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Abstract

Bird songs range in form from the simple notes of a Chipping Sparrow to the rich performance of the nightingale. Non-
adjacent correlations can be found in the syntax of some birdsongs, indicating that the choice of what to sing next is
determined not only by the current syllable, but also by previous syllables sung. Here we examine the song of the
domesticated canary, a complex singer whose song consists of syllables, grouped into phrases that are arranged in flexible
sequences. Phrases are defined by a fundamental time-scale that is independent of the underlying syllable duration. We
show that the ordering of phrases is governed by long-range rules: the choice of what phrase to sing next in a given context
depends on the history of the song, and for some syllables, highly specific rules produce correlations in song over
timescales of up to ten seconds. The neural basis of these long-range correlations may provide insight into how complex
behaviors are assembled from more elementary, stereotyped modules.
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Introduction

Brains build complex behaviors from simple modules [1,2].The

ultimate example is speech where sequences of phonemes form

words that in turn are rearranged to form sentences. So too, the

complex performances of a musician or swordfighter are

composed of discrete motor gestures that may be composed of

more elementary motor modules or muscle synergies [3].

Songbirds, in their own ways, build complex vocal forms from

elementary units known as syllables. Among the 4500+ species of

songbirds, simple and complex songs can be found, and a rich

history of detailed song descriptions can be found across a wide

variety of literature [4–12]. However, quantitative information

about the statistical complexity of song is available only for a few

species [4,8–12]. Birdsong has often been described in terms of

first-order transition statistics, e.g. between adjacent syllables [13]

in the zebra finch or syllable chunks [9,14] in the nightingale and

Bengalese finch. However, analysis of the Bengalese finch song

also reveals non-adjacent dependencies where transition proba-

bilities between syllables depend not only on the current active

syllable, but also one or more prior syllables sung [15–17].

Formally, this implies that song syntax must be modeled with a

second-order or higher order Markov chain. Higher-order

Markov chains can also be represented through first-order

statistics in a hidden Markov model (HMM). In the latter case,

statistically complex sequences will require a large number of

hidden states, relative to the number of observed syllables.

In addition to the detailed quantitative studies of syntax in

Bengalese finches in laboratory settings, many field studies have

described an array of influences on the delivery of song. For

example, some species such as the swamp sparrow engage in

antiphonal song type-matching—selecting a song that best

matches what the neighbor just sang [18]. In this case, an

auditory stimulus is involved in the selection of elements from a

vocal repertoire, and the choices are not simply determined by the

current motor state [19]. Other examples of complex vocal

behavior can be found for species that sing many song types. In

some cases, e.g. with Western Meadowlarks and American

Redstarts, the probability of producing a given song type decreases

after the first time it is delivered in a bout of singing, and as a

result, the full repertoire of songs is expressed more frequently than

expected if the selection of songs was random [4,12]. In a related

example of song performance memory, nightingales can pause for

a few seconds, and then resume singing where they left off in a

ordered set of songs [20]. Taken together, numerous threads

suggest that songbirds can maintain a memory trace for songs

recently heard or sung for at least a few seconds. If syllables sung

or heard can introduce a memory trace that lasts for seconds, and

if this memory trace can impact future decisions about what to

sing, then a substrate exists that could introduce long-range

correlations between decision points in song. How deep is the

memory for past choices in song among the most elaborate

singers?

One of the most complex singers that can be easily reared in a

laboratory setting is the domesticated canary. Here we investi-

gated the long, complex songs of the Belgian Waterslager strain.

We show that their songs are governed by long-range correlations

in syntax at multiple hierarchical levels. The time a bird spends

repeating a syllable or the choice of what to sing next depends on

the history of the song and correlations between the past and

present can extend over durations up to 10 seconds, encompass-

ing 4 or more phrases consisting of dozens of syllable repeats.

Canary song, like most popular music, contains structure in a

range of time-scales through which sequence flexibility is
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balanced by long-range order [21]. The neural basis of these

long-range correlations may provide insight into how complex

behaviors are assembled from more elementary, stereotyped

behavioral modules.

Results

Phrase time-scales
The smallest indivisible unit of the domesticated canary’s song is

the syllable, a stereotyped sound that typically ranges from 20 to

200 ms in duration. The adult repertoire usually contains between

25–35 distinct syllable types whose acoustic forms are learned by

an interplay between innate programming and flexible imitation

[22]. Syllables are repeated multiple times to form a phrase, which

can range from 500 ms to 3 s, and phrases are flexibly chained

together to form songs (Fig. 1), typically 5–15 s long [23]. In the

present context, the term ‘‘phrase type’’ refers to the syllable type

repeated in a given phrase.

These two fundamental units of the canary song—syllables and

phrases—form distinct time-scales. Syllable durations range from

28 to 480 milliseconds, while phrase time-scales are on the order

of a second (1.3375–1.3589 95% bootstrap confidence interval of

the median), and the full song is an order of magnitude longer

(Fig. 1 and Fig. 2). Fig. 2b shows that there is no general

correlation between syllable duration and phrase duration

(r = .013, p = .90); canaries persist on a single syllable for a

duration that is roughly one second, whether the syllable is short or

long [24]. To produce a phrase of the characteristic duration, the

shortest syllables are repeated 20–30 times, while the longest

syllables are repeated only 3–4 times. We discuss later the

implications of a phrase time-scale that is not simply related to

syllable time-scales.

