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Abstract

The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from
scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-
throughput experimental assays, a small number of experimental studies dominate the functional protein annotations
collected in databases. Here, we investigate just how prevalent is the ‘‘few articles - many proteins’’ phenomenon. We
examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show
that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of
annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use
of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know
about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput
experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location
of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the
information provided by different studies overlap by a large amount. We also show that the information provided by high
throughput experiments is less specific than those provided by low throughput experiments. Given the experimental
techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable.
Knowing that these biases exist and understanding their characteristics and extent is important for database curators,
developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments.
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Introduction

Functional annotation of proteins is an open problem and a

primary challenge in molecular biology today [1–4]. The ongoing

improvements in sequencing technology have shifted the emphasis

from realizing the $1,000 genome to realizing the 1-hour genome

[5]. The ability to rapidly and cheaply sequence genomes is

creating a flood of sequence data, but to make these data useful,

extensive analysis is needed. A large portion of this analysis

involves assigning biological function to newly determined gene

sequences, a process that is both complex and costly [6]. To aid

current annotation procedures and improve computational

function prediction algorithms, high-quality, experimentally de-

rived data are necessary. Currently, one of the few repositories of

such data is the UniProt-GOA database [7], which is a

compilation of data contributed by several member groups of

the GO consortium. UniProt-GOA contains functional informa-

tion derived from literature, and by computational means. The

information derived from literature is extracted by human curators

who capture functional data from publications, assign the data to

their appropriate place in the Gene Ontology hierarchy [8], and

label them with appropriate functional evidence codes. UniProt-

GOA is compiled from annotations made by several member

groups of the GO consortium, and as such presents the current

state of our view of protein function space. It is therefore

important to understand any trends and biases that are

encapsulated in UniProt-GOA, as those impact well-used sister

databases and consequently a large number of users worldwide.

One concern surrounding the capture of functional data from

articles is the propensity for high-throughput experimental work to

become a large fraction of the data in the GO Consortium

database, thus having a small number of experiments dominate

the protein function landscape. In this work we analyzed the

relative contribution of peer-reviewed articles describing all the

experimentally derived annotations in UniProt-GOA. We found

some striking trends, stemming from the fact that a small fraction

of articles describing high-throughput experiments disproportion-

ately contribute to the pool of experimental annotations of model

organisms. Consequently we show that: 1) annotations coming

from high-throughput experiments are overall less informative

than those provided by low-throughput experiments; 2) annota-

tions from high-throughput experiments are biased towards a
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limited number of functions, and 3) many high-throughput

experiments overlap in the proteins they annotate, and in the

annotations assigned. Taken together, our findings offer a picture

of how the protein function annotation landscape is generated

from scientific literature. Furthermore, due to the biases inherent

in the current system of sequence annotations, this study serves as

a caution to the producers and consumers of biological data from

high-throughput experiments.

Results

Articles and Proteins
The increase in the number of high-throughput experiments

used to determine protein functions may introduce biases into

experimental protein annotations, due to the inherent capabilities

and limitations of high-throughput assays. To test the hypothesis

that such biases exist, and to study their extent if they do, we

compiled the details of all experimentally annotated proteins in

UniProt-GOA. This included all proteins whose GO annotations

have the GO experimental evidence codes EXP, IDA, IPI, IMP,

IGI, IEP (See Methods for an explanation of GO evidence codes).

We first examined the distribution of articles that are the source of

experimentally validated annotations by the number of proteins

they annotate. As can be seen in Figure 1, the distribution of the

number of proteins annotated per article follows a power-law

distribution. f (x)~axk. Using linear regression over the log values

of the axes we obtained a fit with pv1:18|10{8 and

R2~{0:72. We therefore conclude that there is indeed a

substantial bias in experimental annotations, in which there are

few articles that annotate a large number of proteins.

To better understand the consequences of such a distribution,

we divided the annotating articles into four cohorts, based on the

number of proteins each article annotates. Single-throughput articles

are those articles that annotate only one protein; low throughput

articles annotate 2–9 proteins; moderate throughput articles annotate

10–99 proteins and high throughput articles annotate over 99

proteins. The results are shown in Table 1. The most striking

finding is that high throughput articles are responsible for 25% of

the annotations that the GO Consortium creates, even though

they are found only in 0.14% of the articles. 96% of the articles are

single-throughput and low-throughput, however those annotate

only 53% of the proteins. So while moderate-throughput and

high-throughput studies account for almost 47% of the annota-

tions in Uniprot-GOA, they constitute only 3.66% of the studies

published.

