale. This result is then transformed into an instantaneous

firing rate, assuming an exponential relationship between rate and

the membrane potential [38]. It is important that the neurons zk

fire stochastically, i.e., that there exists substantial trial-to trial

variability, since otherwise they could not represent a probability

distribution. Altogether our models supports the view that

probability distributions, rather than deterministic neural codes,

are the primary units of information in the brain, and that

computational operations are carried out on probabilities, rather

than on deterministic bits of information.

Following the ‘‘probabilistic turn’’ in cognitive science [3,4,69]

and related hypotheses in computational neuroscience [1,2,5],

probabilistic inference has become very successful in explaining

behavioral data on human reasoning and other brain functions.

Yet, it has remained an important open problem how networks of

spiking neurons can learn to implement those probabilistic

inference operations and probabilistic data structures. The soft

WTA model presented in this article provides an answer for the

case of Bayesian inference and learning in a simple graphical

model, where a single hidden cause has to be inferred from

bottom-up input. Although this is not yet a mechanism for

learning to perform general Bayesian inference in arbitrary

graphical models, it clearly is a first step into that direction.

Importantly, the encoding of posterior distributions through

spiking activity of the neurons zk in a WTA circuit is perfectly

compatible with the assumed input encoding from external

variables xj into spiking activity in y. Thus, the interpretation of

spikes from output neurons zk as samples of the posterior

distributions over hidden variables in principle allows for using

these spikes as input for performing further probabilistic inference.

This compatibility of input and output codes means that SEM

modules could potentially be hierarchically and/or recurrently

coupled in order to serve as inputs of one another, although it

remains to be shown how this coupling affects the dynamics of

learning and inference. Future research will therefore address the

important questions whether interconnected networks of modules

for Bayesian computation that emerge through STDP can provide

the primitive building blocks for probabilistic models of cortical

computation. Previous studies [23,25] have shown that intercon-

nected networks of WTA modules are indeed computationally

very powerful. In particular, [24,25] have recently shown how

recurrently connected neurons can be designed to perform neural

sampling, an approach in which time-independent probability

distributions can be represented through spiking activity in

recurrent neural networks. The question how salient random

variables come to be represented by the firing activity of neurons

has remained open. This paper shows that such representations

may emerge autonomously through STDP.

A prediction for networks of hierarchically coupled SEM

modules would be that more and more abstract hidden causes

can be learned in higher layers such as it has been demonstrated in

machine learning approaches using Deep Belief Networks [66]

and more recently in Deep Boltzmann Machines (DBM) [70].

This effect would correspond to the emergence of abstract feature

selectivity in higher visual areas of primates (e.g. face-selective cells

in IT, [71]). The hierarchical structure, however, that would result

from such deeply organized SEM-modules is more reminiscent of

a Deep Sum-Product Network [72], a recently presented new

architecture, which has a much simpler learning dynamics but

arguably a similar expressive power as DBM. In addition, with a

consistent input encoding, associations between different sensory

modalities could be formed by connecting inputs from different

low-level or high-level sources to a single SEM.

Importantly, while the discussion above focused only on the

representation of complex stimuli by neurons encoding abstract

hidden causes, SEM can also be an important mechanism for fast

and reliable reinforcement learning or decision making under

uncertainty. Preprocessing via single or multiple SEM circuits

provides an abstraction of the state of the organism, which is

much lower-dimensional than the complete stream of individual

sensory signals. Learning a behavioral strategy by reading out

such behaviorally relevant high-level state signals and mapping

them into actions could therefore speed up learning by reducing

the state space. In previous studies [21,73] we have shown how

optimal strategies can be learned very fast by simple local

learning rules for reinforcement learning or categorization, if a

preprocessing of input signals based on probabilistic dependen-

cies is performed. SEM would be a suitable unsupervised

mechanism for learning such preprocessing networks for decision

making.
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We also have shown that SEM is a very powerful principle that

endows networks of spiking neurons to solve complex tasks of

practical relevance (see e.g. Fig. 6), and as we have shown, their

unsupervised learning performance is within the range of

conventional machine learning approaches. Furthermore, this

could be demonstrated for computations on spike inputs with an

input dimension of about 1000 presynaptic neurons y1, . . . ,yn, a

number that approaches the typical dimension of the spike input

that a cortical neuron receives. A very satisfactory aspect is that

this high computational performance can be achieved by networks

of spiking neurons that learn completely autonomously by STDP,

without any postulated teacher or other guidance. This could

benefit the field of neuromorphic engineering [74–76], which

develops dedicated massively parallel and very efficient hardware

for emulating spiking neural networks and suitable plasticity rules.

The link between spiking neuron models and plasticity rules and

established machine learning concepts provides a novel way of

installing well-understood Bayesian inference and learning mech-

anisms on neuromorphic hardware. First steps towards imple-

menting SEM-like rules in different types of neuromorphic

hardware have been taken.

Prior related work
A first model for competitive Hebbian learning paradigm in

non-spiking networks of neurons had been introduced in [77].

They analyzed a Hebbian learning rule in a hard WTA network

and showed that there may exist equilibrium states, in which the

average change of all weight values vanishes for a given set of input

patterns. They showed that in these cases the weights adopt values

that are proportional to the conditional probability of the

presynaptic neuron being active given that the postsynaptic unit

wins (rather than the log of this conditional probability, as in our

framework). [78] showed that the use of a soft competition instead

of a hard winner assignment and corresponding average weight

updates lead to an exact gradient ascent on the log-likelihood

function of a generative model of a mixture of Gaussians.

However, these learning rules had not yet been analyzed in the

context of EM.

Stochastic approximation algorithms for expectation maximi-

zation [31] were first considered in [79], incremental and on-line

EM algorithms with soft-max competition in [80–82]. A proof of

the stochastic approximation convergence for on-line EM in

exponential family models with hidden variables was shown in

[29]. They developed a sophisticated schedule for the learning rate

in this much more general model, but did not yet consider

individual learning rates for different weights.

[54] initiated the investigation of STDP in the context of

unsupervised competitive Hebbian learning and demonstrated

that correlations of input spike trains can be learned in this way.

They also showed that this leads to a competition between the

synapses for the control of the timing of the postsynaptic action

potential. A similar competition can also be observed during

learning in our model, since our learning rule automatically drives

the weights towards satisfying the normalization conditions in Eq.

(10).

[83] present a network and learning model that is designed to

perform Independent Component Analysis (ICA) with spiking

neurons through STDP and intrinsic plasticity. The mixture

model of independent components can also be formulated as a

generative model, and the goal of ICA is to find the optimal

parameters of the mixing matrix. It has been shown that also this

problem can be solved by a variant of Expectation Maximization

[84], so there is some similarity to the identification of hidden

causes in our model.

Recently, computer experiments in [85,86] have used STDP in

the context of WTA circuits to achieve a clustering of input

patterns. Their STDP rules implements linear updates, indepen-

dent of the current weight values, mixed with a homeostasis rule to

keep the sum of all weights constant and every weight between 0

and 1. This leads to weights that are roughly proportional to the

probability of the presynaptic neuron’s firing given that the post-

synaptic neuron fires afterwards. The competition between the

output neurons is carried out as hard-max. In [85] the 4 output

neurons learn to differentiate the 4 presented patterns and

smoothly interpolate new rotated input patterns, whereas in [86]

48 neurons learn to differentiate characters in a small pixel raster.

[86] uses a STDP rule where both LTP and LTD are modeled as

exponentially dependent on the time difference. However, the very

specific experimental setting with synchronous regular firing of the

input neurons makes it difficult to generalize their result to more

general input spike trains. No theoretical analysis is provided in

[85] or [86], but their experimental results can be explained by

our SEM approach. Instead of adding up logs of conditional

probabilities and performing the competition on the exponential of

the sums, they sum up the conditional probabilities directly and

use this sum of probabilities for the competition. This can be seen

as a linear approximation of SEM, especially under the additional

normalization conditions that they impose by homeostasis rules.

