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Abstract
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Introduction

The coalescent process is an established tool to describe the

evolutionary history of a sample of genes drawn from a natural

population [1–3]. For a neutrally evolving population of constant

size N the coalescent has well understood analytical properties

concerning tree shape and mutation frequency spectrum which

provide a firm basis for a variety of statistical tests of the neutral

evolution hypothesis [4–8]. Adding recombination as an evolu-

tionary mechanism, the coalescent is usually studied in the

framework of the ancestral recombination graph (ARG) [9]. The

combined action of selection and recombination has been

analyzed first in detail by Hudson and Kaplan [10] and, in terms

of genetic hitchhiking, by Kaplan et al. [11]. More recently, it was

shown that the (non-Markovian) ARG can well be approximated

by a simpler, more tractable model, the so-called Sequential

Markov Coalescent [12–14], which is of particular interest for the

efficient simulation of genealogies across large genomic regions.

How single recombination events reflect on tree shape under

neutrality has recently been analyzed by Ferretti et al. [15]. Here,

we concentrate on tree shape in the vicinity of a selected locus.

Selection changes the rate by which coalescent events occur and

hence can lead to distortions of tree shape. It is well known [6,16]

that selective sweeps can produce highly unbalanced trees when

selection acts in concert with limited recombination, i.e. at some

chromosomal distance from the site under selection. Conversely,

observing unbalanced trees should provide information about

recent selection in a particular genomic region. In fact, this

property is also the basis of Li’s MDFM test [16]. A practical

concern is how such distorted gene genealogies may reliably be

estimated or re-constructed using polymorphism data. When

working with SNPs a large genomic fragment with many

polymorphic sites has to be analyzed to obtain a clear phylogenetic

signal. Since for many organisms recombination and mutation

rates are on the same order of magnitude [17, Table 4.1], one

harvests about as many recombination as polymorphic sites when

sampling genomic sequences, thus complicating tree shape

estimation. To alleviate this problem one may turn to multi-allelic

markers, such as microsatellites, complementing or replacing bi-

allelic SNPs.

In this paper we introduce the statistic V of tree balance and,

first, derive theoretical properties of this and derived statistics.

Second, we show how a selective sweep affects these statistics.

Third, we investigate the possibility and reliability of estimating V
from experimental data. Fourth, we define an easily applicable

microsatellite based test statistic for selective sweeps. It requires

clustering of microsatellite alleles into two disjoint sets and

examining whether these sets are sufficiently different in size

and/or whether they have a sufficiently large distance from each

other. Finally, we demonstrate a practical application.

Terminology
Consider the coalescent tree for a sample of size n. It is a binary

tree without left-right orientation, with ordered internal nodes and

branch lengths representing a measure of time. All leaves are

aligned on the bottom line, representing the present. We use the

term tree topology when talking about the branching pattern and tree

shape when talking about topology and branch lengths. We remark

that topology and shape can be conceptually distinguished, but in

practice estimating topology relies on polymorphism patterns.

Since these depend on branch lengths, i.e. on shape, topology can

usually not be estimated independently. We call the size of a tree

the number of leaves and the length of a tree the combined length of
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all branches. The height is the time interval between present and

root, indicated by t0 in Figure 1. Let the label of the root be n0.

The n leaves can be grouped into two disjoint sets, L0 and R0, the

‘left-‘ and ‘right-descendants’ of the root. Let L0 be the smaller of

the two sets and DL0D~V0. Hence, DR0D~n{V0§n=2. Let n1 be

the ‘right’ child of n0, i.e. the root of the subtree with leaf set R0.

The descendants of n1 can again be grouped into two disjoint

subsets, L1 and R1, the left- and right-descendants of n1. Again,

without loss of generality, let DL1DƒDR1D and denote DL1D~V1.

Hence, DR1D~n{V0{V1. Proceed in this way to define subsets

L2, R2, and so on. For any tree there are h such pairs (Li,Ri)
where log2 (n)ƒhƒn{1, with h depending on the topology of the

tree. The set R0, . . . ,Rh constitutes a – not necessarily unique –

top-down sequence of maximal subtrees.

Results

Tree topology of the neutral coalescent
Consider a coalescent tree of size n under the neutral model

with constant population size, where n is assumed to be large.

Root imbalance is measured by the random variable V0. The

distribution of V0 is ‘almost’-uniform [18,19] on 1,2, . . . ,tn=2sf g.
More precisely,

p(n,v0) :~Prob(V0~v0)~
2{dv0,n=2

n{1
, ð1Þ

where d.,. denotes here the Kronecker symbol. The expectation is

E(V0)~
Xn=2

v0~1

v0 p(n,v0)~
n2

4(n{1)
&

n

4
:

The variance is

V (V0)~
Xn=2

v0~1

v2
0 p(n,v0){E2(V0)~

(n{2)n(4z(n{2)n)

48(n{1)2
&

n2

48

and the standard deviation

Author Summary

It is one of the major interests in population genetics to
contrast the properties and consequences of neutral and
non-neutral modes of evolution. As is well-known, positive
Darwinian selection and genetic hitchhiking drastically
change the profile of genetic diversity compared to neutral
expectations. The present-day observable genetic diversity
in a sample of DNA sequences depends on events in their
evolutionary history, and in particular on the shape of the
underlying genealogical tree. In this paper we study how
the shape of coalescent trees is affected by the presence of
positively selected mutations. We define a measure of tree
topology and study its properties under scenarios of
neutrality and positive selection. We show that this
measure can reliably be estimated from experimental
data, and define an easy-to-compute statistical test of the
neutral evolution hypothesis. We apply this test to data
from a population of the malaria parasite Plasmodium
falciparum and confirm the signature of recent positive
selection in the vicinity of a drug resistance locus.