Correlations between phrase durations and syllable
choices

As a group, there is no general correlation between phrase

length and syllable length (Fig. 2b). However, particular syllable

types do have their own characteristic phrase lengths, and the

duration of specific phrases can vary depending on the context in

which they occur. Specifically, we found highly significant mutual

dependence between the length of specific phrases and the phrase

type sung before or after the phrase (Fig. 1a and Fig. S1) (81 phrase

types examined in 6 birds, p,.001 Fisher-Freeman-Halton test,

see Materials and Methods). For a given phrase type, the

length of a phrase can depend on the recent history of the song.

Moreover, the choice of what to sing at a branch-point can depend

not only on the currently active syllable, but also on the amount of

time elapsed since the onset of the last phrase.

Syllable stability across the phrase
Renditions of what appeared to be the same syllable in short

and long phrases might show subtle distinctions acoustically. If

they are distinct, then the apparent long-range correlations could

be more simply described by nearest neighbor rules in the syllable

sub-types [16]. Here we sought to provide a methodology for

direct visual representation of syllable variability. To proceed, we

first isolated all renditions of a chosen syllable based on an

automated template matching procedure (see Materials and
Methods). We confirmed by visual inspection of sonograms that

all examples of the chosen syllable were extracted, with no errors.

We then separated the syllables into three groups depending on

whether they came from short, medium or long phrases. (Phrase

durations were discretized into three bins of uniform time-span, an

arbitrary choice.) We then generated spectral density images (see

Materials and Methods) for each group. The spectral density

image provides a quantitative representation of syllable form and

its variability across multiple renditions. In the spectral density

image, color scale indicates the probability of finding a time-

frequency contour [25] at a given point in the time-frequency

plane. For a few syllables, visual inspection of the spectral density

image revealed no variation for syllables drawn from different

phrase duration bins (Fig. 3a).

This qualitative observation can be quantified using a similarity

score based on the spectral density images (see Materials and
Methods). Specifically, we computed the all-to-all overlap of

binary contour images by computing the inner product between

all pairs. Then, the all-to-all scores were sorted by their

corresponding phrase groups and the distributions were compared

using a Kolmogorov-Smirnov (KS) test and a d9 measure (see

Materials and Methods). By the KS test, the distributions were

distinct (p,.01), however the scale of the acoustic differences was

very small by our measure. In all cases d9,0.2 (see Materials
and Methods), indicating that the average differences between

syllable shapes in different groups were smaller than the variations

within a given group (Fig. 3b, and Table S2). Corroborating

measurements were found using scores computed from acoustic

features defined in the Sound Analysis Pro for MATLAB package

[26]. For these scores, d9,0.1 (see Text S1).

In this analysis, we chose the most stable syllables. In other

syllable types (particularly the fastest syllables), a systematic shift in

acoustic form may occur over the course of a phrase. Also, for

many phrase types in canaries, the first syllable of a new phrase

type shows a structure that matches neither the preceding nor the

succeeding phrase. If a switch in syllable forms is made in the

central motor control loops, the syringeal or respiratory pattern

may require a finite time to reconfigure. Ongoing phonation

during this period of reconfiguration may produce syllable forms

that differ from the steady state syllable forms [27]. Fig. S10
reveals that these specific context dependent effects can be

acoustically significant. Excluding the special case of the first

transitional syllables in a new phrase, in the syllables analyzed

here, changes in form in different contexts were too small to allow

a single instance of a syllable to be reliably assigned to short,

medium, or long phrases using scores based on either SAP features

or spectral density images.

Author Summary

Bird songs range in form from the simple notes of a
Chipping Sparrow to the complex repertoire of the
nightingale. Recent studies suggest that bird songs may
contain non-adjacent dependencies where the choice of
what to sing next depends on the history of what has
already been produced. However, the complexity of these
rules has not been examined statistically for the most
elaborate avian singers. Here we show that one complex
singer—the domesticated canary—produces a song that is
strongly influenced by long-range rules. The choice of how
long to repeat a given note or which note to choose next
depends on the history of the song, and these dependen-
cies span intervals of time much longer than previously
assumed for birdsong. Like most forms of human music,
the songs of canaries contain patterns expressed over long
timescales, governed by rules that apply to multiple levels
of a temporal hierarchy. This vocal complexity provides a
valuable model to examine how ordered behaviors are
assembled from more elementary neural components in a
relatively simple neural circuit.

Long-range Order in Canary Song
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Second order Markov structure of phrases
Canary song is organized around a mesoscopic structure, the

phrase. Is the larger sequence of song explained by a first-order

Markov process in phrases, or is phrase sequencing more complex

than a first-order Markov process? To examine this possibility, we

first observed that the succession of phrases is quite constrained—

each phrase is typically followed by just a few downstream

possibilities (Fig. 4a). The top three or four transitions account for

most of the variations that follow a given phrase. We next

examined the entropy of phrase sequences of various lengths, and

compared this entropy with random sequences that preserve only

first-order transition statistics. We found that the entropy of phrase

sequences is almost as high as a first-order model would imply

(Fig. 4b). However, the match is not perfect, and for sequences 4–

6 phrases long, it is clear that the set of song sequences is smaller

than the set of possible sequences in a first-order random model.

Song is thus more ordered than a first-order Markov process

acting on phrase types.

To examine further the constraints placed on canary phrase

sequences, we first tested all phrase types for statistically significant

second-order structure. Specifically, for a sequence of three

phrases XYZ, we asked whether the phrase type X impacted the

phrase type probabilities for Z, for a given phrase type Y. The test

reveals that this mutual dependence exists for 70% of all examined

phrase types (p,.001, Fisher-Freeman-Halton test, see Fig. S1).