It has previously been shown that spike patterns embedded in

noise can be detected by STDP [49,50,59]. Competitive pattern

learning through STDP has recently been studied in [68]. They

simulate a deterministic version of a winner-take-all circuit

consisting of a fixed number of neurons, all listening to the same

spiking input lines and connected to each other with a strong

inhibition. The STDP learning rule that they propose is additive

and weight-independent. Just like our results, they also observe

that different neurons specialize on different fixed repeated input

pattern, even though the repeated patterns are embedded in

spiking noise such that the mean activity of all inputs remains the

same throughout the learning phase. Additionally they show that

within each pattern the responsible neuron tries to detect the start

of the pattern. In contrast to our approach they do not give any

analysis of convergence guarantees, nor does their model try to

build a generative probabilistic model of the input distribution.

[87–89] investigated the possibility to carry out Bayesian

probabilistic computations in recurrent networks of spiking

neurons, both using probabilistic population codes. They showed

that the ongoing dynamics of belief propagation in temporal

Bayesian models can be represented and inferred by such

networks, but they do not exhibit any neuronal plausible learning

mechanism. [7] presented another approach to Bayesian inference

using probabilistic population codes, also without any learning

result.

An interesting complementary approach is presented in [90,91],

where a single neuron is modeled as hidden Markov model with

two possible states. This approach has the advantage, that the

instantaneous synaptic input does not immediately decide the

output state, but only incrementally influences the probability for

switching the state. The weights and the temporal behavior can be

learned online using local statistics. The downside of this approach

is that this hidden Markov model can have only two states. In

contrast, the SEM approach can be applied to networks with any

number of output neurons.

In [92] it was shown that a suitable rule for supervised spike-

based learning (the Tempotron learning rule) can be used to train

a network to recognize spatio-temporal spike patterns. This

discriminative learning scheme enables the recognizing neuron

to focus on the most discriminative segment of the pattern. In
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contrast, our generative unsupervised learning scheme drives the

recognizing neuron to generalize and spike many times during the

whole pattern, and thus learns the spatial average activity pattern.

The conductance based approach of [92] differs drastically from

our method (and the results shown in the Supplement) insofar as

here only STDP was used (focusing on average spatial patterns),

no supervision was involved, and the time-warped input pattern

had never been shown during training.

An alternative approach to implement the learning of gener-

ative probabilistic models in spiking neuronal networks is given in

[93,94]. Both approaches are based on the idea to model a

sequence of spikes in a Hidden-Markov-Model-like probabilistic

model and learn the model parameters through different variants

of EM, in which a sequence of spikes represents one single sample

of the model’s distribution. Due to the explicit incorporation of

inference over time, these models are more powerful than ours and

thus require non-trivial, non-local learning mechanisms.

Experimentally testable predictions of the proposed
model

Our analysis has shown, that STDP supports the creation of

internal models and implements spike-based EM if changes of

synaptic weights depend in a particular way on the current value

of the weight: Weight potentiation depends in an inversely

exponential manner on the current weight (see Eq. (5)). This rule

for weight potentiation (see Fig. 8A) is consistent with all published

data on this dependence: Fig. 5 in [43] and Fig. 5C in [40] for

STDP, as well as Fig. 10 in [95] and Fig. 1 in [96] for other

protocols for LTP induction. One needs to say, however, that

these data exhibit a large trial-to-trial variability, so that it is hard

to infer precise quantitative laws from them. On the other hand,

the applications of STDP that we have examined in Fig. 3–7 work

almost equally well if the actual weight increase varies by up to

100% from the weight increase proposed by our STDP rule (see

open circles in Fig. 8A). The resulting distribution of weight

increases matches qualitatively the above mentioned experimental

data quite well.

The prediction of our model for the dependence of the amount

of weight depression on the current weight is drastically different:

Even though we make the strong simplification that the depression

part of the STDP rule is independent of the time difference

between pre- and postsynaptic spike, the formulation in Eq. (5)

makes the assumption, that the amount of the depression should

be independent of the current weight value. It is this contrast

between an exponential dependency for LTP and a constant LTD

which makes the weight converge to the logarithm of the

conditional presynaptic firing probability in Eq. (6). In experi-

ments this dependency has been investigated in-vitro [40]. There it

has been found that the percentage of weight depression under

STDP is independent of the current weight, which implies that the

amount of depression is linear in the current weight value. This

seems to contradict the presented learning rule. However, the key

property that is needed for the desired equilibrium condition is the

ratio between LTP and LTD. So the equilibrium proof in Eq. (28)

remains unchanged if Dwki is multiplied (for potentiation and

depression) by some arbitrary function f (wki) of the current weight

value. Choosing for example f (wki)~wki yields a depression

whose percentage is independent of the initial value, which would

be consistent with the above mentioned in-vitro data [40]. The

resulting dependence for potentiation is plotted in Fig. 8B. Since

this curve is very similar to that of Fig. 8A, the above mentioned

experimental data for potentiation are too noisy to provide a clear

vote for one of these two curves. Thus more experimental data are

needed for determining the dependence of weight potentiation on

the initial weight. Whereas the relevance of this dependency had

previously not been noted, our analysis suggests that such a

contrast it is in fact essential for the capability of STDP to create

internal models for high-dimensional spike inputs.

Our analysis has shown, that if the excitability of neurons is also

adaptive, with a rule as in Eq. (7) that is somewhat analogous to

that for synaptic plasticity, then neurons can also learn appropriate

priors for Bayesian computation. Several experimental studies

have already confirmed, that the intrinsic excitability of neurons

does in fact increase when they are more frequently activated [45],

see [97], [14] and [39] for reviews. But a quantitative study, which

relates the resulting change in intrinsic excitability to its initial

value, is missing.

Our model proposes that pyramidal neurons in cortical

microcircuits are organized into stochastic WTA circuits, that

together represent a probability distribution. This organization is

achieved by a suitably regulated common inhibitory signal, where

the inhibition follows the excitation very closely. Such instanta-

neous balance between excitation and inhibition was described by

[34]. A resulting prediction of the WTA structure is that the firing

activity of these neurons is highly de-correlated due to the

inhibitory competition. In contrast to previous experimental

Figure 8. Ideal dependence of weight potentiation under STDP on the initial value of the weight (solid lines). Open circles represent
results of samples from this ideal curve with 100% noise, that can be used in the previously discussed computer experiments with almost no loss in
performance. A: Dependence of weight potentiation on initial weight according to the STDP rule in Eq. (5). B: Same with an additional factor w.
doi:10.1371/journal.pcbi.1003037.g008
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results, that reported higher correlations, it has recently been

confirmed in [35] for the visual cortex of awake monkey that

nearby neurons, even though they share common input show

extremely low correlations.

Another prediction is that neural firing activity especially for

awake animals subject to natural stimuli is quite sparse, since only

those neurons fire whose internal model matches their spike input.

A number of experimental studies confirm this predictions (see

[98] for a review). Our model also predicts, that the neural firing

response to stimuli exhibits a fairly high trial-to-trial variability, as

is typical for drawing repeated samples from a posterior

distribution (unless the posterior probability is close to 0 or 1). A

fairly high trial-to-trial variability is a common feature of most

recordings of neuronal responses (see e.g. [99], Fig. 1B in [100]; a

review is provided in [101]). In addition, our model predicts that

this trial-to-trial variability decreases for repeatedly occurring

natural stimuli (especially if this occurs during attention) and

discrimination capability improves for these stimuli, since the

internal models of neurons are becoming better fitted to their spike

input during these repetitions (‘‘sharpening of tuning’’), yielding

posterior probabilities closer to 1 or 0 for these stimuli. These

predictions are consistent with a number of experimental data

related to perceptual learning [102,103], and with the evolution of

neuronal responses to natural scenes that were shown repeatedly

in conjunction with nucleus basalis stimulation [104].

