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Abstract

Nitric oxide (NON) is generated by the innate immune response to neutralize pathogens. NON and its autoxidation products
have an extensive biochemical reaction network that includes reactions with iron-sulfur clusters, DNA, and thiols. The fate of
NON inside a pathogen depends on a kinetic competition among its many targets, and is of critical importance to infection
outcomes. Due to the complexity of the NON biochemical network, where many intermediates are short-lived and at
extremely low concentrations, several species can be measured, but stable products are non-unique, and damaged
biomolecules are continually repaired or regenerated, kinetic models are required to understand and predict the outcome
of NON treatment. Here, we have constructed a comprehensive kinetic model that encompasses the broad reactivity of NON
in Escherichia coli. The incorporation of spontaneous and enzymatic reactions, as well as damage and repair of biomolecules,
allowed for a detailed analysis of how NON distributes in E. coli cultures. The model was informed with experimental
measurements of NON dynamics, and used to identify control parameters of the NON distribution. Simulations predicted that
NON dioxygenase (Hmp) functions as a dominant NON consumption pathway at O2 concentrations as low as 35 mM
(microaerobic), and interestingly, loses utility as the NON delivery rate increases. We confirmed these predictions
experimentally by measuring NON dynamics in wild-type and mutant cultures at different NON delivery rates and O2

concentrations. These data suggest that the kinetics of NON metabolism must be considered when assessing the importance
of cellular components to NON tolerance, and that models such as the one described here are necessary to rigorously
investigate NON stress in microbes. This model provides a platform to identify novel strategies to potentiate the effects of
NON, and will serve as a template from which analogous models can be generated for other organisms.
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Introduction

NON is an uncharged, highly diffusible, membrane-permeable

metabolite, generated by mammalian NON synthases (NOS) for

use in signaling and defense [1,2]. The diversity of functions

performed by NON, from pathogen detoxification to vasodilation,

reflect its broad reactivity. NON directly reacts with iron-sulfur

([Fe-S]) clusters, superoxide (O2N2), and O2, whereas its oxidized

forms (NO2N, N2O3, and N2O4) damage thiols, tyrosine residues,

and DNA bases [2–5]. Such widespread activity has made the

biological effects of NON difficult to predict [2]. For instance, if

1,000 NON molecules entered a cell, what would become of them?

How many would disrupt an [Fe-S] cluster to form a protein-

bound dinitrosyl-iron complex (DNIC)? How many would

autoxidize to form nitrogen dioxide (NO2N) and then react with

another NON to form nitrous anhydride (N2O3)? How many N2O3

would deaminate DNA bases? These questions are representative

of one unifying, fundamental question of NON metabolism: how

does NON distribute within a cell? The answer to this question lies

in understanding the kinetic competition of NON with its many

intracellular targets. However, the NON biochemical network is

complex (Figure 1), contains numerous short-lived intermediates at

low concentrations [6], converges to only a few stable end-

products [4], and involves various damaged biomolecules that are

continually digested or repaired [7]. Such complexity has

necessitated the use of computational models to both interpret

and predict the outcome of NON treatment [4].

A number of kinetic models have been developed to simulate

NON chemistry in biological contexts [3,4,6–17]. Many of these

models have focused on mammalian systems due to the

importance of NON in human physiology. Nalwaya and Deen

[9] calculated steady-state concentration profiles of NON, CO2,

O2N2, and peroxynitrite (ONOO2) in idealized mammalian cell

cultures using a reaction–diffusion model, and explored the effect

of varying the rates and locations (extracellular, mitochondrial, or

cytosolic) of their generation. Their results suggested negligible

spatial variation in species concentrations, and identified condi-

tions under which the different cellular compartments serve as

dominant sources or sinks. However, their model did not include

the reactions of numerous intracellular metabolites that either

directly react with NON, or its autoxidation products (NO2N, N2O3,

and N2O4). Lancaster [3] constructed a non-diffusive, but more

extensive kinetic model to encompass the complex reaction

network of NON and its autoxidation products with glutathione

(GSH) and tyrosine in mammalian systems. This model allowed

for predictions regarding the relative importance of the various

NON-consuming pathways under inflammatory and non-

inflammatory regimes, and highlighted the dominance of oxidative
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reactions. Lim et al. [4] built upon the work of Lancaster [3] by

incorporating additional antioxidants, as well as a separate

membrane compartment to account for partitioning of certain

species in the lipid-phase. Their model was developed to be

representative of inflamed tissue in vivo and used to estimate steady-

state intracellular concentrations of different reactive nitrogen

species (RNS), in addition to identifying their major sources and

sinks in the cytosol and membrane compartments of mammalian

cells. Interestingly, none of these models considered the interaction

of NON and its autoxidation products with [Fe-S] clusters,

cytochromes, or DNA, and their treatment of the relevant

enzymatic processes was limited to NON dioxygenase and

superoxide dismutase. Recently, Tórtora et al. [7] measured rates

of ROS- and RNS-induced damage to the mitochondrial

aconitase [4Fe-4S] cluster, and incorporated the reactions into a

kinetic model of aconitase inactivation in the presence of O2N2 and

NON. Since their focus was specifically on the inactivation of

aconitase, they did not consider much of the extensive reaction

network of NON, O2N2, and their products. Bagci et al. [14] merged

a mitochondrial apoptotic network [18] with a kinetic model of

NON chemistry [10] and extended treatment to include formation

of N2O3, NO2N and ONOO2, as well as their interactions with

GSH, non-heme iron, and mitochondrial cytochrome c. However,

their attention was primarily on the dynamics of the apoptotic

response, and many RNS-related reactions and biological species

that were not directly involved in apoptosis were omitted. Though

previous models provide a firm foundation for modeling NON in

biological systems, none are sufficiently comprehensive to quantify

the distribution of NON among its many intracellular consumption

pathways.

Here, we describe the construction, experimental validation,

and utility of a comprehensive model of NON metabolism in

Escherichia coli. This model includes NON autoxidation, enzymatic

detoxification, [Fe-S] damage, thiol and tyrosine nitrosation, DNA

base deamination, tyrosine nitration, and the repair steps

responsible for regeneration of RNS targets. A model of NON
stress with this level of detail has not been previously recognized

for any organism. Using this model, we quantitatively explored the

distribution of NON consumption in E. coli, and predicted that the

utility of the major aerobic NON detoxification system (Hmp)

depends on the NON delivery rate and extends to environments

with O2 concentrations as low as 35 mM (microaerobic). We went

on to experimentally confirm these predictions, thereby demon-

strating the utility of this model to the study of NON metabolism.

Author Summary

Nitric oxide (NON) is a highly reactive metabolite used by
immune cells to combat pathogens. Since the biological
effects of NON are governed by its broad reactivity, it is
desirable to determine how NON distributes among its
many targets inside a cell. A quantitative understanding of
this distribution and how it is controlled will facilitate the
development of novel NON-potentiating therapeutics.
Here, we have constructed and experimentally validated
a comprehensive kinetic model of NON biochemistry within
Escherichia coli that includes NON autoxidation, respiratory
inhibition, enzymatic detoxification, and damage and
repair of biomolecules. Using this model, we investigated
the control of NON dynamics in E. coli cultures, and found
that the primary aerobic detoxification system, NON
dioxygenase (Hmp), functions as a dominant NON con-
sumption pathway under microaerobic conditions (35 mM
O2), and loses utility as the NON delivery rate increases. We
confirmed these predictions experimentally, thereby dem-
onstrating the predictive power of the model. This model
will serve as a quantitative platform to study nitrosative
stress, provide a template from which models for other
organisms can be generated, and facilitate the develop-
ment of antimicrobials that synergize with host-derived
NON.

Figure 1. Simplified diagram of the NON biochemical reaction network in an E. coli culture. The intracellular and extracellular (media)
compartments are represented by the green and tan shaded regions, respectively. The lower-left corner represents the gas phase in direct contact
with the liquid media. Species in bold text represent NON and its reactive oxidized forms (NO2N, N2O3, and ONOO2). Italic text indicates the enzyme or
group of enzymes responsible for the associated reaction/pathway. Red reaction arrows represent NON autoxidation; purple, enzymatic detoxification;
blue, ONOO2 formation and degradation; tan, cytochrome inhibition; teal, [Fe-S] nitrosylation and repair; green, thiol nitrosation and denitrosation;
gray, tyrosine nitration; orange, DNA deamination and repair.
doi:10.1371/journal.pcbi.1003049.g001
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This computational model will serve as a platform to quantitatively

interrogate the kinetic competition of NON with its many targets in

E. coli, and assess the influence of various parameters on its

distribution.

Results

Kinetic model of NON metabolism in E. coli
Upon diffusing into E. coli, NON may be consumed directly

through enzymatic detoxification (Hmp, NorV, NrfA), or reactions

with [Fe-S] clusters, O2N2, or O2 (Figure 1, Figures S1, S2).

Several resulting nitrosative species, including NO2N and N2O3,

can further react to deaminate DNA bases, nitrosate protein and

low molecular weight thiols, and nitrate tyrosine residues. To

quantify how NON distributes within a cell, we have constructed a

comprehensive kinetic model of the NON biochemical reaction

network in E. coli, where autoxidation, detoxification (Hmp, NorV,

NrfA), [2Fe-2S] and [4Fe-4S] damage and repair, thiol nitrosation

and denitrosation, DNA base deamination and repair, enzyme

expression and degradation, tyrosine nitration, and reversible

cytochrome inhibition are included (Figure 1). The model consists

of 179 reactions, 132 chemical and biochemical species, and 163

kinetic parameters (Tables S1, S2, S3, Text S1). Of the kinetic

parameters, 24 have values that are uncertain, either due to

variability or unavailability in literature (Table S4). An overview

describing the construction of the model is presented in the

Materials and methods section, whereas a more detailed descrip-

tion has been presented in Text S1. Due to its scope and

completeness, the model is suited to predict the distribution of

NON consumption among the available pathways in E. coli. For

example, the fraction of NON detoxified by Hmp, the amount of

NO2N, N2O3, and ONOO2 formed, the quantity of [Fe-S] clusters

and DNA bases damaged and repaired, the extent and duration of

cytochrome inhibition, and amount of thiols nitrosated can all be

calculated from model simulations. Further, the model allows

parameter variation (for example, enzyme mutation/deletion) and

quantification of the impact these alterations have on NON
metabolism. To substantiate the utility of the model, we first

validated that the model could reproduce experimentally-mea-

sured NON dynamics and make accurate predictions of experi-

mental outcomes.