Figure 1. Coalescent trees under recombination and selection. A: Sketch of a neutral coalescent tree with tree size n~20. B and C: A
selective sweep in locus C leads to a tree of low height (t0 small). The selective sweep was initiated by a beneficial mutation at time t� . At some
distance from C, a single lineage (circled branch in C) has ‘‘recombined away’’ leading to the unbalanced tree shown at locus B. Note that tree height
between trees B and C changes drastically and that V0~4 at locus C and V0~1 at locus B. Multiple recombination events (indicated by the crosses at
the bottom line) between loci A and B lead to essentially uncorrelated trees at A and B.
doi:10.1371/journal.pcbi.1003060.g001

Tree Imbalance and Selective Sweeps
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s(V0)&n=(2
ffiffiffiffiffi
12
p

) ,

provided n is sufficiently large.

The compound random variables Vi, iw0, have support which

depends on Vj , jvi. More precisely, the distribution of Vi, given

Vj , jvi, is almost-uniform on 1,2, . . . ,tni=2sf g with

Prob(Vi~vi)~p(ni,vi) , ð2Þ

where ni~n{v0{:::{vi{1 (iw0) is a random variable which is

bounded below by n=2i and above by n{i. The moments are

somewhat more complicated. For instance,

E(V1)~
Xn=2

v0~1

p(n,v0)
X(n{v0)=2

v1~1

v1 p(n{v0,v1)

~
Xn=2

v0~1

p(n,v0)
(n{v0)2

4(n{v0{1)
&
Xn=2

v0~1

p(n,v0)
(n{v0)

4

~
n(3n{4)

16(n{1)
&

3n

16
:

Continuing this way, evaluating sums iteratively and using the

above approximation, one derives

E(Vi)&
3in

4iz1
: ð3Þ

Similary, one can obtain the second moments and combine these

to

V (Vi)&
1

3
1{

3in

4iz1

� �2

: ð4Þ

Define now the normalized random variables V�i ~2Vi=ni.

Since n is a constant, we have for V�0~2V0=n

E(V�0)&1=2

and

s(V�0)&
ffiffiffiffiffiffiffiffiffiffi
1=12

p
:

To calculate the moments of V�i , iw0, we replace ni by E(ni).

Simulations suggest that this is acceptable, as long as ni is not too

small. Figure 2 shows this fact for iƒ3. Here we focus on V�i for

iƒkvh, where k is small and n is large (k~2, n§100, say).

Since,

E(ni)~E(n{V0{:::{Vi{1)&n(
3

4
)i ,

we obtain

E(V�i )&
E(2Vi)

E(ni)
~

1

2
: ð5Þ

Similarly,

V (V�i )~
1

12
z

1

n2

4

3

� �2iz1

{
2

3n

4

3

� �i

&1=12 ð6Þ

and

s(V�i )&
ffiffiffiffiffiffiffiffiffiffi
1=12

p
:

It is very convenient to work with the normalized random

variables V�i instead of Vi. Their support is bounded by 0 and 1

for all i and they are well approximated by independent

continuous uniforms on the unit interval. This considerably

facilitates the handling of sums and products of V�i . For instance,

the joint distribution F (kz1) of V�0,V�1,:::,V�k is then approximated

by the continuous uniform product with distribution function

F (kz1)(k,u0,:::,uk)&F (k,u~u0
:::::uk)~

C(kz1,{ log(u))

k!
, ð7Þ

expectation

E(6k
i~0V

�
i )&(1=2)kz1

and variance

Figure 2. Mean and standard deviation of V and V� for coalescent trees of size n~200. Shown are the values for 104 independent
realizations. x-axis: values of V (black circles) and V� (red squares) are determined for the subtrees originating at node ni , i~0,:::,3. The solid gray line
shows the theoretical expectation according to eq (3).
doi:10.1371/journal.pcbi.1003060.g002
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V (6k
i~0V

�
i )&(1=3)kz1{(1=2)2(kz1) :

The coefficient of variation,
ffiffiffiffi
V
p

=E, is

cv(6k
i~0V

�
i )&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3

� �kz1

{1

s
:

As is well known, the normalized sum of continuous uniforms

converges in distribution to a normal random variable rather

quickly. In fact, we have for the standardized sum

Sk~
Xk

i~0

ffiffiffiffiffiffiffiffiffiffi
12

kz1

r
V�i {E(V�i )
� � !

*N(0,1) : ð8Þ

In practice, already k~2 yields a distribution which is reasonably

close to a normal (see Suppl. Figure S1).

Linked trees. Consider now a sample of recombining

chromosomes. Coalescent trees along a recombining chromosome

are not independent. In particular, tree height and tree topology of

closely linked trees are highly correlated. However, under

conditions of the standard neutral model, correlation breaks down

on short distances (Figure 3) [15]. Roughly 10 recombination

events in the sample history reduce correlation by about 50%.

Under neutrality and when N is constant, a sample of size n has

experienced on average 4Nran{1 recombination events [20]

(Suppl. Figure S2), where an is the n-th harmonic number and

represents the length of the tree. Assuming a recombination rate of

1 cM/Mb, population size N~104 and sample size n~200, this

amounts to roughly 10 recombination events per 4 kb. If N~105,

in an interval of only about 400 bp correlation is reduced to 50%

(Figure 3). Thus, if correlation half-life is determined by roughly 10
events in the sample, we estimate the correlation length Lhalf as

Lhalf &
5

2Nc an{1
, ð9Þ

where c is the recombination rate per bp per unit time. Hence,

trees may be regarded as essentially uncorrelated when consider-

ing physical distances of some 10 kb and sufficiently large

populations and samples.

Eq (9) may be violated if population size N is not constant. As a

biologically relevant example we consider a population bottleneck,

during which the population is reduced to size Nb. A bottleneck is

characterized by three parameters, time of onset, duration (both in

units of 4N) and depth (d~Nb=N). A bottleneck induces time

dependent changes of the coalescent rate [21] and a reduction of

effective population size. Particularly drastic effects on the

genealogy are observed when the duration is similar to or larger

than the depth [22]. Given biologically reasonable parameters, this

inflation may even be larger under a bottleneck than under a

selective sweep (Figure 3).