To understand how the log-odds distribution affects our

understanding of protein function, we examined different aspects

of the annotations in the four article cohorts. Also, we examined in

greater detail the top-50 high-throughput annotating articles.

‘‘Top-50 high throughput annotating articles’’ are the articles

describing experimental annotations that are top ranked by the

number of proteins annotated per article. An initial characteriza-

tion of these articles is shown in Table S1 in Text S1. As can be

seen, most of the articles are specific to a single species (typically a

model organism) and to a single assaying pipeline that is used to

assign function to the proteins in that organism. With one

exception, only one ontology of the three GO ontologies was used

for annotation in any single experiment. The three ontologies are

Molecular Function (MF), Biological Process (BP) and Cellular

Component (CC). These are separate ontologies within GO,

describing different aspects of function as detailed in [8]. As we

show later, for some species this means that a single functional

aspect (MF, BP or CC) of a species can be dominated by a single

study.

The Impact of High Throughput Studies on the
Annotation of Model Organisms

We examined the relative contribution of the top-50 articles to

the entire corpus of experimentally annotated proteins in each

species. Unsurprisingly, all the species found in the top-50 articles

were either common model organisms or human. For each

species, we examined the five most frequent terms in the top-50

articles. We then examined the contribution of this term by the

top-50 articles to the general annotations of that species. The

contribution is the number of annotations by any given GO term in

the top 50 articles divided by the number of annotations by that

GO term in all of UniProt-GOA. For example, as seen in Figure 2

in D. melanogaster, 88% of the annotations using the term

‘‘precatalytic splicosome’’ in articles experimentally annotating

this species that are contributed by the top-50 articles.

For most organisms annotated by the top-50 articles, the

annotations were within the Cellular Component or Biological

Process ontologies. Notable exceptions are D. melanogaster and C.

elegans where the dominant terms were from the Biological Process

ontology, and in mouse, where ‘‘protein binding’’ and ‘‘identical

protein binding’’ are from the Molecular Function Ontology. D.

melanogaster’s annotation for the top terms is dominated (over 50%

contribution) by the top-50 articles.

The term frequency bias described here can be viewed more

broadly within the ontology bias. The proteins annotated by the

cohorts of single-protein articles, low-throughput articles, and

moderate-throughput articles have similar ratios of the fraction of

proteins annotated. Twenty-two to twenty-six percent of assigned

terms are in the Molecular Function Ontology, and 51–57% are

in the Biological Process Ontology and the remaining 17–25%

are in the Cellular Component ontology. These ratios change

dramatically with high-throughput articles (over 99 terms per

article). In the high-throughput articles, only 5% of assigned

terms are in the Molecular Function Ontology, 38% in the

Biological Process Ontology and 57% in the Cellular Compart-

ment Ontology, ostensibly due to a lack of high-throughput

assays that can be used for generating annotations using the

Molecular Function Ontology.

Author Summary

Experiments and observations are the vehicles used by
science to understand the world around us. In the field of
molecular biology, we are increasingly relying on high-
throughput, genome-wide experiments to provide an-
swers about the function of biological macromolecules.
However, any experimental assay is essentially limited in
the type of information it can discover. Here, we show that
our increasing reliance on high-throughput experiments
biases our understanding of protein function. While the
primary source of information is experiments, the func-
tions of many proteins are computationally annotated by
sequence-based similarity, either directly or indirectly, to
proteins whose function is experimentally determined.
Therefore, any biases in experimental annotations can get
amplified and entrenched in the majority of protein
databases. We show here that high-throughput studies
are biased towards certain aspects of protein function, and
that they provide less information than low-throughput
studies. While there is no clear solution to the phenom-
enon of bias from high-throughput experiments, recog-
nizing its existence and its impact can help take steps to
mitigate its effect.

Biases in Experimental Annotations of Proteins
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Repetition and Consistency in Top-50 Annotations
How many of the top-50 articles actually annotate the same set

of proteins? Answering this question will tell us how repetitive

experiments are in identifying the same set of proteins to annotate.

However, even when annotating the same set of proteins and

within the same ontology, different experiments may provide

different results, lacking consistency. Therefore, the annotation

consistency was also checked. Repetition is given as
n

N
with n being

the number of proteins annotated by two or more articles, and N
being the total number of proteins.