Here too, a high-resolution analysis of selected examples using

spectral density images confirmed that the acoustic form of the

syllable in position Y can remain relatively constant even when

flanked by diverse phrase types in position X or Z (Fig. S5a). As

for the earlier analysis of syllable forms in phrases of different

lengths, this observation was quantified both with spectral density

similarity scores (d9,0.35) and through the use of SAP scores

(d9,0.1), indicating that variations of syllable form within each

group are larger than the separation between syllable forms in

different syntactic contexts. (As before, there are detectable

differences between the distributions, p,.01 two-sample Kolmo-

gorov-Smirnov test).

It is not known whether peripheral motor variables such as air

pressure or muscular tone change over the course of a long canary

song. Time-dependent changes in the periphery could impact the

acoustic details of song [27–29]. We examined how syllable form

changed when syllables occurred early or late in song, for a fixed

phrase context defined by the immediate preceding syllable.

Pairwise similarity analysis was performed for all syllables

examined in the phrase-context analysis described in the preceding

paragraph. Grouping syllables into renditions that occur before or

after the median song duration for a given bird, detectable

differences in acoustic form could be found between groups for all

syllable types analyzed (p,.01 two-sample Kolmogorov-Smirnov

test, n = 3 syllable types). The d9 value of the group differences is

comparable to the changes reported in the previous paragraph for

phrase context. For song position effects, spectral density based

similarity scores reveal d9,0.2 and for SAP similarity scores

d9,0.1. To summarize the analysis of syllable stability: a memory

Figure 1. Sonograms show a relationship between phrase duration, the context of a phrase, and future choices. Phrases consist of
repetitions of elementary units—the syllables. Distinct phrase types are indicated by colored bars beneath each sonogram. On the right side of each
sonogram is a ‘‘barcode’’ summary of all occurrences of the phrases shown in the sonograms. The phrases before (left) and after (right) the gray
phrase are color-coded by syllable identity, and the length of the bars in each row indicates duration of the phrase. A square flanks each barcode to
indicate the scale, with the width corresponding to 2 seconds and the height to 20 trials. A, A case where the duration of a phrase predicts the future
path—the barcode is sorted by duration of the black phrase. Short black bars on the bottom of the barcode typically lead to blue, while long black
bars at the top typically lead to green. B, A case where the identity of the starting phrase (red, yellow, or purple) determines which phrase type comes
after the black/gray phrase (green or magenta for example.) The barcode in this panel is sorted by the phrase that comes before the black/gray
phrase.
doi:10.1371/journal.pcbi.1003052.g001

Long-range Order in Canary Song
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for past phrase choices impacts future phrase choices or phrase

durations, and this memory may have a very limited impact on the

acoustic form of some syllables (see Fig. S5b and Table S3). It is

possible that the minor acoustic changes in syllables can be largely

explained by small-scale drift in peripheral control variables.

The long-range order of canary song sequences
The previous analysis indicated that second-order correlations

introduce a statistically detectable shift in phrase transition

probabilities for most phrase types, but these second-order effects

could be weak. Still, weak higher-order correlations could in

principle explain the gap between a first-order random model and

canary song. However, the next stage of analysis revealed that

while higher-order correlations are weak for many phrase types,

for some phrase types, strong long-range rules apply to the delivery

of song.

To examine how long-range correlations varied by phrase type,

we constructed a prediction suffix tree (PST) [30] to represent each

bird’s song. A PST provides a visual representation of how past

information in a sequence impacts transition probabilities.

Formally, the tree is built from a collection of Markov chains,

one for each phrase type. Each chain is initialized as a zero-order

Markov chain, and the order is increased only if the information

gained by looking further back in time justifies the added

complexity (see Materials and Methods). In Fig. 5, the PST

is displayed radially, with each syllable arranged around the inner

circle. For a given syllable, the number of nodes between the tree

trunk and the outer branches indicates the order of the Markov

chain for that syllable. For a syllable impacted by high-order

correlations, that syllable on the trunk of the PST tree will be

connected to long, multi-branched limbs. Similar methods were

recently used in the analysis of Bengalese finch syntax [15].

As a control, we used a 10-fold cross-validation procedure.

Prediction suffix trees were computed for the training data,

and then the average negative log-likelihood of the test data

was computed for each tree (Fig. 6). The PST that leads to the

minimum in average negative log-likelihood on the test set is

considered the best fit. The depth of the best fit ranged from 4

to 7 phrases in the six birds examined here (Fig. S7). This

corresponds to a propagation of song information over a time-

scale of approximately 5 to 10 seconds. Many syllables in this

analysis showed no significant structure beyond first-order; just

a few syllables are governed by long-range rules. (The

prevalence of second-order structure revealed in Fig. S1
suggests that the PSTs provided a conservative estimate of

statistical depth for many syllables.) The structure of example

songs with long time-scale correlations is illustrated in Fig. 7
where the syllable identity of the phrase at the top of a chain

impacts transition probabilities many phrases later. (Fig. S6
contains similar song barcodes showing the full song context

for the examples in Fig. 7.) In the examples given in Fig. 7,

the history of previous syllable selections can impact future

Figure 2. Phrase length is defined by a typical time-scale and depends on context. A, Probability density of phrase durations for all 6 birds
(mode = .9416, .8132–1.407 95% bootstrap confidence interval, median = 1.3482, 1.3375–1.3589). B, A scatter plot of phrase duration plotted against
syllable duration for 6 birds reveals no general correlation between phrase length and syllable length (r = .013,p = .90). C, Examples of the effect of
phrase context on phrase duration. Each group of points (separated by dotted lines) indicates the duration of a different phrase type, while the colors
(arbitrary) indicate different preceding phrase types. (These examples draw from all 6 birds, all phrase durations are given in Fig. S12).
doi:10.1371/journal.pcbi.1003052.g002

Long-range Order in Canary Song
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syllable transitions over 4–5 intervening phrases, spanning a

time-scale of up to ten seconds.

