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Abstract

Protein subcellular localization has been systematically characterized in budding yeast using fluorescently tagged proteins.
Based on the fluorescence microscopy images, subcellular localization of many proteins can be classified automatically
using supervised machine learning approaches that have been trained to recognize predefined image classes based on
statistical features. Here, we present an unsupervised analysis of protein expression patterns in a set of high-resolution,
high-throughput microscope images. Our analysis is based on 7 biologically interpretable features which are evaluated on
automatically identified cells, and whose cell-stage dependency is captured by a continuous model for cell growth. We
show that it is possible to identify most previously identified localization patterns in a cluster analysis based on these
features and that similarities between the inferred expression patterns contain more information about protein function
than can be explained by a previous manual categorization of subcellular localization. Furthermore, the inferred cell-stage
associated to each fluorescence measurement allows us to visualize large groups of proteins entering the bud at specific
stages of bud growth. These correspond to proteins localized to organelles, revealing that the organelles must be entering
the bud in a stereotypical order. We also identify and organize a smaller group of proteins that show subtle differences in
the way they move around the bud during growth. Our results suggest that biologically interpretable features based on
explicit models of cell morphology will yield unprecedented power for pattern discovery in high-resolution, high-
throughput microscopy images.
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Introduction

High-content screening of fluorescently tagged proteins has

been widely applied to systematically characterize subcellular

localizations of proteins in a variety of settings [1]. Because they

employ automated liquid handling and high-throughput micros-

copy, these experiments result in large numbers of digital images.

Previous work has demonstrated that automated image analysis

approaches based on machine-learning can classify these images

into groups with shared subcellular localization patterns [2]. These

approaches are typically ‘supervised’ in that they rely on

predefined sets of example ‘training’ images for each pattern of

localization to learn specific discriminative information that

defines each class [3].

In contrast, unsupervised methods offer a more exploratory

approach to high-throughput data analysis in which it is not

necessary to predefine patterns of interest, and therefore can

discover new patterns. This also enables the analysis of patterns

that are very rarely observed, which typically are hard to capture

in supervised analysis as a suitable training set for classification is

difficult to construct [1]. Unsupervised analysis also has the

advantage that it is unbiased by prior ‘expert’ knowledge, such as

the arbitrary discretization of protein expression patterns into

easily recognizable classes. For these reasons, unsupervised cluster

analysis has become a vital tool of computational biology through

its application to genome-wide mRNA expression measurements

[4–7], and protein-protein interaction data [8]. It has also been

applied in automated microscopy image analysis [9–13] where it

has been shown to provide complementary capabilities to

supervised approaches.

Here we apply unsupervised analysis to a set of high-resolution

images of 4004 yeast strains, where each strain contains a different

fluorescently tagged protein [14]. Because localization classes are

not defined in advance, one difficulty is to identify a set of image

features that reliably distinguish classes of protein expression [10].

Further, in order to allow identified statistical patterns to be

directly related to our understanding of cell biology, we sought

to define a small set of simple biologically interpretable
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measurements. This is in contrast to many automated image

analysis approaches that use a large number of image features,

which are typically used for object recognition in photographs

[15,16]. Although these features can be used to build powerful

classifiers, the nature of the discriminative information does not

need to be intelligible to allow class label recovery [3].

Recent work has demonstrated the power of incorporating cell-

cycle stage into proteomics analysis (e.g., [12,13,17,18]). Several

studies have identified proteins whose abundance and localization

change over the cell-cycle in mammalian cells. Furthermore,

unsupervised analysis has been applied to identify novel,

unexpected patterns. In general, these approaches have been

applied to time lapse movies of mammalian cells, although it is also

possible to acquire dynamic data from still images of mammalian

cells [18].

One advantage of budding yeast as a model organism is that it

shows stereotypical cell-cycle dependent morphological changes,

which can be used to infer cell-stage based on cell morphology in

still images of asynchronous cells. Previous work has demonstrated

the feasibility of uncovering and analyzing yeast morphology using

automated image analysis methods [19,20]. Although the identi-

fication of cell boundaries in images has been shown to be

unnecessary for subcellular localization classification [2,21,22], in

order to extract dynamic protein expression profiles based on

changes in cell morphology, in this work we sought to accurately

identify individual cells. Here, we use an explicit model of yeast

cell shape in order to (1) rapidly identify cells in high-resolution

images, even when they occur in clumps, (2) obtain a probabilistic

confidence measure for the identified cells and (3) define

biologically interpretable measurements that describe protein

expression in each cell over space and time.