In addition our model predicts that if the distribution of sensory

inputs changes, the organization of codes for such sensory inputs

also changes. More frequently occurring sensory stimuli will be

encoded with a finer resolution (see [105] for a review of related

experimental data). Furthermore in the case of sensory deprivation

(see [106]) our model predicts that neurons that used to encode

stimuli which no longer occur will start to participate in the

encoding of other stimuli.

We have shown in Fig. 3 that an underlying background

oscillation on neurons that provide input to a WTA circuit speeds

up the learning process, and produces more precise responses after

learning. This result predicts that cortical areas that collaborate on

a common computational task, especially under attention, exhibit

some coherence in their LFP. This has already been shown for

neurons in close proximity [107] but also for neurons in different

cortical areas [108,109].

If one views the modules for Bayesian computation that we have

analyzed in this article as building blocks for larger cortical

networks, these networks exhibit a fundamental difference to

networks of neurons: Whereas a neuron needs a sufficiently strong

excitatory drive in order to reach its firing threshold, the output

neurons z of a stochastic WTA circuit according to our model in Eq.

(3) are firing already on their own - even without any excitatory

drive from the input neuron y (due to assumed background synaptic

inputs; modeled in our simulations by an Ornstein-Uhlenbeck

process, as suggested by in-vivo data [110]). Rather, the role of the

input from the y-neurons is to modulate which of the neurons in the

WTA circuit fire. One consequence of this characteristic feature is

that even relatively few presynaptic neurons y can have a strong

impact on the firing of the z-neurons, provided the z-neurons have

learned (via STDP) that these y-neurons provide salient information

about the hidden cause for the total input y from all presynaptic

neurons. This consequence is consistent with the surprisingly weak

input from the LGN to area V1 [16,111,112]. It is also consistent

with the recently found exponential distance rule for the connection

strength between cortical areas [112]. This rule implies that the

connection strength between distal cortical areas, say between

primary visual cortex and PFC, is surprisingly weak. Our model

suggests that these weak connections can nevertheless support

coherent brain computation and memory traces that are spread out

over many, also distal, cortical areas.

Apart from these predictions regarding aspects of brain compu-

tation on the microscale and macroscale, a primary prediction of our

model is that complex computations in cortical networks of neurons -

including very efficient and near optimal processing of uncertain

information - are established and maintained through STDP, on the

basis of genetically encoded stereotypical connection patterns (WTA

circuits) in cortical microcircuits.

Methods

According to our input model, every external multinomial variable

xj , with j~1, . . . ,m is encoded through a group Gj of neurons yi, with

i[Gj . The generative model p(xDh) from Fig. 1B is implicitly encoded

in the WTA circuit of Fig. 1A with K excitatory neurons zk by:

p(yjw)~
1

Z
:
XK

k~1

ewk0 : P
m

j~1
P

i[Gj

e
wki

: xj~v(i)
� �" #

~
1

Z

XK

k~1

e
wk0z

Pn
i~1

wki :yi

ð19Þ

where fxj~v(i)g is the binary indicator function of xj taking on value

v(i). In the generative model p(yDw) we define the binary variables yi

and set yi~1 if yi represents the value v(i) of the multinomial variable

xj (with j s.t. i[Gj ) and xj~v(i), otherwise yi~0. The sets Gj

represent a partition of f1, . . . ,ng, thus Pm
j~1 Pi[Gj

ewkiyi and the

form Pn
i~1 ewkiyi used in Eq. (9) are equivalent expressions. The value

of the normalization constant Z can be calculated explicitly as

Z~
XK

k~1

ewk0 P
m

j~1
Zkj , with Zkj~

X
i[Gj

ewki : ð20Þ

This generative model can be rewritten as a mixture distribution with

parameters pk and mki:

p(yDw)~
XK

k~1

p(y,kDw)~
XK

k~1

pk
:P

n

i~1
m

yi
ki

" #
, ð21Þ

pk~p(kDw)~ewk0
Pm

j~1 Zkj

Z
ð22Þ

mki~p(yi~1Dk,w)~
ewki

Zkj

with i[Gj : ð23Þ

In order to show how the constants Zkj cancel out we write the full

joint distribution of y and the ‘‘hidden cause’’ k as the product of the

prior p(kDw) and the likelihood p(yDk,w):

p(y,kDw)~p(kDw):p(yDk,w) ð24Þ

~ewk0
Pm

j~1Zkj

Z
:P

n

i~1

ewki

Zkj

� �yi

with j such that i[Gj

ð25Þ
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j~1

1

Zkj
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(ewki )yi

 !
ð26Þ

~
1

Z
ewk0 :P

n

i~1
ewkiyi : ð27Þ

Under the normalization conditions in Eq. (10) the parameters

of the mixture distribution simplify to mki~ewki and pk~ewk0 ,

since all Zkj~1 and Z~1.

The generative model in Eq. (24) is well defined only for

vectors y, such that there is exactly one ‘‘1’’ entry per group Gj .

However, in the network model with rectangular, renewable

EPSPs, there are time intervals where y(t) may violate this

condition, if the interval between two input spikes is longer that s.

It is obvious from Eq. (24) that this has the effect of dropping all

factors representing xj , since this results in an exponent of 0.

Under proper normalization conditions (or at least if all Zkj have

identical values), this drop of an entire input group in the

calculation of the posterior in Eq. (11) is identical to performing

inference with unknown xj (see ‘Impact of missing input values’).

Eq. (11) holds aslong as there are no two input spikes from

different neurons within the same group closer than s, which we

have assumed for the simple input model with rectangular,

renewable EPSPs.

Equilibrium condition
We will now show that all equilibria of the stochastic update rule

in Eq. (5) and Eq. (7), i.e., all points where Ep�w ½Dw�~0, exactly

match the implicit solution conditions in Eq. (46), and vice versa:

E½Dwki�~0 up�w(yi~1jzk~1)(e{wki {1){p�w(yi~0jzk~1)~0

up�w(yi~1jzk~1)(e{wki {1)z

p�w(yi~1jzk~1){1~0

up�w(yi~1jzk~1)e{wki~1

uwki~log p�w(yi~1jzk~1):

ð28Þ

Analogously, one can show that

Ep�w ½Dwk0�~0uwk0~log p�w(zk~1). Note that this result implies

that the learning rule in Eq. (5) and Eq. (7) has no equilibrium

points outside the normalization conditions in Eq. (10), since all

equilibrium points fulfill the implicit solutions condition in Eq. (46)

and these in turn fulfill the normalization conditions.

Details to Learning the parameters of the probability
model by EM

In this section we will analyze the theoretical basis for

learning the parameters w of the generative probability model

p(y,kDw) given in Eq. (9) from a machine learning perspective.

In contrast to the intuitive explanation of the Results section

which was based on Expectation Maximization we will now

derive an implicit analytical solution for a (locally) optimal

weight vector w, and rewrite this solution in terms of log

probabilities. We will later use this derivation in order to show

that the stochastic online learning rule provably converges

towards this solution.

For an exact definition of the learning problem, we assume that

the input is given by a stream of vectors y, in which every y is

drawn independently from the input distribution p�(y). In

principle, this stream of y’s corresponds to the samples

y(t1),y(t2), . . . that are observed at the spike times t1,t2, . . . of

the circuit. However, in order to simplify the proofs in this and

subsequent sections, we will neglect any possible temporal

correlation between successive samples.