Tree topology in the vicinity of a selective sweep
A positively selected allele sweeping through a population leads

to a drastic reduction of tree height due to its short fixation time t�

(see Figure 1C). The fixation time depends on the selection

coefficient s and population size N. In units of 4N,

t�&(1=a)log(a), where a~2Ns [23]. This is much smaller than

the neutral average fixation time t�&1. The reduced fixation time

leads to a severe reduction of genetic variability. Furthermore,

external branches of the tree are elongated relative to internal

branches, yielding a star-like phylogeny of an approximate length

of nt�. Replacing the neutral tree length an{1 in eq (9) by this

Figure 3. Correlation across distance. Correlation based on simulations (1000 replicates) of the statistic S3~2
P2

k~0 (V�k{0:5) of the true tree.
Pearson’s correlation coefficient is measured between S3(0) and S3(x) for pairs of trees at position 0 and position x. Three scenarios are compared:
standard neutral model with constant population size (green), population bottleneck (blue) and selective sweep (red). Sample size n~200, h~20,
N~105 and a recombinaton rate of 1cM=Mb is assumed. The bottleneck parameters are: duration~depth~10{3 , t~10{2 . The selective sweep has
a strength of a~2Ns~2000. The selected site is at position x~0. Under standard neutrality, 50% correlation is reached at position x~4 10{4 cM,
corresponding to about 400 bp.
doi:10.1371/journal.pcbi.1003060.g003

Tree Imbalance and Selective Sweeps
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figure, we obtain the following estimate for the correlation half-life

Lhalf &
5s

log(a)cn
: ð10Þ

For the parameters used in Figure 3, we have Lhalf &3300 bp,

which agrees well with the simulation result.

In contrast to tree height and length, tree topology at the

selected site does not necessarily differ from a neutral tree; only

when moving away from the sweep site, and with recombination,

topology may drastically change. In fact, given a shallow tree,

recombination leads with high probability to an increase of tree

height and to unbalanced trees [15]. Thus, recombination events

next to the selected site tend to increase tree height (see sketch in

Figure 1B and C) and to create a bias in favour of unbalanced

trees, i.e. trees with small V0 (Figure 4A). The expected proximal

distance xp from the selected site of such a recombination event

can be estimated as

Figure 4. Estimation of V. A: estimation of V0 by bVV0. B: estimation of V0 by bVV0\I . First row: standard neutral model. Second row: Selective sweep;
estimation of V0 at distance 1kb from selected site. Third row: Selective sweep; distance 5kb from selected site. Parameters: N~105 ; n~100 (top and
bottom row); n~200 (middle row); h~40; s~0:005; t~10{4.
doi:10.1371/journal.pcbi.1003060.g004

Tree Imbalance and Selective Sweeps
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xp&1=ru , ð11Þ

where ru~c n t�=2, c is the per site recombination rate, and n t� is

the length of a star-like phylogeny; the factor 1=2 accounts for the

fact that it is more likely to recombine with an ancestral

chromosome (thereby increasing tree height) as long as these are

more abundant than the derived chromosomes carrying the

selected allele. Roughly, this is the case during the first half of the

fixation time t�. Assuming instead of the star phylogeny a random

tree topology of average length an{1 t� at the selected site, one

obtains the larger (call it distal) estimate

xd&1=rl , ð12Þ

where rl~c an{1 t�=2.

Unbalanced trees tend to have strongly elongated root branches

and harbor an over-abundance of high frequency derived SNP

alleles [6,16]. With microsatellites it is usually not possible to

determine the ancestral and derived states of an allele, because

they mutate at a high rate and possibly undergo back-mutation.

However, under the symmetric single step mutation model, the

expected distance between a pair of alleles (in terms of motif copy

numbers) behaves as the distance in a one-dimensional symmetric

random walk and therefore increases at a rate proportional to the

square root of the scaled mutation rate h (see Methods). Thus,

alleles which are separated by long root branches tend to form two

distinct allele clusters.

Estimating V
Tree topology is ususally not directly observable and has to be

estimated from data. We focus on estimating Vi, iƒkvh, from

microsatellite data. Given a sample of n microsatellite alleles with

tandem repeat counts DAj D, 1ƒjƒn, we use UPGMA [24] to

construct a hierarchical cluster diagram. If subtree topology within

a particular cluster node should not be uniquely re-solvable, for

instance if alleles are identical, we randomly assign the alleles of

the subtree under consideration to two clusters with equal

probability. This gives preference to clusters of balanced size in

case of insufficient resolution. We then use the inferred tree

topology bVVi to estimate Vi of the true tree. This procedure is

conservative for the test statistics described below, since it gives

preference to large values bvv when the true value v is small

(Figure 4, column A). For a cluster pair C1, C2, define the distance

as

dist~ min
i[C1,j[C2

D(DAi D{DAj D)D : ð13Þ

We find that UPGMA clustering gives good estimates of V0 when

clusters are clearly separated from each other, i.e. when distw1.

Let I be the indicator variable for this event. Then, we have for

the median

med(bVV0\I Dv0)&v0 ,

(Figure 4, column B). Without requiring distw1 the estimate bVV0 is

more biased. In part, this is due to the conservative UPGMA

strategy mentioned above. However, estimation of V0 is very

accurate when root branches are strongly elongated, i.e. under

conditions of selective sweeps or certain bottlenecks (Figure 4,

bottom).

Application: Testing the neutral evolution hypothesis
We now turn to an application of the above results and explain

how a new class of microsatellite based tests of the neutral

evolution hypothesis can be defined.

Consider a sample of n alleles at a microsatellite marker and

record their motif repeat numbers. Applying UPGMA clustering

to the alleles, we obtain estimates bVVi, iƒk as described above.

These are transformed to cV�iV�i ~2bVVi=ni. Then, we determine the

following test statistics

T
(sum)
k :~cSkSk~

ffiffiffiffiffiffiffiffiffiffi
12

kz1

r Xk

i~0

cV�iV�i {
1

2

� �
ð14Þ

T
(product)
k :~ P

k

i~0

cV�iV�i ð15Þ

T
(dist)
0 :~dV�0\IV�0\I (16)

Thus, the test variable T
(sum)
k in eq (14) is the estimate of Sk given

in eq (8). Similarly, T
(product)
k and T

(dist)
0 are the estimates of the

product Pk
i~0 V

�
i and of V�0\I .