The results of the repetition analysis are shown in Figure 3 and

in Table 2. As can be seen, the highest repetition (65%) is in the 12

articles annotating C. elegans. Of course, a higher number of articles

is expected to increase repetitive annotations simply due to

increased sampling of the genome. However, the goal of this

analysis is to present the degree of repetition, rather than to try to

rank and normalize it. As an additional repetition metric, Table 2

also lists the mean number of sequences per cluster. When

normalized by number of annotating articles, the highest

repetition is found in Mouse (15.33% in three articles) closely

followed by M. tuberculosis (14% in two articles). Taken together,

these results show that there is repetition in choosing the proteins

that are to be annotated in most model organisms using high-

throughput assays, although the rate of this repetition varies

widely.

Consistency analysis took place as described in Methods. The

consistency measure is normalized on a 0–1 scale, with 1 being

most consistent, meaning that all annotations from all sources are

identical. Table 3 shows the results of this analysis. In A. thaliana,

1941 proteins are annotated by 15 articles and 18 terms in the

Cellular Component ontology. The mean maximum-consistency is

0.251. The highest mean consistency is for the annotation of 807

mouse proteins annotated in Cellular Component ontology with

an annotation consistency 0.832. However, that is not surprising

Figure 1. Distribution of the number of proteins annotated per article. X-axis: number of annotating articles. Y-axis: number of annotated
proteins. The distribution was found to be logarithmic with a significant (R2~0:72; pv1:10|10{18) linear fit to the log-log plot. The data came from
76137 articles annotating 256033 proteins with GO experimental evidence codes, in Uniprot-GOA 12/2011.
doi:10.1371/journal.pcbi.1003063.g001

Table 1. Annotation Cohorts.

Articles annotating the following number of proteins 1 1vnv10 10ƒnv100 n§100 SUM

Number of proteins annotated 20699 46383 26485 31411 124978

Number of annotating articles 41156 32201 2672 108 76137

Percent of proteins annotated 16.56 37.11 21.19 25.13 100

Percent of annotating articles 54.09 42.32 3.51 0.14 100

Number of proteins and annotating articles assigned to each article annotation cohort. Columns: 1: articles annotating a single protein (singletons); 1vnv10 articles
annotating more than 1 and less than 10 proteins (low throughput); 10ƒnv100: medium throughput; n§100: articles annotating 100 proteins and more (high
throughput). As can be seen, high-throughput articles comprise 0.14% of the total articles used for experimental annotations, but annotate 25.13% of the proteins in
UniProt-GOA.
doi:10.1371/journal.pcbi.1003063.t001

Biases in Experimental Annotations of Proteins
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Figure 2. Relative contribution of top-50 articles to the annotation of major model organisms. The length of each bar represents the
percentage of proteins annotated by the top-50 articles in a given organism by a given GO term. GO terms that are present in more than one species
are highlighted.
doi:10.1371/journal.pcbi.1003063.g002
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given that there are only three annotating articles, and two

annotating terms. We omitted the ontology and organism

combinations that were annotated by less than three articles or

two GO terms, or both.

Quantifying Annotation Information
A common assumption holds that while high-throughput

experiments annotate more protein functions than low-throughput

experiments, the former also tend to be more shallow in the

predictions they provide. The information provided, for example,

by a large-scale protein binding assay will only tell us if two

proteins are binding, but will not reveal whether that binding is

specific, will not provide an exact Kbind , will not say under what

conditions binding takes place, or whether there is any enzymatic

reaction or signal-transduction involved. Having on hand data

from experiments with different ‘‘throughputness’’ levels, we set

out to investigate whether there is indeed a difference in the

information provided by high-throughput experiments vs. low-

Figure 3. Redundancy in proteins described by the top-50 articles. A circle represents the sum total of articles annotating each organism.
Each colored arch is composed of all the proteins in a single article. A line is drawn between any two points on the circle if the proteins they represent
have 100% sequence identity. A black line is drawn if they are annotated with a different ontology (for example, in one article the protein is
annotated with the MFO, and in another article with BPO); a red line if they are annotated in the same ontology. Example: S. pombe is described by
two articles, one with few protein (light arch on bottom) and one with many (dark arch encompassing most of circle). Many of the same proteins are
annotated by both articles. See Table 2 for numbers.
doi:10.1371/journal.pcbi.1003063.g003

Table 2. Sequence Redundancy in Top-50 Annotating Articles.