Experimental validation
We sought to validate that the model could capture NON

dynamics in E. coli cultures. Since extracellular NON loss, including

autoxidation and gas phase transport, was non-negligible, we

bridged the intracellular model to the experimental system by

adding an extracellular (growth media) compartment that

accounted for autoxidation and gas-phase transport (Materials

and methods). Kinetic parameters specific to the extracellular

compartment (NON delivery rate, NON and O2 gas phase mass

transfer coefficients, and NON autoxidation rate) were determined

from experimental NON and O2 measurements in the absence of

cells (Materials and methods, Figure S3, Text S1). In the

experimental system, exponential-phase wild-type E. coli were

treated with 0.5 mM dipropylenetriamine (DPTA) NONOate,

and the concentration of NON in the culture was monitored over

time (Materials and methods). The NON concentration peaked

rapidly to 9.7 mM following delivery of DPTA, and decreased at a

steady rate for ,0.6 hours, after which the concentration dropped

quickly to submicromolar levels (Figure 2A). Using a nonlinear

least squares optimization algorithm, 39 uncertain parameters (24

kinetic constants and 15 species concentrations) from the model

were optimized to capture the experimentally-measured NON

concentration profile (Materials and methods, Table S4). Uncer-

tain parameters were defined as those that were absent from

literature, or those whose literature values had a high degree of

variability. All other parameters were either set to their literature

values, or measured independently in our experimental apparatus

(Tables S1, S2, S3, Text S1). Given that the optimization

algorithm does not guarantee identification of the globally optimal

solution, 100 independent sets of random initial parameter values

were used (Materials and methods). The optimized parameter set

yielding the lowest sum of squared residuals (SSR) between the

simulated and experimental [NON] curve is presented in Figure 2A,

and demonstrates the model’s ability to capture NON dynamics in

a wild-type E. coli culture. For comparison, we took the three most

comparable NON models [3,4,9], adapted them to our experi-

mental conditions, and performed an analogous nonlinear least

squares optimization in an attempt to capture the NON dynamics

of wild-type E. coli cultures (Materials and methods). As depicted in

Figure S4, none of the alternative models could accurately

simulate E. coli NON dynamics. Quantitatively, the SSRs between

the experimental data and the [NON] curves predicted by the

adapted, alternative models of Lim et al. [4], Lancaster [3], and

Nalwaya and Deen [9] were, respectively, 200-, 200-, and 70-fold

greater than that of the model presented here. These data

convincingly demonstrate that the model presented here far

exceeds current state-of-the-art kinetic models for simulation of

microbial NON metabolism.

With an ability to simulate NON dynamics confirmed, we sought

to identify which of the 39 parameters adjusted by the nonlinear

optimization procedure were informed by the process, and which

had a negligible influence under these conditions. We varied each

parameter individually and calculated the corresponding increase

in SSR, keeping all other parameters at their optimized values

(Figure 2B). The analysis revealed that the Hmp NON binding

(kHmp,NON-on), and Hmp expression (kHmp-exp,max and KHmp-exp,NON)

parameters were the most influential, whereas the oxidation of

NorV (kNorV-O2) was of minor significance, but exhibited a greater

effect than the remaining parameters, which were all negligible

(less than a 5% increase in SSR) (Figure S5). This prompted us to

identify the minimum biochemical reaction network necessary to

simulate NON dynamics in aerobic, wild-type E. coli cultures

(Materials and methods). As depicted in Table S5, the model

presented here can be simplified to include 17 reactions, 18

chemical and biochemical species, and 14 kinetic parameters

without exceeding an overall 5% increase in SSR. While this

simplified model can capture the NON dynamics presented in

Figure 2A, we note that it is not suitable for the calculation of

additional NON outcomes, such as the degree of [Fe-S] cluster

damage or cytochrome inhibition, and it is not generally

translatable to other experimental conditions, such as anaerobic

environments. The comprehensive model, on the other hand, can

perform such calculations and be applied under many more

experimental conditions.

The importance of parameters governing Hmp detoxification

activity suggested a dominant role for this enzyme in the

consumption of NON under aerobic conditions, a result that is

consistent with previous studies of NON sensitivity in E. coli [19–

22]. To quantitatively investigate the contribution of Hmp to

NON consumption, we calculated the cumulative, time-

dependent distribution (overall and intracellular) of NON for

wild-type E. coli treated with DPTA using the optimized

parameter values (Figures 2C and 2D). The simulated distribu-

tions predicted that autoxidation of NON in the media accounts

for the majority of NON removal shortly after DPTA addition,

with loss to the gas phase comprising most of the remaining flux.

A Kinetic Platform to Determine the Fate of NON
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By 45 min after delivery, the model predicted that cellular

consumption of NON had accumulated to match that of gaseous

loss, and after 1 h became the primary sink. The predicted

concentration of NON dropped rapidly to submicromolar levels

at 43 minutes post-dose, where it remained for the duration of

the simulation, as Hmp continued to remove NON as it was

released by DPTA. The majority (78.1%) of the total NON
released by DPTA was predicted to be consumed by the cells,

while autoxidation in the media and loss to the gas phase

accounted for 13.6% and 8.3% of the total NON consumption,

respectively. Virtually all (99.85%) of the NON consumed by the

cells was predicted to be through Hmp detoxification, with most

of the remaining 0.15% through oxidation by O2 and O2N2.

Reduction by anaerobic detoxification enzymes (NorV and

NrfA) and nitrosylation of [Fe-S] clusters was predicted to

account for less than 0.03% and 0.04% of the cellular NON
consumption, respectively. To provide additional experimental

evidence in support of these intracellular distributions, we

experimentally validated that a mutant lacking the NorV

enzyme (DnorV) consumed NON at the same rate as wild-type

under the experimental conditions tested (Figure S6).

Given the importance of Hmp to the removal of NON, we

assessed the predictive power of the model by determining

whether it could accurately predict NON dynamics in a Dhmp

mutant culture. We simulated a Dhmp mutant by fixing the Hmp

expression rate to zero. All other model parameter values were left

unchanged. As expected, the removal of Hmp was predicted to

have a considerable effect on the cells’ ability to remove NON from

the environment (Figure 3A). Although the [NON] curve simulated

for the Dhmp culture closely matched that predicted for wild-type

at early times (0 to ,10 min) after DPTA delivery, it started to

diverge rapidly as Hmp began to dominate the consumption of

NON in the wild-type culture (Figure 2C). The model predicted

that the wild-type culture would quickly consume NON to reach a

submicromolar NON concentration by 43 min, while the concen-

tration of NON in the Dhmp culture would gradually decline,

requiring over 6.4 hours to achieve submicromolar levels. In

contrast to wild-type cultures where it was predicted that most

NON would be converted to NO3
2 by Hmp, the model predicted

that the majority of NON in Dhmp cultures would be converted

to NO2
2 through autoxidation (Figure 3C). To experimentally

confirm the Dhmp model predictions, we measured the

Figure 2. Dynamics of NON in aerobic wild-type E. coli cultures. (A) NON concentration following delivery of 0.5 mM DPTA to a culture of
aerobic, exponential-phase, wild-type E. coli at an OD600 of 0.05 was measured experimentally (solid red line) and predicted by the model (dashed
black line). Error bars (light red) represent the standard error of the mean for 3 independent experiments. (B) Fold increase in SSR between the
experimentally measured and predicted NON concentration as a function of parameter value for uncertain parameters that significantly affected the
SSR upon variation. The remaining 35 parameters exhibited a negligible increase in SSR when varied. (C) Simulated NON concentration profile (black
line) and corresponding cumulative distribution of total NON consumption following the addition of 0.5 mM DPTA to wild-type E. coli. The stacked,
shaded regions represent the predicted cumulative fraction of NON consumed by each pathway, where the bar to the right of the plot represents the
final distribution of NON consumption at the limit tR‘. ‘‘Cellular’’ refers to NON consumed by any intracellular pathway, ‘‘Gas’’ is loss of NON to the gas
phase, and ‘‘Autoxidation’’ is the reaction of NON with O2 in the growth media. (D) Predicted cumulative distribution of intracellular NON consumption
in wild-type culture following addition of 0.5 mM DPTA. Additional bar at far right shows the contribution of other pathways that are not visible on
the full 0–100% scale. ‘‘Hmp’’ is detoxification of NON by Hmp, ‘‘Oxidation’’ is NON consumed through reaction with O2 or O2N2, ‘‘NorV/NrfA’’ is the
reduction of NON by NorV or NrfA, and ‘‘[Fe-S]’’ is NON consumed by the nitrosylation of iron-sulfur clusters.
doi:10.1371/journal.pcbi.1003049.g002
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concentration of NON in a Dhmp culture after treatment with

0.5 mM DPTA under identical conditions as wild-type (Figure 3B).

In addition, we measured NO2
2 and NO3

2 in the Dhmp culture at

10 h post-dose, when it was predicted that over 99% of the donor

had dissociated. The model-predicted NON concentration curve

and final NO2
2 and NO3

2 concentrations were in excellent

agreement with the experimental data (without further optimiza-

tion of any parameters) (Figure 3B), validating the ability of the

model to make accurate predictions regarding major perturbations

to the system.