We now test the null hypothesis T (:)
wq for a critical value

q~q(a). For a given level a we obtain the critical value q for

T (sum) from the standard normal distribution and for T (product)

from the uniform product distribution in eq (7) (Table 1). For

T (dist) we use the critical value of the normalized version of eq (1).

Generally, these critical values are conservative, since V�i tends to

over-estimate Vi, when small (Figure 4). In particular, statistic

T (dist) is very conservative due to the additional condition on the

distance. The true critical values for level a would be larger than

those shown in Table 1.

False positive rates and power. First, we analyzed the false

positive rates under the standard neutral scenario (i.e., constant N)

for different mutation rates h and varying sample sizes n. As

reference parameter settings for simulations with msmicro (see

Methods) we use sample size n~200, microsatellite mutation rate

h~40 and recombination rate r~400. The latter corresponds to a

recombination rate of 10{8 per bp per chromosome, when one

assumes a population size of N~105 and a size of the investigated

genomic region of 105 bp (r~4N:10{8:105). We placed 15

microsatellite markers at positions 1, 10, 30, 60, 70, 80, 85, 87,
88, 89, 90, 91, 92, 95, 100 kb. As expected, we find that the false

positive rates remain below their theoretical expectation for all

parameter choices h and n (Figure 5 top; Tables 2 and 3). For the

simulations with selection we assumed that a site at position 89 kb

was undergoing a selective sweep with selection coefficient

s~0:005 or s~0:01. The time since completion of the sweep

Table 1. Critical values for the tests considered in eqs (14)–
(16).

a T (sum)
2 T (product)

2 T (dist)
0

0:01 {2:32635 0:0002235 0:01

0:05 {1:64485 0:0018441 0:05

doi:10.1371/journal.pcbi.1003060.t001

Tree Imbalance and Selective Sweeps
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was an adjustable parameter t, with the reference setting t~10{4.

We simulated hard selective sweeps, i.e. the selected allele is

introduced as a single copy and fixed with probability about 2s.

The test statistic T
(sum)
2 is shown in Figure 5 and power profiles for

all three tests in Figure 6. We find that maximum power of the

tests is attained within the interval given by eqs (11) and (12)

(Figure 6 and Tables 4 and S1). Depending on the strength of

selection, maximum power is close to the upper interval bound at

xd (s~0:005, Table S1), or removed from xd towards the interior

of the interval (s~0:01, Table 4). This is in agreement with the

expectation that only very strong selective sweeps generate a star-

like phylogeny, which lead to the proximal estimate xp in eq (11).

Thus, the location of the power maximum depends on the strength

of selection and the details of the tree topology at the selected site.

Figure 5. Profile of S2 and ŜS2 along a recombining chromosome. Plots in column A show the distribution of S2~
P2

i~0 2(V�i {1=2), i.e. when

the tree topology is known. Plots in column B show the distribution of the estimate ŜS2~
P2

i~0 2(cV�iV�i {1=2) when the tree topology is unknown, but
estimated from microsatellite polymorphism data. Each boxplot corresponds to one of 15 marker loci located at the positions indicated on the
x{axis. The regions spans 100 kb in total. Symmetric step-wise mutation model with h~40. Other parameters: n~200, N~105 and recombination
rate per bp c~10{8 (corresponding to 1 cM/Mb). First row: standard neutral model with constant N . Second row: bottleneck model with severity 1

and onset t~0:01. Third row: Selective sweep at locus x~0 with s~0:005 which was completed t~10{4 time units ago. For comparison with the
theoretical expectation, the leftmost boxplot in each panel shows the standard normal distribution (labeled ‘N’).
doi:10.1371/journal.pcbi.1003060.g005

Tree Imbalance and Selective Sweeps
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Maximum power for the compound tests T
(sum)
2 and T

(product)
2 is

more removed from the selected site than for the simple test T
(dist)
0 .

The latter measures imbalance only at the root node n0 and is

most sensitive to single recombination events between marker and

selected site, while multiple events blur the effect. The power of all

tests is sensitive to the mutation rate and to sample size (Tables S2

and S3). For the parameters tested, the power of the simple T
(dist)
0

increases when h or n increase. For T
(sum)
2 , maximum power is

reached for h&20. Very small, as well as very high, mutation rates

produce little power. Realistic mutation rates in insects and

vertebrates are between h~5 and 50 [25–27], thus within the

powerful domain. Importantly, power can be increased by

increasing sample size: all of the above tests become more

powerful for large samples (Tables S3, S4 and S5). Since the tests

consistently underscore the theoretical false positive rate, relaxed

singnificance levels (for instance a~0:05) can be applied. At level

a~0:05 test T
(sum)
2 has power of more than 80% to detect recent

selective sweeps (Figure 6 and Table 4). For intermediate mutation

rates power of test T
(sum)
2 is somewhat higher than of T

(product)
2

(Table S2). Generally, power profiles of T
(sum)
2 and T

(product)
2

follow qualitatively the same pattern. In contrast, power of test

T
(dist)
0 may be quite different. Interestingly, T

(dist)
0 performs better

than T
(sum)
2 or T

(product)
2 when selection is only moderately strong.

Unsurprisingly, power of all tests depends heavily on the strength

of selection. Also, the time since completion of the selective sweep

influences power. Reasonable power can be reached if tv10{3 in

coalescent units.

We also examined how much the tests are confounded by

deviations from the standard neutral model. First, we determined

the false positive rates under a population bottleneck. From other

studies it is known that bottlenecks with a severity (duration

divided by depth) around 1 are particularly problematic [16,28].

We find that tests T
(sum)
2 and T

(product)
2 can produce substantially

more false positives than expected, in particular if bottlenecks are

recent (Table S6). Interestingly, test T
(dist)
0 is very robust against

these disturbances and the false positive rate remains clearly under

the theoretical value for all onset parameters tested (Table S6).