Species num. articles num. prot Clusters at 100% % redundancy Mean genes/cluster

C. elegans 12 8416 3338 60 3.74

A. thaliana 16 8879 4694 47 3.92

M. musculus 3 4220 2273 46 2.75

M. tuberculosis 2 2351 1702 28 2.22

S. cerevisiae 5 3542 2550 28 2.33

H. sapiens 4 5593 4509 19 2.36

D. melanogaster 3 1217 1003 18 2.17

S. pombe 2 4502 4281 5 2.00

Species: annotated species; num. articles number of annotating articles; num. prot: number of proteins annotated by top-50 articles for that species; Clusters at
100%: number of clusters of 100% identical proteins; % redundancy: the product of column 4 by column 3: this is the percentage of proteins annotated more than
once for a given species in the top 50 articles; Mean genes/cluster: the mean number of genes per cluster, for clusters having more than a single gene.
doi:10.1371/journal.pcbi.1003063.t002

Biases in Experimental Annotations of Proteins
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throughput ones. We examined the information provided by GO

terms in each paper cohort using two methods: edge-count, and

information-content. See Methods for details.

The results of both analyses are shown in Figure 4. In general,

the results from the edge count analysis and the information-

content based analysis are in agreement when compared across

annotation cohorts. For the Molecular Function ontology, the

distribution of edge counts and log-frequency scores decreases as

the number of annotated proteins per-article increases. For the

Biological Process ontology, the decrease is significant. However

the contributors to the decrease are the high-throughput articles

while there is little change in the first three article cohorts. Finally,

there is no significant trend of GO-depth decrease in the Cellular

Component Ontology. However, using the information-content

metric, there is also a significant decrease in information-content

in the high-throughput article cohort.

Exclusive High Throughput Annotations
Of interest is the fraction of proteins that are exclusively

annotated by high-throughput experiments. The question here is:

from the experimentally annotated proteins in an organism, how

much do we know of their function only using high-throughput

experiments? We have seen that high-throughput experiments

annotate a large number of proteins, but still some 80% of

experimentally determined proteins are annotated via medium-,

low- and single-throughput experiments. Given the lower infor-

mation-content of high-throughput experiments, it is important to

know which organisms have a substantial fraction of the proteins

experimentally annotated by high throughput studies only. To do

so, we analyzed all species with more than 200 genes in the NCBI

taxa database for the fraction of the genes that are exclusively

annotated by high throughput studies. The results are shown in

Table 4.

As can be seen, although the fraction of high-throughput

annotated proteins is large, not many species are affected with a

large fraction of proteins that are exclusively annotated by high-

throughput studies. However, the few species that are affected are

important study and model species. It is important to note that

some redundancy due to isoforms, mutants and duplications may

exist.

Frequently Used High Throughput Experiments
The twenty GO evidence codes, discussed above, encapsulate

the means by which the function was inferred, but they do not

capture all the necessary information. For example, ‘‘Inferred by

Direct Assay’’ (IDA) informs that some experimental assay was

used, but does not say which type of assay. This information is

often needed, since knowing which experiments were performed

can help the researcher establish the reliability and scope of the

produced data. RNA, used in an RNAi experiment does not

traverse the blood-brain-barrier, meaning that no data from the

central nervous system can be drawn from an RNAi experiment.

The Evidence Code Ontology, or ECO, seeks to improve upon the

GO-attached evidence codes. ECO provides more elaborate terms

than ‘‘Inferred by Direct Assay’’: ECO also conveys which assay

was used, for example ‘‘microscopy’’ or ‘‘RNA interference’’. In

addition to evidence terms, the ECO ontology provides assertion

terms in which the nature of the assay is given. For example, an

enzyme-linked immunosorbent assay (ELISA) provides quantita-

tive protein data in vitro while an immunogold assay may provide

the same information, and cellular localization information in situ.

We manually assigned Evidence Codes Ontology (ECO) assertion

and evidence terms to the top-50 articles. The assignment is shown

in detail in Table S2 in Text S1. Table S3 in Text S1 shows the

sorted count of ECO terms in the top-50 papers.

The most frequent ECO term used is ECO:0000160 ‘‘protein

separation followed by fragment identification evidence’’: this fits

the 27 papers that essentially describe mass-spectrometry studies.