To further investigate NON clearance from the Dhmp culture,

we simulated the corresponding intracellular distribution of NON
(Figure 3D). In the Dhmp culture, consumption of NON by cells

was predicted to account for less than 1% of the total NON
delivered, compared to the 78.1% for wild-type cells. Over 73%

of the NON that was consumed through intracellular pathways

was predicted to be by reaction with O2 or O2N2, while anaerobic

enzymatic reduction (NorV and NrfA) and [Fe-S] nitrosylation

accounted for the remaining 14.1% and12.6%, respectively

(Figure 3D).

Analysis of experimentally-accessible model parameters
After validating the model, we sought to identify parameters

that control the NON distribution in E. coli cultures. We focused on

experimentally-accessible model parameters to enable experimen-

tal validation of predictions. To identify control parameters, we

performed a parametric analysis (Materials and methods) to assess

the effect of varying each parameter on the distribution of NON.
Varied parameters included enzyme concentrations or maximum

expression rates, initial concentration and release rate of the NON
donor, O2 concentration in the environment, and intracellular

concentrations of GSH, amino acids, and energy metabolites

(Figure 4A, Table S6). In addition to Hmp expression, the

parametric analysis revealed NON donor concentration and release

rate, as well as O2 concentration, as important parameters

governing the distribution of NON consumption. Anaerobic NON
detoxification enzymes became the dominant mode of NON
removal within E. coli at lower O2 concentrations due to the loss of

Hmp NON dioxygenase activity, a decrease in the O2-mediated

deactivation of NorV, and reduced repression of NrfA expression.

The lower O2 concentration also decreased the rate of NON

Figure 3. Effect of Dhmp on NON dynamics in aerobic E. coli cultures. (A) Simulated NON profiles for wild-type (solid black line) and Dhmp
(dashed red line) cultures following addition of 0.5 mM DPTA. (B) NON concentration following delivery of 0.5 mM DPTA NONOate to a culture of
exponential-phase, Dhmp E. coli at an OD600 of 0.05 was measured experimentally (solid blue line) and predicted by the model (dashed black line).
Error bars (light blue) represent the standard error of the mean for 3 independent experiments. The inset shows the measured (blue bars) and
predicted (dashed white bars) NO2

2 and NO3
2 concentrations at 10 h after DPTA delivery to the Dhmp culture. Error bars represent the standard

error of the mean for 3 independent experiments. The dotted red line represents the limit of detection for the assay, with the asterisk (*) indicating
that the measured [NO3

2] was negligible, as it did not differ significantly from the detection limit (one-sample t-test, 95% confidence). (C) Simulated
NON concentration profile (black line) and corresponding cumulative distribution of total NON consumption following addition of 0.5 mM DPTA to
Dhmp E. coli. (D) Predicted cumulative distribution of intracellular NON consumption in a Dhmp culture following addition of 0.5 mM DPTA.
doi:10.1371/journal.pcbi.1003049.g003
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autoxidation in the media, leaving intracellular reactions and

escape to the gas phase as the two primary modes of NON removal.

Although it had little impact on the total NON distribution,

removing superoxide dismutase activity resulted in a small, but

noticeable increase in the fraction of intracellular NON consumed

through reaction with O2N2 to form ONOO2. Interestingly, the

model predicted that higher donor release rates decrease the utility

of Hmp in detoxifying NON (Figure 4B). This decrease can be

attributed to the higher NON concentrations achieved with faster

release rates, which in turn enhance substrate inhibition due to the

binding of NON to the Hmp active site before O2 [23].

To further examine the effect of donor release rate on model

dynamics, we simulated delivery of NON to cultures at an increased

rate, where Hmp contribution to NON consumption was predicted

to be largely reduced. The initial concentration of donor was

maintained at 0.5 mM, but the release rate was increased from

1.3461024 s21 (1.4 h half-life, DPTA) to 1.3561023 s21 (8.6 min

half-life), the measured rate for the NON donor propylamine

propylamine (PAPA) NONOate (Figure S7, Text S1). We

performed simulations for wild-type and Dhmp cultures, and

generated the corresponding NON concentration profiles

(Figure 4C). The strong influence of NON delivery kinetics on

model dynamics are readily apparent when comparing the NON
concentration profiles simulated for PAPA (Figure 4C) with those

for DPTA (Figure 3A). The faster release rate of PAPA predicted a

peak NON concentration nearly four times that of DPTA (34 mM

Figure 4. Effect of experimentally-accessible parameters on NON dynamics. (A) Predicted total (left column) and intracellular (right column)
NON distributions corresponding to variation in 27 experimentally-accessible parameters. Each parameter name is listed adjacent to the 5 total and
intracellular NON distributions obtained as a result of varying that parameter logarithmically within its physiological range. The distributions are
ordered such that the parameter is increasing in value from top to bottom. (B) Percentage of total NON predicted to be consumed by Hmp as a
function of NON donor release rate. Points (green circles) correspond to the release rates measured for DPTA and PAPA. (C) Simulated NON
concentration profile for wild-type (solid black line) and Dhmp (red dashed line) cultures treated with 0.5 mM PAPA.
doi:10.1371/journal.pcbi.1003049.g004
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compared to 9 mM, respectively), and a large increase in similarity

between the simulated wild-type and Dhmp [NON] curves was

observed. Although the predicted NON concentration in the

PAPA-treated wild-type culture dropped rapidly to submicromolar

levels at a time similar to that of DPTA (37 min and 43 min,

respectively), Dhmp entered this regime after 1.2 h when treated

with PAPA, compared to the 6.4 h predicted for DPTA. We

simulated the corresponding NON distributions for PAPA-treated

cultures to examine the participation of the different pathways in

NON removal. The elevated NON concentrations simulated for the

faster-releasing PAPA greatly increased flux through various

consumption pathways, where over 99% of the total NON
consumption was predicted to occur within the first hour after

dose for both wild-type and Dhmp (Figures 5A and 5C,

respectively). The activity of Hmp, however, was attenuated by

the higher NON concentration due to substrate inhibition (see Text

S1), reducing its ability to participate in detoxification. When Hmp

activity was restored and became the most rapid NON removal

pathway after ,30 minutes, simulation results showed that over

90% of the total NON had already been consumed through

autoxidation and gas transfer pathways (Figure 5A). As a result,

the fraction of total NON consumed by cellular pathways in the

wild-type culture was predicted to decrease by nearly 10-fold

(78.1% to 8.4%) due to the increased NON delivery rate (compare

Figures 2C and 5A). When treating with DPTA, the NON
concentration profile and distribution simulated for the Dhmp

mutant (Figure 3B) were observed to differ greatly from those of

wild-type (Figure 2C), but were significantly more similar to wild-

type when using PAPA as the donor (Figures 5A and 5C) due to

the large reduction in Hmp-mediated NON consumption predicted

for the wild-type culture. The intracellular distribution simulated

for wild-type treated with PAPA (Figure 5B) was still dominated by

Hmp, despite its large reduction in activity. However, the

proportion of intracellular NON consumed through pathways

other than Hmp was predicted to increase by over 15-fold (0.15%

to 2.6%) upon increasing the NON delivery rate, suggesting that

these other pathways maintain activity while Hmp is inhibited.

Thus, the reduction in Hmp activity predicts a 15-fold increase in

contribution by other intracellular pathways to the removal of

NON within the cell, including damage to biomolecules such as

[Fe-S] clusters.

Experimental validation of the dependence of Hmp on
NON-delivery kinetics

To experimentally validate the prediction that the utility of

Hmp decreases as the delivery rate of NON increases, we measured

and compared the ability of wild-type and Dhmp to remove NON
from the culture when dosed with PAPA. We observed excellent

agreement between model-predicted and experimentally-

measured NON concentration profiles for the addition of PAPA

to wild-type and Dhmp cultures, with no further optimization of

model parameters (Figure 6A). The peak concentration of NON
was underestimated by approximately 10%, which was also

observed when measuring NON release from PAPA in media

without cells (Figure S7), suggesting that the disagreement was not

associated with cellular parameters. In addition, the rate of NON
clearance by the wild-type cells was slightly overestimated. This

could originate from the treatment of Hmp expression in the

model, where a more extensive implementation of its governing

regulatory network may improve the accuracy of the simulated

transcriptional response of hmp expression to elevated levels of

NON. As predicted, the measured difference in time required to

remove NON from the culture between wild-type and Dhmp was

small for PAPA (0.6 h difference in time to reach submicromolar

levels), highlighting the decreased utility of Hmp under conditions

of more rapid NON release. These results demonstrate that the

model can accurately identify parameters that control the

distribution of NON in bacterial cultures, and quantify the impact

of their manipulation.

In addition to NON removal from the cell interior and

surrounding environment, the model can be used to calculate

the extent to which NON affects various cellular targets, including

[Fe-S] nitrosylation [24–26] and cytochrome inhibition [27,28].

Therefore, we utilized the model to evaluate the protective effect

of Hmp with respect to [Fe-S] cluster damage (Figure 6B) and

cytochrome bd inhibition (Figure 6C). Due to the wide range of

reaction rates reported for the nitrosylation of [Fe-S] clusters by

NON (kNON-[Fe-S]), the parameter value was varied across this range

when predicting the extent of [Fe-S] damage. Simulated exposure

of wild-type and Dhmp E. coli to 0.5 mM DPTA predicted a 2- to 4-

fold reduction in the total concentration of [Fe-S] clusters

damaged as a result of Hmp activity. When simulations were

repeated for PAPA, however, the total [Fe-S] damage predicted

for wild-type and Dhmp cultures differed by a maximum of 5%, in

agreement with the predicted dependence of Hmp utility on NON
release rate. Furthermore, the duration of NON-mediated cyto-

chrome bd inhibition following DPTA treatment was predicted to

greatly increase for the Dhmp culture relative to wild-type,

requiring over 9 h (compared to 0.7 h for wild-type) for the

concentration of NON-bound cytochromes to drop below 50% of

the total. Treatment with PAPA resulted in more similar

cytochrome inhibition between the strains, with durations of

0.6 h and 1.5 h predicted for wild-type and Dhmp, respectively.