The learning task is to find parameter values w, such that the

marginal p(yDw) of the model distribution p(y,kDw) approximates

the actual input distribution p�(y) as accurately as possible. This is

equivalent to minimizing the Kullback-Leibler divergence between

the two distributions:

KL(p�(y)jjp(yjw))~
X

y

p�(y)log
p�(y)

p(yjw)

~{Hp� (y){Ep� ½log p(yjw)�,
ð29Þ

where Hp� (y) is the (constant) entropy of the input distribution

p�(y), and Ep� ½:� denotes the expectation over y, according to the

distribution p�(y). Since Hp� (y) is constant, minimizing the right

hand side of Eq. (29) is equivalent to maximizing the expected log

likelihood L(w)~Ep� ½log p(yDw)�.
There are many different parametrizations w that define

identical generative distributions p(y,kDw) in Eq. (24). There is,

however, exactly one w0 in this sub-manifold of the weight space

that fulfills the normalization conditions in Eq. (10).

We thus redefine the goal of learning more precisely as the

constrained maximization problem

max L(w) ð30Þ

subject to
XK

k~1

ewk0~1 and
X
i[Gj

ewki ~1 for all k, j: ð31Þ

This maximization problem never has a unique solution w,

because any permutation of the values of k and their

corresponding weights leads to different joint distributions

p(y,kDw), all of them having identical marginals p(yDw). The

local maxima of Eq. (30) can be found using the Lagrange

multiplier method.

Note that we do at no time enforce normalization of w during

the learning process, nor do we require normalized initialization of

w. Instead, we will show that the learning rule in Eq. (5,7)

automatically drives w towards a local maximum, in which the

normalization conditions are fulfilled.

Under the constraints in Eq. (31) the normalization constant Z

in Eq. (21) equals 1, thus L(w) simplifies to Ep� ½log
PK

k~1 euk � -

with uk~wk0z
Pn

i~1 wki
:yi - and we can define a Lagrangian

function ~LL(w,l) for the maximization problem in Eq. (30,31) by

~LL(w,l)~Ep� ½log
XK

k~1

euk �{l0 1{
XK

k~1

ewk0

 !
{

XK

k~1

Xm

j~1

lkj 1{
X
i[Gj

ewki

0
@

1
A:

ð32Þ

Setting the derivatives to zero we arrive at the following set of

equations in w and l:
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Vk :
L~LL

Lwk0

~Ep� ½
eukPK
l~1 eul

�{l0ewk0~0 ð33Þ

Vk,i :
L~LL

Lwki

~Ep� ½yi

eukPK
l~1 eul

�{lkje
wki~0: ð34Þ

Summing over those equations that have the same multiplier lkj or

l0, resp., leads to

XK

k~1

L~LL

Lwk0
~
XK

k~1

Ep� ½p(kDy,w)�{l0

XK

k~1

ewk0~0 ð35Þ

Vk,j :
X
i[Gj

L~LL

Lwki

~
X
i[Gj

Ep� ½yi p(kDy,w)�{lkj

X
i[Gj

ewki~0, ð36Þ

where p(kDy,w) is the shorthand notation for the equivalent

expression e
ukPK

l~1
e
ul

. The identity
PK

k~1 Ep� ½p(kDy,w)�~1, the

identity
P

i[Gj
Ep� ½yi p(kDy,w)�~Ep� ½p(kDy,w)

P
i[Gj

yi� the fact

that
P

i[Gj
yi~1, which follows from the definition of population

encoding, and the constraints in Eq. (31) are used in order to

derive the explicit solution for the Lagrange multipliers

l0~1 and Vk,j : lkj~Ep� ½p(kDy,w)�, ð37Þ

in dependence of w. We insert this solution for l into the gradient

Eq. (33,34) and get

Ep� ½p(kDy,w)�{ewk0~0 ð38Þ

Ep� ½yi p(kDy,w)�{Ep� ½p(kDy,w)�ewki ~0,

from which we derive an implicit solution for w:

wk0~log Ep� ½p(kDy,w)� ð39Þ

wki~log
Ep� ½yi p(kDy,w)�
Ep� ½p(kDy,w)� :

It is easily verified that all fixed points of this implicit solution

satisfy the normalization constraints:

XK

k~1

ewk0~
XK

k~1

Ep� ½p(kDy,w)�~Ep� ½
XK

k~1

p(kDy,w)�~1 ð40Þ

X
i[Gj

ewki ~
X
i[Gj

Ep� ½yi p(kDy,w)�
Ep� ½p(kDy,w)� ~

Ep� ½p(kDy,w)
P

i[Gj
yi�

Ep� ½p(kDy,w)� ~1: ð41Þ

Finally, in order to simplify the notation we use the augmented

input distribution p�w(y,z). The expectations in Eq. (39) nicely

evaluate to

Ep� ½p(zk~1jy,w)�~
X

y

p�(y)p(zk~1jy,w)

~
X

y

p�w(y,zk~1)~
ð42Þ

~p�w(zk~1) and ð43Þ

Ep� ½yi p(zk~1jy,w)�~
X

y

p�(y)yi p(zk~1jy,w)

~
X

y

yi p�w(y,zk~1)~
ð44Þ

~p�w(yi~1,zk~1), ð45Þ

which allows us to rewrite the implicit solution in a very intuitive

form as:

wk0~log p�w(zk~1) wki~log p�w(yi~1Dzk~1): ð46Þ

Any weight vector w that fulfills Eq. (46) is either a (local)

maximum, a saddle point or a (local) minimum of the log

likelihood function L under the normalization constraints.

An obvious numerical approach to solve this fixed point equation is

the repeated application of Eq. (39). According to the derivations in the

Results section this corresponds exactly to the Expectation Maximi-

zation algorithm. But every single iteration asks for the evaluation of

expectations with respect to the input distribution p�(y), which

theoretically requires infinite time in an online learning setup.

Details to Spike-based Expectation Maximization
We derive the update rule in Eq. (5) from the statistical

perspective that each weight can be interpreted as wki~log aki

Nki
,

where aki and Nki correspond to counters of the events

Syi~1,zk~1T and Szk~1T. Every new event Syi,zkT leads to

a weight update

wnew
ki ~log

akizyizk

Nkizzk

~ ð47Þ

~log
aki

Nki

(1z
1

Nki

Nki

ai

yizk)(1z
1

Nki

zk){1 ð48Þ

~wkizlog(1z
1

Nki

e{wki yizk)

{log(1z
1

Nki

zk)

ð49Þ

&wkiz
1

Nki

zk(e{wki yi{1), ð50Þ

where the log-function is linearly approximated around 1 as

log(1zx)&x. The factor
1

Nki

is understood as learning rate gki in

the additive update rule wnew
ki ~wkizgkiDwki. If zk~0, i.e. if there

(38)

(39)
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is no postsynaptic spike, the update Dwki~0. In the case of a

postsynaptic spike, i.e., zk~1, the update Dwki~0 decomposes in

the two cases yi~1 and yi~0 as it is stated explicit in Eq. (5).

As a side note, we observe that by viewing our STDP rule as an

approximation to counting statistics, the learning rate gki~
1

Nki

can be understood as the inverse of the equivalent sample size

from which the statistics was gathered. If the above rule is used

with a small constant learning rate we will get a close

approximation to an exponentially decaying average. If the

learning rate decays like
1

Nki

we will get an approximation to an

online updated average, where all samples are equally weighted.

We will come back to a regulation mechanism for the learning rate

in the section ‘Variance Tracking’.