Consequently this means that the assignment procedure is limited

to the cellular compartments that can be identified with the

fractionation methods used. So while Cellular Component is the

most frequent annotation used, fractionation and mass-spectrom-

etry is the most common method used to localize proteins in

subcellular compartments. A notable exception to the use of

fractionation and MS for protein localization is in the top

annotating article [9], which uses microscopy for subcellular

localization.

The second most frequent experimental ECO term is ‘‘Imaging

assay evidence’’ (ECO:000044). Several types of studies fall under

this ECO. Those include microscopy, RNAi, some of the mass-

spectrometry studies that used microscopy, and a yeast-2-hybrid

study. As imaging information is used in a variety of studies, this

ECO term is not informative of the chief method used in any

study, but rather the importance of imaging assays in a variety of

methods. The third most frequent experimental ECO term used

was ‘‘Cell fractionation evidence’’ which is closely associated with

the top term, ‘‘Protein separation followed by fragment identifi-

cation evidence.’’ The fourth and fifth most frequent ECO term

Table 3. Annotation Consistency in Top 50 articles.

Species Ont. num prot mean kP,O stdv stderr num articles num terms

A. thaliana CCO 1941 0.251 0.328 0.007 15 18

C. elegans BPO 1847 0.388 0.239 0.006 12 41

D. melanogaster BPO 76 0.086 0.22 0.025 3 8

D. melanogaster CCO 81 0.068 0.234 0.026 3 5

H. sapiens CCO 167 0.285 0.365 0.028 2 20

M. musculus CCO 807 0.832 0.291 0.01 3 2

S. cerevisiae CCO 744 0.759 0.379 0.014 4 15

B. tuberculosis CCO 532 0.309 0.41 0.018 2 3

Species: annotated species; Ontology: annotating GO ontology; num prot: number of annotated proteins in that species & ontology that are annotated by more
than one paper. mean, stdv, stderr: mean number of consistent annotations for a protein in that species and ontology, standard deviation from the mean and
standard error. num articles: number of annotating articles num terms number of annotating terms. Annotations by less than two articles or two terms (or both) for
the same protein/ontology combination have been omitted.
doi:10.1371/journal.pcbi.1003063.t003

Biases in Experimental Annotations of Proteins
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used were ‘‘loss-of-function mutant phenotype evidence’’

(ECO:0000016) and ‘‘RNAi evidence’’ (ECO:000019). These

two terms are also closely associated, in RNAi whole-genome gene

knockdowns in C. elegans, D. melanogaster and one in C. albicans.

RNAi experiments use targeted dsRNA which is delivered to the

organism and silences specific genes. Typically the experiments

here used libraries of RNAi targeted to the whole exome (for

example [10–13]). The phenotypes searched for were mostly

associated with embryonic and post-embryonic development.

Some studies focused on mitotic spindle assembly [14], lipid

Figure 4. Information provided by articles depending on the number of proteins the articles annotate. Articles are grouped into
cohorts: 1: one protein annotated by article; v10: more than 1, up to 10 annotated; v100: more than 10, less than 100 annotated; §100: 100 or
more proteins annotated per article. Blue bars: Molecular Function ontology; Green bars: Biological Process ontology; Red bars: Cellular Component
ontology. Information is gauged by A: Information Content and B: GO depth. See text for details.
doi:10.1371/journal.pcbi.1003063.g004

Biases in Experimental Annotations of Proteins
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storage [15] and endocytic traffic [16]. One study used RNAi to

identify mitochondrial protein localization [17]. These studies

mostly use the same RNAi libraries, and target the whole C. elegans

genome using common data resources. Hence the large redun-

dancy observed for C. elegans in Table 2. It should be noted that all

experiments are associated with computational ECO terms, which

describe sequence similarity and motif recognition techniques used

to identify the sequences found: ‘‘sequence similarity evidence’’,

‘‘transmembrane domain prediction evidence’’, ‘‘protein BLAST

evidence’’ etc. Computational terms are bolded in Table S2 in

Text S1. A strong reliance on computational annotation is

therefore an integral part of high throughput experiments.

Furthermore, computational annotation here is not used directly

for functional annotation, but rather for identifying the protein by

a sequence or motif similarity search. The third most frequently

used assertion in the top experimental articles was not an

experimental assertion, but rather a computational one: the term

ECO:00053 ‘‘computational combinatorial evidence’’ is defined as

‘‘A type of combinatorial analysis where data are combined and

evaluated by an algorithm.’’ This is not a computational

prediction per se, but rather a computational combination of

several experimental lines of evidence used in a article.