Collectively, the results from these damage descriptors, in addition

to the rate and distribution of NON consumption, predicted a

greater similarity in recovery from bacteriostasis between wild-type

and Dhmp when treated with PAPA than with DPTA. To test the

prediction, we monitored the optical density (OD600) of each strain

following treatment with 0.5 mM DPTA or PAPA (Figure 6D). In

agreement with the prediction, the duration of NON-induced stasis

was more similar between wild-type and Dhmp strains when using a

faster NON donor. Growth inhibition of Dhmp following PAPA

treatment was less severe than that observed for DPTA, where

cells exited stasis less than 2 h after wild-type, compared to over

10 h for DPTA.

Experimental validation of the microaerobic utility of
Hmp

Hmp is considered the major aerobic enzyme responsible for

NON detoxification [19,21,29], whereas NorV is considered the

major anaerobic detoxification system [22,30,31]. Surprisingly, the

parametric analysis suggested that Hmp remains dominant at O2

concentrations as low as 25 mM (,14% air saturation [32])

(Figure 4A). To experimentally confirm that this was the case, we

adjusted the experimental setup by adding N2-bubbling at a rate of

1 ml/s. In the presence of wild-type E. coli at an OD600 of 0.05, an

O2 concentration of 35 mM was achieved and maintained constant

throughout the time course of a DPTA experiment (Figure S8).

This concentration was over 5-fold less than air-saturated media

(185 mM), but also above the 25 mM used in the parametric

analysis. Due to the adjustment in experimental conditions, the

model was similarly optimized for NON dynamics from micro-

aerobic wild-type E. coli cultures (Material and methods), and

found to capture the data very well (Figure 7A). We note that N2-

bubbling increased fluctuations in the NON measurements, but the

increased error was minor compared to the range of NON
concentrations investigated. Using the optimized model, we

predicted the effect of genetic deletions of norV and hmp on the
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NON dynamics. Consistent with the previous parametric analysis,

NorV was identified as a negligible consumption pathway under

microaerobic conditions (35 mM O2), whereas Hmp was identified

as the major NON sink. These predictions were experimentally

validated, and the results are presented in Figures 7B and 7C.

These data demonstrate that the model is useful for studying sub-

aerobic environmental conditions, and that the switch between

Hmp-dominated and NorV-dominated NON consumption regimes

occurs at very low O2 concentrations.

The corresponding extracellular and intracellular NON distri-

butions for wild-type, Dhmp, and DnorV under microaerobic

conditions were simulated, and are presented in Figure 7. Loss

of NON to the gas phase was predicted to largely increase for all

strains (26% and 27% of the total NON consumption for wild-type

and DnorV, respectively, and 95% for Dhmp), due to the increased

air-liquid surface area caused by the bubbling of N2 through the

culture, as well as the reduced rate of autoxidation. Autoxidation

was predicted to have negligible NON consumption activity

compared to the cellular and gas transport pathways (0.5% of

the total for wild-type and DnorV, and 1.2% for Dhmp), owing to

the reduced O2 concentration, as well as the lower peak NON
concentration (,4.5 mM for all strains) than was achieved under

aerobic, non-bubbling conditions using DPTA (,8–10 mM).

Cellular consumption of NON was still predicted to be the greatest

sink of NON for the wild-type and DnorV strains (accounting for

74% and 73% of the total consumption, respectively), but only a

minor pathway in the Dhmp culture (3.8%). The intracellular

distributions (Figure 7) for wild-type and DnorV cultures were still

predicted to be dominated by Hmp detoxification (both exceeding

98% of intracellular NON consumed by Hmp), as was seen under

aerobic conditions. The NON consumed by Dhmp cells, however,

was now predicted to occur primarily through NorV reduction

(93% of the intracellular NON), compared to the 14% contribution

predicted for Dhmp in aerobic conditions. Overall, the simulation

results predicted Hmp to be the primary mode of NON
consumption under O2 concentrations as low as 35 mM, but

suggested an increased role of NorV reduction in the event that

Hmp detoxification becomes unavailable.

Discussion

NON is a critical antimicrobial of the innate immune response

whose utility originates from its ability to diffuse through cellular

membranes [33], deactivate bacterial enzymes [26], inhibit

respiration [28], and react with O2 and O2N2 to yield the reactive

nitrogen species, NO2N, N2O3, N2O4, and ONOO2 [24]. The

biochemical reaction network of NON includes both spontaneous

and enzymatic reactions involving many short-lived species that

decompose to several common end-products [4]. Increasing the

complexity of this system is the continuous degradation and repair

Figure 5. Increasing the NON delivery rate alters the dynamics and distribution of NON consumption. (A) Simulated NON concentration
curve (black line) and corresponding cumulative distribution of total NON consumption in a wild-type culture following addition of 0.5 mM PAPA. (B)
Predicted cumulative distribution of intracellular NON consumption in a wild-type culture following addition of 0.5 mM PAPA. (C) Simulated NON
concentration curve (black line) and corresponding cumulative distribution of total NON consumption in a Dhmp culture following addition of 0.5 mM
PAPA. (D) Predicted cumulative distribution of intracellular NON consumption in a Dhmp culture following addition of 0.5 mM PAPA.
doi:10.1371/journal.pcbi.1003049.g005
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of damaged biomolecules, which regenerates targets for NON and

its reactive intermediates [34]. A quantitative description of how

NON distributes among these many pathways is critical to

understanding immune function and pathogenesis, as well as to

designing NON-based and NON-synergizing therapeutics [35–37].

However, the complexity of the NON reaction network renders

exhaustive experimental monitoring infeasible, and interpretation

of measurements difficult [4,6]. To address these challenges,

experimentally-informed computational models are required to

explore the NON reaction network.

Though several kinetic models have been developed to study

the chemistry of NON in biological systems, of which the

majority are mammalian, none have had sufficient breadth and

depth to address the full range of effects of NON exposure

[1,38]. The model presented here is far more comprehensive

than those constructed previously, incorporating the damage,

modification, and repair of biomolecules, as well as enzymatic

detoxification and transcriptional control. These functional-

ities allow focused investigation of intracellular components of

the NON network, such as [Fe-S] cluster and DNA damage, but

also culture-wide prediction of the NON distribution. We

validated the utility of the model by demonstrating that it can

reproduce NON dynamics in a bacterial culture, make accurate

predictions regarding large perturbations to the system, and

identify parameters that control the distribution of NON in

bacterial cultures. Specifically, model simulations predicted

that NON autoxidation and Hmp-catalyzed detoxification were

the primary sinks for NON consumption in aerobic wild-type E.

coli cultures. Oxidation of NON has been shown in the past to

be a major contributor to the consumption of NON under

certain conditions [3], and the dominant role of Hmp in

aerobic detoxification is in agreement with previous studies

that have demonstrated its importance in tolerating NON stress

[21–23]. In addition, we used the model to (1) uncover a novel

Figure 6. The utility of Hmp for NON consumption and tolerance decreases with increased NON delivery rate. (A) Experimentally
measured NON concentration profiles following addition of 0.5 mM PAPA to a culture of wild-type (solid red line) or Dhmp (solid blue line) E. coli at an
OD600 of 0.05. Lines depict the mean of three independent experiments, and error bars (light red and light blue for wild-type and Dhmp, respectively)
represent the standard error of the mean. Also shown are the corresponding model-predicted NON concentration profiles for wild-type (dark red
dashed line) or Dhmp (dark blue dotted line) cultures. (B). Predicted cumulative concentration (per unit cellular volume) of [2Fe-2S] and [4Fe-4S]
clusters damaged following DPTA (purple) or PAPA (teal) treatment of wild-type (solid lines) and Dhmp cultures (dashed lines) is plotted as a function
of the model parameter governing the rate of [Fe-S] nitrosylation by NON (kNON-[Fe-S]). (C) Predicted durations of cytochrome bd (Cyd) inhibition by
NON, defined as the time required for the percentage of NON-bound Cyd to drop below 50% of the total Cyd concentration. (D) Experimentally
measured growth curves (quantified by OD600) for wild-type and Dhmp cultures following treatment with 0.5 mM of DPTA or PAPA demonstrate
more comparable duration of bacteriostasis between wild-type and Dhmp for treatment with PAPA than DPTA. Due to the faster NON delivery kinetics
associated with PAPA, OD600 readings were taken more frequently (20 min intervals) than with DPTA (30 min intervals). After addition of DPTA to
Dhmp cells, growth resumption was not observed within the 10 h timeframe of the experiment.
doi:10.1371/journal.pcbi.1003049.g006
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dependency of Hmp utility on the NON delivery rate, and (2)

discover that Hmp is the dominant cellular NON detoxification

system at dissolved O2 concentrations as low as 35 mM

(microaerobic). Both of these predictions were validated

experimentally, thereby demonstrating the utility of the model

for the study of NON metabolism. Specifically, when treated

with a fast-releasing NON donor (PAPA), the consumption of

NON and recovery from bacteriostasis was far more similar

between wild-type and Dhmp E. coli than with a slower NON
donor (DPTA). This effect arises from substrate inhibition of

the Hmp active site caused by high NON/O2 concentration

ratios and the time required to synthesize Hmp [23]. An effect

of NON delivery on its toxicity has been observed previously in

a mammalian system [39,40], where it was shown that killing

Figure 7. NON dynamics and distribution in E. coli cultures under microaerobic conditions. Shown along the left are the simulated and
experimentally-measured NON concentration profiles for (A) wild-type, (B) DnorV, and (C) Dhmp cultures following addition of 0.5 mM DPTA, where
the O2 concentration was maintained at 35 mM by bubbling with N2. Error bars (light red, light purple, and light blue for wild-type, DnorV, and Dhmp,
respectively) represent the standard error of the mean for at least 3 independent experiments. Shown directly to the right of the NON concentration
profiles are the corresponding predicted cumulative distributions of total (left) and intracellular (right) NON consumption.
doi:10.1371/journal.pcbi.1003049.g007

A Kinetic Platform to Determine the Fate of NON

PLOS Computational Biology | www.ploscompbiol.org 10 May 2013 | Volume 9 | Issue 5 | e1003049



of human lymphoblastoid cells (TK6 and NH32) was a

function of both NON concentration and cumulative dose.

