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Abstract: Recent advances in auto-
mated high-resolution fluorescence
microscopy and robotic handling
have made the systematic and cost
effective study of diverse morpho-
logical changes within a large pop-
ulation of cells possible under a
variety of perturbations, e.g., drugs,
compounds, metal catalysts, RNA
interference (RNAi). Cell population-
based studies deviate from conven-
tional microscopy studies on a few
cells, and could provide stronger
statistical power for drawing exper-
imental observations and conclu-
sions. However, it is challenging to
manually extract and quantify phe-
notypic changes from the large
amounts of complex image data
generated. Thus, bioimage informat-
ics approaches are needed to rapidly
and objectively quantify and analyze
the image data. This paper provides
an overview of the bioimage infor-
matics challenges and approaches in
image-based studies for drug and
target discovery. The concepts and
capabilities of image-based screen-
ing are first illustrated by a few
practical examples investigating dif-
ferent kinds of phenotypic changes
caused by drugs, compounds, or
RNAi. The bioimage analysis ap-
proaches, including object detection,
segmentation, and tracking, are then
described. Subsequently, the quanti-
tative features, phenotype identifica-
tion, and multidimensional profile
analysis for profiling the effects of
drugs and targets are summarized.
Moreover, a number of publicly
available software packages for bio-
image informatics are listed for
further reference. It is expected that
this review will help readers, includ-
ing those without bioimage infor-
matics expertise, understand the
capabilities, approaches, and tools
of bioimage informatics and apply
them to advance their own studies.

1. Introduction

The old adage that a picture is worth a

thousand words certainly applies to the

identification of phenotypic variations in

biomedical studies. Bright field microsco-

py, by detecting light transmitted through

thin and transparent specimens, has been

widely used to investigate cell size, shape,

and movement. The recent development

of fluorescent proteins, e.g., green fluores-

cent protein and its derivatives [1],

enabled the investigation of the phenotyp-

ic changes of subcellular protein struc-

tures, e.g., chromosomes and microtu-

bules, revolutionizing optical imaging in

biomedical studies. Fluorescent proteins

are bound to specific proteins that are

uniformly located in relevant cellular

structures, e.g., chromosomes, and emit

longer wavelength light, e.g., green light,

after exposure to shorter wavelength light,

e.g., blue light. Thus, the spatial morphol-

ogy and temporal dynamic activities of

subcellular protein structures can be

imaged with a fluorescence microscope -

an optical microscope that can specifically

detect emitted fluorescence of a specific

wavelength [2]. In current image-based

studies, five-dimensional (5D) image data

of thousands of cells (cell populations) can

be acquired: spatial (3D), time lapse (1D),

and multiple fluorescent probes (1D).

With advances to automated high-

resolution microscopy, fluorescent label-

ing, and robotic handling, image-based

studies have become popular in drug and

target discovery. These image-based stud-

ies are often referred to as the High

Content Analysis (HCA) [3], which focus-

es on extracting and analyzing quantita-

tive phenotypic data automatically from

large amounts of cell images with ap-

proaches in image analysis, computation

vision and machine learning [3,4]. Appli-

cations of HCA for screening drugs and

targets are referred to as High Content

Screening (HCS), which focuses on iden-

tifying compounds or genes that cause

desired phenotypic changes [5–7]. The

image data contain rich information

content for understanding biological pro-

cesses and drug effects, indicate diverse

and heterogeneous behaviors of individual

cells, and provide stronger statistical power

in drawing experimental observations and

conclusions, compared to conventional

microscopy studies on a few cells. Howev-

er, extracting and mining the phenotypic

changes from the large scale, complex

image data is daunting. It is not feasible to

manually analyze these data. Hence, bio-

image informatics approaches were need-

ed to automatically and objectively ana-

lyze large scale image data, extract and

quantify the phenotypic changes to profile

the effects of drugs and targets.

Bioimage informatics in image-based

studies usually consists of multiple analysis

modules [3,8,9], as shown in Figure 1.

Each of the analysis tasks is challenging,

and different approaches are often re-

quired for the analysis of different types of

images. To facilitate image-based screen-

ing studies, a number of bioimage infor-

matics software packages have been de-

veloped and are publicly available [9].

This chapter provides an overview of the

bioimage informatics approaches in im-
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age-based studies for drug and target

discovery to help readers, including those

without bioimage informatics expertise,

understand the capabilities, approaches,

and tools of bioimage informatics and

apply them to advance their own studies.

The remainder of this chapter is organized

as follows. Section 2 introduces a number

of practical screening applications for

discovery of potential drugs and targets.

Section 3 describes the challenges and

approaches for quantitative image analy-

sis, e.g., object detection, segmentation,

and tracking. Section 4 introduces tech-

niques for quantification of segmented

objectives, including feature extraction,

phenotype classification, and clustering.

Section 5 reviews a number of prevalent

approaches for profiling drug effects based

on the quantitative phenotypic data.

Section 6 lists major, publicly available

software packages of bioimage informatics

analysis, and finally, a brief summary is

provided in Section 7.

2. Example Image-based
Studies for Drug and Target
Discovery

There are a variety of image-based

studies for discovery of drugs, targets, and

mechanisms of biological processes. A good

starting point for learning about bioimage

informatics approaches is to study practical

image-based studies, and a number of

examples are summarized below.

2.1 Multicolor Cell Imaging-based
Studies for Drug and Target
Discovery

Fixed cell images with multiple fluores-

cent markers have been widely used for

drug and target screening in scientific

research. For example, the effects of

hundreds of compounds were profiled for

phenotypic changes using multicolor cell

images in [10–12]. Hundreds of quantita-

tive features were extracted to indicate the

phenotypic changes caused by these com-

pounds, and then computational ap-

proaches were proposed to identify the

effective compounds, categorize them,

characterize their dose-dependent re-

sponse, and suggest novel targets and

mechanisms for these compounds [10–

12]. Moreover, phenotypic heterogeneity

was investigated by using a subpopulation

based approach to characterize drug

effects in [13], and distinguish cell popu-

lations with distinct drug sensitivities in

[14]. Also in [15,16], the phenotypic

changes of proteins inside individual

Drosophila Kc167 cells treated with RNAi

libraries were investigated by using high

resolution fluorescent microscopy, and

bioimage informatics analysis was applied

to quantify these images to identify genes

regulating the phenotypic changes of

interest. Figure 2 shows an image of

Drosophila Kc167 cells, which were treated

with RNAi and stained to visualize the

nuclear DNA (red), F-actin (green), and a-

tubulin (blue). Freely available software

packages, such as CellProfiler [17], Fiji

What to Learn in This Chapter

N What automated approaches are necessary for analysis of phenotypic changes,
especially for drug and target discovery?

N What quantitative features and machine learning approaches are commonly
used for quantifying phenotypic changes?

N What resources are available for bioimage informatics studies?

Figure 1. The flowchart of bioimage informatics for drug and target discovery.
doi:10.1371/journal.pcbi.1003043.g001
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[18], Icy [19], GCELLIQ [20], and Phe-

noRipper [21] can be used for the

multicolor cell image analysis.

2.2 Live-cell Imaging-based Studies
for Cell Cycle and Migration
Regulator Discovery

Two hallmarks of cancer cells are

uncontrolled cell proliferation and migra-

tion. These are also good phenotypes for

screening drugs and targets that regulate cell

cycle progression and cell migration in time-

lapse images. For example, out of 22,000

human genes, about 600 were identified as

related to mitosis by using live cell (time-

lapse) imaging and RNAi treatment in the

MitoCheck project (www.mitocheck.org)

[22,23]. The project is now being expanded

to study how these identified genes work

together to regulate cell mitosis, in which

mistakes can lead to cancer, in the MitoSys

(systems biology of mitosis) project (http://

www.mitosys.org/). Also, live cell imaging of

Hela cells was used to discover drugs and

compounds that regulate cell mitosis in

[24,25]. Moreover, the time-lapse images

of live cells were used to study the dynamic

behaviors of stem cells in [26,27] and predict

cell fates of neural progenitor cells using

their dynamic behaviors in [28]. Figure 3

shows a single frame of live HeLa cell images

and the images of four cell cycle phases:

interphase, prophase, metaphase, and ana-

phase [25]. The publicly available software

packages for time-lapse image analysis

include, for example, the plugins of Cell-

Profiler [17], Fiji [18], BioimageXD [29],

Icy [19], CellCognition [23], DCELLIQ

[30], and TLM-Tracker [31].

2.3 Neuron Imaging-based Studies
for Neurodegenerative Disease Drug
and Target Discovery

Neuronal morphology is illustrative of

neuronal function and can be instructive

toward the dysfunctions seen in neurode-

generative diseases, such as Alzheimer’s

and Parkinson’s disease [32,33]. For

example, the 3D neuron synaptic mor-

phological and structural changes were

investigated by using super-resolution mi-

croscopy, e.g., STED microscopy, to study

brain functions and disorders under dif-

ferent stimulations [34–36]. Also other

advanced optical techniques were pro-

posed in [37,38] to image and reconstruct

the 3D structure of live neurons. Figure 4

shows an example of 2D neuron image

used in [39]. In [40], neuronal degenera-

tion was mimicked by treating mice with

different dosages of Ab peptide, which

may cause the loss of neuritis, and drugs

that rescue the loss of neurites were

identified as candidates for AD therapy.