We show that many previously defined subcellular localization

patterns can be recognized in an unsupervised hierarchical cluster

analysis. We find that protein complexes and small functional

protein classes, which are not typically associated with their own

subcellular localizations, cluster together in this analysis. Based on

these observations, we show that the resolution of the hierarchical

clustering is significantly higher than previous manual subcellular

location assignments to discrete classes [14]. Further, we gain

global insight into the cell stage dependence of protein localiza-

tion; for example, we find a large cluster of nuclear proteins that

seem to appear in the bud at a clearly defined time, which we

believe corresponds to the inclusion of the nucleus in the daughter

cell. Finally, we identify groups of proteins that show complex,

dynamic patterns of localization that can not easily be predefined

or described using simple localization classes; for example, many

of the subunits of the exocyst complex are seen to localize to the

bud periphery while the bud is small, but then move to the bud

neck as the bud grows.

Results

Model-based identification of yeast cells
Starting with a collection of 4004 strains where each protein has

been systematically tagged with green fluorescent protein (GFP)

[14], a red-fluorescent protein (RFP) which appears everywhere in

the cell was introduced into each strain using SGA [23]. These

strains were then imaged in quadruplicate at high resolution to

generate two-channel fluorescent images (see Methods). The RFP

was introduced to facilitate automated analysis, as it provides both

a signal for cell segmentation, as well as an internal control for

methodological variation in fluorescence measurements.

A fast, accurate computational pipeline to identify yeast

cells in high-resolution microscopy images. One challeng-

ing aspect of automated microscopy image analysis is the presence

of clumps of cells that makes the identification of individual cell

boundaries difficult for conventional approaches, such as seeded

watershed algorithm [16]. In our case, cell boundaries are inferred

from the RFP alone, whose mean value varies from cell to cell and

is often lower in vacuoles than in the spaces between cells, which

implies that there is no RFP intensity level that systematically

separates cells from each other. We therefore first segment the

RFP image and obtain foreground regions that contain either

single cells with no neighbours or clumps of cells (see Methods). In

order to find the number of objects within each foreground clump,

we use robust regression to fit ellipses to the clump (Figure 1,

‘Robust regression for ellipses’ in Methods). As it has been noted

that combinations of segmentation methods are more powerful

[24], we use the fitted ellipse coordinates to join fragments that are

produced by the watershed transformation (see ‘Cell Shape’ in

Methods). We compared the performance of our cell identification

procedure to a manual assessment for a small fraction of the image

collection and we find good agreement for ellipse size and center

coordinates (see ‘Evaluation of cell identification performance’ in

Methods).

Since cells that are undergoing the budding process are better

characterized by a pair of ellipses [25], we expect the above

approach to identify bud and mother cells as separate objects. We

therefore assigned a ‘type’ to each object: either artifact or one of

three cell types (‘mother’, ‘bud’ or ‘lone’ cell). We first apply

thresholds based on object size and shape to filter out the majority

of obvious artifacts (see ‘Cell confidence’ in Methods). Then, the

remaining objects were assigned types using a simple heuristic

based on the cell sizes (Figure 2). Mother-bud pairs were defined as

reciprocally smallest and largest adjacent cells, and in addition

buds were not allowed to have any smaller neighboring object.

Any other cell is considered unbudded or ‘lone’. With this

definition, a mother-bud pair may be independent cells in G1

phase that are found to be adjacent: we still consider them as a

pair since it is likely that such a connection existed in the very

recent past if one of the two cells still small. In total, we

characterized 405359 mother-bud pairs, and 494680 remaining

lone cells, so that a total of 1.3 million cells were identified.