Reducing PST Markov order through phrase chunking
The apparent statistical depth of the phrase structure could be

reduced when sequences of phrases occur as a unit [15,16]. In

sequence DABN for example, the choice of syllable D impacts

choices after N, implying a fourth-order correlation. However, the

PST transition probabilities for nodes A, B and N all have

equivalent or near-equivalent values. The state space can be

reduced to D (ABN)—a second-order model in phrase sequence

‘‘chunks.’’ In the process of constructing a PST, the nodes that can

be collapsed into a single chunk without changing the predictive

power of the model are ‘‘internal nodes.’’ These nodes do not

impact the transition probability at the end of a chain, but just

provide a connection from the leaves of the tree to the trunk. In

Fig. 5 and Fig. S8 internal nodes are labeled with blue text labels.

(Here internal nodes are defined as those nodes that would not have

been added to the PST on their own strength, but are simply added

to show the connections from the outer branches to the core of the

graph. As such, the definition of internal node depends on the

parameters used in the PST fit.) After collapsing internal nodes in

these figures, the maximum depth of the suffix trees reduce from a

range of 4–7 to a range of 2–3 in the 6 birds analyzed here, whereas

the log-likelihood of the model changed, on average, by less than 1

percent, indicating that sequence chunks could be regarded as

monolithic states without impacting the quality of the model.

First order models
The PST provides a particularly compact representation of

long-range dependencies in song. The compactness of the PST

representation is emphasized by comparison of the PST graph

with its corresponding probabilistic finite automaton (PFA) [30]–a

first-order transition model that can be more easily related to first-

order dynamical models of neural activity. Fig. 8 illustrates the

graph structure of the PFA for one bird, whose PST is given in the

top of Fig. 5. To render the PFA visually interpretable, 363 edges

were deleted from this figure that occur with less than 20 percent

probability (more complete PFAs are shown in Fig. S11). We

emphasize that in spite of the complexity of Fig. 8 and Fig. S11,

the PFA is only a statistical model for phrase transitions. The model

does not account for phrase durations, or the fact that phrase

durations depend on the recent history of the song–a point

documented earlier–these features should be addressed in a more

complete statistical model.

Tests for simple patterns
We next examined whether the long-range correlations followed

a simple adaptation rule. Long-range correlations could appear if

the probability of a given phrase transition decays with the

frequency of its use. That is, as each phrase transition occurs, its

subsequent probability of occurrence is decreased. In the cases

examined in Fig. S9, no simple rule was observed—the most

frequent syllable transition from a given phrase can increase or

Figure 3. Renditions of the same syllable in short, medium and long phrases are highly similar. A, Spectral density images were
computed for matching syllables in phrases of different relative durations. The images were taken from 2 different birds. B, Similarity scores reflect
the acoustic similarity between individual sounds and the spectral density image for a group of sounds. Here, we computed the similarity scores of
the same syllable extracted from short, medium and long phrases with respect to the spectral density image for syllables extracted from short
phrases. These distributions show that phrase duration does not affect the acoustic form. Top: similarity scores for the syllable type from the middle
row in Fig. 3a. Bottom: similarity scores for the syllable type from the third row in Fig. 3a. Summary statistics for these distributions are given in
Table S2.
doi:10.1371/journal.pcbi.1003052.g003

Long-range Order in Canary Song
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decrease in likelihood as a function of the number of times the

phrase is produced in a given song. Over the transitions that we

could analyze for this property, 33% strictly increased while 50%

decreased, and 13% both increased and decreased over the course

of a song (17/52, 26/52 and 7/52, respectively).

We then checked to see if the statistical depth of canary song

could be explained by limitations on song duration. The concern

here is that some branches in the path of song might lead to

unusually long songs that could be prohibited for physiological

reasons. We analyzed all examples of context-dependencies and

found no evidence for this effect (see Text S1). This search for

simple rules explaining the apparent depth of canary song was not

exhaustive, and a more extensive analysis involving additional

samples from other canaries is needed.

Discussion

Canary song is built from elementary units, the syllables, repeated in

groups to form a mesoscopic structure, the phrase. Phrases are flexibly

sequenced to form songs. Correlations among phrase choices can

extend over time-scales of 7–10 seconds. Over this time-scale, 4–5

phrases may be produced consisting of typically dozens of syllables.

This observation significantly extends the time-scales that must be

considered in dynamical models for song generation. We first discuss

the time-scale of a single phrase. Dynamical theories for the central

control of song are, in various forms, attractor models [31–36]. If each

phrase type is a separate attractor (or closed-neural chain) in canaries,

then the phrase transition could be produced by a ‘‘kick’’ that recurs

every second or so, inducing a hop from one attractor to another.