Details to Proof of convergence
In this section we give the proof of Theorem 1. Formally, we

define the sequences w(t), Dw(t), y(t), z(t) and g(t) for t~0,1, . . . ,?:

For all t we assume that y(t) is drawn independently from p�(y).

The value of z(t) is drawn from the posterior distribution of the

model p(zDy(t),w(t)) (see Eq. (11)), given the input y(t) and the

current model parameters w(t). The weight updates Dw
(t)
ki , and

Dw
(t)
k0, are calculated according to Eq. (5) and (7) with c~1. The

sequence of weight vectors w(t) is determined by the randomly

initialized vector w(0), and by the iteration equation

w(tz1)~P w(t)zg(t)Dw(t)
� �

: ð51Þ

The projection function P represents a coordinate-wise clipping of

w(tz1) to a hyper-rectangle B such that

{wminƒw
(tz1)
ki ƒ0 and {wminƒw

(tz1)
k0 ƒ0: ð52Þ

The bound wmin is assumed to be chosen so that all (finite) maxima

of L are inside of B. For the sequence of learning rates g(t) we

assume that

X?
t~1

g(t)~? and
X?
t~1

(g(t))2
v?: ð53Þ

Under these assumptions we can now restate the theorem

formally:

Theorem 1: The sequence w(t) converges with probability 1 to the set SB

of all points within the hyper-rectangle B that fulfill the equilibrium conditions

in Eq. (6). The stable convergence points among SB are the (local) maxima of

L, subject to the normalization constraints in Eq. (10).

The iterative application of the learning rule in Eq. (5) and (7) is

indeed a stochastic approximation algorithm for learning a

(locally) optimal parameter vector w. We resort to the theory of

stochastic approximation algorithms as presented in [52] and use

the method of the ‘‘mean limit’’ ordinary differential equation

(ODE). The goal is to show that the sequence of the weight vector

w(t) under the stochastic learning rule in Eq. (5) and (7) converges

to one of the local maxima of Eq. (30) with probability one, i.e., the

probability to observe a non-converging realization of this

sequence is zero. The location of the local maximum to which a

single sequence of w(t) converges depends on the starting point w(0)

as well as on the concrete realization of the stochastic noise

sequence. We will not discuss the effect of this stochasticity in more

detail, except for stating that a stochastic approximation algorithm

is usually less prone to get stuck in small local maxima than its

deterministic version. The stochastic noise introduces perturba-

tions that decrease slowly over time, which has an effect that is

comparable to simulated annealing.

We will use the basic convergence theorem of [52] to establish

the convergence of the sequence w(t) to the limit set of the mean

limit ODE. Then it remains to show that this limit set is identical

to the desired set of all equilibrium points and thus, particularly,

does not contain limit cycles.

Proof: In the notation of [52], the mean update of the

stochastic algorithm in Eq. (51) is �gg(w)~Ep�w ½Dw(t)�. The bounds B

imply that Ep�w ½DDDw(t)DD�v? for all t and supt Ep�w ½(Dw(t))2�v?.

For any set A we define F (A) as the positive limit set of the

mean limit ODE _ww(s)~�gg(w(s)) for all initial conditions w(0)[A:

F (A)~ lim
s??

[
w[A

w(s’),s’§s : w(0)~wf g: ð54Þ

According to Theorem 3.1 in Chapter 5 of [52], the sequence w(t)

under the algorithm in Eq. (51) converges for all start conditions

w(0)[B to the limit set F (B) with probability one in the sense that

lim
t??

min
w[F (B)

Dw(t){wD~0: ð55Þ

We will now show that the limit set F (B) of _ww~�gg(w) is identical

to the set of stationary points SB~ w[B : �gg(w)~0f g and does not

contain limit cycles. It is obvious that SB is a subset of F (B) since

for all initial conditions w(0)[SB the trajectory of _ww(s)~�gg(w(s))
fulfills w(s):w(0) for all s. Thus it remains to be shown that there

are no other points in FB (like e.g. limit cycles).

We split the argument into two parts. In the first part we will

show that for s?? all trajectories of _ww(s)~�gg(w(s)) converge

asymptotically to the manifold H defined by the normalization

constraints 31. This leads to the conclusion that

F (B\H)5F (B\H). In the second part we will show that all

trajectories within H converge to the stationary points SB, i.e.,

F (B\H)~SB. Both parts together yield the desired result that SB

are the only limit points of the ODE _ww(s)~�gg(w(s)).

The first part we start by defining the set of functions h0(w) and

hkj(w) for all k,j to represent the deviation of the current w from

each of the normalization constraints 31, i.e.,

h0(w)~
XK

k~1

ewk0{1 hkj(w)~
X
i[Gj

ewki {1: ð56Þ

The manifold H is the set of all points w where h0(w)~0 and

hkj(w)~0 for all k,j. Furthermore, we calculate the gradient vectors

Lh0

Lw
and

Lhkj

Lw
for each of these functions with respect to the

argument w. Note that many entries of these gradient vectors are 0,

since every single function hkj(w) and h0(w) only depends on a few

entries of its argument w. The nonzero entries of these gradients are

Lh0

Lwk0
~ewk0 Vi[Gj :

Lhkj

Lwki

~ewki : ð57Þ

We can now show that the trajectory of _ww(s)~�gg(w(s)) in any point

w(s) always points in direction of decreasing absolute values for all

deviations h0() and hkj():
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�gg(w):
Lh0

Lw
~
XK

k~1

(Ep� ½zk�e{wk0{1) ewk0 ~ 1{
XK

k~1

ewk0 ð58Þ

~{h0(w) ð59Þ

�gg(w):
Lhkj

Lw
~
X
i[Gj

(Ep� ½yi zk�e{wki{Ep� ½zk�) ewki

~ p(kjy,w)(1{
X
i[Gj

ewki )

ð60Þ

~{p(kDy,w)hkj(w) ð61Þ

This shows that lims?? hkj(w(s))~0 for all k,j and

lims?? h0(w(s))~0. This implies that the limit set of all

trajectories with initial conditions outside H is contained in H, or

more formally F (B\H)(B\H. Note that the continuity and the

boundedness of �gg(w) on B implies F (F (A))~F (A) and

F (A1)(F(A2) if A1(A2 for all A,A1,A2(B. Therefore we can

now conclude as the result of the first part

F (B\H)~F (F (B\H))(F (B\H), ð62Þ

i.e. the limit set of all trajectories starting outside the manifold of

normalized weights is contained in the limit set of all trajectories

starting within the normalization constraints. The equations (61)

also prove that any trajectory with initial condition w(0)[H stays

within H, since all components of �gg(w(s)) with directions

orthogonal to the tangent space of H in w(s) are 0 for all s, thus

�gg(w(s)) is in the tangent space H in w(s).

This immediately leads to the second part of the proof, which is

based on the gradient
L~LL

Lw
of the Lagrangian ~LL as given in Eq. (33,

34). For any w[H let P(w) be the linear projection matrix that

orthogonally projects any vector a into the tangent space of H in

w. The projection P(w):
L~LL(w)

Lw
of the gradient of ~LL at any w[H

points towards the strongest increase of the value of the objective

function L under the constraints of the normalization conditions.