A confidence measure for automatically identified

cells. Because automated identification of clumped cells in

Author Summary

The location of a particular protein in the cell is one of the
most important pieces of information that cell biologists
use to understand its function. Fluorescent tags are a
powerful way to determine the location of a protein in
living cells. Nearly a decade ago, a collection of *4000
yeast strains was introduced, where in each strain a single
protein was tagged with green fluorescent protein (GFP).
Here, we show that by training a computer to accurately
identify the buds of growing yeast cells, and then making
simple fluorescence measurements in context of cell shape
and cell stage, the computer could automatically discover
most of the localization patterns (nucleus, cytoplasm,
mitochondria, etc.) without any prior knowledge of what
the patterns might be. Because we made the same, simple
measurements for each yeast cell, we could compare and
visualize the patterns of fluorescence for the entire
collection of strains. This allowed us to identify large
groups of proteins moving around the cell in a coordinat-
ed fashion, and to identify new, complex patterns that had
previously been difficult to describe.

Clustering of Protein Expression Patterns
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images with artifacts is a challenging computational task, we

expect a fair fraction of the identified objects to be misidentified

objects and/or non-trivial artifacts. Indeed, close examination of

example images revealed a significant number of artifact classes:

Noise in image corners, ruptured cells, cells that lost RFP,

defective CCD pixels, contamination, and out of focus objects

were sometimes erroneously identified by our pipeline. We

therefore sought to develop a statistical measure to summarize

our confidence that each identified object was really a yeast cell.

Instead of trying to characterize each artifact class, we defined 3

quality measures based on object shape and contour, which have

known distributions for circular or ellipsoidal objects (see ‘Cell

confidence’ in Methods). We also use the mean RFP signal within

the object as an additional quality measure. We model variation in

each quality measure using a Normal distribution whose

parameters are a function of object size and infer parameters

using a set of cell contours obtained from the set of manually fit

ellipses (see Methods). A uniform distribution is used to model the

quality measures from ‘non-cell’ objects, allowing us to compute

the posterior probability that an object is a cell under the model

that the objects in our images are drawn from a two-component

mixture of cells and non-cells:

P(CellD~qq,size)~

P(~qqDsize,Cell)P(Cell)

P(~qqDsize,Cell)P(Cell)zP(~qqDsize,non{Cell)(1{P(Cell))

ð1Þ

where ~qq is the vector of quality measures and RFP intensity, and

P(Cell) is a mixing parameter that can be thought of as the prior

probability for an object to be a properly identified cell. We use

EM to re-estimate that mixing parameter, while the cell class

parameters are inferred from our set of manually identified cells

and are not updated. We refer to this posterior probability as the

‘cell probability’ for each individual cell. The majority of cells in

the images show high-confidence (§95%) (Suppl. Figure S1). We

define the probability of a mother or bud as the product of the two

cell probabilities. We also allow these cells to be partially assigned

to the lone cell class based on the cell probability of the putative

related mother or bud. By analyzing a set of 139 manually

identified artifacts, we found that filtering objects based on cell

probability preferentially excludes artifacts (Suppl. Figure S2).

However, we also found that small buds typically have lower cell

probability (Suppl. Figure S1B), so defining cell confidence

thresholds also preferentially filters small buds. Hence, we use

these cell probabilities to weight individual cells when computing

averages over cell populations.

Quantitative characterization of cell cycle dependent
protein localization

Describing protein expression using interpretable

measurements. We next sought to characterize the protein

expression phenotype using a small number of measurements that

are biologically interpretable. The intensity of GFP signal in each

cell relates to the level of protein expression [26,27]. Therefore, as

a first measurement, we use the ratio of total GFP intensity to RFP

intensity within in each cell area.

fIntensity~mR(DSD):

P
~xx[S

G(~xx)P
~xx[S

R(~xx)
ð2Þ

where G(~xx) and R(~xx) are the GFP and RFP intensities in the

image at coordinate~xx. The mR(DSD) is the expected RFP intensity

as a function of the cell area and ensures that the intensity ratios

are comparable for cells of different sizes. This was necessary to

correct for a systematic dependence of RFP intensity on cell

size, which was characterized using the entire collection of

identified cells (see ‘Protein expression measurements’ in

Methods).

We define an additional set of 5 distance measures that

characterize the spread of the protein within the cell (Figure 3).