Figure 5 shows an example of neurites and

nuclei images acquired in [40]. To quan-

titatively analyze neuron images, a num-

ber of publicly available software packages

have been developed, for example, Neur-

phologyJ [41], NeuronJ [42], NeuriteTra-

cer (Fiji plugin) [43], NeuriteIQ [44],

NeuronMetrics [45], NeuronStudio

Figure 2. A representative image of Drosophila Kc167 cells treated with RNAi. The red, green, and blue colors are the DNA, F-actin, and a-
tubulin channels.
doi:10.1371/journal.pcbi.1003043.g002
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[46,47], NeuronJ [42], NeuronIQ [39,48],

and Vaa3D [49,50]. A review of software

packages for neuron image analysis was

also reported in [51].

2.4 Caenorhabditis elegans Imaging-
based Studies for Drug and Target
Discovery

Caenorhabditis elegans (C. elegans) is a

common animal model for drug and target

discovery. Consisting of only hundreds of

cells, it is an excellent model to study

cellular development and organization. For

example, the invariant embryonic develop-

ment of C. elegans was recorded by time-

lapse imaging, and the embryonic lineages

of each cell were then reconstructed by cell

tracking to study the functions of genes

underpinning the development process

[52–54]. Moreover, an atlas of C. elegans,

which quantified the nuclear locations and

statistics on their spatial patterns in devel-

opment, was built based on the confocal

image stacks via the software, CellExplorer

[55,56]. In addition, CellProfiler provides

an image analysis pipeline for delineating

bodies, and quantifying the expression

changes of specific proteins, e.g., clec-60

and pharynx, of individual C. elegans under

different treatments [57].

These examples have demonstrated

diverse cellular phenotypes in different

image-based studies. To quantify and

analyze the complex phenotypic changes

of cells and sub-cellular components from

large scale image data, bioimage infor-

matics approaches are needed.

3. Quantitative Bioimage
Analysis

After image acquisition, phenotypic

changes need to be quantified for charac-

terizing functions of drugs and targets.

Due to the large amounts of images

generated, it is not feasible to quantify

the images manually. Therefore, automat-

ed image analysis is essential for the

quantification of phenotypic changes. In

general, the challenges of quantitative

image analysis include object detection,

segmentation, tracking, and visualization.

The word ‘object’ in this context means

the object captured in the bioimages, e.g.,

the nucleus and cell. The following

sections will introduce techniques used to

address these challenges.

3.1 Object Detection
Object detection is to detect the loca-

tions of individual objects. It is important,

especially when the objects cluster togeth-

er, to facilitate the segmentation task by

providing the position and initial bound-

ary information of individual objects.

Based on the shape of objects, two

Figure 3. Examples of HeLa cell nuclei and cell cycle phase images. (A) A frame of HeLa cell nuclei time-lapse image sequence; (B) Example
images of four cell cycle phases.
doi:10.1371/journal.pcbi.1003043.g003
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categories of object detection techniques

are developed: blob structure detection,

e.g., particles and cell nuclei, and tube

structure detection, e.g., neurons, blood

vessels.

The shape information of blob objects

can be used to detect the centers of objects

using distance transformation [58]. The

concavity of two touching objects would

cause two local maxima in the distance

image, such that thresholding or seeded

watershed can be employed to the distance

image to detect and separate the touching

blob objects [59]. The intensity informa-

tion is also often used for blob detection.

Blob objects usually have relatively high

intensity in the center, and relatively low

intensity in the peripheral regions. For

example, the Laplacian-of-Gaussian

(LOG) filter is effective [60–63] to detect

blob objects based on the intensity infor-

mation. After LOG filtering, local maxi-

mum response points often correspond to

centers of blob objects, as shown in

Figure 6. Moreover, the intensity gradient

information is also used for blob detection.

For example, in [64] the intensity gradient

vectors were smoothed by using the

gradient vector flow approach [65] so that

the smoothed gradient vectors continuous-

ly point to the object centers. Consequent-

ly, the blob object centers can be detected

by following the gradient vectors [64]. In

addition, the boundary points of blob

objects with high gradient amplitude can

be used to detect their centers, based on

the idea of Hough Transform [66]. For

example, in [67] an iterative radial voting

method was developed to detect such

object centers based on the boundary

points. In brief, the detected boundary

points vote the blob center with oriented

kernels iteratively, and the orientation and

size of the kernels are updated based on

the voting results. Finally, the maximum

response points in the voting image are

selected as the centers of objects. The

advantage of this method is that it can

detect the centers of objects with noise

appearance [67]. The distance transform

and the intensity gradient information also

can be combined for the object detection

[68]. For other blob objects with complex

appearances, the machine learning ap-

proaches based on local features [69,70]

can also be used for object detection

[71,72], as in the Fiji (trainable segmenta-

tion plugin) [18] and Ilastik [73].

Tubular structure detection is based

on the premise that the intensity re-

mains constant in the direction along

the tube, and varies dramatically in the

direction perpendicular to the tube. To

find the local direction of tube center

lines, the eigenvector corresponding to

the minimum and negative eigenvalue

of Hessian matrix was proposed in

[44,74]. Center line points can be

characterized by their local geometric

attributes, i.e., the first derivative is

close to zero and the magnitude of

second derivatives is large in a direction

perpendicular to tube center line

[42,44,74]. After the center line point

Figure 4. A representative 2D neuron images. The bright spots near the backbones of
neurons are the dendritic spines.
doi:10.1371/journal.pcbi.1003043.g004

Figure 5. A representative image of neurites. Red indicates nuclei and green represents
neurites.
doi:10.1371/journal.pcbi.1003043.g005
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detection, a linking process is needed to

connect these center line points into

continuous center lines based on their

direction and distance. For example, in

NeuronJ, Dijkstra’s shortest-path was

used based on the Gaussian derivative

features to detect the neuron’s center-

line between two given points on the

neuron [42]. Figure 7 provides an

example of neurite images, and

Figure 8 shows the corresponding cen-

terline detection results [44] based on

the local Gaussian derivative features.

In addition to the approaches based on

Gaussian derivatives, there are other

tubular structure detection approaches.

For example, four sets of kernels (edge

detectors) were designed to detect the

neuron edges and centerlines [75], and

super-ellipsoid modeling was designed

to fit the local geometry of blood vessels

[76].

Moreover, machine learning-based

tubular structure detection is a widely

used method. For example, blood vessel

detection in retinal images is a repre-

sentative tubular structure detection

task with the supervised learning ap-

proaches [77,78]. In these methods, the

local features, e.g., intensity and wavelet

features, of an image patch containing a

given pixel are calculated, and then a

classifier is trained using these local

features based on a set of training points

[77,78]. A good survey of blood vessel

(tube structure) detection approaches in

retinal images was reported in [79]. For

more approaches and details of tubular

structure detection, readers should refer

to the aforementioned neuron image

analysis software packages.

In summary, blobs and tubes are the

dominating structures in bioimages. The

detection results provide the position and

initial boundary information for the quan-

tification and segmentation processes. In

other words, the segmentation process

tries to delineate boundaries of objects

starting from the detected centers or

centerlines of objects. Without the guid-

ance of detection results, object segmen-

tation would be more challenging.

3.2 Object Segmentation

The goal of object segmentation is to

delineate boundaries of individual objects

of interest in images. Segmentation is the

basis for quantifying phenotypic changes.

Although a number of image segmenta-

tion methods have been reported, this

remains an open challenge due to the

complexity of morphological appearances

of objects. This section introduces a

number of widely used segmentation

methods.

Threshold segmentation [80] is the sim-

plest method: T(I)~
1; t2wI(x,y)wt1

0; otherwise

�
,

where I(x,y) is the image, and t1 and t2 are

the intensity thresholds. As an extension

of the thresholding method, Fuzzy-C-

Figure 6. An example of blob-structure (HeLa cell nuclei) detection. The red spots indicate the detected centers of objects.
doi:10.1371/journal.pcbi.1003043.g006
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Means [81] can be used to separate images

into more regions based on intensity

information. These methods could di-

vide the image into objects and back-

ground, but fail to separate the object

clumps (i.e., multiple objects touching

together). Watershed segmentation and

its derivatives are widely used segmen-

tation methods. They build object

boundaries between objects on the

pixels with local maximum intensity,

which act like dams to avoid flooding

from different basins (object regions)

[82]. To avoid the over-segmentation

problem of the watershed approach, the

marker-controlled watershed (or seeded

watershed) approach, in which the

floods are from the ‘marker’ or ‘seed’

points (the object detection results), was

proposed [68,83–85]. Figure 9 illus-

trates the segmentation result of HeLa

cell nuclei using the seeded watershed

method based on the cell detection

results.