Thus, the value of L increases in the direction of any vector within

the tangent space of H in w that has a positive scalar product with

P(w):
L~LL(w)

Lw
. As �gg(w) is a tangent vector of H in w for all w[H , the

orthogonal component
L~LL(w)

Lw
{P(w):

L~LL(w)

Lw
of the gradient is

orthogonal to �gg(w). Thus, the value of the scalar product with the

projected gradient �gg(w):(P(w):
L~LL(w)

Lw
) is identical to the value of

the scalar product with the gradient itself �gg(w):
L~LL(w)

Lw
:

�gg(w):
L~LL(w)

Lw
~
XK

k~1

LL

Lwk0
(Ep�w ½zk�e{wk0{1)

z
X
i,k

LL

Lwki

(Ep�w ½zkyi�e{wki{Ep�w ½zk�)
ð63Þ

~
XK

k~1

e{wk0 (Ep� ½p(z~kDy,w){ewk0 �)2z

z
X
i,k

e{wki (Ep� ½(yi{ewki )p(z~kDy,w)�)2
§0,

with equality if and only if �gg(w)~0, which is equivalent to

L~LL(w)

Lw
~0. This shows that all trajectories with initial condition

w(0)[H stay within H forever and converge to the set of stationary

points SH , i.e. F (B\H)~SH . Combining the results of both parts

as

F(B)~F (B\H)|F (B\H)~F (B\H)~SB ð64Þ

establishes the stochastic convergences of any sequence w(t) to the

set SB with probability one.

Weight offsets and positive weights. All weights wki in the

theoretical model are logs of probabilities and therefore always

have negative values. Through a simple transformation we can

shift all weights into the positive range in order to be able to use

positive weights only, which is the common assumption for

excitatory connections in biologically inspired neural network

models. We will now show that setting the parameter c in Eq. (5)

different from 1 leads to a linear shift of the resulting weight values

by log c, without changing the functionality of the Spike-based

EM algorithm.

Firstly, we observe that the application of the update rule in Eq. (5)

with cw1 on a shifted weight w
0

ki
~wkizlog c is identical to the

application of the update rule with c~1 on the original weight wki,

since

ce

{( wkizlog c|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
w
0
ki

)

{1~e{wki {1: ð65Þ

Secondly, we see that the relative firing rate qk(t) of neuron zk remains

unchanged if all weights are subject to the same offset log c, since

qk(t)~
e

wk0z
Pn

i~1
(wkizlog c)yiPK

k’~1 e
wk’0z

Pn
i~1

(wk’izlog c)yi
ð66Þ

~
e

log c
Pn

i~1
yi

	 

e

wk0z
Pn

i~1
wkiyiPK

k0~1 e
log c
P

n
i~1

yi
	 


e
w

k00z
Pn

i~1
w

k0 iyi
ð67Þ

~
e

wk0z
Pn

i~1
wkiyiPK

k’~1 e
wk’0z

Pn
i~1

wk’iyi
ð68Þ

In contrast, the overall firing rate R(t) increases by the factor

e
log c
Pn

i~1
yi . By our definition of the population coding for y, this

factor equals em log c, where m is the number of original input variables

x. An increase of the inhibitory signal I(t) by m log c can therefore

compensate the increase of overall firing rate. Using this
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shifted representation, a single excitatory synapse can take on values

in the range ½0,log c�, corresponding to probabilities in the range

½1
c

,1�.
Similarly the consideration holds valid that it is mathematically

equivalent whether the depression of the excitability wk0 in Eq. (7)

is modeled either as an effect of lateral spiking activity or as a

constant decay, independent of the circuit activity. In the first case,

wk0 converges to the relative spiking probability of the k{th
neuron such that the sum of all wk0 is indeed 1 as described by our

theory. In the second case, the wk0 really describe absolute firing

rates in some time scale defined by the decay constant. In the

logarithmic scale of wk0 this is nothing else than a constant offset

and thus cancels down in Eq. (68).

Impact of missing input values. The proof of theorem 1

assumes that every sample y(t) gathered online is a binary vector

which contains exactly one entry with value 1 in every group Gj .

This value indicates the value of the abstract variable xj that is

encoded by this group. As long as the spikes from the input neurons

are closely enough in time, this condition will be fulfilled for every

activation vector y(t). For the cases in which the value of the abstract

variable xj changes, the first spike from group Gj has to appear

exactly at that point in time at which the rectangular EPSP for the

previous value vanishes, i.e., s ms after the last preceding spike.

We will now break up this strong restriction of the provable

theory and analyze the results that are to be expected, if we allow

for interspike intervals longer than s. We interpret the resulting

‘‘gaps’’ in the information about the value of an input group as

missing value in the sense of Bayesian inference.

We had already addressed the issue of such missing values,

resulting from presynaptic neurons that do not spike within the

integration time window of an output neuron zk, in the discussion

of Fig. 3.

A profound analysis of the correct handling of missing data in

EM can be found in [48]. Their analysis implies that the correct

learning action would be to leave all weights wki in the group Gj

unchanged, if the value of the external variable xj is missing, i.e., if

all corresponding yi’s are 0. However, in this case the STDP rule

in Eq. (5) reduces these weights by g. This leads to a modification

of the analysis of the equilibrium condition (28):

E½Dwki�~0 u (1{r)

p�(yi~1jzk~1)g(e{wki{1){p�(yi~0jzk~1)gð Þ

{rg~0

uwki~log p�(yi~1jzk~1)zlog(1{r),

ð69Þ

where r is the probability that i belongs to a group Gj in which the

value of xj is unknown. We assume that the probability for such a

missing value event is independent of the (true) value of the

abstract variable xj and we assume further that the probability of

such missing value events is the same for all groups Gj and thus

conclude that this offset of log(1{r) is expected to be the same for

all weights. It can easily be verified, that such an offset does not

change the resulting probabilities of the competition in the

inference according to Eq. (68).

Adaptive learning rates with Variance Tracking. In our

experiments we used an adaptation of the variance tracking

heuristic from [73] for an adaptive control of learning rates. If we

assume that the consecutive values of the weights represent

independent samples of their true stochastic distribution at the

current learning rate, then this observed distribution is the log of a

beta-distribution defined by the parameters aki and Nki that were

used in Eq. (50) to define the update of wki from sufficient statistics.

Analytically (see supplement) this distribution has the first and

second moments

E½wki�&log
aki

Ni

and E½w2
ki�&E½wki�2z

1

aki

z
1

Ni

: ð70Þ

From the first equation we estimate 1
aki

~ e{E½w�
Ni

. This leads to a

heuristic estimate for the (inverse of the) current sample size based

on the empirically observed variance E½w2
ki�{E½wki�2:

gnew
ki ~

1

Ni

~
E½w2

ki�{E½wki�2

e{E½wki �z1
: ð71Þ

The empirical estimates of these first two moments can be

gathered online by exponentially decaying averages using the same

learning rate gki. Even though the assumption of independent

samples for the estimates of the moments is not met, one can argue

about two cases: In case of a stationary evolution of the weight, the

strong dependence of consecutive samples typically leads to an

underestimation of the variance. This in turn leads to a decrease of

the learning rate which is the desired effect of a stationary

evolution. In case of a directed evolution of the weight the variance

will at least indicate the amount of the current gradient of the

evolution despite the strong dependence and thus keep the

learning rate high enough to support fast convergence towards the

asymptote of the gradient.

An adaptive learning rate such as in Eq. (71) facilitates a

spontaneous reorganization of the internal models encoded by the

weight vectors of the output neurons zk in case that the input

distribution p�(y) changes (see Fig. S1 in Text S1).

Details to Role of the Inhibition
Biased sampling problem. In this section we analyze the

influence of the instantaneous output firing rate R(t) of the

learning circuit and derive the analytical result that the output rate

R(t) plays the role of a multiplicative weighting of samples during

learning. We show how a theoretically optimal inhibition signal

can compensate this effect and describe how this compensation is

approximated in our experiments.

We start with the assumption that the input signal y(t) can be

described by some stationary stochastic process. An empirical

estimate of its stationary distribution can be obtained by

measuring the relative duration of presentation of every

different discrete value y in a time window of length T . The

accuracy of this empirical estimate of the input distribution can

be increased by using a longer time window T , such that in the

limit of an infinitely large time window the estimate will

converge to the true stationary input distribution of y, denoted

by p�(y):

p�(y)~ lim
T??