Here, we have demonstrated an influence of NON delivery rate

on the dynamics of NON consumption and recovery in bacterial

cultures, and also offered a detailed, mechanistic description of

the observed dependence. In addition, we discovered that

Hmp remains the major cellular detoxification system at

dissolved O2 concentrations as low as 35 mM. This effect

originates from the strong induction of Hmp expression upon

NON exposure even under anaerobic conditions [41,42], and

the rapid O2-mediated deactivation of NorV, the alternative

NON detoxification system that has been previously identified

as critical for resisting NON stress under anaerobic conditions

[22,31]. These data demonstrate the flexibility of this method

to different environmental conditions (microaerobic), and

provide support for the role of Hmp as a virulence factor

[43,44], since O2 concentrations at infections sites/in macro-

phages and neutrophils are typically hypoxic (less than 50 mM

O2 [4,45,46]). Interestingly, both NorV- and Hmp-type

enzymes have been found to be virulence factors for numerous

organisms [36,47–50], and thus a quantitative understanding

of the conditions under which each contributes to NON
clearance would be valuable for the study of their importance

to virulence.

The work presented here demonstrates the predictive accuracy

and utility of a comprehensive model of NON metabolism in E. coli.

The scope of this model allows for detailed, quantitative

exploration of numerous NON network features and environmental

conditions, including future investigations of the roles of O2

concentration and indirect NON delivery, such as that observed for

S-nitrosothiols [41]. Further, this model will prove useful for the

optimization of NON-synergizing and NON-based therapeutics,

which are being investigated as antibiotic alternatives for the

treatment of both gram-positive and gram-negative infections,

including those caused by Mycobacterium tuberculosis, Staphylococcus

aureus, Pseudomonas aeruginosa, E. coli, and Acinetobacter baumannii [35–

37]. Such therapies include NON-releasing nanoparticles [36],

NON-releasing dressings [37], and rhodanines, which kill non-

replicating mycobacteria through the potentiation of host-derived

NON [35]. Interestingly, the study by Sulemankhil and colleagues

identified NON release rate and dosage as important parameters

governing the effectiveness of the examined dressings. The

modeling approach presented here could provide a more

quantitative understanding of how these potential therapeutics

neutralize pathogens, and would prove useful for identifying

methods to increase their potency through the quantitative

identification of the NON distribution pathways used by specific

organisms. To achieve this potential utility, the modeling method

described here must be adapted for use in organisms other than E.

coli. To do this, the enzymatic reactions within the model would

need to be removed, replaced, or augmented based on the systems

harbored by the pathogen of interest, and uncertain parameters

would need to be identified by training the model on experimental

data, as performed here. In the event that an important reaction is

missing from a model, stable NON end products (such as NO2
2

and NO3
2) would be measured and both metabolic databases and

the organism’s genome would be mined for model additions

capable of capturing the experimental data. Potential additions

would then be experimentally validated by measuring in vitro

kinetics of samples purified from cultures of interest. Execution of

these steps will produce models of NON metabolism in pathogens,

that will mirror utility and capabilities achieved by the kinetic

platform described here.

Materials and Methods

Bacterial strains
All strains used in this study were E. coli K-12 MG1655. The Dhmp

and DnorV mutants were obtained from the Keio collection [51], and

transferred into the MG1655 background using the P1 phage

method. Proper chromosomal integration and absence of gene

duplication were checked by PCR. The hmp primers used were 59-

CCGAATCATTGTGCGATAACA-39 (forward) and 59-AT

GATGGATACTTTCTCGGCAGGAG-39 (reverse) for accurate

integration, and 59- TCCCTTTACTGGTGGAAACG-39 (forward)

and 59-CACGCCCAGATCCACTAACT-39 (reverse) for gene

duplication. The norV primers used were 59-CCAGCACAT

CAACGGAAAAA-39 (forward) and 59-ATGATGGATACTT

TCTCGGCAGGAG-39 (reverse) for accurate integration, and 59-

GACTGGGAAGTGCGTGATTT-39 (forward) and 59-CGGA

AGCGTAAACCAGTCAT-39 (reverse) for gene duplication.

Chemicals
NON donors (Z)-1-[N-(3-aminopropyl)-N-(3-ammoniopropyl)

amino]diazen-1-ium-1,2-diolate (DPTA NONOate) and (Z)-1-

[N- (3-aminopropyl)-N- (n-propyl)amino]diazen-1-ium-1, 2-diolate

(PAPA NONOate) were purchased from Cayman Chemical

Company. All other chemicals and reagents were purchased from

Sigma Aldrich or Fisher Scientific, unless otherwise noted.

Cell growth and NON consumption assays
E. coli from a frozen 280uC stock were inoculated into 1 ml of

fresh LB broth and grown for 4 hours at 37uC and 250 r.p.m.

10 ml of the LB culture were used to inoculate 1 ml of MOPS

minimal media (Teknova) containing 10 mM glucose. The

minimal glucose culture was grown at 37uC and 250 r.p.m.

overnight (16 h) and used to inoculate 20 ml fresh MOPS glucose

(10 mM) in a 250 ml baffled shake flask to a final OD600 of 0.01.

The flask culture was grown at 37uC and 250 r.p.m. to exponential

phase (OD600 = 0.2), at which point 4 ml was transferred to

separate microcentrifuge tubes in 1 ml aliquots and centrifuged at

15,000 r.p.m. for 3 min at 37uC. To remove the culture media,

980 ml of the supernatant was removed and cell pellets were

resuspended in 1 ml of pre-warmed (37uC) 10 mM MOPS glucose

media. Samples were combined in a 15 ml Falcon tube, and

returned to the shaker (37uC, 250 r.p.m.). After 5 minutes, the

resuspended culture was diluted to an OD600 of 0.03 in fresh, pre-

warmed (37uC) MOPS glucose (10 mM) in a 50 ml Falcon tube

with a final culture volume of 10 ml. The culture was stirred with a

sterilized magnetic stirring bar, and immersed in a stirred water

bath to maintain the temperature at 37uC. Growth was monitored

until the OD600 reached a value of 0.05 (approximately

45 minutes after diluting to OD600 of 0.03), at which time the

NON donor solution (DPTA or PAPA) was added. On the day of

use, the NONOate powder was dissolved in a chilled (4uC), sterile

solution of 10 mM NaOH in deionized H2O, and stored on ice

prior to delivery. After NONOate delivery, every half-hour

(DPTA) or twenty minutes (PAPA), 75 ml aliquots were removed

to measure the OD600 (Synergy H1 Microplate Reader, BioTek

Instruments, Inc.). The concentration of NON in the culture was

monitored continuously over the course of the experiment using

an ISO-NOP NON sensor (World Precision Instruments, Inc.). The

electrode was calibrated daily, prior to use, according to the

manufacturer’s specifications.

The microaerobic NON consumption assay was performed using

the same procedure, except N2 bubbling was included to reduce

the dissolved O2 concentration. Immediately following the dilution

of cells to an OD600 of 0.03 in the 50 ml Falcon tube, N2 gas
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(99.998% pure) was bubbled into the culture through a sterile

pipet tip at a constant flow rate of 1 ml/s. The O2 concentration

was observed to drop quickly and stabilize at approximately 19%

air saturation (35 mM) within 15 minutes of initiating the N2

bubbling, where it remained for the duration of the experiment.

The concentration of O2 was monitored continuously to ensure

stable conditions throughout the assay (Figure S8).

O2 measurements
The concentration of dissolved O2 was measured using the

FireStingO2 fiber-optic O2 meter with the OXF1100 fixed needle-

type minisensor (PyroScience GmbH). The sensor was calibrated

according to the manufacturer’s specifications, and the signal was

automatically compensated for temperature fluctuations using the

TDIP15 temperature sensor (PyroScience GmbH) during all O2

measurements.

NO2
2 and NO3

2 quantification
The concentration of NO2

2 and NO3
2 were measured using

the Nitrate/Nitrite Colorimetric Assay Kit from Cayman Chem-

ical Company, following the manufacturer’s instructions. Briefly,

Griess reagents were added to diluted samples to convert the

NO2
2 to a purple azo compound, and quantified by measuring

the absorbance at 540 nm using a microplate reader [52]. A

calibration curve was generated using varying dilutions of a

standard NO2
2 solution. The total NO2

2+NO3
2 concentration of

the samples were obtained by first converting the NO3
2 to NO2

2

using nitrate reductase, and then treating with Griess reagents.

The NO3
2 concentration in the samples was calculated as the

difference between the total NO2
2+NO3

2 concentration and the

NO2
2 concentration. All samples were measured in triplicate.

Model development
Framework. The model simulates the dynamics of intracel-

lular metabolites and cellular components upon exposure to NON
using a system of differential mass balances,

dX

dt
~S:r(x,p)

where X is the vector of species concentrations, and S is a matrix

of stoichiometric coefficients describing all model reactions.

Reaction rates, defined by vector r, are a function of the relevant

species concentrations x, and the associated kinetic parameter(s) p.