Discussion

We have identified several annotation biases in GO annotations

provided by the GO consortium. These biases stem from the

uneven number of annotations produced by different types of

experiments. It is clear that results from high-throughput

experiments contribute substantially to the function annotation

landscape, as up to 20% of experimentally annotated proteins are

annotated by high-throughput assays. At the same time, high

throughput experiments produce less information per protein than

moderate-, low- and single- throughput experiments as evidenced

by the type of GO terms produced in the Molecular Function and

Biological Process ontologies. Furthermore, the number of total

GO terms used in the high-throughput experiments is much lower

than that used in low and medium throughput experiments.

Therefore, while high throughput experiments provide a high

coverage of protein function space, it is the low throughput

experiments that provide more specific information, as well as a

larger diversity of terms.

We have also identified several types of biases that are

contributed by high throughput experiments. First, there is the

enrichment of low information-content GO terms, which means

that our understanding of the protein function as provided by

high-throughput experiments is more limited than that provided

by low-throughput experiments. Second, there is the small number

of terms used, when considering the large number of proteins that

are being annotated. Third is the general ontology bias towards

the cellular component ontology and, to a lesser extent, the

Biological Process ontology: there are very few articles that deal

with the Molecular Function ontology. These biases all stem from

the inherent capabilities and limitations of the hight-throughput

experiments. A fourth, related bias is the organism studied: taken

together, studies of C. elegans and A. thaliana studies comprise 36 of

the top-50 annotating articles, or 72%.

Information Capture and Scope of GO
We have discussed the information loss that is characteristic of

high-throughput experiments, as shown in Figure 4. However,

another reason for information loss is the inability to capture

certain types of information using the Gene Ontology. GO is

purposefully limited to three aspects (MF, BP and CC) of

biological function, which are assigned per protein. However,

other aspects of function may emerge from experiments. Of note is

the study, ‘‘Proteome survey reveals modularity of the yeast cell

machinery’’ [9]. In this study, the information produced was

primarily of protein complexes, and the relationship to cellular

compartmentalization and biological networks. At the same time,

the only GO term captured in the curation of proteins from this

study was ‘‘protein binding’’. Some, but not all of this information

can be captured more specifically using the children of the term

‘‘protein binding’’, but such a process is arguably laborious by

manual curation of the information from a high throughput

article. Furthermore, the main information conveyed by this

article, namely the types of protein complexes discovered and how

they relate to cellular networks, is outside the scope of GO. It is

important to realize that while high-throughput experiments do

convey less information per protein within the functional scope as

defined by GO, they still convey composite information such as

possible pathway mappings - information which needs to be

captured into annotation databases by means other than GO. In

the example above, the information can be captured by a protein

interaction database, but not by GO terms. Methods such as the

Statistical Tracking of Ontological Phrases [18] can help in

selecting the appropriate ontology for better information capture.

Conclusions
Taken together, the annotation trends in high-throughput

studies affect our understanding of protein function space. This, in

turn, affects our ability to properly understand the connection

between predictors of protein function and the actual function -

the hallmark of computational function annotation. As a dramatic

example, during the 2011 Critical Assessment of Function

Annotation experiment [19] it was noticed that roughly 20% of

the proteins participating in the challenge and annotated with the

Molecular Function Ontology were annotated as ‘‘protein

binding’’, a GO term that conveys little information. Furthermore,

it was shown that the major contribution of ‘‘protein binding’’

Table 4. Fraction of Proteins Exclusively Annotated by High
Throughput Studies.

Taxon ID Taxon XHT Total Proteins %XHT

284812 S. pombe 2781 4507 61.704

1773 B. tuberculosis 1224 2317 52.8269

6239 C. elegans 2493 5302 47.02

9606 H. sapiens 4016 11521 34.8581

44689 D. discoideum 425 1256 33.8376

3702 A. thaliana 3199 10153 31.5079

237561 C. albicans SC5314 327 1243 26.3073

10090 M. musculus LK3
transgenic

2567 22068 11.6322

7227 D. melanogaster 735 7501 9.7987

559292 S. cerevisiae 439 5086 8.6315

83333 E. coli K-12 83 1606 5.1681

7955 B. rerio 117 4633 2.5254

10116 R. norvegicus 11 4634 0.2374

Taxon ID: NCBI Taxon ID number; Species: annotated species; XHT: number
of proteins exclusively annotated by high-throughput experimental studies
(100 or more proteins annotated per study); Total proteins: Total number of
experimentally annotated proteins in that species. %XHT: percentage of
proteins in that species that are annotated exclusively by HT studies.
doi:10.1371/journal.pcbi.1003063.t004
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term to the CAFA challenge data set was due to high-throughput