Assuming GFP intensities are proportional to protein amount, we

can define the probability that a randomly chosen protein is

located at a certain pixel coordinate as the fraction of protein

found in that pixel. We compute this at each coordinate ~xx as the

ratio of pixel intensity, G(~xx), to the sum of the pixel intensities for

that particular cell TG~
X
~xx[S

G(~xx), where ‘S’ is the set of pixel

coordinates that are within the area of a cell. Using this probability

distribution over coordinates ~xx, we derive the expected value for

geometrical distances with respect to the position of a randomly

selected protein. For example, for a pixel at coordinate ~xx, the

distance to the cell center is given by DD~xx{~ccDD. Therefore, we can

define the expected distance of protein to the cell center:

Figure 1. Pipeline of the methods used in this work. The
identification of cells, assignment of cell type, cell stage and the
estimation of cell confidence is based solely on the intensities of the
RFP marker present in all strains. Please refer to the Results and
Methods for descriptions of steps (i)–(vi). The cell type, stage and
confidence are then used in conjunction with the GFP signal from
tagged proteins in each strain in order to compute biologically
interpretable features of protein expression.
doi:10.1371/journal.pcbi.1003085.g001

Clustering of Protein Expression Patterns
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E(DistProteins to Cell Center)~
X
~xx[S

DD~xx{~ccDD
G(~xx)

TG

ð3Þ

Similarly, we define the average distance between proteins, to the

protein mass center, to the cell center, to the cell periphery, and to

the bud neck (see ‘Protein expression measurements’ in Methods).

We refer to these measurements as expected distances, but it is

important to note that they are actually estimates of protein

proximities in 2-dimensional images and do not necessarily reflect

the true 3-dimensional proximities. Nevertheless, these distances are

easily interpretable summaries of protein expression patterns. In

order to compare these expected distances between objects of

different sizes, we also compute the distances for the RFP signal in

each object and use these to normalize the distances obtained for the

GFP signal (eq. 4). We report the log ratio of the expected distances,

so that a negative value implies that distances are smaller for the

GFP-tagged protein than the approximately uniformly expressed

RFP and a positive value indicates that distances are greater for the

RFP than for the GFP-tagged protein. While distance log ratios are

dimensionless quantities, we refer to these 5 ratios as ‘morphological

distances’ to emphasize that they measure the spatial spread in GFP

intensity within each cell. For example, the ‘morphological distance’

to the bud neck, fbud neck is defined as:

fbud neck~loge

X
~xx[S

DD~xx{ bn
�!

DD
G(~xx)

TGX
~xx[S

DD~xx{ bn
�!

DD
R(~xx)

TR

0
BBB@

1
CCCA ð4Þ

where bn
�!

is the coordinates of the bud neck, TR~
P
~xx[S

R(~xx) and

log() is the natural logarithm.

To analyze and display the morphological distances extracted

for each cell for each GFP-tagged strain, we averaged the log ratios

over the cells of each type (weighting cells by their cell

probabilities) and display these averages as a heat map (e.g.,

Figure 3). In these heatmaps, red indicates positive values (i.e., on

average greater values for the GFP-tagged protein than for the

RFP) and green indicates negative values (i.e., on average smaller

values for the GFP-tagged protein than for the RFP).

To illustrate the use of our morphological distances, we

clustered the GFP-tagged strains using averages of the 4 distances

(see ‘Protein expression measurements’ in Methods) for each of the

3 types of cells. As expected, clusters of proteins that show the

smallest relative distance (i.e., closest) to the cell center were

previously reported to be localized to the nucleolus and, on the

other hand, the proteins displaying a large relative distance to cell

center were previously reported to localize to the cell periphery

(Figure 3). In contrast, if we consider the distance to the cell

periphery, we see the opposite pattern, where nucleolar proteins

show maximum distances, and cell-periphery proteins show

minimum distances. This illustrates that the values we obtain for

these expected distance features are related in a relatively simple

way to spatial expression pattern of the protein. We note that this

result does not imply that the morphological distances are superior

to previously defined image features [2,28] with respect to

classifying subcellular locations; in fact, simple classifiers based

on the morphological distances are less accurate (data not shown).