Figure 4. Canary phrase sequences are more ordered than a
first-order Markov process. A, For each phrase type the magnitudes
of transition probabilities to the next phrase are shown sorted by
probability. The rapid decay of the traces indicates that most syllables
are followed by just a few high probability transitions. Canaries
(magenta) do not simply emit phrases at random, as in the zero-order
Markov case (green). B, Block entropy is the entropy computed for
sequences of n phrases, i.e. the block size (see Materials and
Methods). The block entropy was computed for the actual phrase
labels (canary), a randomization that only preserved phrase occurrence
probabilities (zero-order Markov), and a randomization that only
preserved nearest-neighbor transition probabilities (first-order Markov).
Block entropy grows slowly with block size (n) for canary song, relative
to the random models. This slower entropy growth hints at the
existence of structure beyond a first-order Markov chain in phrase
types.
doi:10.1371/journal.pcbi.1003052.g004

Figure 5. Prediction suffix trees (PSTs) reveal long-range
structure in canary song. Letters are arbitrary labels for phrase
types. PSTs were generated for all 6 birds (the other four are shown in
Fig. S8). The length of the branch terminating in a given phrase type
indicates the extent to which syllable history impacts transition
probabilities. A branch 5 nodes long indicates that one must look 5
phrases back in the song to accurately predict the transition
probabilities from the terminal node at the center. Each node is shown
as a pie chart representing the outgoing transition probabilities from
that sequence of phrases (for each bird, syllables are assigned arbitrary
colors). The nodes are scaled according to their frequency. Nodes that
can be grouped together (chunked) without significantly reducing the
power of the model are labeled with blue text.
doi:10.1371/journal.pcbi.1003052.g005

Long-range Order in Canary Song
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Statistically, the phrase durations of canary song could also be

described by a POMMA model [16] if each syllable has a self-return

probability that decreases with each repeat, as long as the adaptation

rate scales inversely with syllable duration. More simply, phrase time-

scales could be introduced into first order models like POMMA by

introducing an adaptation that changes as a function of time rather

than syllable repeats. Experiments are needed to determine whether

canary phrase time-scales are defined by a fine-tuning of syllabic

adaptation rates or a separate phrase transition process with its own

intrinsic time-scale. Whatever the mechanism of defining phrase

durations, it apparently does not need to be informed by any auditory

experience with natural canary song, since birds reared in acoustic

isolation also develop canary-typical phrase structure [22].

The observed structure of canary song significantly extends the

time-scale of long-range correlations documented in bird song. For

example, the sequence CDABNE from the top of Fig. 5 has an

average duration of eight seconds and the sequence YFHX from

the bottom of Fig. 5 has an average duration of ten seconds.

Long-range rules in canary song can be compactly described, by

4th–7th order Markov processes acting on phrases, or a 2nd–3rd

order Markov process acting on larger units that include blocks of

multiple phrases.

A suffix tree of depth 7 for 30 phrase types could in principle have

30‘7 nodes, and even a third order process in 30 phrase types could

have 30‘3 nodes. In contrast to this large state space, the PSTs included

in Fig. 5 are quite sparse. The first-order generative models for the

canary songs represented by the PFA diagrams contain only 47–56

states representing syllables or syllable strings. This is not greatly larger

than the number of observable syllables (17–26). For canary song, the

PST provides a particularly compact representation of syntax

dependencies. The compactness of this representation is clear in

comparisons between the PST tree and its corresponding first-order

models (Fig. S11). The speed and convergence properties of the PST

algorithm make it possible to quickly cross-validate the structure of the

PST over large ensembles of trials, defining the point at which over-

fitting occurs. Taken together, these properties suggest that the PST

analysis will be generally useful for characterizing the structure of

birdsong syntax.

Statistically complex phenomena that are best described by

higher-order Markov processes such as the PST can be generated

by simple physical processes. For example, if circulating

neuromodulators in song nuclei depend on the syllables that

are sung, and if syllable transitions themselves depend on the

hypothetical neuromodulator, then stochastic variations in the

beginning of a song could impact future transition probabilities,

generating apparent ‘‘long-range rules’’. In this scenario,

additional information is needed to explain why some syllables

show strong long-range rules, and others behave in a simple first-

order manner.

On a fine-grained scale, neural dynamics should be captured by

a first-order statistical process. In statistical terms, long-range

correlations in syntax imply that multiple ‘‘hidden states’’ can give

rise to the observable syllable. This duplication of states statistically

does not imply that the motor program for a syllable is duplicated–

the smallest change in a syllable program satisfies the duplication

of ‘‘hidden states.’’ Recent studies in Bengalese finches have

observed that the stereotyped neural program for a syllable

depends on its context–in particular, changes were observed in

Basal Ganglia projecting neurons in nucleus HVC (used as a

proper name) [37], and subtle acoustic changes in syllable form

were observed for syllable in different contexts [16]. Whatever the

mechanism of the long-range rules in canaries, the neural variables

that carry the memory for past song choices can exert a powerful

effect on transition statistics without significantly altering the

acoustic form of syllables. This observation is supported through

the high-resolution ‘‘spectral density’’ images introduced here to

characterize syllable variability.

Canary phrase structure and canary syllable form appear to be

encoded by separable processes. This distinction is supported by

the observation that phrase time-scales are not simply predicted by

syllable time-scales. Another line of evidence arises in studies of

song learning in juvenile canaries. As juveniles, canaries can learn

to imitate artificial songs that lack normal phrase structure [22].