We note that the false positive rates of T
(sum)
2 and T

(product)
2

depend strongly on the bottleneck duration even when the severity

is kept fixed (Table S7). Very short (duration 0:001), but heavy

reductions of N are more disturbing for T
(sum)
2 and T

(product)
2 than

long, but shallow bottlenecks (duration 0:1). In contrast, T
(dist)
0 is

fairly insensitive to changes of bottleneck duration (Table S7).

Under a model of fast population expansion (expansion rate 10),

all tests remain below, or close to, their theoretical false positive

rate. Again, test T
(dist)
0 is unsensitive to population expansion and

varying onset times (Table S8).

We expected that our topology based tests would yield many

false positives under a model of population subdivision. As a

potentially critical case we examined sampling from a population

divided into two sub-populations which split 2N generations ago

and which exchange migrants at rate m. We analyzed both

varying migration rates and varying sampling schemes (Tables S9

to S12). The false positive rate for tests T
(sum)
2 and T

(product)
2

remains clearly under its theoretical expectation, even if sampling

is heavily biased (sample size of sub-population 1 was n1~195 and

of sub-population 2 was n2~5; Table S9). In contrast, test T
(dist)
0 ,

which only measures tree imbalance at the root node, is more

vulnerable to biased sampling from a sub-divided population. The

false-positive rate grows up to 17% if n1~195 and n2~5. In

general, we find test T
(dist)
0 to be less vulnerable to population

bottlenecks, but tests T
(sum)
2 and T

(product)
2 to be more robust under

population substructure.

Finally, we examined how deviation from the single step

mutation model would influence our tests. We modified the

mutation model and allowed occasional jumps (probability p) of

larger steps. We tested jumps of step size 2 (Table S13) and 7

(Table S14). All tests, eminently the compound tests T
(sum)
2 and

T
(product)
2 , remain clearly below their theoretical false positive rate.

Case study
Emergence of drug resistance in malaria parasites is among the

best documented examples for recent selective sweeps. We re-

analyzed 16 microsatellite markers surrounding a well studied

drug resistance locus of malaria parasites [29] (Figure 7). The

signature of recent positive selection is consistently detected by all

tests on two markers somewhat downstream of the drug resistance

locus pfmdr1 (marker l–35 and l–37 in the notation of [29];

Table 5). Highest significance is reported by test T
(product)
2 (p-value

close to 0:001). T
(dist)
0 reports a p-value of 0:006 and T

(sum)
2 reports

p-values slightly above 0:010. In addition, T
(product)
2 reports locus

l–29 (located upstream of pfmdr1) to be significant at p~0:025.

This locus is also detected by T
(dist)
0 (p~0:038). Other four loci are

reported only by T
(dist)
0 (l–30 (p~0:006), l–31 (p~0:025), l–32

(p~0:006), l–30 (p~) and l–40 (p~0:031)). Discrepancies in the

test results are due to their different sensitivities to various

parameters. The simple and compound tests have different power

profiles with power peaks at different positions from the selected

site (Figure 6). Plasmodium in South-East Asia is most likely

expanding and sub-structured; however, there is only limited

knowledge about the details.

As shown above, T
(dist)
0 is quite sensitive to biased sampling

from different sub-populations. Some of the significant results of

T
(dist)
0 may be inflated due to sub-structure. There is also some

disagreement between tests T
(sum)
2 and T

(product)
2 regarding

significance, although both test imbalance at tree nodes n0, n1

and n2. In fact, the cases reported by the two tests may still differ in

their details. Comparing the three components v̂v�0, v̂v�1 and v̂v�2
with respect to their maximum and minimum, we find that the

cases reported as significant by T
(sum)
2 have a max(v̂v�0,::,v̂v�2)v0:4

and a min(v̂v�0,::,v̂v�2) up to 0:1. In contrast, for T
(product)
2 , the

maximum is close to 1:0 while the minimum tends to be less than

0:04 (Figure S4). Thus, test T
(sum)
2 is more restrictive in the sense

that all components v̂v�0, v̂v�1 and v̂v�2 have to be small to yield a

significant result. T
(product)
2 is more permissive and accepts that one

of the three components may be large.

All tests agree on significance of two markers close to a site

which was previously shown to have experienced a selective sweep.

They also agree all on strongly increased p-values in the

immediate vicinity of the selected site (l–33, l–34). Together, these

results confirm the accuracy and practical utility of our tests.

Discussion

The binary coalescent has a number of well-studied combina-

toric and analytic properties [1,30,31]. Here we only concentrate

on tree topology and use a classic result of Tajima [19] to define a

simple measure, Vi, of tree balance. It is the minimum of the left

and right subtree sizes under internal node ni. Its normalized

version is approximately uniform on the unit interval and the
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summation over internal nodes ni, i~1,::k, is close to normal.

Another summary statistic of tree balance is Colless’ index C [32].

It also depends on the sizes of left- and right subtrees of the

internal nodes, but its distribution is more complicated. C has

received attention in the biological literature before [33] and,

more recently, in theoretical studies, for instance by Blum&Janson

[34]. A problem with Colless’ index is that it is difficult to estimate

if the true tree structure is unknown. But, limiting attention to the

tree structure close to the root, we show that the balance measure

V can be estimated, for instance, from microsatellite allele data by

a clustering method. We found that a version of UPGMA

clustering gives most reliable results.

Coalescent trees for linked loci are not independent. However,

correlation dissipates with recombinational distance. In fact, under

neutral conditions only about ten recombination events are

sufficient to reduce correlation in tree topology by 50%. Thus,

estimating tree imbalance at multiple microsatellites can be

performed independently for each marker, if they are sufficienty

distant from each other. Conversely, with a very small number of

recombination events, V is not drastically altered on average [15].

Thus, when working with SNPs, one may afford to consider

haplotype blocks containing a few more recombination events than

segragting sites and still be able to reconstruct a reliable gene

genealogy. This possibility will be explored in more detail elsewhere.