Automatic assignments of cell stage based on bud

size. In addition to the cell type label, we consider the size of

bud objects as a cell stage indicator for both the bud object and its

corresponding mother cell. To infer ‘time series’ from our still

images, we use the estimated area of each bud as a numerical

represention over a continuous range of cell stages. In order to

define a common basis for comparison of protein expression, we

then use local regression (LOESS [29]) to estimate the mean and

variance of feature measurements for mother-bud pairs at 10

selected ‘time’ points (see ‘Time profiles’ in Methods). The

previously defined cell probability is used to weight each datapoint

in these ‘time series’. (Eq. 21). To test the reliability of these ‘time

series’ estimates, we performed a leave-one out jackknife

Figure 2. Yeast cell identification. a) Shows the mother-bud assignment heuristic. Pairs of circular objects that reciprocally have largest and
smallest sizes among neighboring areas are said to be ‘mother’ cells (indicated by M) and ‘bud’ cells (indicated by B, mother-bud pairs indicated by
bidirectional arrows), unless the potential ‘bud’ cell has a smaller neighbor than itself (indicated by a unidirectional arrow). Any other cells are labelled
as ‘lone’ cells (L). b) Example of low and high confidence objects. The cyan lines in each image represent the cell contours produced, and the white
dots indicate the predicted bud neck position. The dashed objects represent obvious artifacts that were filtered using thresholds (See text for details).
Objects on the edge of images were not automatically filtered out, but are expected to have low confidence.
doi:10.1371/journal.pcbi.1003085.g002

Clustering of Protein Expression Patterns
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resampling [30]. We found that the robustness of the ‘time series’

depends strongly on the number of identified mother-bud pairs, as

expected. For the vast majority of proteins (*95% of proteins), the

sampling variance estimated from the jackknife rarely (3.9% of the

time) accounts for more than 2% of the variance observed in the

estimate at any time point (Suppl. Figure S3A). In contrast, for a

small fraction (*5%) of proteins for which we have less than 26

mother-bud pairs identified, the weighted ‘time series’ estimates

are much less reliable. We note that the use of confidence measure

as a weight, as opposed to a threshold that filters undesirable data,

produces ‘time series’ that have lower sampling variance (Suppl.

Figure S3B).

To test whether our estimates of cell stage based on bud size

were reporting useful information, we examined the GFP intensity

‘time series’ (estimated as described above) for proteins whose

quantity is known to vary over the cell cycle (Figure 4). For

example, Cdc6 [31], Sic1 [32] and Ash1 [33] have been reported

to be targeted for degradation by the SCF, a ubiquitin ligase that

degrades target proteins at the G1/S transition [34]. Remarkably,

these three proteins show similar variation in their intensity

profiles, supporting the idea that our estimates of GFP as a

function of cell stage are reflecting underlying biological variation

in protein abundance. To test the statistical significance of these

observations, we randomly permuted the cell stage estimates and

recomputed the ‘time series’. We found that the coherent variation

in the ‘time series’ estimated from the real data far exceeds what is

typically observed in the permutations (Suppl. Figure S4). For

example, for Cdc6, of the 6 of 10 points in the bud ‘time series’

and 4 of the 10 points in the mother ‘time series’ fall within the 5%

tail of the distribution observed in the permutations (compared to

1 expected to fall in the 5% tail by chance). In all, for these three

proteins 26 of 60 time points fall in the 5% tail (compared to 3

expected by chance). This shows that for these proteins whose

levels are known to vary over the cell cycle, the variation observed

in the ‘time series’ is statistically significant.

We estimated ‘time series’ for each of our 5 morphological

distances and GFP intensity as described above for all of the bud

and mother cell pairs. For each protein, we concatenate the 6 pairs

of ‘time series’ into a ‘time profile’, which is a vector of 120 values.

An example of a striking cell-cycle pattern is the profile observed

for the subunits of the MCM complex (Figure 5), which is known

to be exported from the nucleus at a particular cell stage by the

activity of Clb/Cdc28 kinases [35]. This exclusion from the

nucleus is captured by the distance features, since the protein gets

Figure 3. Morphological distances. a) Heatmap of the mean morphological distance features for each of the 3 cell classes automatically labelled:
‘bud’, ‘mother’ and ‘lone’ (columns indicated by ‘B’, ‘M’ and ‘L’ respectively). The proteins at the two extremes are enriched in cell periphery and
nucleolus proteins. b) Three examples of the morphological distances extracted from the heatmap. Although the heatmap only shows the mean, we
also compute the standard deviation (error bars). c) Examples of cells from the strains indicated in b). The spread of GFP fluorescence is greater than
the RFP for the first three proteins, and less than RFP for the last three.
doi:10.1371/journal.pcbi.1003085.g003

Clustering of Protein Expression Patterns
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closer to the cell periphery and, on the other hand, the average

distance between proteins and to the to cell centre increases. This

exclusion is observed in the mothers of small buds, so we can

determine the size of the bud corresponding to the G2 to M

transition, when the MCM complex nuclear localization signals

are no longer specifically inhibited by Cdc28 (see figure 5B).