1

T

ðT

0

d(y{y(t))dt, ð72Þ

where d is a vectorized version of the Kronecker Delta with

d(0)~1 and d(x)~0, if x=0.

However, even though the WTA-circuit receives this time-

continuous input stream y(t), the spike-triggered STDP rule in Eq.

(5) and (7) updates the model parameters - i.e. the synaptic weights

- only at those time points where one of the output neurons spikes.

We denote by p�S(y) the (empirical) distribution that is obtained

from the observations of y(t) at the first S spike events t
f
1,t

f
2, . . . ,t

f
S :
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p�S(y)~
1

S

XS

s~1

d(y{y(tf
s )): ð73Þ

The distribution p�S(y) that is seen by the learning rule in Eq. (5)

depends not only on the time-continuous input stream y(t), but

also on the concrete spike times tf
s of the circuit. The output spikes

thus serve as trigger events at which the continuous input signal is

sampled.

The spike times t
f
1,t

f
2, . . . ,t

f
S and the total number of spikes S of

the whole circuit within a time window of length T are distributed

according to an inhomogeneous Poisson process with the

instantaneous rate R(t). For any stochastic realization of S and

tf
s in the time interval 0 to T , we can derive the expectation of the

function p�S(y) by taking the limit for T?? and call this the

expected empirical distribution p�R(t)(y). Thus

p�R(t)(y)~ lim
T??

E
S,t

f
1

,...,t
f
S

1

S

XS

s~1

d(y{y(tf
s ))

" #
ð74Þ

~ lim
T??

ES E
t
f
1

,...,t
f
S

1

S

XS

s~1

d(y{y(tf
s ))DS

" #" #
, ð75Þ

where we divided the expectation into two parts. Firstly we take

the expectation over the total number S of spikes, secondly we take

the expectation over the spike times t1, . . . ,tS , given S. We now

make use of the fact that for any inhomogeneous Poisson process

R(t), conditioned on the total number of events S within a certain

time window T , the event times t
f
1, . . . ,t

f
S are distributed as order

statistics of S unordered independent samples t’f1, . . . ,t’fS from the

probability density
R(t’)Ð T

0
R(t)dt

. The expectation E
t’fs
½f (t’fs )DS� over

an arbitrary function f () is the integral

ðT

0

R(t’)Ð T

0
R(t)dt

f (t’)dt’,

independent of the event number s, thus

p�R(t)(y)~ lim
T??

ES

1

S

XS

s~1

E
t’ f

s
d(y{y(t’fs ))DS
� �" #

ð76Þ

~ lim
T??

ES
1

S
S

ðT

0

R(t’)Ð T

0
R(t)dt

d(y{y(t’))dt’

" #
ð77Þ

~ lim
T??

ES

ðT

0

R(t’)Ð T

0
R(t)dt

d(y{y(t’))dt’

" #
: ð78Þ

Since the remaining term within the expectation operator ES is

independent of S we obtain the final result

p�R(t)(y)~ lim
T??

1Ð T

0
R(t)dt

ðT

0

R(t)d(y{y(t))dt: ð79Þ

This shows that the output rate R(t) acts as a multiplicative

weighting of the contribution of the current input y(t) to the

expected empirical distribution p�R(t)(y), which is learned in the

limit of t?? by the simple STDP rule in Eq. (5) and (7).

It turns out that the condition of a constant rate R(t) is by far

stronger than necessary. In fact, it is easy to see from a comparison

of Eq. (72) and Eq. (79), that p�R(t)(y)~p�(y) for all values of y if

and only if the relative weight for the input value y, which isÐ T

0
R(t)d(y{y(t))dtÐ T

0
d(y{y(t))dt

, is independent of y in the limit T??. This

is certainly true if R(t) and y(t) are stochastically independent,

i.e. R(t) is not correlated to the occurrence of any specific value

of y.

Inhibition model in computer simulations. In our com-

puter simulation the inhibition is implemented by adding a

strongly negative impulse to the membrane potential of all z-

neurons whenever one of them fires, which decays with a time

constant of 5 ms back to its resting value. In addition, a noise term

v(t) is added to the membrane potential uk(t) that models

background synaptic inputs through an Ornstein-Uhlenbeck (OU)

process (as proposed in [110] for modeling in-vivo conditions) and

causes stochastic firing. For each experiment, all parameters for

the inhibition model are listed in ‘‘Simulation Parameters’’ in the

Supplementary Material.

Details to Continuous-Time Interpretation with Realistically
Shaped EPSPs

Let the external input vector x consist of multiple discrete-

valued functions in time xj(t), and let us assume that for every

input xj there exists an independent Poisson sampling process

with rate rj which generates spike times for the group of neurons

yi with i[Gj . At every spike time t
f
j there is exactly one neuron in

the group that fires a spike, and this is the neuron that is

associated with the value xj(t
f
j ). First, we analyze additive step-

function EPSPs, i.e. the postsynaptic activation ~yyi(t) is given by

the convolution in Eq. (17) where K is a step-function kernel with

K(t)~1 for 0vtvs for a fixed EPSP-duration s and K(t)~0
otherwise. In order to understand the resulting distribution qk(t)
in Eq. (4) as Bayesian inference we extend our underlying

generative probabilistic model p(x,kDh) such that it contains

multiple instances of the variable vector x, called x(1), . . . ,x(L),

where L is the total number of spikes from all input neurons yi

within the time window ½t{s,t�. We can see every spike as a

single event in continuous time. The full probabilistic model is

defined as

p(x(1), . . . ,x(L),kDw)~p(kDw)P
L

l~1
p(x(l)Dk,w), ð80Þ

which defines that the multiple instances are modeled as being

conditionally independent of each other, given k. Let the vectors

ŷy(l) describe the corresponding spike ‘‘patterns’’ in which every

binary vector ŷy(l) has exactly one 1 entry ŷy
(l)

i(l)
~1. All other values

are zero, thus it represents exactly one evidence for x(l), i.e.

x
(l)
j ~v(i(l)), with j, s.t. i(l)[Gj , according to the decoding in Eq.

(8).

Due to the conditional independences in the probabilistic model

every such evidence, i.e. every spike, contributes one factor

p(ŷy
(l)
i ~1Dk,w) to the likelihood term in the inference of the hidden

node k. The inference is expressed as
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p(kDŷy(1), . . . ,ŷy(L),w)~
ewk0
z}|{prior p(kDw)

: P
n

i~1
ewkið Þ

PL
l~1

ŷy
(l)
i

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{likelihood p(ŷy(1),...,ŷy(L) Dk,w)

XK

k’~1

ewk’0 P
n

i~1
(ewk’i )

PL
l~1

ŷy
(l)
i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p(ŷy(1),...,ŷy(L) Dw)

: ð81Þ

The identity ~yyi(t)~
PL

l~1 ŷy
(l)
i reveals that the above posterior distribution is

realized by the relative spike probability qk(t) of the network model

according to Eq. (4), where ~yy(t) replaces y(t) in the computation of

the membrane potential uk(t). Due to the step function K(t) the

result of the convolution in ~yyi(t) equals the number of spikes within

the time window ½t{s,t� from neuron yi. The factor ewki , which

has the meaning p(yi~1Dk,w) in the network model, is multiplied

~yyi(t) times to the likelihood.

The above discrete probabilistic model gives an interpretation

only for integer values of ~yyi(t), i.e. for functions K such that K(t) is

0 or any positive integer at any time t. For an interpretation of

arbitrarily shaped EPSPs K(t) - especially for continuously

decaying functions - in the context of our probabilistic model,

we now extend this weighting mechanism from integer valued

weights to real valued weights by a linear interpolation of the

likelihood in the log-space.