Table S1 lists the metabolites and enzymes considered in the

model, as well as their initial concentrations. Table S2 lists

reactions and rate constants for reactions governed by elementary-

type rate equations (for example, r = k[A][B]), while Table S3

presents reactions, rate expressions, and associated kinetic

parameters for reactions with more complex rate equations. The

following sections briefly describe specific reactions and assump-

tions of the model, whereas more detail can be found in Text S1.

Compartmentalization. The model was partitioned into

intracellular and extracellular compartments to facilitate experi-

mental validation, as measurements inherently involve the culture

media. Given the ability of NON and O2 to diffuse freely across

membranes, we assumed equal intracellular and extracellular

concentrations [33,53]. To account for the difference in volume

between the compartments, the NON and O2 mass balances were

scaled according to their relative volumes,

d½NO.�
dt

~
Vmedia

Vtotal
rgen{rmedia

� �
{

Vcell

Vtotal
rcell

where V is the total or compartment-specific volume, rgen is the

rate of generation of NON in the media, and rmedia and rcell are the

rates of extracellular and intracellular NON consumption, respec-

tively. The volume fractions were calculated as a function of

OD600, assuming an OD-specific cell concentration of

11.161.16108 cells.ml21.OD21, and a single-cell volume of

3.2610215 L [54]. In our experiments, the culture was treated

with NON when it reached an OD600 of 0.05, which corresponds to

a cell volume fraction of 1.7861024.

Intracellular pH. The intracellular pH was assumed to be

7.6, reflective of bacteria growing in a neutral medium [55]. The

pH was used to select appropriate reaction rate constants, or

derive them from related kinetic parameters, such as pKa, when

necessary (Tables S2, S3).

NON delivery. The delivery of NON to the system was

modeled as originating from an NON donor (such as DPTA or

PAPA), where the initial concentration of the donor species (in the

extracellular compartment) was set accordingly. The release of

NON from the NONOates was modeled according to first-order

decay kinetics, releasing two moles of NON per mole of parent

compound [56]. First-order rate constants were experimentally

measured for DPTA and PAPA in our experimental system

(Figures S3 and S7, Text S1). Although NON generation is

simulated as originating from chemical donors in this study, the

model can just as easily be modified to represent NON delivery to

the system by another method.

NON autoxidation. In aqueous solutions, NON will undergo

autoxidation at a rate that is second-order in NON and first-order

in O2 to generate nitrogen dioxide (NO2N), which may combine

with another molecule of NON to form nitrous anhydride (N2O3)

[57,58]. These oxidized forms of NON contribute to a number of

cytotoxic effects such as DNA damage and thiol nitrosation

[59,60]. Equations 1–7 of Table S2 describe the NON autoxidation

reactions used in this study.

Enzymatic NON detoxification. The main enzymatic NON
detoxification systems identified in E. coli are NON dioxygenase

(Hmp) [19], flavorubredoxin reductase (NorV) [31], and periplas-

mic formate-dependent nitrite reductase (NrfA) [61]. Hmp is the

primary enzyme responsible for detoxifying NON under aerobic

conditions via dioxygenation to NO3
2 [19–22], though it has been

shown to possess low levels of NON reductase activity in the

absence of O2 [23,62]. NorV confers protection from NON in

anaerobic environments, where it catalyzes the reduction of NON
to N2O at a rate orders of magnitude greater than the Hmp-

mediated reduction [22,63]. The reductase activity of NorV

deteriorates rapidly upon exposure to oxygen, thus preventing its

contribution to NON detoxification in the presence of O2 [22]. The

primary role of NrfA is the respiratory reduction of NO2
2;

however, NrfA has also been shown to catalyze the 5-electron

reduction of NON to NH4
+ in the presence of NO2

2 or NO3
2

[61,64]. NrfA expression is under control of the O2-responsive

regulator FNR, restricting its role to anaerobic environments

[65,66]. Reactions 98–126 in Table S2 (Hmp), and reactions 173–

174 (NorV) and 175 (NrfA) in Table S3 describe the enzyme-

mediated detoxification reactions, while equations 177–179 in

Table S3 and reactions 131–150 in Table S2 govern the

expression and degradation of the enzymes, respectively.

Thiol S-nitrosation and denitrosation. Protein-bound and

low molecular weight (LMW) thiols are subject to modification

upon exposure to NON, forming products such as S-nitrosothiols

and thiyl radicals [67–69]. NON itself does not react directly with

thiols at a rate that is physiologically relevant [70]; instead, it is the

oxidized forms (NO2N and N2O3) that are primarily responsible for

the nitrosation of thiols [71,72]. Abundant LMW thiols, such as
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GSH in E. coli, can serve as a protective sink for RNS [24,73], but

modification of protein-bound thiols may affect protein function

[67,68]. Repair of nitrosated thiols can occur spontaneously

through mechanisms such as transnitrosation, whereby a damaged

protein transfers the nitroso group to a LMW thiol [74].

Enzymatic processes have also been identified; for example,

denitrosation can be catalyzed by glutathione-dependent formal-

dehyde dehydrogenase (GS-FDH), which has a high specificity for

GSNO [75]. Reactions 32–64, 76, 81, and 83–84 of Table S2, and

reactions 167–170 of Table S3 describe the thiol nitrosation and

denitrosation, and thiol oxidation and reduction pathways

included in the model.

Cytochrome inhibition. The high affinity of NON for the

terminal quinol oxidases (cytochromes bo and bd in E. coli) makes

it a potent inhibitor of respiratory function, which can cause

bacteriostatic effects even at low NON concentrations [27,28,76].

The inhibition, caused by a reversible binding of NON to the

heme active site, is relieved upon depletion of the local NON
concentration by cellular machinery such as Hmp [21].

Equations 171–172 of Table S3 describe the reactions and

equations governing NON-mediated cytochrome inhibition used

in this study.

O2N2 generation and ONOO2 formation. O2N2 is gener-

ated within microbes as a byproduct of aerobic respiration, but is

generally maintained at low concentrations due to the O2N2

scavenging activity of superoxide dismutases [53,77]. ONOO2 is a

strong oxidant formed when NON reacts with O2N2 at a near

diffusion-controlled rate, and can have a number of deleterious

effects ranging from DNA damage to lipid peroxidation [78–80].

Equations 8–9, 12–17, 43, 45, 55–56, 61, 65–67, 127, and 130 of

Table S2 describe the O2N2 and ONOO2 associated reactions

included in the model.

Tyrosine nitration. Tyrosine nitration is a result of nitrosa-

tive and oxidative stress, where ONOO2 has been implicated as a

nitration mediator under physiological conditions [11,81]. NON
and NO2N form 3-nitrosotyrosine and 3-nitrotyrosine, respectively,

upon reaction with tyrosyl radicals generated from the oxidation of

tyrosine by radicals such as NO2N, CO3N2, and NOH [82,83].

Equations 62–63 and 69–74 of Table S2 describe the reactions

involving tyrosine oxidation and nitration used in this study.

Iron-sulfur cluster damage and repair. The disruption of

[Fe-S] clusters is known to largely contribute to the bacteriostatic

effect of NON [26,84–87]. NON reacts quickly with clusters,

resulting in the formation of inactive protein-bound dinitrosyl iron

complexes (DNICs) and Roussins’ red esters (RREs) [87–91]. The

repair of [Fe-S] clusters in E. coli is a complex process (Figure S1)

involving extrusion of the damaged cluster from the protein

[88,92–94], de novo assembly of a cluster on a protein scaffold by

the Isc or Suf system [95–98], and reinsertion of the new [Fe-S]

complex into an apoprotein [99–102]. Equations 85–94 of Table

S2 and equations 151–154 of Table S3 describe the [Fe-S] cluster

damage and repair reactions incorporated into the model.

DNA deamination and repair. DNA damage resulting from

NON exposure has been associated with the formation of N2O3,

which can deaminate DNA bases, leading to transition mutations

and strand breaks [103–106]. The bases adenine (A), cytosine (C),

and guanine (G) are deaminated to yield hypoxanthine (hX), uracil

(U), and xanthine (X), respectively [103], and are primarily

repaired via the base excision repair (BER) system [107–109]. In

general, the BER pathway (Figure S2) involves glycosydic cleavage

of the deaminated base to generate an apurinic/apyrimidinic (AP)

site [110–113], backbone cleavage and AP site excision by AP

endonuclease [114,115], and nucleotide re-insertion (DNA poly-

merase I) and ligation (DNA ligase) [116–118]. Equations 95–97

of Table S2 and equations 155–166 of Table S3 describe the DNA

deamination and repair reactions used in this study.

Kinetic simulations
All simulation calculations were performed using Matlab

(R2012a). The governing set of differential mass balances was

integrated using the stiff numerical ODE integrator (ode15s

function).

Parameter optimization
Optimization of model parameters was performed in Matlab

using the lsqcurvefit function, which solves nonlinear least-squares

minimization problems. Through an iterative process, the function

identified parameter values yielding the lowest sum of squared

residuals (SSR) between the experimentally-measured and model-

simulated NON concentration profiles. Since the nonlinearity of the

minimization problem gives rise to local minima, we performed

100 independent optimizations, each initialized with a random set

of parameter values (within their allowed range).

The parameter optimization procedure was used to determine

the values of extracellular parameters specific to our experimental

system: NON donor dissociation (kNONOate), transfer of NON to the

gas phase (kLaNON), and the rate of NON autoxidation (kNON-O2).

Cell-free growth media was treated with 0.5 mM DPTA under

conditions identical to the aerobic NON consumption assay, and

the resulting NON concentration profile and final (10 h) NO2
2 and

NO3
2 concentrations were measured. The optimization yielded

values of 1.3461024 s21 (1.4 h half-life), 4.7461023 s21, and

1.806106 M22s21 for kNONOate, kLaNON, and kNON-O2, respectively

(see Text S1 for further detail). Figure S3 demonstrates excellent

agreement between the predicted and measured [NON] curve and

final NO2
2 and NO3

2 concentrations when using the optimized

parameter values.