Active contour models are another set

of widely used segmentation methods [86–

90]. Generally, there are two kinds of

active contour models: boundary-driven

and region-competition models. In the

boundary-driven model, the contours’

(boundaries of objects) evolution is deter-

mined by the local gradient. In other

words, the boundary fronts move toward

the outside (or inside) quickly in the

regions with low intensity variation (gra-

dient), and slowly in the regions with high

gradient (where the boundaries are). When

great intensity variation appears inside

cells, or the boundary is weak, this method

often fails [91]. Instead of using gradient

information, the region-competition mod-

el makes use of the intensity similarity

Figure 7. A representative neurite image for centerline detection.
doi:10.1371/journal.pcbi.1003043.g007

Figure 8. An example of neurite centerline detection. (A) The centerline confidence image obtained by using the local Gaussian derivative
features. Higher intensity indicates higher confidence of pixels on the centerlines. (B) The neurite centerline detection result image. Different colors
indicate the disconnected branches.
doi:10.1371/journal.pcbi.1003043.g008
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information to separate the image into

regions with similar intensity. Region

competition-based active contour models

could solve the weak boundary problem;

however, they require that the intensity of

touching objects is separable [87]. To

implement these active contour models,

level set representation is widely used [92].

Level set is an n+1 dimensional function

that can easily represent any n dimensional

shape without parameters. The inside

regions of objects are indicated by using

positive levels, and outside regions are

represented using negative levels. For this

implementation, the initial boundary (zero

level) is required, and the signed distance

function is often used to initialize the level

set function [92,93]. To evolve the level set

functions (grow the boundaries of objects),

the following two equations are classical

models. The first equation is often called

geodesic active contour (GAC) [86], and

the second one is often named the Chan

and Vese active contour (CV) [87].

d

dt
y~a +g:+yð Þzg kzcð Þ +yj j

GAC level set evolution equationð Þ,

d

dt
y~

de yð Þ m:k{n{l1 I{c1ð Þ2zl2 I{c2ð Þ2
h i

CV level set evolution equationð Þ,

where y denotes the level-set function, and

g indicates the gradient function, + is the

gradient operator, c, c1, and c2 are constant

variables. de xð Þ~ 1

p

e

e2zx2
is an approxi-

mation of the Dirac function to indicate

the boundary bands), which is the deriv-

ative function of Heaviside function de-

noting inside/outside regions of objects:

H(x)~
1

2
1z

2

p
arg tan (

x

e
)

� �
, and the

curvature term, k~div
+y

+yj j

� �
~

yxxy2
y{2yxyxyyyzy2

xyyy

y2
xzy2

y

� �3=2
indicates the

local smoothness of boundaries, and ‘div’ is

the divergence operation. Figure 10 dem-

onstrates the segmentation result using

GAC level set approach. An additional

segmentation method, Voronoi segmenta-

tion [94], first defines the centers of objects

and then constructs the boundaries be-

tween two objects on the pixels, from

which the distances are the same to the

two centers. In CellProfiler, the Voronoi

segmentation method was extended by

considering the local intensity variations in

the distance metric to achieve better

segmentation results [95]. This method is

fast and generates level set comparable

Figure 9. An example of HeLa nuclei segmentation using the seeded watershed algorithm. The green contours are the boundaries of
nuclei.
doi:10.1371/journal.pcbi.1003043.g009
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results. Graph cut segmentation method

views the image as a graph, in which each

pixel is a vertex and adjacent pixels are

connected [63,96,97]. It ‘cuts’ the graph

into several small graphs from the regions

where adjacent pixels have the most

different properties, e.g., intensity.

Different from the aforementioned seg-

mentation approaches, local feature and

machine learning-based segmentation ap-

proaches are implemented, for example, in

Fiji (trainable segmentation plugin) [18]

and Ilastik [73]. Users can interactively

select the training sample pixels/voxels or

small image patches conveniently, and then

classifiers are automatically trained based

on the features of the training pixels or

voxels (or patches) to predict the classes,

e.g., cells or background, of the pixels or

voxels (or patches) in a new image. The

image patches could be a circle or square

neighbor regions of a given point, and also

could be regions (superpixel) obtained by

the clustering analysis. For example, Simple

Linear Iterative Clustering (SLIC) made

use of the intensity and coordinate infor-

mation of pixels to separate the image into

uniformly sized and biologically meaning-

ful regions [98,99], and then the machine

learning approaches were used to identify

the regions of interest, e.g., boundary

superpixels, for object segmentation [99].

3.3 Object Tracking
To study the dynamic behaviors and

phenotypic changes of objects over time

(e.g., cell cycle progression and migration),

object tracking using time lapse image

sequences is necessary. Figure 11 shows a

Hela cell’s division process in four frames

at different time points, and Figures 12

and 13 show the examples of cell migra-

tion trajectories and cell lineages recon-

structed from the time-lapse images of

Hela cells [30]. Object tracking is a

challenging task due to the complex

dynamic behaviors of objects over time.

In general, cell tracking approaches can be

classified into three categories: model

evolution-based tracking, spatial-temporal

volume segmentation-based tracking, and

segmentation-based tracking.

In the model evolution based tracking

approaches, cells or nuclei are initially

detected and segmented in the first frame,

and then their boundaries and positions

evolve frame by frame. Some tracking

techniques in this category are mean-shift

[100] and parametric active contours

[88,101]. However, neither mean-shift

nor parametric active contours can cope

well with cell division and nuclei clusters.

Though the level set method enables

topological change, e.g., cell division, it

also allows the fusion of overlapping cells.

Extending these methods to cope with

Figure 10. An example of segmentation of Drosophila cell images using the level set approach.
doi:10.1371/journal.pcbi.1003043.g010
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these tracking challenges is nontrivial and

increases computation time [90,102–104].

For example, the coupled geometric active

contours model was proposed to prevent

object fusion by representing each object

with an independent level set in [105], and

this was further extended to the 3D cell

tracking in [90]. The other approach

explicitly blocking the cell merging is to

introduce the topology constraints, i.e.,

labeling objects regions with different

numbers or colors. For example, the

region labeling map was employed in

[27,106] to deal with the cell merging,

and planar graph–vertex coloring was

employed to separate the neighboring

contours. From that four separate level

set functions could easily deal with cell

merging [107] based on the four-color

theorem [108,109]. For the spatial-tempo-

ral volume segmentation based tracking,

2D image sequences were viewed as 3D

volume data (2D spatial+temporal), and

the shape and size constrained level set

segmentation approaches were applied to

segment the traces of objects, and recon-

struct the cell lineage in [110–112].

For detection and segmentation-based

tracking, objects are first detected and

segmented, and then these objects are

associated between two consecutive

frames, based on their morphology, posi-

tion, and motion [30,113–115]. The

tracking approaches are usually done fast,

but their accuracy is closely related to

detection and segmentation results, simi-

larity measurements, and association strat-

egies. The cell center position, shape,

intensity, migration distance, and spatial

context information were used as similar-

ity measurements in [113,115]. For the

association approaches, the overlap region

and distance based method was employed

in [114], in which objects in the current

frame were associated with the nearest

objects in the next frame. Then the false

matches, e.g., many-to-one or one-to-

many, were further corrected through

the post processing. Different from the

individual object association above, all

segmented objects were simultaneously

associated by using the integer program-

ming optimization in [113,116]:

x�~ max
x[f0,1gN

Sx, s.t. Axƒ1, where Axƒ1

restricts that one object can be associated

to one object at most, A is an (m+n)6N
matrix, and the first m rows correspond to

m objects in frame t, and the last n rows

denote objects in frame t+1. N is the

Figure 11. Time-lapse images indicating cell cycle progression. The cell in the red square in the first frame (A) divided into two cells in frame
60 (B). The descendent cells divided again in frame 152 and 156 respectively as shown in the red squares in (C) and (D).
doi:10.1371/journal.pcbi.1003043.g011
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number of all possible associations among

objects in frame t and frame t+1. S is a

16N similarity matrix, and S jð Þ
~S cktz1 citjð Þ. For the unmatched cells,

e.g., the new born or new entered cells, a

linking process is usually needed to link

them to the parent cells or as a new

trajectory. This optimal matching strategy

was also used to link the object trajectory

segments in [27] to link the broken or

newly appearing trajectories.

As an alternative to frame-by-frame

association strategies, Bayesian filters,

e.g., Particle filter and Interacting Multiple

Model (IMM) filters [117,118], are also

used for object tracking. The goal of these

filters is to recursively estimate a model of

object migration in an image sequence.

Generally, in the Bayesian methods, a

state vector, xt, is defined to indicate

the characters of objects, e.g., position,

velocity, and intensity. Then, two models

are defined based on the state vector. The

first is the state evolution model, xt =

ft (xt21)+et, where ft is the state evolution

function at time point, t, and et is a noise,

e.g., Gaussian noise, which describes the

evolution of the state. The other is the

observation model, zt = ht (xt21)+gt, where

ht is the map function, and gt is the noise,

which maps the state vector into observa-

tions that are measurable in the image.