Rising testosterone levels that occur with the onset of the breeding

season cause a rearrangement of song–the imitated syllables are

reorganized into phrased repetitions. In this artificial tutoring

paradigm, what is most dramatically reprogrammed in the

transition to adulthood is not syllable acoustic structure, but the

sequential organization of the syllables.

Many questions remain about the neural basis of phrase

structure in canary song, but we may also wonder about the

relevance of the long-range rules for the natural behavior of the

species. Is the statistical depth of song an epiphenomenon of little

ethological relevance, or do canaries show preferences for songs

with long-range order? Can a canary fine-tune the long-range

rules to match a tutor song, or can a bird be trained to alter rule-

sets in different behavioral contexts? These questions are

addressable since canaries readily imitate artificial songs designed

to pose specific questions about their vocal learning processes

[22].

Lashley emphasized that the control of serial order in behavior

is one of the most important and least understood aspects of

neuroscience over 60 years ago [38]. Songbirds have provided an

opportunity for examining sensory-motor learning of stereotyped

neural sequences; dynamical models for song sequence generation

have generally focused on stringing together bursts of neural

activity in a long chain of elementary states [34,39]. This

representation is remarkably similar to observed neural dynamics

Figure 6. Cross-validation confirms that prediction suffix trees
(PSTs) are not overfitting the data. PSTs were fit to 90% of the data
and tested on the held-out 10% in a 10-fold cross-validation procedure
for different values of pmin, which sets the minimum frequency a
sequence has to occur to be considered. If pmin is too small, overfitting
is guaranteed, and suffix trees will appear artificially deep. Shown is the
performance of the PSTs for a single bird (PST is given in the bottom of
Fig. 5). Using average negative log-likelihood to measure performance,
the test performance peaks at pmin~:005. Below this value the test
performance begins to degrade and sharply diverges from training
performance, a clear sign of overfitting.
doi:10.1371/journal.pcbi.1003052.g006
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Figure 7. Decisions at branch points in song can impact syllable transition probabilities 5 phrases later. Each panel corresponds to a
different bird. For a given panel, the colors in each part of the panel signify the same syllables. Left: letters (arbitrarily chosen for each bird) indicate a
single phrase type, and arrows indicate phrase transitions. Entry and exit paths are color-coded and the exit paths are sorted and scaled by their
transition probability. For instance, on the far left, if the bird sings TRBRD, then K is most likely to follow, whereas a J would most likely follow if he
sang URBRD. The light dotted arrows indicate other possible paths of exiting a block with p..05. For these other paths, the destination syllable is
not shown. Actual transition probabilities with 95% bootstrap confidence intervals, and the number of transitions are given in Table S4. Top right:
song barcodes illustrate this effect for all occurrences of the phrase-block analyzed on the left. A square flanks each barcode to indicate the scale,
with the height corresponding to 2 seconds and the width to 20 trials. Barcodes of the full song sequences are given in Fig. S6. Bottom right:
example sonograms provide examples of how the entry path to a block of phrases changes the exit path.
doi:10.1371/journal.pcbi.1003052.g007
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in zebra finches and Bengalese finches, and can be related to

simple first-order statistical models for song production [16,17].

However, the long-range rules that govern canary song extend to

time-scales of 10 seconds, and persist while a bird vocalizes five or

six intervening phrases, consisting of dozens of syllables each. How

is information in the song circuit transferred over these time-

scales? Answers to this question may provide general principles of

how complex behaviors with long-range correlations are assem-

bled from simple modules.

Materials and Methods

Ethics statement
The care of animals in this study was carried out in accordance

with Boston University IACUC protocol number 09-007.

Song recording
Canaries (Belgian Waterslager strain) used in this study were a

gift from Fernando Nottebohm. Birds were isolated at least two

weeks before recording in soundproof boxes and kept on a light-

dark cycle matched to the external annual light cycle in Boston

(Boston University IACUC protocol number 09-007). All birds

were at least one year old before isolation. Song was recorded

between the months of March and April.

Song labeling and software
Spectrograms of the song were calculated in MATLAB

(Mathworks, Natick, MA), and the beginning, end, and syllable

identity of each phrase was marked on the image by visual

inspection. For all data described here, two independent observers

annotated the songs. Observer 1 and observer 2 annotated 33,469

and 36,447 phrases, respectively, between 6 birds (see Table S1
for the number of phrases analyzed for individual birds). The

annotated sonograms were then scanned and converted into

strings, and statistical analysis of the strings was performed using

custom MATLAB scripts. Zero to two syllables were excluded per

bird because the syllable form consisted of subtypes that could not

be labeled consistently.

Mutual dependence analysis
For each bird (6 total), we first examined the mutual

dependence between a given phrase’s duration and the path into

or out of the phrase. That is, in a given phrase sequence XYZ, we

examined the mutual dependence between the length of phrase Y

and identity of the syllable type in phrase X or the identity of the

syllable type in phrase Z, which we call MD(dur,pathin) and

MD(dur,pathout), respectively. We discretized phrase durations by

terciles and then used a variation of the Fisher test for 2|2
contingency tables suitable for arbitrarily large, sparse r|c
contingency tables referred to as the Fisher-Freeman-Halton test

[40]. Significance values for the test were then computed using a

standard Monte Carlo procedure where the contingency tables

were randomized while preserving the marginal values (i.e. the

row and column totals), and to derive a p-value we calculated

1,000,000 randomizations for each test [41]. Using the same

method, we also examined the mutual dependence between the

syllable identity of phrase X and the syllable identity of phrase Z,

for each Y, which we label MD(pathin,pathout).