Table 2. Empirical false positive rate for varying h.

a~0:01 a~0:05

h T (sum)
2 T(product)

2 T (dist)
0 T (sum)

2 T(product)
2 T (dist)

0

0.1 0.00006 0.00327 0.0001 0.00035 0.01323 0.00047

0.5 0.00523 0.01703 0.00109 0.01724 0.07931 0.00431

1.0 0.01142 0.01749 0.002 0.0463 0.08957 0.00887

1.5 0.01251 0.01414 0.00281 0.06365 0.08425 0.01145

2.0 0.01145 0.01127 0.00355 0.06736 0.07399 0.01354

2.5 0.00933 0.00843 0.00421 0.06579 0.06571 0.01549

3.0 0.00756 0.00663 0.00458 0.06042 0.05718 0.01781

4.0 0.00559 0.00478 0.00534 0.04936 0.04348 0.01884

5.0 0.00415 0.00315 0.0057 0.04073 0.03455 0.0208

10.0 0.00145 0.00131 0.00616 0.0244 0.01889 0.02433

20.0 0.00069 0.00049 0.00632 0.01411 0.01032 0.02685

30.0 0.00064 0.00038 0.00656 0.01018 0.00805 0.02744

40.0 0.00043 0.00035 0.00647 0.00839 0.00651 0.02702

50.0 0.00027 0.00031 0.006 0.00828 0.00631 0.02754

100.0 0.00028 0.00033 0.00615 0.00693 0.00591 0.02846

120.0 0.00024 0.00027 0.00614 0.00666 0.00571 0.02806

150.0 0.00024 0.00028 0.00593 0.00699 0.00548 0.02876

200.0 0.00034 0.00026 0.00624 0.00641 0.005 0.02844

Neutral model N constant, n~200, r~400. Significance levels a are based on theoretical formulae according to eqs (7) and (8) (reference value indicated in bold).
doi:10.1371/journal.pcbi.1003060.t002

Table 3. Empirical false positive rate for varying sample size n.

a~0:01 a~0:05

n T (sum)
2 T(product)

2 T (dist)
0 T (sum)

2 T(product)
2 T (dist)

0

10 N/A N/A 0.21417 0.0099 N/A 0.21417

20 0.00035 0 0.09527 0.01215 0.00035 0.09527

50 0.00055 0.00003 0.03318 0.0094 0.00286 0.03318

100 0.00052 0.00022 0.0151 0.00925 0.00527 0.02778

150 0.00044 0.00033 0.00902 0.00934 0.00609 0.02411

200 0.00039 0.00033 0.00592 0.00943 0.00684 0.02666

300 0.00038 0.00042 0.00388 0.00976 0.00828 0.02282

500 0.00042 0.00055 0.00394 0.01009 0.0093 0.02169

1000 0.00044 0.00104 0.00474 0.01107 0.01148 0.02057

Neutral model N constant, h~40, r~400. Significance levels a are based on theoretical formulae according to eqs (7) and (8) (reference value indicated in bold).
doi:10.1371/journal.pcbi.1003060.t003
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Microsatellites have been used before as markers for selective

sweeps. Schlötterer et al. [35] have proposed the lnRH statistic to

detect traces of selection and Wiehe et al. [28] have shown that a

multi-locus vesion of lnRH for linked markers can yield high

power while keeping false positive rates low. However, a severe

practical problem with the lnRH statistic is that it requires data

from two populations, and for each of them two additional and

independent sets of neutral markers for standardization. There

are a few methods to detect deviations from the standard neutral

model based on single microsatellite locus data from one

Figure 6. Power to detect loci under recent selection by the three tests defined in eqs (14) to (16). Parameters: level a~0:05 (solid) and
a~0:01 (dotted); selection coefficient s~0:01; time since fixation t~10{4 ; sample size n~200; mutation rate h~40; recombination rate c~10{8 .
The x{axis shows positions to the left (negative values) and right (positive values) of the locus under selection at position x~0. Scale is in cM x1000,
corresponding here to kb.
doi:10.1371/journal.pcbi.1003060.g006

Table 4. Power of T (sum), T (product) and T (dist) in dependence of distance to selected site.

a~0:01 a~0:05

distance (kb) T (sum)
2 T(product)

2 T (dist)
0 T (sum)

2 T (product)
2 T (dist)

0 SKD*

288.0 0.01794 0.01085 0.02051 0.21164 0.11855 0.08392 0.8468

278.0 0.02708 0.01613 0.02416 0.27325 0.15216 0.09606 0.8873

250.0 0.09714 0.0528 0.03672 0.52898 0.31465 0.1497 0.9353

239.0 0.16291 0.09047 0.04749 0.64722 0.41612 0.1887 0.9440

229.0 0.25581 0.14603 0.06525 0.74461 0.52288 0.24893 0.9435

219.0 0.3671 0.22901 0.09412 0.81644 0.63249 0.34637 0.9161

29.0 0.4339 0.29439 0.15377 0.80504 0.69404 0.46718 0.7931

24.0 0.3679 0.24615 0.16738 0.66659 0.6127 0.41263 0.5969

22.0 0.28585 0.18531 0.13051 0.52249 0.49368 0.28243 0.4535

21.0 0.21826 0.1383 0.08574 0.41239 0.39426 0.16926 0.3657

0.0 0.13085 0.07765 0.00971 0.26692 0.26055 0.01182 0.2670

1.0 0.21972 0.13898 0.08428 0.41424 0.39615 0.17043 0.3601

2.0 0.28701 0.18614 0.12943 0.52215 0.49205 0.28118 0.4600

3.0 0.33496 0.22226 0.1548 0.6066 0.56351 0.35927 0.5366

5.0 0.39321 0.26452 0.1706 0.71037 0.64409 0.44278 0.6549

6.0 0.41455 0.28116 0.16901 0.74565 0.66566 0.45932 0.6928

7.0 0.42253 0.28768 0.1645 0.77335 0.68215 0.47001 0.7407

8.0 0.4334 0.29241 0.15955 0.79386 0.69415 0.47023 0.7652

10.0 0.43149 0.29145 0.14693 0.81588 0.69532 0.45901 0.8091

11.0 0.43158 0.2914 0.13982 0.82358 0.69425 0.45046 0.8336

Selective sweep with s~0:01, t~10{4 , h~40, sample size n~200.
*SKD-test by Schlötterer et al. [37].
doi:10.1371/journal.pcbi.1003060.t004
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population. For instance, the test by Cornuet and Luikart [36],