Based on the two models and Bayes’ rule,

the posterior density of the object state is

estimated as follows: p xtDz1:tð Þ!p ztDxtð Þ
p xtDz1:t{1ð Þ, and p xtjz1:t{1ð Þ~

Ð
p

xtjxt{1ð Þp xt{1jzt{1ð Þdxt{1 where the

p(zt |xt) is defined based on the observation

model, and the p xtDxt{1ð Þ is defined based

on the state evolution model. The basic

principle of particle filter is to approximate

the posterior density by a set of samples

(particles) being stochastically drawn, and it

had been employed for object tracking in

fluorescent images in [119–121]. In some

biological studies, the motion dynamics of

objects are complex. Therefore, one motion

model might not be able to describe object

motion dynamics well. The IMM filter is

employed to incorporate multiple motion

models, and the motion model of objects can

be transitioned from one to another in the

next frame with certain probabilities. For

example, the IMM filter with three motion

models, i.e., random walk, first-order, and

second-order linear extrapolation, was used

for 3D object tracking in [118], and for 2D

cell tracking in [27].

3.4 Image Visualization
Most of the aforementioned software

packages provide functions to visualize 2D

images and the analysis results. However,

Figure 12. Examples of cell migration trajectories. Different colors represent different trajectories.
doi:10.1371/journal.pcbi.1003043.g012
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for higher dimensional images, e.g., 3D, 4D

(including time), and 5D (including multi-

ple color channels), visualization is chal-

lenging. Fiji [18], Icy [19], and Bioima-

geXD [29], for example, are the widely

used bioimage analysis and visualization

software packages for higher dimensional

images. In addition, NeuronStudio [46,47]

is a software package tailored for neuron

image analysis and visualization. Farsight

[122] and vaa3D [123] are also developed

for analysis and visualization of 3D, 4D,

and 5D microscopy images. For developing

customized visualization tools, the Visual-

ization Toolkit (VTK) is a favorite choice

(http://www.vtk.org/) as it is open source

and developed specifically for 3D visuali-

zation. ParaView (http://www.paraview.

org/) and ITK-SNAP (http://www.

itksnap.org/) are the popular Insight

Toolkit (ITK) (http://www.itk.org/) and

VTK based 3D image analysis and visual-

ization software packages.

This section has introduced a number of

major methods for object detection, seg-

mentation, tracking, and visualization in

bioimage analysis. These analyses are essen-

tial and provide a basis for the following

quantification of morphological changes.

4. Numerical Features and
Morphological Phenotypes

4.1 Numerical Features
To quantitatively measure the pheno-

typic changes of segmented objects, a set

of descriptive numerical features are

needed. For example, four categories of

quantitative features, measuring morpho-

logical appearances of segmented objects,

are widely used in imaging informatics

studies for object classification and identi-

fication, i.e., wavelets features [124,125],

geometry features [126], Zernike moment

features [127], and Haralick texture fea-

tures [128]. In brief, Discrete Wavelet

Transformation (DWT) features charac-

terize images in both scale and frequency

domains. Two important DWT feature

sets are the Gabor wavelet [129] and the

Cohen–Daubechies–Feauveau wavelet

(CDF9/7) [130] features. Geometry fea-

tures describe the shape and texture

features of the individual cells, e.g., the

maximum value, mean value, and stan-

dard deviation of the intensity, the lengths

of the longest axis, the shortest axis, and

their ratio, the area of the cell, the

perimeter, the compactness of the cell

(compactness = perimeter‘2/4p*area), the area

of the minimum convex image, and the

roughness (area of cell/area of convex shape).

The calculation of Zernike moments

features was introduced in [131]. First,

the center of mass of the cell image was

calculated, then the average radius for

each cell was computed, and the pixel p(x,

y) of the cell image was mapped to a unit

circle to obtain the projected pixel as p(x9,

y9). Then Zernike moment features were

calculated based on the projected image

I(x9, y9). The Haralick texture features are

extracted from the gray-level spatial-de-

pendence matrices, including the angular

second moment, contrast, correlation, sum

of the squares, inverse difference moment,

sum of the average, sum of the variance,

sum of entropy, entropy, difference of the

variance, difference of entropy, informa-

tion measures of correlation, and maximal

correlation coefficient [132]. More de-

scriptions and calculation programs about

these Subcellular Location Features (SLF)

and SLF-based machine learning ap-

proaches for image classification can be

found at: http://murphylab.web.cmu.

edu/services/SLF/features.html.

4.2 Phenotype Identification
Although these numerical features are

informative to describe the phenotypic

changes, it can be difficult to understand

these changes in terms of visual and

understandable phenotypic changes. For

example, the increase or decrease of cell

size can be understood; however, it is not

clear what the physical meaning of the

increase or decrease is for certain wavelet

features. Therefore, transforming the nu-

merical features into biologically meaning-

ful features (phenotypes) is important. This

section introduces a number of widely

used phenotype identification approaches.

4.2.1. Cell cycle phase

identification. In cell cycle studies,

drug and target effects are indicated by

the dwelling time of cell cycle phases, e.g.,

interphase, prophase, metaphase and

anaphase. Additional cell cycle phases,

e.g., Prometa-, Ana 1-, Ana 2-, and Telo-

phases, were also investigated in [133] and

[23,134]. After object segmentation and

tracking, cell motion traces can be

extracted, as shown in Figure 14, and

then the automated cell cycle phase

identification is needed to calculate the

dwelling time of individual cells on

different phases.

Figure 13. Examples of cell lineages constructed by the tracking algorithm. The black
numbers are the time of cell division (hours). The bottom red numbers indicate the number of
traces, and the numbers inside circles are the labels of cells in that frame.
doi:10.1371/journal.pcbi.1003043.g013
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Cell cycle phase identification can be

viewed as a pattern classification prob-

lem. The aforementioned numerical fea-

tures, and a number of classifiers can be

used to identify the corresponding phases

of individual segmented cells, e.g., sup-

port vector machine (SVM)

[115,133,135], K-nearest neighbors

(KNN), and naı̈ve Bayesian classifiers

[114]. However, the classification accu-

racy is often poor for cell cycle phases

appearing for a short time, e.g., prophase

and metaphase, due to the unbalance of

sample size compared to interphase, and

the segmentation bias. Fortunately, the

cell cycle phase transition rules, e.g., from

interphase to prophase, and from pro-

phase to metaphase, can be used to

reduce identification errors. Thus, a set

of cell cycle phase identification ap-

proaches based on the cell tracking

results were proposed to achieve high

identification accuracy. This problem is

often formulized as follows, and as shown

in Figure 15. Let x = (x1, x2, …, xT)

denote a cell image sequence of length T.

Each cell image is represented by a

numerical feature vector Q(xi)[Rd (using

the aforementioned numerical features).

Let y = (y1, y2, …, yT) represent the

corresponding cell cycle phase sequence

that needs to be predicted. Based on the

cell cycle progression rules, for example,

the variation of nuclei size and intensity

were used as an index to identify the

mitosis phases of cells in [25], and

Hidden Markov Modeling (HMM) was

used to identify the cell cycle phases in

CellCognition [23]. In brief, the transi-

tion possibility from one phase to the

other was learned from the training data

of cell cycle progressions, which could

improve the accuracy of cell cycle phase

identification. As an extension of HMM,

Temporally Constrained Combinatorial

Clustering (TC3), which is an unsuper-

vised learning approach for cell cycle

phase identification, was designed and

combined with Gaussian Mixture Model

(GMM) and HMM to achieve robust and

accurate cell cycle identification results in

[134]. Also, in [133] Finite State Ma-

chine (FSM) was employed to check the

phase transition consistency and make

corrections to the error cell cycle phases

predicted by using SVM classifier [115].

Moreover, the cell cycle phases could be

identified during the segmentation and

linking process in the spatiotemporal

volumetric segmentation-based tracking

methods [110–112].

4.2.2 User defined phenotype,

identification, and classification. In

certain image-based studies, cells may not

have an intrinsic phenotype, e.g., cell

cycle phases, but may exhibit unpredicted

and novel phenotypes caused by

experimental perturbations, e.g., drugs

or RNAi treatments. These phenotypes

are often defined by well-trained

biologists to characterize drug and target

effects [16]. Figure 16 shows images of

Drosophila cells with three defined

phenotypes: Normal, Ruffling and Spiky

[136].

In large scale screening studies, how-

ever, it is subjective and time-consuming

for biologists to uncover novel pheno-

types from millions of cells. Thus, auto-

mated discovery of novel phenotypes is

important. For example, an automated

phenotype discovery method was pro-

posed in [20]. In brief, a GMM was

constructed first for the existing pheno-

types. Then the quantitative cellular data

from new cellular images were combined

with samples generated from the GMM,

and the cluster number of the combined

data was estimated using gap statistics

[137]. Then, clustering analysis was

performed on the combined data set, in

which some of the cells from the new

cellular images were merged into the

existing phenotypes, and the clusters that

could not be merged by any existing

phenotype classes were considered as new

phenotype candidates. After the pheno-

types are defined, classifiers can be built

conveniently based on the training data

and the numerical features for classifying

cells into one of the predefined pheno-

types. However, it is tedious to manually

collect enough training samples of the

rare and unusual phenotypes. To solve

this challenge, an iterative machine

learning based approach was proposed

in [138]. First, a tentative rule (classifier)

was determined based on a few samples

of a given phenotype, and then the

classifier presented users a set of cells

that were classified into the phenotype

based on the tentative rule. Users would

then manually correct the classification

errors, and the corrections are used to

refine the rule. This method could collect

plenty of training samples after several

rounds of error correction and rule

refinement [138].