Encouragingly, all 4 available members of this complex show this

pattern (2 are missing from the GFP collection). This indicates that

proteins displaying similar cell stage variation can be identified

from their time profiles, despite the presence of noise in the images

and heterogeneity in the distribution of identified cells on which

the time profiles are based. Remarkably, we observe that another

protein with a similar stage-dependent morphological distance

profile is also known to have its localization is modulated by Cdc28

(Whi5 [36], see figure 5). Upon examination of the images, we

observe a very similar expression pattern in bud cells for Whi5 and

the MCM subunits, but that (in contrast to the MCM subunits)

Whi5 nuclear localization is only rarely found in mother cells

(Figure 5). This demonstrates the capacity of the generated profiles

to capture cell-cycle dependence of changes in localization.

Furthermore, that these proteins are all substrates of Cdc28

suggests that similarity in our profiles of morphological measure-

ments may indicate common mechanisms that control subcellular

localization, just as similar mRNA expression profiles are often

used as evidence for common mechanisms of transcriptional

control [4,5].

Similarity between profiles of previously annotated

localization classes reflect biological relationships. To

get a global sense of whether the profiles in our biologically

interpretable feature space reflect the biological similarity of

protein expression patterns, we computed the average profiles for

all the proteins within previously identified subcellular localization

classes [14] (see ‘Class profiles’ in Methods). Because each profile

represents a multivariate Normal distribution, where we estimate

mean and standard deviation over the observed cells for 10 time

points for each of the 6 features, for the mother and bud, we

measure the similarity between the mean profiles for each

localization class (‘class profile’) using the Bhattacharyya distance

(Eq. 24). Consistent with their biological relationships, we observe

that the class profiles representing nuclear proteins are much

closer to nucleolar and nuclear periphery localized proteins

(Bhattacharyya distance = 5.41,2.39) than to the class profiles for

cytoplasmic or cell periphery localized proteins (Bhattacharyya

distance = 34.20,21.16, Suppl. Table S1). Clustering of these class

profiles placed several biologically related classes adjacent to each

other in the hierarchy. For example, profiles for Golgi, Early Golgi

and Late Golgi were clustered together (Suppl. Figure S5). To

confirm this result, for each group of biologically related classes,

Figure 4. Intensity and time profiles. a) GFP intensity heatmap for several protein whose abundances are known to be cell-cycle dependent. b)
Profiles for 3 proteins showing significantly higher expression level in large buds. ‘n’ is the number of mother-bud pairs used to infer each time series.
26 out of the 60 time points (indicated with markers) show coherent cell-stage specific deviation (permutation test, See Suppl. Figure S4). c) Examples
of mother-bud pairs with the computed pixel size (pt) of the bud object (identical RFP/GFP intensity scale). The displayed cells were manually
selected and then ordered by the computed bud size. Arrows indicate nuclear localization at lower intensity.
doi:10.1371/journal.pcbi.1003085.g004

Clustering of Protein Expression Patterns
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we compared the average Bhattacharyya distances within the

groups of related classes to the distances between the classes in

each group all other classes. We found that the distances between

biologically related classes were significantly smaller (6.14 vs.

15.44, P~0:00015, permutation test, Suppl. Figure S5). Taken

together, these results show that distances in this interpretable

feature space recapitulate the known biological relationships

between localization classes.

Unsupervised analysis of protein localization
Encouraged by the consistency and interpretability of our

measurements relative to previous knowledge about yeast subcel-

lular localization, we performed global unsupervised analysis of

our time profiles of interpretable features for the mother and bud

cells (Figure 6). To identify groups of proteins with similar

patterns, we use agglomerative hierarchical clustering based on a

maximum likelihood criterion [37] (see ‘Maximum likelihood

agglomerative hierarchical clustering’ in Methods) because it does

require the size (or number) of clusters to be specified, and we

expect hierarchical relationships between functional classes, and a

wide range in the number of proteins in each class. The

hierarchical clustering results may be browsed online using the

Java Treeview [38] applet at http://www.moseslab.csb.utoronto.

ca/louis-f/unsupervised/.