Figure 8. Probabilistic finite automata (PFA) computed from
prediction suffix trees (PSTs) reveal the complexity of canary
song. The PFA shown here corresponds to the PST from the top of
Fig. 5. Edges represent transitions between states, and the width
indicates the probability of a given transition. Transitions from one state

to another always result in the production of a new phrase type. For
instance, the edge connecting ZDAB to BN represents the probability of
singing N after ZDAB, which leads to the state BN. All edges with
transition probabilities below .2 were removed for visualization (see
Fig. S11 for a more complete PFA).
doi:10.1371/journal.pcbi.1003052.g008
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Automated syllable clustering and alignment
Custom MATLAB (Mathworks, Natick, MA) scripts were used

for automated syllable clustering. After choosing a template,

spectral features from the template and the rest of the data were

computed using a sparse time-frequency representation [42] (see

Text S1). As a final step, candidate sounds were plotted in two

dimensions and a decision boundary was drawn by the user.

Spectral density images and similarity scores
For a collection of syllables, we first generate a sparse time-

frequency representation of each syllable using auditory contours

[25]. Auditory contours provide a high-resolution binary image

consisting of sparse, continuous lines that follow the features of the

sound with high precision. Summing over contours for all renditions

of a syllable produces a two-dimensional probability density in time

and frequency, which we call a spectral-density image, S(f ,t).
Specifically, a single contour image calculated at a given resolution

is a sparse, binary time-frequency image or spectrogram C(f ,t),
which we compute for each syllable n, denoted C(f ,t,n). The

spectral density image is then defined as S(f ,t)~
P

n
N

C(f ,t,n)=N,

where N is the number of binary images. By definition, S(f ,t) is the

probability of finding a contour in pixel (f ,t) in a single sample, and

in the images shown here, the value S(f ,t) is represented by color

scale. These images provide a direct representation of the variability

of syllable form for every point in time and frequency.

Since the starting matrices C(f ,t) are sparse, and high precision,

the spread of the acoustic energy revealed in S(f ,t) may be

narrower than the resolution of standard sonograms, for sparse

stereotyped song elements. When interpreting these images, it

must be understood that variations in frequency or timing of

auditory contours both lead to a spread in spectral density;

separating these sources of variability is not generally possible

without additional analysis such as time-warping [22].

We define a simple similarity measure between two syllable contour

images Ci and Cj to be Ci
:Cj ; With this definition, the average

similarity between two groups A and B is just SA
:SB , the inner

product of their spectral density images. The average similarity

between a one specific syllable Ck and an ensemble of syllables B is

Ck
:SB. To quantify the separability of two distributions we use the d9

measure, d 0~(mA{mB)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
(s2

Azs2
B)

r
, or the difference in mean

similarity scores in units of pooled standard deviation.

Prediction suffix trees
To test for the existence of structure beyond second-order (as in

the MD(pathin,pathout) test), we constructed prediction suffix trees

(PSTs) for the sequence of canary phrase types using a previously

published algorithm [30,43]. Further details can be found in Text
S1.

Block entropy
To compute block entropy we used standard methods based on

Shannon entropy [44]. The maximum entropy line in Fig. 4
assumes symbols are emitted with uniform probability.

Supporting Information

Audio S1 Sample series of song bouts from a single
canary.
(MP3)

Audio S2 Sample series of song bouts from a single
canary, separate from the bird used for Audio S1.
(MP3)

Figure S1 Pie charts of p-values for association tests.
Charts computed using data from two observers are shown for six birds

(each column is a different bird). The graphical conventions of the pie

charts follow Fig. 2b from the main text. Yellow indicates the

proportion of syllables with highly significant interactions at the level

pv:01, orange :05wp§:01 and blue p§:05.

(TIFF)

Figure S2 Scatter plots of test statistic values computed
for the MD(pathin,pathout) test show high inter-observer
agreement. The x and y coordinates of each point are the

Fisher-Freeman-Halton test statistic values computed for the same

phrase type from each of the two observers for the MD(pathin,-

pathout) test. Linear regression lines are given in red and the unity

line in blue, along with the r and p values under the abscissa. Each

point in the graph is one phrase type for a specific bird.

(TIFF)

Figure S3 Scatter plots of test statistic values computed
for the MD(dur,pathout) test show high inter-observer
agreement. The x and y coordinates of each point are the

Fisher-Freeman-Halton test statistic values computed for the same

phrase type from each of the two observers for the MD(dur,path-

out) test. Linear regression lines are given in red and the unity line

in blue, along with the r and p values under the abscissa. Each

point in the graph is one phrase type for a specific bird.

(TIFF)

Figure S4 Scatter plots of test statistic values computed
for the MD(pathin,dur) test show high inter-observer
agreement. The x and y coordinates of each point are the

Fisher-Freeman-Halton test statistic values computed for the same

phrase type from each of the two observers for the MD(pathin,dur)

test. Linear regression lines are given in red and the unity line in

blue, along with the r and p values under the abscissa. Each point

in the graph is one phrase type for a specific bird.