This section introduced numerical fea-

ture extraction, phenotype identification,

and classification. These analyses provide

quantitative phenotypic change data for

identifying candidate targets and drug hits

that cause desirable phenotypic changes.

The following section will describe ap-

proaches to analyze the quantitative phe-

notypic profile data for drug and target

identification.

5. Multidimensional Profiling
Analysis

The aim of profiling analysis is to

characterize the functions of drugs and

targets, divide them into groups with

similar phenotypic changes, and identify

the candidates causing desired phenotypic

changes. To help analyze and organize

these multidimensional phenotypic profile

data, some publicly available software

packages have been designed, for example,

CellProfiler Analyst (http://www.

cellprofiler.org/) and PhenoRipper

(http://www.phenoripper.org). In addi-

tion, KNIME (http://www.knime.org/)

is a publicly available pipeline and work-

flow system to help organize different data

flows. It also provides connections to

bioimage analysis software packages, e.g.,

Fiji [18] and CellProfiler [9], and enables

users to conveniently build specific data

analysis pipelines in KNIME. This section

describes some prevalent approaches in

analyzing quantitative phenotypic profile

data.

5.1 Clustering Analysis
Clustering analysis is to divide experi-

mental perturbations, e.g., drugs, RNAis,

into groups that have similar phenotypic

changes. As clustering analysis approach-

es, e.g., Hierarchical Clustering [139] and

Consensus Clustering [140], are well

established, their technical details will not

be discussed here. In addition to the

aforementioned software, Cluster 3.0

(http://www.falw.vu/,huik/cluster.htm)

and Java TreeView (http://jtreeview.

sourceforge.net/) are two additional easy-

to-use clustering analysis software packag-

es available in public domain.

5.2 SVM-based Multivariate Profiling
Analysis

SVM classifier was employed for ana-

lyzing the multivariate drug profiles in

[141]. To measure the phenotypic change

caused by drug treatments, the cell

populations harvested from the drug-

treated wells were compared with cells

collected from the control wells (no drug

treatment). The difference between the

control and drug treatment was indicated

by two factors that are the outputs of the

SVM classifier. One is the accuracy of

classification, which indicates the magni-

tude of the drug effect. The other is the

normal vector (d-profile) of the hyperplane

separating the two cell populations, which

indicates the phenotypic changes caused

by the drug. Figure 17 illustrates the idea;

the yellow arrow is the d-profile indicating

the direction of drug effects in the
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phenotypic feature space. Drugs with

similar d-profiles were found to have the

same functional targets, and thus it could

be used to predict functions of new drugs

or compounds.

5.3 Factor-based Multidimensional
Profiling Analysis

In the set of numerical features, some

are highly correlated within groups but

poorly correlated with features in other

groups. One possible explanation is that

the features in one group measure a

common biological process, such as in-

crease or decrease of nuclei size. The

challenge using these numerical features

directly is that biological meanings of

certain phenotypic features are often

vague. It is thus difficult to explain the

phenotypic changes represented by these

numerical features as aforementioned. To

remove the redundant features and make

the biological meanings of numerical

features explicitly clear, factor analysis

was employed in [12]. The basic principle

of factor analysis is to determine the

independent common ‘traits’ (factors).

Mathematically it is formulated by the

following equation.

x11,x12,:::,x1n

x21,x22,:::,x2n

:::

xm1,xm2,:::,xmn

2
666664

3
777775
~Xmn

~mmnzLmkFknzemn

where mmn is the mean value of each row,

Fkn denotes the k factor, and the Lmk is the

loading matrix, which is the coordinates of

the n samples in the new k-dimensional

space. In other words, k factors are

independent and are the underlying bio-

logical processes that regulate the pheno-

typic changes. For example, six factors

representing nuclei size, DNA replication,

chromosome condensation, nuclei mor-

phology, Edu texture, and nuclei elliptic-

ity, were obtained through factor analysis

in [12].

5.4 Subpopulation-based
Heterogeneity Profiling Analysis

In image-based screening studies, het-

erogeneous phenotypes often appeared

within a cell population, as shown in

Figures 2 and 16, which indicated that

individual cells responded to perturbations

differently [142]. However, the heteroge-

neity information was ignored in most

screening studies. To better make use of

the heterogeneous phenotypic responses, a

subpopulation based approach was pro-

posed to study the phenotypic heteroge-

neity for characterizing drug effects in

[13], and distinguishing cell populations

with distinct drug sensitivities in [14]. The

basic principle of the subpopulation based

Figure 15. The graphical representation of cell cycle phase identification.
doi:10.1371/journal.pcbi.1003043.g015

Figure 14. A segment of cell cycle procession sequence. Four cell cycle phases, interphase, prophase, metaphase, and anaphase, appear in order.
doi:10.1371/journal.pcbi.1003043.g014
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method is to characterize the phenotypic

heterogeneity with a mixture of phenotyp-

ically distinct subpopulations. This idea

was implemented by fitting a GMM in the

numerical space, and each model compo-

nent of the GMM represents a distinct

subpopulation. To profile the effects of

perturbations, cells collected from pertur-

bation conditions were first classified into

Figure 16. A representative image of Drosophila cells with three phenotypes: (A) Normal, (B) Ruffling and (C) Spiky phenotypes.
doi:10.1371/journal.pcbi.1003043.g016

Figure 17. An illustration of drug profiling using the normal vector of hyperplane of SVM. The red and blue spots indicate the spatial
distribution of cells in the numeric feature space. The yellow arrow represents the normal vector of the hyperplane (the blue plane). The top left and
bottom right (MB231 cell) images are from drug treated and control conditions respectively.
doi:10.1371/journal.pcbi.1003043.g017
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one of the subpopulations, and then the

portions of cells belonging to each sub-

population were calculated as features to

further characterize the effects of pertur-

bations. For more details, please refer to

[13,14].

6. Publicly Available Bioimage
Informatics Software Packages

A number of commercial bioimage

informatics software tools e.g., GE-InCel-

lAnalyzer [143], Cellomics [144], Cellumen

[145], MetaXpress [146], BD Pathway

[147] have been developed and are widely

used in pharmaceutical companies, and

academic institutions. In addition to the

commercially available software packages,

there are a number of publicly available

bioimage informatics software packages [9],

which provide even more powerful func-

tions with cutting-edge algorithms and

screening-specific analysis pipelines. For

the convenience of finding these popular

software packages, they are listed in Table 1.

It is difficult to summarize all of their

capabilities and functions because many of

them are designed for flexible bioimage

analysis with a set of diverse plugins and

function modules, e.g., Fiji, CellProfiler, Icy,

and BioimageXD. The software selection

for specific applications is also non-trivial,

and the best way might be to check their

websites and online documents. In addition

to the bioimage informatics software pack-

ages, there are other software

packages, including the microscope control

software for image acquisition (mManager

and ScanImage) and image database soft-

ware (OME, Bisque and OMERO.-

searcher). Also, certain cellular image

simulation software packages, e.g., CellOr-

ganizer and SimuCell, provide useful in-

sights into the organizations of proteins of

interest within individual cells. These soft-

ware packages represent the prevalent

directions of bioimage informatics research,

thus their websites and features are worth

checking.

7. Summary

With the advances of fluorescent mi-

croscopy and robotic handling, image-

Table 1. List of publicly available bioimage informatics software packages.

Name Link Basic Functions

ImageJ http://rsb.info.nih.gov/ij/ General image analysis with rich plugins

Fiji (A distribution of ImageJ) http://fiji.sc/ Bioimage analysis with rich plugins

CellProfiler http://www.cellprofiler.org/ Bioimage analysis with rich analysis pipelines

CellProfiler Analyst http://www.cellprofiler.org/ Screening data analysis with machine learning approaches

Icy http://icy.bioimageanalysis.org/index.php Bioimage analysis

BioimageXD http://www.bioimagexd.net/ 3D Bioimage analysis and Visualization

PhenoRipper http://www.phenoripper.org Bioimage analysis for rapid exploration and interpretation of
bioimage data in drug screening

FarSight http://www.farsight-toolkit.org/wiki/Main_Page Dynamic Biological Microenvironments from 4D/5D Microscopy
Data

Vaa3D http://penglab.janelia.org/proj/v3d/V3D/About_V3D.html Bioimage visualization and analysis

Cell Analyzer http://penglab.janelia.org/proj/cellexplorer/cellexplorer/
What_is_Cell_Explorer.html

C. elegans image analysis

AceTree and StarryNite http://starrynite.sourceforge.net/ C. elegans’ embryo cell tracking and lineage reconstruction

Ilastik http://www.ilastik.org/ Image classification and segmentation

Image Quantitators (ZFIQ,
DCELLIQ, GCELLIQ, NeuriteIQ,
NeuronIQ)

http://www.methodisthealth.com/bbpsoftware A set of image analysis software packages for cell tracking in time-
lapse images, and RNAi cell, neuron, neurite and Zebrafish image
analysis

CellCognition http://cellcognition.org/software/cecoganalyzer Cell tracking in time-lapse image analysis

TLMTracker http://www.tlmtracker.tu-bs.de/index.php/Main_Page Cell tracking in time-lapse image analysis

NeuronJ http://www.imagescience.org/meijering/software/neuronj/ Neurite Tracing and Quantification