The obvious restrictions on the EPSP function K(t) are that it is

non-negative, zero for tv0, and

ð?
0

K(t)dtv?, in order to avoid

acausal or nondecaying behavior, and unboundedly growing

postsynaptic potentials at constant input rates. We assume the

normalization max K(t)~1. Let again t(1), . . . ,t(l), . . . be the times

of the past spiking events and i(1), . . . ,i(l), . . . be the indices of the

corresponding input neurons. The output distribution qk(t)can be

written as

qk(t)~
ewk0 P?

l~1 (e
w

ki(l) )K(t{t(l))PK
k’~1 ewk0 P?

l~1 (e
w

ki(l) )K(t{t(l))
, ð82Þ

which nicely illustrates that every single past spike at time t(l) is

seen as an evidence in the inference, but that evidence is weighted

with a value K(t{t(l)), which is between 0 and 1.

The analogous interpolation for continuous-valued input

activations ~yyi(t) yields the learning rule in Eq. (18), which is

illustrated in Fig. 2 as the ‘‘Complex STDP rule’’ (blue dashed

curve). The resulting shape of the LTP part of the STDP curve is

determined by the EPSP shape defined by K(t). The positive part

of the update in Eq. (18) is weighted by the value of ~yyi(t) at the

time of firing the postsynaptic spike. Negative updates are

performed if ~yyi(t) is close to zero, which indicates that no

presynaptic spikes were observed recently.

The proof of stochastic convergence does not explicitly assume

that y(t) is a binary vector, but is valid for any (positive) random

variable vector ~yy(t) with finite variance. Further, the proof assumes

the condition that in every group Gj the sum of the input activities

~yy(t)
i is 1 at all times or at least at those points in time at which one zk

neuron of the WTA-circuit fires. The condition can be relaxed such

that the sum per group does not have to be equal to 1 but to any

arbitrary (positive) constant if the corresponding normalization

constraint is adapted accordingly. Due to the decaying character of

the EPSP shape, this sum will never stay constant, even for very

regular input patterns. If we only assumed a constant average

activation within a group, allowing for stochastic fluctuations

around the target value, it turns out that this condition alone is not

enough. We need to further assume that these stochastic fluctuations

in the sum of every input group Gj are stochastically independent of

the circuit’s response zk. This assumption is intricate and may

depend on the data and the learning progress itself, so it will usually

not be exactly fulfilled. We can, however, argue that we are close to

independence if at least the sum of activity in every group Gj is

independent of the value of the underlying abstract variable xj .

In our simulations we obtain the input activations ~yyi(t) by

simulating biologically realistic EPSPs at every synapse, using a-

kernels with plausible time constants to model the contributions of

single input spikes.

Details to Spike-timing dependent LTD
We formalize the presynaptic activity of neuron yi after a

postsynaptic spike at time tf by ni, s.t. ni~1 if there is a spike from

neuron yi within the time window ½tf ,tf zs� and ni~0 otherwise.

This trace is used purely for mathematical analysis, and cannot be

known to the postsynaptic neuron at time tf , since the future input

activity is unknown. Mechanistically, however, ni can be

implemented as a trace updated by postsynaptic firing, and

utilized for plasticity at the time of presynaptic firing [113]. Let us

now consider the STDP rule illustrated by the red curve in Fig. 9,

where a depression of the synapse happens only if there is a

presynaptic spike within the short time window of length s after the

postsynaptic spike, i.e. if ni~1. The application of this STDP-rule

in our neuronal circuit is equivalent to the circuit-spike triggered

update rule

Dwki~zk(c:e{wki yi{d:ni) ð83Þ

which replaces Eq. (5). In analogy to Eq. (6) the equilibrium of this

new update rule can be derived as

E½Dwki�~0up(yi~1,zk~1)ce{wki{p(ni~1,zk~1)d~0 ð84Þ

uwki~log p�(yi~1jzk~1)

{log p�(ni~1jzk~1)zlog
c

d
,

ð85Þ

Figure 9. STDP learning curves with time-dependent LTD.
Under the simple STDP model (red curve), weight-dependent LTP
occurs only if the postsynaptic spike falls within a time window of
length s after the presynaptic spike, and LTD occurs in a time window
of the same length, but for the opposite order of spikes. This can be
extended to a more complex STDP rule (blue dashed curve), in which
both LTP and LTD follow a-kernels with different time constants,
typically with longer time-constants for LTD.
doi:10.1371/journal.pcbi.1003037.g009

(81)
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under the assumption that yi,ni and zk are sampled from a

stationary distribution p�(yi,ni,zk). This shows that the synaptic

weights can be interpreted as the log-likelihood ratio of the

presynaptic neuron firing before instead of after the postsyn-

aptic neuron. In other words, the neuron’s synaptic weights

learn the contrast between the current input pattern yi that

caused firing, and the following pattern of activity ni. Note that

any factor c (for LTP) or d (for LTD) only leads to a constant

offset of the weight which - under the assumption that the

offset is the same for all synapses - can be neglected due to the

WTA circuit (see Methods ‘‘Weight offsets and positive

weights’’).

Similarly to our analysis for the standard SEM rule, we can

derive a continuous-time interpretation of the timing-dependent

LTD rule. As we did in Eq. (17), we can define

~yyi(t)~
X

f

KP(t{t
f
i ) ~nni(t)~

X
f

KD(t{t
f
i ), ð86Þ

where KP is the same convolution kernel as in Eq. (17), and KD is

an arbitrary but time-inversed kernel, such that KD(t)~0 for

positive t and KD(t)w0 for negative t. The value of ni thus reflects

a time-discounted sum of presynaptic activity immediately after

the postsynaptic spike.

The complex STDP rule from Fig. 2, which models LTD as a

constant time-independent depression, can be seen as an extreme

case of the spike-timing dependent LTD rule. If KD is a step

function with KD(t)~ 1
s in the interval ½{s,0� and 0 everywhere

else, then ni is just the average rate of presynaptic activity in the

time interval ½tf ,tf zs� following a postsynaptic spike. In the limit

of s?? this is equivalent to the overall spiking rate of the neuron

yi, which is proportional to the marginal p(yi) in the probabilistic

model. Precisely, ni?rp(yi), where r is the base firing rate of an

active input in our input encoding model. The equilibrium point

of every weight wki becomes log p(yi~1Dzk~1){log p(yi),
neglecting the offsets induced by the constants c,d and r. It is

easy to see that the probabilistic interpretation of the neuronal

model from Eq. (4) is invariant under the transformation

w’ki~wki{log p(yi), since

qk(t)~
e

wk0z
Pn

i~1
(wki{log p(yi ))yiPK

k’~1 e
wk’0z

Pn
i~1

(wk’i{log p(yi ))yi
ð87Þ

~
e
Pn

i~1
yi log p(yi )

	 

e

wk0z
Pn

i~1
wkiyiP

K
k0~1

e
Pn

i~1
yi log p(yi )

	 

e

w
k00z

Pn
i~1

w
k0iyi

ð88Þ

~
e

wk0z
Pn

i~1
wkiyiPK

k’~1 e
wk’0z

Pn
i~1

wk’iyi
, ð89Þ

which proves that in our network model the complex STDP rule

from Fig. 2 is equivalent to an offset-free STDP rule in the limit of

an arbitrarily long window for LTD. In practice, of course, we can

assume that the times between pre- and post-synaptic spikes are

finite, and we have shown in Fig. 4 that as a result, very realistic

shapes of STDP curves emerge at intermediate stimulation

frequencies.

Supporting Information
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