assays. This illustrates how the concentration of a large number of

annotations in a small number of studies provides only a partial

picture of the function of these proteins. As we have seen, the

picture provided from high throughput experiments is mainly of:

1) subcellular localization cell fractionation and MS based

localization and 2) developmental phenotypes. While these data

are important, we should be mindful of this bias when examining

protein function in the database, even those annotations deemed

to be of high quality, those with experimental verification.

Furthermore, such a large bias in prior probabilities can adversely

affect programs employing prior probabilities, as most machine-

learning programs do. If the training set for these programs has

included a disproportional number of annotations by high-

throughput experiments, the results these programs provide will

be strongly biased towards a few frequent and shallow GO terms.

To remedy the bias created by high throughput annotations, the

provenance of annotations should be described in more detail by

curators and annotation software. Many function annotation

algorithms rely on homology transfer as part of their pipeline to

annotate query sequences [1,19]. Knowing the annotation

provenance, including the number of proteins annotated by the

original paper can create less biased benchmarks or otherwise

incorporate that information into the annotation procedure. The

ECO ontology can be used to determine the source of the

annotation, and the user or the algorithm can decide whether to

rely upon any combinations of ‘‘throughputness’’ and experimen-

tal type. Of course, such approaches should be taken cautiously, as

sweeping measures can cause the unintended loss of information.

We hereby call upon the communities of annotators, computa-

tional biologists and experimental biologists to be mindful of the

phenomenon of the experimental biases described in this study,

and to work to understand its implications and impact.

Methods

We used the UniProt-GOA database from December 2011.

Data analyses were performed using Python scripts. The following

tools were used in the analyses: Biopython [20], matplotlib [21].

ECO terms classifying the proteins in the top 50 experiments were

assigned to the proteins manually after reading the articles. All

data and scripts are available on: http://github.com/

FriedbergLab/Uniprot-Bias/ and on http://datadryad.org (the

latter upon acceptance).

Use of GO Evidence Codes
Proteins in UniProt-GOA are annotated with one or more GO

terms using a procedure described in Dimmer et al. (2012). Briefly,

this procedure consists of six steps which include sequence

curation, sequence motif analyses, literature-based curation,

reciprocal BLAST [22] searches, attribution of all resources

leading to the included findings, and quality assurance. If the

annotation source is a research article, the attribution includes its

PubMed ID. For each GO term associated with a protein, there is

also an evidence code which the curator assigns to explain how the

association between the protein and the GO term was made.

Experimental evidence codes include such terms as: Inferred by

Direct Assay (IDA) which indicates that ‘‘a direct assay was carried

out to determine the function, process, or component indicated by

the GO term’’ or Inferred from Physical Interaction (IPI) which ‘‘Covers

physical interactions between the gene product of interest and

another molecule.’’ (All GO evidence code definitions were taken

from the GO site, geneontology.org.) Computational evidence

codes include terms such as Inferred from Sequence or Structural

Similarity (ISS) and Inferred from Sequence Orthology (ISO). Although

the evidence in computational evidence codes is non-experimen-

tal, the proteins annotated with these evidence codes are still

assigned by a curator, rendering a degree of human oversight.

Finally, there are also computational, non-experimental evidence

codes, the most prevalent being Inferred from Electronic Annotation

(IEA) which is ‘‘used for annotations that depend directly on

computation or automated transfer of annotations from a

database’’. IEA evidence means that the annotation is electronic,

and was not made or checked by a person. Different degrees of

reliability are associated with different evidence codes, with

experimental codes generally considered to be of higher reliability

than non-experimental codes. (For details see: http://www.ebi.ac.

uk/GOA/ElectronicAnnotationMethods).

Quantifying GO-term Information
We used two methods to quantify the information given by GO

terms. First we used edge counting, where the information

contained in a term is dependent on the edge distance of that

term from the root. The term ‘‘catalytic activity’’(one edge

distance from the ontology root node) would be less informative

than ‘‘hydrolase activity’’ (two edges) and the latter will be less

informative than ‘‘haloalkane dehalogenase activity’’ (five edges).