(TIFF)

Figure S5 Spectral density images demonstrate that
syllables occurring in different contexts are highly
similar. A, Spectral density images of syllables with different

surrounding phrases reveal acoustic similarity. As in Fig. 3a,

spectral density images were computed for matching syllables that

occur in different contexts; that is, different surrounding phrase

types of earlier or later phrases. The particular phrase shown is

highlighted in bold just above the image. The images were taken

from 2 different birds. As in Fig. 3a, each row contains the same

syllable type in three context groups that are acoustically

indistinguishable by our statistical test. B, With the spectral

density image from the magenta group as a reference, syllables

occurring in different sequences have overlapping similarity score

distributions. The syllable types match those shown in Fig. S5a.

Summary statistics for all syllables types in Fig. S5a are given in

Table S3.

(TIFF)

Figure S6 Full song barcodes for the examples given in
Fig. 1 and Fig. 7 allow for direct visualization of long-
range rules. These barcodes represent the full song sequence

corresponding to the examples given in Fig. 1 and Fig. 7. A,
Barcodes for the example from Fig. 1a centered on the first

occurrence of the black phrase. B, Barcodes for the example in

Fig. 1b centered on the black and gray phrases. C, Barcodes for the

example from the middle of Fig. 7 centered on the first occurrence

of N (shown here in blue). D, Barcodes for the example from the

bottom of Fig. 7 centered on the first occurrence of X. All colors

match the phrases used in the corresponding parts of Fig. 1 and
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Fig. 7, all other colors are arbitrarily assigned. A square flanks each

barcode to indicate the scale, with the width corresponding to

2 seconds and the height to 20 trials.

(TIFF)

Figure S7 Using cross-validation to verify PST fits. To

select the parameters used in the PST algorithm, we used a 10-fold

cross-validation procedure repeated 3 times (with different data splits).

As a measure of model performance we used average negative log-

likelihood. Here we show cross-validation results as a function of the

PST parameter pmin. This parameter defines the minimum rate of

occurrence for a sequence to be considered for incorporating into the

PST. The plot shows the mean of the negative log-likelihood across

cross-validation fits for the training and testing data for all 6 birds (error

bars indicate the 25th and 75th percentiles). Also shown is the average

maximum order of the PSTs for a given value of pmin. Overfitting leads

to a decline in performance on the test set, or increased negative log-

likelihood. In each case, the optimal performance on the test set occurs

when pmin~:005 or pmin~:007. Below this point, performance on the

test set degrades and sharply diverges from training set performance.

We conservatively set pmin to .007 for all birds to avoid overfitting. The

same procedure was used to set a and r, which had negligible effects on

model performance (data not shown).

(TIFF)

Figure S8 PSTs for the 4 birds not shown in Fig. 5.
(TIFF)

Figure S9 Shown are the transition probabilities from
two different phrases sung by the same bird as a function
of repetition number. Left: as phrase X is repeated, the most

probable phrase transition from X to G decays, while the transition

to S increases. Right: the opposite effect is seen in the same bird. The

most probable transition, from H to X, increases as H is repeated.

(TIFF)

Figure S10 Some syllables have context-dependent
transitional forms. A, shown on the left are two example

sonograms of the same phrase with different preceding phrases. In

the two contexts, the first syllable of the phrase has a different

transitional form (highlighted by the red and blue boxes). The

image on the right is a color channel merge of two spectral density

images, which were computing using the first syllable of all phrases

in the two different contexts (top sonogram context is the red

channel and bottom sonogram context the blue channel). B, the

same effect is shown for a different phrase from a different bird.

(TIFF)

Figure S11 Probabilistic finite automata (PFA) for all 6
birds analyzed. For visualization, all edges where p,.05 have

been removed, and all edges where p,.2 are shown in thin light

gray lines. Each PFA is completely determined by its correspond-

ing PST. From top to bottom, the PFAs correspond to the PST

shown in: the top left of Fig. S8; top right of Fig. S8; top of Fig. 5;

bottom left of Fig. S8; bottom of Fig. 5; bottom right of Fig. S8.

(TIFF)

Figure S12 Phrase durations for all 6 birds analyzed. Each

row corresponds to a different bird (same order as Fig. S11), and each

group of points indicates the duration of a different phrase type. The

colors (arbitrarily chosen) indicate different preceding phrase types.

Abrupt changes in duration distribution that co-occur with color

changes reveal a context-dependent shift in phrase length.

(TIFF)

Table S1 The total number of phrases analyzed by each
observer for individual birds. The bottom row contains the

repertoire size for each bird.

(DOCX)

Table S2 Summary statistics for similarity scores for
duration groups (for each syllable type, scores were
computed referenced to the spectral density image from
the group marked*). STD, standard deviation.

(DOCX)

Table S3 Summary statistics for similarity scores for
sequence groups (for each syllable type, scores were
computed referenced to the spectral density image from
the group marked*). STD, standard deviation.

(DOCX)

Table S4 Transition probabilities and number of
transitions to accompany Fig. 7. The 95% confidence

intervals are given in brackets below the transition probabilities

and were estimated using a bootstrap procedure with a case

resampling scheme. That is, the transition probabilities were

estimated after randomly resampling the data with replacement.

The confidence interval is then defined as the 2.5th and 97.5th

percentiles of the resampled distribution.

(DOCX)

Table S5 Transition probabilities demonstrating alter-
native paths for prediction suffix trees (PSTs) shown in
Fig. 5 and Fig. S8. The sequence DABN comes from the top

PST in Fig. 5, HX from the bottom PST in Fig. 5, and ZGKLH

from the bottom left PST in Fig. S8.

(DOCX)

Text S1 Supplementary Materials and Methods.
(DOCX)
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