NeurphologyJ http://life.nctu.edu.tw/,microtubule/neurphologyJ.html Neuron image analysis

NeuronStudio http://research.mssm.edu/cnic/tools-ns.html Neuron image analysis

CellOrganizer http://cellorganizer.org/ Synthetically model and simulate fluorescent microscopic cell
images

SimuCell http://www.simucell.org Synthetically model and simulate fluorescent microscopic cell
images

PatternUnmixer http://murphylab.web.cmu.edu/software/PatternUnmixer2.0/ Model fundamental sub-cellular patterns

mManager http://valelab.ucsf.edu/,MM/MMwiki/ Control of automated microscopes

ScanImage http://openwiki.janelia.org/wiki/display/ephus/
ScanImage%2C+Ephus%2C+and+other+DAQ+software

Control of automated microscopes

OME http://www.openmicroscopy.org/site Image Database Software

Bisque http://www.bioimage.ucsb.edu/bisque Image Database Software

OMERO.searcher http://murphylab.web.cmu.edu/software/searcher/ Content-based bioimage search

KNIME http://www.knime.org/example-workflows Workflow system for data analytics, reporting and integration

doi:10.1371/journal.pcbi.1003043.t001
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based screening has been widely used for

drug and target discovery by systematical-

ly investigating morphological changes

within cell populations. The bioimage

informatics approaches to automatically

detect, quantify, and profile the phenotyp-

ic changes caused by various perturba-

tions, e.g., drug compounds and RNAi,

are essential to the success of these image-

based screening studies. In this chapter, an

overview of the current bioimage infor-

matics approaches for systematic drug

discovery was provided. A number of

practical examples were first described to

illustrate the concepts and capabilities of

image-based screening for drug and target

discovery. Then, the prevalent bioimage

informatics techniques, e.g., object detec-

tion, segmentation, tracking and visualiza-

tion, were discussed. Subsequently, the

widely used numerical features, pheno-

types identification, classification, and

profiling analysis were introduced to

characterize the effects of drugs and

targets. Finally, the major publicly avail-

able bioimage informatics software pack-

ages were listed for future reference. We

hope that this review provided sufficient

information and insights for readers to

apply the approaches and techniques of

bioimage informatics to advance their

research projects.

8. Exercises

Q1. Understand the principle of using

green fluorescent protein (GFP) to label

the chromosome of HeLa cells.

Q2. Download a cellular image pro-

cessing software package, then download

some cell images, and use them as

examples to perform the cell detection,

segmentation, and feature extraction, and

provide the analysis results.

Q3. Download a time-lapse image

analysis software package, then download

some time-lapse images, and use them as

examples to perform cell tracking, and cell

cycle phase classification, and provide the

analysis results.

Q4. Download a neuron image analysis

software package, then download some

neuron images, and use them as examples

to perform dendrite and spine detection,

and provide the analysis results.

Q5. Implement the watershed and level

set segmentation methods by using ITK

functions (http://www.itk.org/) and test

them on some cell images.

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.
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N Object tracking: Object tracking is to identify the motion traces of objects of interest in time-lapse images.

N Feature extraction: Feature extraction is to quantify the morphological appearances of segmented objects by calculating a
set of numerical features.

N Phenotype classification: Phenotype classification is to assign each segmented object into a sub-group that has distinct
phenotypes from other sub-groups.

N Cell cycle phase identification: Cell cycle phase identification is to automatically identify the corresponding cell cycle
phase that a given cell is in according to its morphological appearances.

PLOS Computational Biology | www.ploscompbiol.org 18 April 2013 | Volume 9 | Issue 4 | e1003043



30. Li F, Zhou X, Ma J, Wong TCS (2010) Multiple

Nuclei Tracking Using Integer Programming for

Quantitative Cancer Cell Cycle Analysis. IEEE
Trans Med Imaging 29: 96–105.

31. Klein J, Leupold S, Biegler I, Biedendieck R,

Munch R, et al. (2012) TLM-Tracker: software

for cell segmentation, tracking and lineage
analysis in time-lapse microscopy movies. Bioin-

formatics 28: 2276–2277.

32. Segal M (2005) Dendritic spines and long-term
plasticity. Nat Rev Neurosci 6: 277–284.

33. Hyman BT (2001) Molecular and anatomical

studies in Alzheimer’s disease. Neurologia 16:

100–104.

34. Ding JB, Takasaki KT, Sabatini BL (2009)
Supraresolution imaging in brain slices using

stimulated-emission depletion two-photon laser
scanning microscopy. Neuron 63: 429–437.

35. Nagerl UV, Willig KI, Hein B, Hell SW,
Bonhoeffer T (2008) Live-cell imaging of

dendritic spines by STED microscopy. Proc
Natl Acad Sci U S A 105: 18982–18987.

36. Carter AG, Sabatini BL (2004) State-dependent

calcium signaling in dendritic spines of striatal

medium spiny neurons. Neuron 44: 483–493.

37. Duemani Reddy G, Kelleher K, Fink R, Saggau
P (2008) Three-dimensional random access

multiphoton microscopy for functional imaging
of neuronal activity. Nat Neurosci 11: 713–720.

38. Iyer V, Hoogland TM, Saggau P (2006) Fast

functional imaging of single neurons using

random-access multiphoton (RAMP) microsco-
py. J Neurophysiol 95: 535–545.

39. Cheng J, Zhou X, Miller E, Witt RM, Zhu J, et

al. (2007) A novel computational approach for
automatic dendrite spines detection in two-

photon laser scan microscopy. J Neurosci Meth-

ods 165: 122–134.

40. Ofengeim D, Shi P, Miao B, Fan J, Xia X, et al.
(2012) Identification of small molecule inhibitors

of neurite loss induced by Abeta peptide using
high content screening. J Biol Chem 287: 8714–

8723.

41. Ho SY, Chao CY, Huang HL, Chiu TW,

Charoenkwan P, et al. (2011) NeurphologyJ: an
automatic neuronal morphology quantification

method and its application in pharmacological
discovery. BMC Bioinformatics 12: 230.

42. Meijering E, Jacob M, Sarria JC, Steiner P,
Hirling H, et al. (2004) Design and validation of

a tool for neurite tracing and analysis in
fluorescence microscopy images. Cytometry A

58: 167–176.

43. Pool M, Thiemann J, Bar-Or A, Fournier AE

(2008) NeuriteTracer: a novel ImageJ plugin for
automated quantification of neurite outgrowth.

J Neurosci Methods 168: 134–139.

44. Xiong G, Zhou X, Degterev A, Ji L, Wong STC
(2006) Automated neurite labeling and analysis

in fluorescence microscopy images. Cytometry

Part A 69A: 494–505.

45. Narro ML, Yang F, Kraft R, Wenk C, Efrat A,
et al. (2007) NeuronMetrics: software for semi-

automated processing of cultured neuron imag-
es. Brain Res 1138: 57–75.

46. Rodriguez A, Ehlenberger DB, Dickstein DL,
Hof PR, Wearne SL (2008) Automated three-

dimensional detection and shape classification of
dendritic spines from fluorescence microscopy

images. PLoS ONE 3: e1997. doi:10.1371/
journal.pone.0001997

47. Wearne SL, Rodriguez A, Ehlenberger DB,
Rocher AB, Henderson SC, et al. (2005) New

techniques for imaging, digitization and analysis
of three-dimensional neural morphology on

multiple scales. Neuroscience 136: 661–680.

48. Zhang Y, Zhou X, Witt RM, Sabatini BL,

Adjeroh D, et al. (2007) Dendritic spine
detection using curvilinear structure detector

and LDA classifier. Neuroimage 36: 346–360.

49. Peng H, Ruan Z, Atasoy D, Sternson S (2010)
Automatic reconstruction of 3D neuron struc-

tures using a graph-augmented deformable

model. Bioinformatics 26: i38–i46.

50. Peng H, Long F, Myers G (2011) Automatic 3D

neuron tracing using all-path pruning. Bioinfor-
matics 27: i239–i247.

51. Meijering E (2010) Neuron tracing in perspec-

tive. Cytometry A 77: 693–704.

52. Boyle TJ, Bao Z, Murray JI, Araya CL,

Waterston RH (2006) AceTree: a tool for visual

analysis of Caenorhabditis elegans embryogen-
esis. BMC Bioinformatics 7: 275.

53. Bao Z, Murray JI, Boyle T, Ooi SL, Sandel MJ,
et al. (2006) Automated cell lineage tracing in

Caenorhabditis elegans. Proc Natl Acad Sci U S A

103: 2707–2712.

54. Sarov M, Murray JI, Schanze K, Pozniakovski

A, Niu W, et al. (2012) A genome-scale resource
for in vivo tag-based protein function explora-

tion in C. elegans. Cell 150: 855–866.

55. Liu X, Long F, Peng H, Aerni SJ, Jiang M, et al.
(2009) Analysis of cell fate from single-cell gene

expression profiles in C. elegans. Cell 139: 623–
633.

56. Long F, Peng H, Liu X, Kim SK, Myers E

(2009) A 3D digital atlas of C. elegans and its
application to single-cell analyses. Nat Methods

6: 667–672.