Of the cellular-related model parameters, 39 were classified as

uncertain due to variability or unavailability in literature (Table

S4). A parameter optimization was conducted to identify the set of

parameter values yielding the lowest SSR between the simulated

and experimentally-measured NON concentration profile resulting

from the addition of 0.5 mM DPTA to an aerobic, exponential-

phase culture of wild-type E. coli. The predicted [NON] curve using

the optimal parameter set was in excellent agreement with the

experimental data (Figure 2A).

For the microaerobic (35 mM O2) NON consumption assay,

uncertain parameters were re-optimized for the low-O2 environ-

ment due to expected changes in cellular properties and the effect

of N2 bubbling on gas transfer rates. We note that differences in

N2 bubble properties (such as bubble size and lifetime) caused by

the presence of cells prevented the use of cell-free NON
measurements in determining extracellular parameters for this

experimental setup. Instead, the simulated O2 concentration was

fixed to 35 mM based on experimental observations (Figure S8),

and the remaining extracellular and uncertain parameters (total of

42 parameters) were simultaneously optimized to best capture the

NON concentration curve measured for wild-type cells treated with

DPTA under microaerobic conditions (Table S7). The optimal set

of parameter values was able to accurately capture the experi-

mentally-measured NON dynamics in the microaerobic environ-

ment (Figure 7). An individual parametric analysis of the 42

optimized parameters was performed to determine those that had

a significant impact (greater than 5% increase in SSR) on the

predicted [NON] curve in the microaerobic environment (Figure

S9). Similar to the aerobic parametric analysis, Hmp-associated

parameters (kHmp,NON-on, kHmp-exp,max, and KHmp-exp,NON) were

found to strongly influence the predicted NON dynamics.
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Parameters governing the rate of NONOate dissociation (kNONOate)

and NON transfer to the gas phase (kLaNON) also demonstrated

substantial control of the [NON] curve upon variation. Finally, NorV

expression (kNorV-exp,max and KNorV-exp,NON) and inactivation (kNorV-

O2) parameters were found to have a significant impact on the SSR.

Parametric analyses
Parametric analyses were used to evaluate the influence of

model parameters on either the simulated [NON] curve or the

predicted distribution of NON consumption in the culture. The

effect of parameter variation on the [NON] curve was quantified by

the resulting change in SSR between the model-simulated and

experimentally-measured NON concentration profiles. Specifically,

parameters were individually varied among 100 evenly-spaced

points spanning their allowed range, and the resulting SSR at each

parameter value was calculated. The effect of parameter variation

on the SSR for aerobic (Figure 2B, Table S4) and microaerobic

(Figure S9, Table S7) wild-type E. coli cultures was evaluated.

To quantify the effect of varying experimentally-accessible

parameters on the predicted distribution of NON consumption,

parameters were individually varied among five logarithmically-

spaced values spanning their permitted range (Table S6).

Simulations were run for each different parameter set, and the

final distribution of NON consumption among the available

pathways (such as autoxidation, transport to the gas phase,

Hmp-mediated detoxification, and [Fe-S] damage) was calculated

(Figure 4A).

Comparison with previous NON models
Three existing models of NON chemistry, developed by Lim et al.

[4], Lancaster [3], and Nalwaya and Deen [9], were individually

assessed for their ability to simulate NON dynamics in a culture of

wild-type E. coli. The alternative models were constructed and

adapted to our experimental system using the following procedure.

Starting with the model presented in this study, all reactions absent

in the alternative model were eliminated, except the release of

NON from a NONOate, and the NON and O2 liquid-gas transport

reactions. Reactions present in the alternative model that were not

included in the present model (due to the consumption or

production of an unknown or nonspecific species, or the

simplification of a more complex process in the present model)

were added to the adapted model. For Lancaster’s model, the NON
formation and disappearance reactions, as well as the disappear-

ance of NO2N and NOH, were not included because the rates of the

disappearance reactions are user-defined, and the formation of

NON is accounted for by the NONOate dissociation reaction. The

model described by Nalwaya and Deen contains a simplified

reaction representing the consumption of NON by a heme- and

flavin-dependent dioxygenase, analogous to Hmp detoxification in

E. coli. The reaction was included in the adapted model, and the

associated bimolecular rate constant was allowed to vary during

parameter optimization. Additionally, the rate parameters gov-

erning ONOO2 and ONOOH reactions used by Nalwaya and

Deen were adjusted for a pH of 7.6, where the fraction of

ONOO2 in protonated form was calculated to be 12% [9].

Although Nalwaya and Deen do not include NON autoxidation in

their model, it was incorporated into the adapted version, as

autoxidation is an important effect under the aerobic experimental

conditions used in this study.

Species concentrations in the alternative models were set to the

same values or ranges used in the present model, except for a few

minor differences. The concentrations of proteins and transition

metal centers (Mn+) in the model of Lim et al. were allowed a range

of 5–8 mM and 1–500 mM, respectively. The protein concentra-

tion range was selected based on typical protein content reported

for E. coli [119], while Mn+ was allowed the same concentration

range as [Fe-S] clusters in the present model, which assumes ,5%

of proteins contain [Fe-S] clusters [120].

The three adapted models were subjected to a parameter

optimization procedure analogous to that used for the model

presented here (see ‘‘Parameter optimization’’ section above),

where parameters classified as uncertain were varied to minimize

the SSR between the predicted and experimental [NON] curves.

Ultimately, none of the three adapted models were able to capture

the dynamics of NON measured in wild-type E. coli cultures,

yielding [NON] curves with SSR values that were 200-fold (Lim et

al. and Lancaster) and 70-fold (Nalwaya and Deen) greater than

the SSR achieved by the present model (Figure S4).

Determination of a minimum NON biochemical reaction
network

In order to identify the core set of reactions required to

accurately simulate NON dynamics in aerobic wild-type E. coli

cultures (Figure 2A), a systematic reduction of the model reaction

network was performed using a two-tier process. In the first tier,

reactions were sequentially deleted from the original network in a

random order. After each reaction deletion, the SSR between the

simulated and experimentally-measured [NON] curve for DPTA-

treated wild-type E. coli was calculated. If the SSR exceeded a 5%

increase over the original SSR, the reaction deletion was undone.

This process was repeated until no remaining reactions could be

removed without exceeding the 5% increase in SSR. The entire

model reduction process was repeated for a total of 100 iterations,

each following a random sequence of reaction deletions. The

reduced reaction network was selected as the set containing the

least number of reactions. In the event of two or more minimum

sets, the network yielding the lowest SSR was chosen.

In the second tier, the minimal reaction network was further

reduced through a similar reaction deletion process, except with

the inclusion of a parameter optimization step. After deleting a

reaction, any remaining parameters in the reduced model

classified as uncertain (Table S4) were re-optimized, following

the nonlinear least-squares optimization procedure described

above. If the optimization succeeded in decreasing the SSR to

within 5% of the original SSR value, the reaction was removed

from the final network. The final, minimum biochemical

reaction network determined through this process is presented

in Table S5.

Supporting Information

Figure S1 Reaction network diagram of nitrosylation
and Isc-mediated repair of [Fe-S] clusters. Shown are the

reactions and species incorporated into the model to describe the

NON-mediated nitrosylation and degradation of [2Fe-2S] and

[4Fe-4S] clusters, and the repair process carried out by the Isc

system. In the model, the reductive coupling of the two IscU-

bound [2Fe-2S] clusters to form an IscU-bound [4Fe-4S] cluster

was combined with the subsequent insertion into an apoprotein

(see Materials and methods). Enzymes involved in a reaction are

shown above or below the reaction arrow in bolded italics. For

simplicity, protons (H+) are not shown.

(TIF)

Figure S2 Reaction network diagram of DNA deamina-
tion and base excision repair. Shown are the model reactions

for N2O3-mediated deamination of DNA bases, and the

subsequent process of damaged base removal and repair mediated

by the BER system, where N represents DNA base A, G, or C, and
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Ndeam is the respective deamination product hX, X, or U. The

surrounding DNA strand is simplified and drawn in blue, except

for the newly inserted base, which is colored in red to aid in

visualization. Enzymes involved in a reaction are shown above or

below the reaction arrow in bolded italics. For simplicity, protons

are not shown.

(TIF)

Figure S3 Determination of extracellular parameter
values. Shown are the experimentally-measured and predicted

(A) NON concentration curves and (B) 10 h NO2
2 and NO3

2

concentrations following addition of 0.5 mM DPTA to cell-free

media. Measured values are the mean of 3 independent

experiments, with error bars (light green for NON and black for

NO2
2 and NO3

2) representing the standard error of the mean.

The extracellular parameters kNONOate (NON donor dissociation),

kLaNON (NON transfer to the gas phase), and kNON-O2 (NON
autoxidation) were optimized to reproduce the experimentally-

measured [NON] curve and NO2
2 concentration at 10 h post-dose

(when it was predicted that over 99% of the DPTA had

dissociated). The red line in (B) depicts the NO3
2 assay limit of

detection, where the asterisk (*) indicates that the measured NO3
2

concentration was not significantly different from the detection

limit (one-sample t-test, 95% confidence).

(TIF)

Figure S4 Comparison of model performance with
previous NON models. Shown is the NON concentration (red,

with light red error bars representing the standard error of the

mean for 3 independent experiments) measured following addition

of DPTA (0.5 mM) to a wild-type E. coli culture, along with the

[NON] curve predicted (dashed black line) by the present model

(A), and the models of (B) Lim et al. [4], (C) Lancaster [3], and

(D) Nalwaya and Deen [9], which were adapted to our

experimental conditions and subjected to an analogous parameter

optimization procedure (see Materials and Methods).