which compares observed and expected heterozygosity, is designed

to detect population bottlenecks. A test by Schlötterer et al. [37] uses

the number of alleles at a microsatellite locus and determines

whether an excess of the number of alleles is due to positive selection

(SKD test). However, as the authors pointed out, the test depends

critically on a reliable locus-specific estimate of the scaled mutation

rate. We have compared SKD and the test proposed here with

respect to power and false positive rates. While the SKD-test is

generally more powerful, especially at larger distances from the

selected site (Table 4 and Suppl. Tables S1, S5), it has higher false

positive rates than the tests proposed here, in particular when

compared to T
(dist)
0 (Suppl. Table S6), and for non-standard

mutation models (Suppl. Tables S13, S14). Note also that under

population sub-structure SKD yields up to 100 times more false

positives than our tests (Suppl. Tables S9 to S12).

It should be emphasized that it is the topology of the underlying

genealogical tree, not the genetic variation, which constitutes the

basis for the test statistics proposed here. The two steps, estimating

topology, and performing the test are two distinct tasks. The

quality of the tests hinges on the quality of the re-constructed

genealogy. With a perfectly re-constructed genealogy the false

positive rates are completely independent from any evolutionary

mechanisms which do not affect the average topology, such as

historic changes of population size. However, simulations show

that power would still remain under 100% in this case. The

robustness of topology based tests with respect to demographic

changes has been shown before by Li [16] for a similar test which

uses SNP data to reconstruct V0. But Li’s test can only be

performed if an additional non-topological criterion is satisfied and

thus can only test a subset of trees with V0. The tests T (sum) and

T (product) defined here rely only on topological properties of the

Figure 7. Traces of selection around a drug resistance locus in Plasmodium. Results of tests T (sum) (stars), T (product) (circles) and T (dist)

(triangles) applied to a 17 kb region sorrounding the pfmdr1 locus in P.falciparum. Shown are significant results on the 5% (open symbols) and 1%
(filled symbols) levels. Positions of the examined microsatellite markers are indicated by arrows. Data from [29].
doi:10.1371/journal.pcbi.1003060.g007

Table 5. Test statistics and p-values for the empirical data set of P.falciparum.

pos T (sum)
2 p-value T (product)

2 p-value T(dist)
0cv0v0 n dist1

l–25 953,644 20.1906 0.4244 0.0569 0.4537 146 324 1

l–26 953,768 0.5591 0.7120 0.1235 0.6520 148 322 2

l–27 954,506 20.7872 0.2156 0.0282 0.3085 95 320 2

l–28 956,456 21.2289 0.1096 0.0069 0.1268 11 324 3

l–29 956,686 20.8912 0.1864 0.0007 0.0254� 6� 314 4

l–30 956,917 20.6710 0.2511 0.0019 0.0521 1�� 325 3

l–31 957,169 21.3464 0.0891 0.0030 0.0706 4� 322 4

l–32 957,861 20.3083 0.3789 0.0024 0.0598 1�� 325 31

l–33 959,894 0.8260 0.7956 0.0101 0.1629 147 326 2

l–34 962,445 20.0498 0.4801 0.0611 0.4706 140 326 2

l–35 962,699 22.1600 0.0154� 1.9e-5 0.0014�� 1�� 326 23

l–36 965,905 20.7369 0.2306 0.0337 0.3415 36 326 2

l–37 966,096 22.2470 0.0123� 1.4e-5 0.0010�� 1�� 326 9

l–38 969,495 0.3941 0.6533 0.1713 0.7402 117 323 2

l–39 970,775 0.1901 0.5754 0.0528 0.4366 17 322 3

l–40 971,251 20.8336 0.2023 0.0025 0.0616 5* 323 2

Given are the theoretical p-values based on the standard normal (for T
(sum)
2 ) and on the product uniform (for T

(product)
2 ) distributions. Values for T

(dist)
0 are given as raw

data (cv0v0 , n, d). The p-value is 2cv0v0=n. 5% (single star) and 1% (double star) significance are indicated. Marker positions are taken from [29]. The region analyzed (about
17 kb) corresponds to about 1 cM (site under selection in bold).
1defined in eq (13).
doi:10.1371/journal.pcbi.1003060.t005
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genelaogy and we argue that multi-allelic markers, such as

microsatellites, help estimating the true genealogy and improving

test results. Although our analyses and simulations are based on

the binary Kingman [1] coalescent, we expect that the new test

statistics should be robust also under more general coalescent

models, for instance when multiple mergers during the selective

sweep phase are allowed [38].

Despite a shift to high throughput sequencing technologies in

the last decade, microsatellite typing continues to be a cost-

efficient and fast alternative to survey population variability in

many experimental studies. This is in particular true for projects

directed towards parasite typing, e.g. of Plasmodium, and projects

with non-standard model organisms, e.g. social insects [39,40], but

also for many biomedical studies.

Methods

Coalescent simulations
We simulated population samples under neutral and hitchhik-

ing models with modified versions of the procedures described by

Kim and Stephan [41] and Li and Stephan [42] and of ms [43],

termed msmicro. In the modified versions we incorporated

evolution of microsatellite loci under the symmetric, single step

and multi-step mutation models. Microsatellite mutations are

modeled as changes to the number of motif repeats, where only

numbers but not particular sequence motifs are recorded. Output

data comprise coalescent trees in Newick format and the state of

microsatellite alleles for each of n sequences. With msmicro also

multiple linked microsatellites can be modeled. Coalescent

simulations were run under different evolutionary conditions:

neutral with constant population size (N~105), neutral with

bottleneck (bottleneck severity
duration

depth
~

0:001

0:001
~1, time since

bottleneck t~0:01), population size expansion (growth rate 10),

neutral two-island model with migration, and hard selective

sweeps (selection s~0:01 and s~0:005, time since fixation of

sweep allele t~10{4).