57. Wahlby C, Kamentsky L, Liu ZH, Riklin-Raviv

T, Conery AL, et al. (2012) An image analysis

toolbox for high-throughput C. elegans assays.
Nat Methods 9: 714–716.

58. Borgefors G (1986) Distance transformations in
digital images. Computer Vision, Graphics, and

Image Processing 34: 344–371.

59. Wahlby C, Sintorn I, Erlandsson F, Borgefors
G, Bengtsson E (2004) Combining intensity,

edge and shape information for 2D and 3D
segmentation of cell nuclei in tissue sections.

J Microsc 215: 67–76.

60. Lindeberg T (1993) Detecting salient blob-like
image structures and their scales with a scale-

space primal sketch: a method for focus-of-
attention. Int J Comput Vision 11: 283–318.

61. Lindeberg T (1998) Feature detection with

automatic scale selection. Int J Comput Vision
30: 79–116.

62. Byun J, Verardo MR, Sumengen B, Lewis GP,

Manjunath BS, et al. (2006) Automated tool for
the detection of cell nuclei in digital microscopic

images: application to retinal images. Mol Vis
12: 949–960.

63. Al-Kofahi Y, Lassoued W, Lee W, Roysam B

(2010) Improved automatic detection and seg-
mentation of cell nuclei in histopathology

images. IEEE Trans Biomed Eng 57: 841–852.

64. Li G, Liu T, Tarokh A, Nie J, Guo L, et al.

(2007) 3D cell nuclei segmentation based on

gradient flow tracking. BMC Cell Biology 8: 40.

65. Xu C, Prince JL (1998) Snakes, shapes, and

gradient vector flow. IEEE Transactions on
Image Processing 7: 359–369.

66. Duda RO, Hart PE (1972) Use of the Hough

transformation to detect lines and curves in
pictures. Commun ACM 15: 11–15.

67. Parvin B, Yang Q, Han J, Chang H, Rydberg B,

et al. (2007) Iterative voting for inference of
structural saliency and characterization of sub-

cellular events. IEEE Trans Image Process 16:
615–623.

68. Lin G, Adiga U, Olson K, Guzowski JF, Barnes

CA, et al. (2003) A hybrid 3D watershed
algorithm incorporating gradient cues and

object models for automatic segmentation of
nuclei in confocal image stacks. Cytometry A 56:

23–36.

69. Lienhart R, Maydt J (2002) An extended set of
Haar-like features for rapid object detection. pp.

I-900–I-903. Vol. 1. Proceedings of the 2002
International Conference on Image Processing.

70. Viola P, Jones M (2001) Rapid object detection

using a boosted cascade of simple features.
Proceedings of the 2001 IEEE Computer

Society Conference on Computer Vision and
Pattern Recognition. pp. I-511–I-518. Vol. 1.

71. He W, Wang X, Metaxas D, Mathew R, White

E (2007) Cell segmentation for division rate

estimation in computerized video time-lapse

microscopy. 643109–643109.

72. Jiang S, Zhou X, Kirchhausen T, Wong ST
(2007) Detection of molecular particles in live

cells via machine learning. Cytometry A 71:

563–575.

73. Sommer C, Straehle C, Kothe U, Hamprecht

FA (2011) Ilastik: interactive learning and

segmentation toolkit. pp. 230–233. 2011 IEEE
International Symposium on Biomedical Imag-

ing; 30 March–2 April 2011.

74. Steger C (1998) An unbiased detector of
curvilinear structures. IEEE Transactions on

Pattern Analysis and Machine Intellegence 20:
113–125.

75. Al-Kofahi KA, Lasek S, Szarowski DH, Pace

CJ, Nagy G, et al. (2002) Rapid automated
three-dimensional tracing of neurons from con-

focalimage stacks. IEEE Transactions on Infor-

mation Technology in Biomedicine 6: 171–187.

76. Tyrrell JA, di Tomaso E, Fuja D, Ricky T,

Kozak K, et al. (2007) Robust 3-D modeling of

vasculature imagery using superellipsoids. IEEE
Trans Med Imaging 26: 223–237.

77. Soares JVB, Leandro JJG, Cesar RM, Jelinek

HF, Cree MJ (2006) Retinal vessel segmentation
using the 2-D Gabor wavelet and supervised

classification. IEEE Trans Med Imaging 25:
1214–1222.

78. Staal J, Abramoff MD, Niemeijer M, Viergever

MA, van Ginneken B (2004) Ridge-based vessel
segmentation in color images of the retina. IEEE

Trans Med Imaging 23: 501–509.

79. Fraz M, Remagnino P, Hoppe A, Uyyanonvara

B, Rudnicka A, et al. (2012) Blood vessel
segmentation methodologies in retinal images -

a survey. Comput Methods Programs Biomed
108(1): 407–433.

80. Otsu N (1978) A threshold selection method

from gray level histgram. IEEE Transactions on
System, Man, and Cybernetics 8: 62–66.

81. Dunn JC (1973) A fuzzy relative of the

ISODATA process and its use in detecting
compact well-separated clusters. Journal of

Cybernetics 3: 32–57.

82. Vincent L, Soille P (1991) Watersheds in digital
spaces: an efficient algorithm based on immer-

sion simulations. IEEE Transactions on Pattern

Analysis and Machine Intelligence 13: 583–598.

83. Beucher S (1992) The watershed transformation

applied to image segmentation. Scanning Mi-

croscopy International 6: 299–314.

84. Meyer F, Beucher S (1990) Morphological

segmentation. Journal of Visual Communication

and Image Representation 1: 21–46.

85. Wahlby C, Lindblad J, Vondrus M, Bengtsson

E, Bjorkesten L (2002) Algorithms for cytoplasm

segmentation of fluorescence labelled cells.
Analytical Cellular Pathology 24: 101–111.

86. Casselles V, Kimmel R, Sapiro G (1997)

Geodesic active contours. International Journal
of Computer Vision 22: 61–79.

87. Chan T, Vese L (2001) Active contours without

edges. IEEE Transactions on Image Processing
10: 266–277.

88. Zimmer C, Labruyère E, Meas-Yedid V,

Guillén N, Olivo-Marin J (2002) Segmentation
and tracking of migrating cells in videomicro-

scopy with parametric active contours: a tool for

cell-based drug testing. IEEE Trans Med
Imaging 21: 1212–1221.

89. Yan P, Zhou X, Shah M, Wong ST (2008)

Automatic segmentation of high-throughput
RNAi fluorescent cellular images. IEEE Trans

Inf Technol Biomed 12: 109–117.

90. Dufour A, Shinin V, Tajbakhsh S, Guillen-
Aghion N, Olivo-Marin JC, et al. (2005)

Segmenting and tracking fluorescent cells in
dynamic 3-D microscopy with coupled active

surfaces. IEEE Transactions on Image Process-

ing 14: 1396–1410.

91. Caselles V, Kimmel R, Sapiro G (1997)

Geodesic active contours. International Journal

of Computer Vision 22: 61–79.

PLOS Computational Biology | www.ploscompbiol.org 19 April 2013 | Volume 9 | Issue 4 | e1003043



92. Osher S, Sethian JA (1988) Fronts propagating

with curvature-dependent speed: Algorithms

based on Hamilton-Jacobi formulations. Journal

of Computation Physics 79: 12–49.

93. Chunming L, Chenyang X, Changfeng G, Fox

MD (2005) Level set evolution without re-

initialization: a new variational formulation.

IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition; 20–25

June 2005. pp. 430–436. Vol. 1.

94. Aurenhammer F (1991) Voronoi diagrams - a

survey of a fundamental geometric data struc-

ture. ACM Comput Surv 23: 345–405.

95. Jones T, Carpener A, Golland P (2005) Voronoi-

based segmentation of cells on image manifolds.

Lecture Notes in Computer Science: 535–543.

96. Shi J, Malik J (2000) Normalized cuts and image

segmentation. IEEE Trans Pattern Anal Mach

Intell 22: 888–905.

97. Felzenszwalb PF, Huttenlocher DP (2004) Effi-

cient graph-based image segmentation.

Int J Comput Vision 59: 167–181.

98. Radhakrishna A, Shaji A, Smith K, Lucchi A,

Fua P, et al. (June, 2010) SLIC superpixels.

Technical report 149300, EPFL.

99. Lucchi A, Smith K, Achanta R, Lepetit V, Fua

P (2010) A fully automated approach to

segmentation of irregularly shaped cellular

structures in EM images. Proceedings of the

13th International Conference on Medical

Image Computing and Computer-Assisted In-

tervention. Med Image Comput Comput Assist

Interv 13(Pt 2): 463–471.

100. Debeir O, Ham PV, Kiss R, Decaestecker C

(2005) Tracking of migrating cells under phase-

contrast video microscopy with combined mean-

shift processes. IEEE Trans Med Imaging 24:

697–711.

101. Zimmer C, Olivo-Marin JC (2005) Coupled

parametric active contours. IEEE Trans Pattern

Anal Mach Intell 27: 1838–1842.

102. Yang F, Mackey MA, Ianzini F, Gallardo G,

Sonka M (2005) Cell segmentation, tracking,

and mitosis detection using temporal context.