We therefore counted edges from the ontology root term to the

GO term to determine term information. The larger the number

of edges, the more specific -and therefore informative- is the

annotation. In cases where several paths lead from the root to the

examined GO term, we used the minimal path. We did so for all

the annotating articles split into groups by the number of proteins

each article annotates.

While edge counting provides a measure of term-specificity, this

measure is imperfect. The reason is that each of the three GO

ontologies is constructed as a directed acyclic graph (DAG) where

different areas of the GO DAG have different connectivities, and

terms may have different depths unrelated to the intuitive

specificity of a term. For example ‘‘D-glucose transmembrane

transporter activity’’, (GO:0055056) is 10 terms deep, while ‘‘L-

tryptophan transmembrane transporter activity’’, (GO:0015196) is

fourteen terms deep. It is hard to discern whether these differences

are meaningful. For this reason, information content, the

logarithm of the inverse of the GO term frequency in the corpus,

is generally accepted as a measure of GO term information

content [23,24]. To account for the possible bias created by the

GO-DAG structure, we also used the log-frequency of the terms in

the experimentally annotated proteins in Uniprot-GOA. However,

the log-frequency measure is also imperfect because, as we see

throughout this study, a GO term’s frequency may be heavily

influenced by the top annotating articles, injecting a circularity

problem into the use of this metric. Since no single metric for

measuring the information conveyed by a GO term is wholly

satisfactory, we report the results from both edge-counting and

information-content.

Annotation Consistency
To examine annotation consistency, we employed the following

method: given a protein P, let G be the terminal (leaf) GO terms

g1,g2, . . . ,gm that annotate that protein in all top-50 articles for a

single ontology O[fBPO,MFO,CCOg. The count of each of

these GO terms per protein per ontology is n1,n2, . . . ,nm with ni

being the number of times GO term gi annotates protein P.

The number of total annotations for a protein in an ontology isPm
1 ni. The maximum annotation consistency for protein P in ontology

O 0ƒkP,Oƒ1 is calculated as:
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kP,O~
max(n1,n2, . . . ,nm)

Pm
ni

for max(n1,n2, . . . ,nm)§2

For example, the protein ‘‘Oleate activated transcription factor

3’’ (UniProtID: P36023) in S. cerevisiae is annotated four times by

three articles using the Cellular Component ontology, as shown in

Table 5. The annotation consistency for P36023 is therefore the

maximum count of identical GO terms (mitochondrion, 2), divided

by the total number of annotations, 4: 0.5.

When choosing a measure for annotation consistency, we

favored a simple and interpretable measure. We therefore

examined identity among leaf terms only, rather than use a more

complex comparison of multiple subgraphs in the GO ontology

DAG (Directed Acyclic Graph). Doing so without manual curation

is unreliable, and may skew the perception of similarity [25].

Supporting Information

Text S1 This file contains supplementary tables. Table S1: The

top 50 annotating articles. N: article rank; Proteins: number of

proteins annotated in this article; Annotations: number of

annotating GO terms; Species: annotated species; ref. annotating

article; MFO/BPO/CCO: number of proteins annotated in the

Molecular Function, Biological Process and Cellular Component

ontologies, respectively. Table S2: The Top-50 studies and the

ECO terms we have assigned to them. PMID: Articles’ PubMed

ID; ECO terms/ECO ID’s: terms and ID’s we assigned to the

articles. Table S3: ECO terms were assigned by us to the top-50

annotating papers. The table entries are ranked by the frequency

of the assignments, i.e. 27 papers are assigned with term

ECO:0000160, 21 were assigned ECO:0000004, etc. Entries in

boldface are for computational methods, which were used in many

papers in combination with experimental methods to assign

function. Table S2 lists the ECO terms.

(PDF)
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Table 5. Annotation Consistency Example.

PubMedID UniProt ID Ontology GO term description

14562095 P36023 CCO GO:0005634 nucleus

14562095 P36023 CCO GO:0005737 cytoplasm

16823961 P36023 CCO GO:0005739 mitochondrion

14576278 P36023 CCO GO:0005739 mitochondrion

Example of annotation consistency of a single protein in four publications. See
Methods for details.
doi:10.1371/journal.pcbi.1003063.t005
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