(TIF)

Figure S5 Sensitivity analysis of uncertain model pa-
rameters under aerobic conditions. (A) Effect of varying

uncertain parameters on NON dynamics. Each uncertain param-

eter was varied among 5 equally-spaced values spanning its range

(Table S4), and the corresponding NON concentration profile was

calculated. NON concentration profiles resulting from varying the

35 of the 39 uncertain parameters that did not show an

appreciable change in the sum of squared residuals (SSR) between

the predicted and experimentally-measured NON concentration

profile (aerobic, wild-type treated with DPTA) upon variation are

shown (for a total of 3565 = 175 curves plotted). The inset shows a

zoomed region of the curve, to illustrate the minor effect of varying

these parameters. (B) For comparison, the NON concentration

profiles obtained when varying the maximum Hmp expression

rate parameter (kHmp-exp,max) are shown (red lines).

(TIF)

Figure S6 Effect of DnorV on NON dynamics in aerobic
E. coli cultures. Shown are the measured and predicted NON
concentrations measured following the addition of 0.5 mM DPTA

to (A) cell-free growth media, (B) wild-type E. coli culture, and (C)
DnorV E. coli culture. Error bars (light green, light red, and light

purple for media, wild-type, and DnorV, respectively) represent the

standard error of the mean for 3 independent experiments. We

note that these measurements were obtained with a separate ISO-

NOP NON sensor than the one used to generate Figure 2A, as a

result of their limited lifetime. Due to minor probe-to-probe

variations, the cell-free and wild-type NON curves were

re-measured and the model parameters re-optimized to generate

the predictions shown.

(TIF)

Figure S7 Determination of PAPA NON release rate.
Shown is the NON concentration following addition of 0.5 mM

PAPA to MOPS glucose media measured experimentally (solid

green line) or predicted by the model (dashed black line) after

optimizing the NON donor dissociation rate parameter, kNONOate,

to reproduce experimental [NON] curve. Experimental measure-

ments were performed under identical conditions to those of the

NON consumption assays (Materials and methods), except there

were no cells present. The release rate was calculated to be

1.3561023 s21 (8.6 min half-life).

(TIF)

Figure S8 Measured O2 concentration during micro-
aerobic NON consumption assays. Shown are the dissolved

O2 concentration profiles of the culture (average of at least 3

independent experiments for each curve) measured following

addition of DPTA to wild-type, DnorV, or Dhmp E. coli cultures

during N2 bubbling, which remained constant at approximately

35 mM (,19% air saturation). Error bars (light red, light purple,

and light blue for wild-type, DnorV, and Dhmp, respectively)

represent the standard error of the mean. For comparison, the

dashed black line depicts the O2 concentration of air-saturated

growth media at 37uC in the absence of N2 bubbling (185 mM).

(TIF)

Figure S9 Parametric analysis under microaerobic
conditions. Fold increase in the SSR between the experimentally

measured and predicted NON concentration (wild-type E. coli,

treated with 0.5 mM DPTA) under microaerobic (35 mM O2)

conditions is plotted as a function of parameter value for the 8 of

42 optimized parameters (Table S7) exhibiting a greater than 5%

increase in the SSR upon variation. Fold increases colored in

green, blue, and orange represent extracellular, Hmp-, and NorV-

associated parameters, respectively. The remaining 34 parameters

exhibited a negligible effect on the SSR.

(TIF)

Figure S10 Effect of individual parameter variation on
the predicted NON distribution under aerobic condi-
tions. Shown are 175 vertical bars representing the predicted

final (tR ) distributions of (A) intracellular and (B) total NON
consumption after treatment with 0.5 mM DPTA for each

parameter set during parametric analysis. Parameter sets were

generated by varying each of the 35 uncertain parameters found to

have negligible influence on the NON concentration profile among

5 logarithmically-spaced values spanning their allowed range

(Table S4). Parameter sets are sorted from left to right by

increasing fraction of intracellular NON consumed by Hmp. The

intracellular distributions are re-plotted with a zoomed y-axis on

the right to show the pathways with contributions too small to see

on the full scale. ‘‘Hmp’’ is detoxification of NON by Hmp,

‘‘Oxidation’’ is NON consumed through reaction with O2 or O2N2,

‘‘NorV/NrfA’’ is the reduction of NON by NorV or NrfA, and

‘‘[Fe-S]’’ is NON consumed by the nitrosylation of iron-sulfur

clusters. ‘‘Cellular’’ refers to NON consumed by any intracellular

pathway, ‘‘Gas’’ is loss of NON to the gas phase, and

‘‘Autoxidation’’ is reaction of NON with O2 in the media.

(TIF)

Figure S11 Effect of combinatorial parameter variation
on the predicted NON distribution under aerobic condi-
tions. Shown are 100,000 vertical bars representing the predicted

final (tR ) distributions of (A) intracellular and (B) total
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NON consumption after treatment with 0.5 mM DPTA calculated

for each parameter set during randomized combinatorial para-

metric analysis. The plots are similar to those in Figure S10, except

the 100,000 parameter sets were generated by assigning each of

the 35 uncertain parameters to a random value within their

allowed range (Table S4).

(TIF)

Figure S12 Measurement of O2 volumetric mass trans-
fer coefficient (kLaO2). (A) The concentration of O2 was

measured in stirred MOPS glucose media at 37uC in contact with

air after degassing with N2. (B) The O2 concentration data was re-

plotted as ln([O2]sat – [O2]) vs. time (black line) to calculate the

value of kLaO2 (see detailed description of calculation in Text S1).

A line (red) was fit to the data, where the negative of the slope

(4.92 h21, or 1.3761023 s21) corresponds to the kLaO2.

(TIF)

Figure S13 Measurement of O2 concentration prior to
NONOate addition. The dissolved O2 concentration in an

aerobic wild-type E. coli culture was measured during the period of

growth prior to addition of NONOate. Conditions were identical

to those used for the aerobic NON consumption assays (Materials

and Methods). O2 concentration was found to steadily decrease to

approximately 130 mM due to cellular respiration before it

reached an OD600 of 0.05, at which point the NONOate was

added.

(TIF)

Figure S14 Estimation of the rate constant governing
cysteine-mediated removal of protein-bound DNIC.
Experimental EPR data tracking the cysteine-mediated removal

of DNICs from proteins was obtained from literature [94] (black

triangles), and used to approximate the associated rate constant by

minimizing the SSR between prediction and experiment. The

predicted curve obtained using the optimized kDNIC-rem value is

shown (dashed red line) (see Text S1 for further detail).

(TIF)

Table S1 Biochemical species included in the model. All

metabolites, enzymes, and biomolecules are listed with their initial

concentrations.

(XLSX)

Table S2 Model reactions governed by elementary-type
rate expressions. Reactions are listed along with the value of

their associated rate constant.

(XLSX)

Table S3 Model reactions with complex rate expres-
sions. Reactions are listed with their associated rate expression

and rate constants. Reaction numbering is continued from Table

S2. Asterisks (*) denote uncertain parameter values that were

varied during parametric analysis and optimization.

(PDF)

Table S4 Uncertain model parameters. ‘‘Reaction #s’’ are

the numbers of the reactions governed by the rate parameter, and

correspond to the numbering in Tables S2, S3, and Text S1.

Allowed parameter ranges (defined by ‘‘Min.’’ and ‘‘Max.’’) were

chosen to encompass the value(s) obtained or calculated from

literature, unless otherwise noted. ‘‘Optimal’’ are the parameter

values from the optimization yielding the lowest SSR between the

predicted and experimentally-measured [NON] curve for wild-type

E. coli treated with DPTA under aerobic conditions. Confidence

intervals (C.I.) are provided for parameters that were informed by

the optimization, and were calculated as the range of optimal

parameter values obtained for the top 10% of optimization

outcomes (those with the lowest SSR values).

(PDF)

Table S5 Minimum biochemical reaction network nec-
essary to simulate NON dynamics in aerobic, wild-type
E. coli cultures. (A) Reactions. Reaction numbers correspond

to those used in Tables S2, S3, and Text S1. (B) Biochemical
Species. Species numbers and initial concentrations (M)

correspond to those reported in Table S1. (C) Kinetic
parameters. ‘‘Reaction #s’’ are the numbers of the reactions

governed by the rate parameter, and correspond to the numbering

in Tables S2, S3, and Text S1.

(PDF)

Table S6 Experimentally-accessible model parameters
varied during parametric analysis. ‘‘Reaction #s’’ are the

numbers of the reactions governed by the rate parameter, and

correspond to the numbering in Tables S2, S3. Model parameters

were varied among 5 logarithmically-spaced values spanning their

allowed range. Allowed parameter ranges (defined by ‘‘Min.’’ and

‘‘Max.’’) were chosen to span the value obtained or calculated

from literature, unless otherwise noted.

(PDF)

Table S7 Model parameters optimized for microaero-
bic conditions. ‘‘Reaction #s’’ are the numbers of the reactions

governed by the rate parameter, and correspond to the numbering

in Tables S2, S3, and Text S1. Allowed parameter ranges (defined

by ‘‘Min.’’ and ‘‘Max.’’) were chosen to encompass the value(s)

obtained or calculated from literature, unless otherwise noted.

‘‘Optimal’’ are the parameter values from the optimization

yielding the lowest SSR between the predicted and experimental-

ly-measured [NON] curve for wild-type E. coli treated with DPTA

under microaerobic (35 mM O2) conditions. Confidence intervals

(C.I.) are provided for parameters that were informed by the

optimization, and were calculated as the range of optimal

parameter values obtained for the top 10% of optimization

outcomes (those with the lowest SSR values).

(PDF)

Text S1 Additional details on model development and
analysis. Detailed model description, parametric analysis of

model parameters with uncertain values, measurement of

extracellular NON kinetic parameters, measurement of O2

volumetric mass transfer coefficient (kLaO2), determination of O2

concentration prior to NON stress, Hmp reaction mechanism and

kinetics, O2-mediated inactivation of NorV, enzyme expression

and degradation, and protein-bound DNIC removal and degra-

dation.

(PDF)
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