Tree topology
Realizations vi of the ‘true’ random variables Vi, 0ƒiƒk were

extracted from the simulation results. Estimation of v̂vi was

performed by UPGMA hierarchical clustering. If a cluster node

could not be uniquely resolved then we gave preference to a bi-

partite partition in which the left and right subtrees were of equal

or similar size. This was accomplished by randomly assigning

alleles to two clusters with equal probability. To estimate v̂v0 we

also explored a simple clustering method which works in the

following way: we first sorted alleles by size; then we divided the

sorted list into two halfs. The separator was placed between those

two alleles which had maximal distance (in terms of microsatellite

repeat units) from each other. If this was not unique, the separator

was placed between those two alleles that resulted in two sets of

most similar size. While this clustering method is very effective in

estimating v0, it is less accurate than UPGMA clustering for vi,

iw0.

Distance between microsatellite alleles
The single step symmetric mutation model behaves as a one-

dimensional symmetric random walk of step size one. The

theory of random walks (e.g. [44]) tells that the average distance

between the origin of the walk and the current position

scales with the square root of the number k of steps. More

precisely,

Edist ~

ffiffiffiffiffiffi
2k

p

r
:

The variance is linear in k. Here, steps are represented by

mutational events occuring at rate h. Thus, Edist ~
ffiffiffiffiffiffiffiffiffiffi
2h=p

p
and

Vdist&h=e, where e is Euler’s constant. The empirical distance

between two clusters C1 and C2 can be calculated as

dist(C1,C2)~ min
Ai[C1,Aj[C2

dist(Ai,Aj) :

Supporting Information

Figure S1 Agreement of Sk with the standard normal.
Shown are the distribution functions for the standard normal

distribution (green line), and for (see eq (8)) Sk~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12=(kz1)

pPk
i~0 (V�i {1=2), k~2 (red line) and k~0 (blue line). The latter is

uniform on {1:73, 1:73. Obviously, already for k~2 the

agreement between the standard normal and Sk is quite good.

(EPS)

Figure S2 Average number of recombination events in
neutral coalescent trees. (A) in dependence of sample size n
(4Nr~10) and (B) of the scaled recombination rate 4Nr (n~100).

Red: simulation results obtained from 1000 replicates of ms [43].

Shown are average (bullets) and standard deviation (whiskers).

Black: theoretical value E(nr)~4Nran{1.

(EPS)

Figure S3 Distance from sweep site to first recombina-
tion site. Given that the rate of the first recombination event

adjacent to a selective sweep site is rl~an{1ctf =2 (in case of a

neutral topology) or ru~nctf =2 (in case of a star phylogeny) the

distance between the selected site and the ‘first’ recombination

event is described by a Poisson process with rate rlx or rux. Shown

is the probability that the Poissson variable is 0 (i.e., for a

‘‘recombination free zone’’) for rl (upper curve) and ru (lower

curve).

(EPS)

Figure S4 Differences between tests (A) T
(sum)
2 and (B)

T
(product)
2 . Given a test is significant at level a~0:01, the plots

show the maximum (x-axis) and the minimum (y-axis) of the three

terms v�1, v�2 and v�3, which enter into the sum and product in

T
(sum)
2 and T

(product)
2 , respectively. The sum- and product-tests

may yield different results, because the summands are differently

constrained (here (A), the maximum v*0:4) than the factors (here

(B), the maximum may reach almost 1, but the minimum is smaller

than in the sum-test).

(PDF)

Table S1 Power of T (sum), T (product) and T (dist) in depen-
dence of distance to selected site. Moderate selection

strength.

(PDF)

Table S2 Power of T (sum), T (product) and T (dist) in depen-
dence of mutation rate h.
(PDF)

Table S3 Power of T (sum), T (product) and T (dist) in depen-
dence of sample size n.
(PDF)
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Table S4 Power of T (sum), T (product) and T (dist) in depen-
dence of distance to selected site. Small sample size.

(PDF)

Table S5 Power of T (sum), T (product) and T (dist) in depen-
dence of distance to selected site. Large sample size.

(PDF)

Table S6 Empirical false positive rate. Bottleneck
model with varying onset t of the bottleneck. Strength is fixed

at 0:01N . Significance levels a are based on theoretical formulae

according to eqs (7) and (8).

(PDF)

Table S7 Empirical false positive rate. Bottleneck
model with varying duration of the bottleneck. Severity (duration

divided by strength) is fixed at 1. Significance levels a are based on

theoretical formulae according to eqs (7) and (8).

(PDF)

Table S8 Empirical false positive rate. Population
expansion with varying onset t of the expansion. Expansion

rate is fixed at 10.

(PDF)

Table S9 Empirical false positive rate. Population sub-
structure with two sub-populations, split time t~1 in the past

and sampling scheme n1~195, n2~5. Varying migration rate m
per generation per 4N individuals. Significance levels a are based

on theoretical formulae according to eqs (7) and (8).

(PDF)

Table S10 Empirical false positive rate. Population sub-
structure with two sub-populations, split time t~1 in the past

and sampling scheme n1~190, n2~10. Varying migration rate m
per generation per 4N individuals. Significance levels a are based

on theoretical formulae according to eqs (7) and (8).

(PDF)

Table S11 Empirical false positive rate. Population sub-
structure with two sub-populations, split time t~1 in the past

and sampling scheme n1~180, n2~20. Varying migration rate m
per generation per 4N individuals. Significance levels a are based

on theoretical formulae according to eqs (7) and (8).

(PDF)

Table S12 Empirical false positive rate. Population sub-
structure with two sub-populations, split time t~1 in the past

and sampling scheme n1~150, n2~50. Varying migration rate m
per generation per 4N individuals. Significance levels a are based

on theoretical formulae according to eqs (7) and (8).

(PDF)

Table S13 Empirical false positive rate. Mutation
model with jumps of size 2. Varying probability p for a step

of size 2. With probability 1{p the step size is 1. Significance

levels a are based on theoretical formulae according to eqs (7) and

(8).

(PDF)

Table S14 Empirical false positive rate. Mutation
model with jumps of size 7. Varying probability p for a step

of size 7. With probability 1{p the step size is 1. Significance

levels a are based on theoretical formulae according to eqs (7) and

(8).

(PDF)
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