Med Image Comput Comput Assist Interv 8(Pt

1): 302–309.

103. Bunyak F, Palaniappan K, Nath SK, Baskin TL,

Gang D (2006) Quantitative cell motility for in

vitro wound healing using level set-based active

contour tracking. Proc IEEE Int Symp Biomed

Imaging 2006 April 6: 1040–1043.

104. Dzyubachyk O, van Cappellen WA, Essers J,

Niessen WJ, Meijering E (2010) Advanced level-

set-based cell tracking in time-lapse fluorescence

microscopy. IEEE Trans Med Imaging 29: 852–

867.

105. Bo Z, Zimmer C, Olivo-Marin JC (2004)

Tracking fluorescent cells with coupled geomet-

ric active contours. IEEE International Sympo-

sium on Biomedical Imaging; 15–18 April 2004.

pp. 476–479. Vol. 1.

106. Li K, Miller ED, Weiss LE, Campbell PG,

Kanade T (2006) Online tracking of migrating

and proliferating cells imaged with phase-

contrast microscopy. Conference on Computer

Vision and Pattern Recognition Workshop. New

York City, New York. pp. 65.

107. Nath SK, Palaniappan K, Bunyak F (2006) Cell

segmentation using coupled level sets and graph-

vertex coloring. Proceedings of the 9th Interna-

tional Conference on Medical Image Comput-

ing and Computer-Assisted Intervention. Med

Image Comput Comput Assist Interv 9 (Pt 1):

101–108.

108. Appel K, Haken W (1977) Every planar map is

four colorable part I. Discharging. Illinois

Journal of Mathematics: 429–490.

109. Appel K, Haken W, Koch J (1977) Every planar

map is four colorable part II. Reducibility.
Illinois Journal of Mathematics: 491–567.

110. Padfield DR, Rittscher J, Sebastian T, Thomas

N, Roysam B (2006) Spatio-temporal cell cycle
analysis using 3D level set segmentation of

unstained nuclei in line scan confocal fluores-
cence images. 3rd IEEE International Sympo-

sium on Biomedical Imaging; 6–9 April 2006.

pp. 1036–1039.
111. Padfield DR, Rittscher J, Roysam B (2008)

Spatio-temporal cell segmentation and tracking
for automated screening. 5th IEEE International

Symposium on Biomedical Imaging; 14–17 May
2008. pp. 376–379.

112. Padfield D, Rittscher J, Thomas N, Roysam B

(2009) Spatio-temporal cell cycle phase analysis
using level sets and fast marching methods.

Medical Image Analysis 13: 143–155.
113. Al-Kofahi O, Radke RJ, Goderie SK, Shen Q,

Temple S, et al. (2006) Automated cell lineage

construction: a rapid method to analyze clonal
development established with murine neural

progenitor cells. Cell Cycle 5: 327–335.
114. Chen X, Zhou X, Wong STC (2006) Automated

segmentation, classification, and tracking of
cancer cell nuclei in time-lapse microscopy.

IEEE Transactions on Biomedical Engineering

53: 762–766.
115. Harder N, Mora-Bermudez F, Godinez WJ,

Ellenberg J, Eils R, et al. (2006) Automated
analysis of the mitotic phases of human cells in

3D fluorescence microscopy image sequences.

Med Image Comput Comput Assist Interv 9:
840–848.

116. Li K, Chen M, Kanade T (2007) Cell popula-
tion tracking and lineage construction with

spatiotemporal context. Med Image Comput
Comput Assist Interv 10: 295–302.

117. Blom HAP (1984) An efficient filter for abruptly

changing systems. Proceedings of 23rd IEEE
Conference on Decision and Control 23: 656–658.

118. Genovesio A, Liedl T, Emiliani V, Parak WJ,
Coppey-Moisan M, et al. (2006) Multiple

particle tracking in 3-D+t microscopy: method

and application to the tracking of endocytosed
quantum dots. IEEE Trans Image Process 15:

1062–1070.
119. Smal I, Draegestein K, Galjart N, Niessen W,

Meijering E (2007) Rao-blackwellized marginal
particle filtering for multiple object tracking in

molecular bioimaging. Proceedings of the 20th

International Conference on Information Pro-
cessing in Medical Imaging. Kerkrade, The

Netherlands: Springer-Verlag.
120. Smal I, Niessen W, Meijering E (2006) Bayesian

tracking for fluorescence microscopic imaging;

6–9 April 2006. pp. 550–553.
121. Godinez WJ, Lampe M, Worz S, Muller B, Eils

R, et al. (2007) Tracking of virus particles in
time-lapse fluorescence microscopy image se-

quences. 12–15 April 2007. pp. 256–259.

122. Luisi J, Narayanaswamy A, Galbreath Z,
Roysam B (2011) The FARSIGHT trace editor:

an open source tool for 3-D inspection and
efficient pattern analysis aided editing of auto-

mated neuronal reconstructions. Neuroinfor-
matics 9: 305–315.

123. Peng H, Ruan Z, Long F, Simpson JH, Myers

EW (2010) V3D enables real-time 3D visualiza-
tion and quantitative analysis of large-scale

biological image data sets. Nat Biotechnol 28:
348–353.

124. Manjunath B, Ma W (1996) Texture features for

browsing and retrieval of image data. IEEE
Trans Pattern Anal Mach Intell 18: 837–842.

125. Zhou X, Wong STC (2006) Informatics chal-
lenges of high-throughput microscopy. IEEE

Signal Processing Magazine 23: 63–72.

126. Chen X, Zhou X, Wong ST (2006) Automated

segmentation, classification, and tracking of

cancer cell nuclei in time-lapse microscopy.

IEEE Trans Biomed Eng 53: 762–766.

127. Boland M, Murphy R (2001) A neural network

classifier capable of recognizing the patterns of

all major subcellular structures in fluorescence

microscope images of HeLa cells. Bioinformatics

17: 1213–1223.

128. Haralick R (1979) Statistical and structural

approaches to texture. Proceedings of IEEE

67: 786–804.

129. Manjunatha BS, Ma WY (1996) Texture

features for browsing and retrieval of image

data. IEEE Trans Pattern Anal Mach Intell 18:

837–842.

130. Cohen A, Daubechies I, Feauveau JC (1992) Bi-

orthogonal bases of compactly supported wave-

lets. Communications on Pure and Applied

Mathematics 45: 485–560.

131. Zernike F (1934) Beugungstheorie des schnei-

dencerfarhens undseiner verbesserten form, der

phasenkontrastmethode. Physica 1: 689–704.

132. Haralick RM, Shanmugam K, Dinstein I (1973)

Textural features for image classification. IEEE

Transactions on Systems, Man and Cybernetics

6: 610–620.

133. Harder N, Mora-Bermudez F, Godinez WJ,

Wunsche A, Eils R, et al. (2009) Automatic

analysis of dividing cells in live cell movies to

detect mitotic delays and correlate phenotypes in

time. Genome Res 19: 2113–2124.

134. Zhong Q, Busetto AG, Fededa JP, Buhmann

JM, Gerlich DW (2012) Unsupervised modeling

of cell morphology dynamics for time-lapse

microscopy. Nat Methods 9: 711–713.

135. Wang M, Zhou X, Li F, Huckins J, King WR, et

al. (2008) Novel cell segmentation and online

SVM for cell cycle phase identification in

automated microscopy. Bioinformatics 24: 94–

101.

136. Wang J, Zhou X, Bradley PL, Chang SF,

Perrimon N, et al. (2008) Cellular phenotype

recognition for high-content RNA interference

genome-wide screening. J Biomol Screen 13:

29–39.

137. Yan M, Ye K (2007) Determining the number of

clusters using the weighted gap statistic. Biomet-

rics 63: 1031–1037.

138. Jones TR, Carpenter AE, Lamprecht MR,

Moffat J, Silver SJ, et al. (2009) Scoring diverse

cellular morphologies in image-based screens

with iterative feedback and machine learning.

Proc Natl Acad Sci U S A 106: 1826–1831.

139. Young DW, Bender A, Hoyt J, McWhinnie E,

Chirn GW, et al. (2008) Integrating high-content

screening and ligand-target prediction to identify

mechanism of action. Nat Chem Biol 4: 59–68.

140. Frise E, Hammonds AS, Celniker SE Systematic

image-driven analysis of the spatial Drosophila

embryonic expression landscape. Mol Syst Biol

6: 345.

141. Loo LH, Wu LF, Altschuler SJ (2007) Image-

based multivariate profiling of drug responses

from single cells. Nat Methods 4: 445–453.

142. Altschuler SJ, Wu LF (2010) Cellular heteroge-

neity: do differences make a difference? Cell

141: 559–563.

143. GE-InCellAnalyzer. http://www.biacore.com/

high-content-analysis/index.html.

144. Cellomics. http://www.cellomics.com/content/

menu/About_Us/.

145. Cellumen. http://www.cellumen.com/.

146. MetaXpress. http://www.moleculardevices.

com/pages/software/metaxpress.html.

147. BD-Pathway. http://www.bdbiosciences.ca/

bioimaging/cell_biology/pathway/software/.

PLOS Computational Biology | www.ploscompbiol.org 20 April 2013 | Volume 9 | Issue 4 | e1003043