Proteins in previously known localization classes cluster

together. We performed a statistical enrichment analysis in

order to compare our cluster analysis to previous knowledge about

protein localization and function. We considered assignments of

proteins to discrete localization classes from systematic manual

assessments of the GFP collection [14] and GO annotations

curated from the biological literature [39]. We found that many of

our clusters were strongly enriched for GO annotations and

previously identified subcellular localizations (Figure 6). We note

that these results were not dependent on the clustering parameters

or algorithm used, as similar results were obtained using other

parameter sets or algorithms (Suppl. Table S2).

Nuclear, ER and mitochondrial proteins appear in the

bud at specific cell stages. The unsupervised analysis of

biologically interpretable features allows us to visualize a

quantitative representation of protein localization over the cell

cycle: we observe large clusters of proteins that appear in the bud

sequentially. Most strikingly, in the clusters significantly enriched

in nuclear proteins, protein expression is absent from the bud until

approximately half-way through our time series (Figure 6). Other

clusters also display cell-cycle dependent variation in all morpho-

logical distances, which appear to be specific to subcellular

location. For example, the three mitochondrion enriched clusters

show signal unusually far from the bud neck at the same time.

Interpreting this pattern, we predict the presence of punctae in

small buds, and inspection of the images confirmed this prediction

(Suppl. Figure S6A).

In order to confirm that the observed trends in the protein

profiles are truly linked to the subcellular localization of the

proteins, we used the class profiles (see ‘Class profiles’ in Methods)

for each subcellular location (Figure 7). We observe that proteins

from the nucleus, nuclear periphery and nucleolus are the last to

appear in the bud. This is explained by the fact that DNA

replication is occurring within the mother cell, and that the new

Figure 5. Time profiles of morphological distances. a) Top panel
shows a heatmap of the morphological distances in bud and mother
cells indicated as B and M, respectively. Bottom panel shows the data
for two of these proteins as line graphs. The reported morphological
distances are variance normalized. MCM complex subunits and Whi5
display a cell-cycle dependent subcellular location; cytoplasmic for
small buds, nuclear for large buds. ‘n’ is the number of mother-bud
pairs used to infer each time series. Out of the 80 timepoints for each
protein, 34 for Whi5 (blue traces), and 72 for Mcm6 (red traces) show

significant cell cycle variation (Pv0:05, indicated as dark dots). b)
Examples of mother-bud pairs that were ordered by the computed bud
size (pt). The GFP channel was scaled between images to more clearly
illustrate the change in subcellular location.
doi:10.1371/journal.pcbi.1003085.g005
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nucleus has yet to be included in the bud. We note that in the bud

cells, mitochondrial and ER proteins show elevated distances from

the bud neck at the time of nucleus inclusion, and that a subset of

the mitochondrial proteins are found close to the bud neck in the

smallest bud objects (Figure 7b); this suggests that the mitochon-

dria and ER may be included in the bud before the nucleus, and

Figure 6. Time profile clustering result. A heatmap with 4004 GFP-tagged strains ordered using maximum likelihood agglomerative clustering
based on the time profiles of protein abundance and 5 morphological measures. Within manually selected clusters (colored bars), the fraction of
proteins in the cluster that have the same subcellular localization or GO Annotation (the latter indicated with stars) is listed under Fraction. Log p-
values were computed using the hypergeometric distribution to test against the null hypothesis that the cluster was drawn randomly from the
protein annotations. Fold enrichment indicates the ratio of the Fraction of proteins in the cluster with each annotation compared to that in the
protein collection. Nuclear proteins appear in the bud at a specific time (dashed line).
doi:10.1371/journal.pcbi.1003085.g006
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then pushed further from the bud neck as the nucleus occupies

that position at the time of its entry into the bud. Interestingly, we

also observe that the proteins of each organelle have typical

distances in the mother cell to the current bud neck (Figure 7c).

For example, the ER has been previously reported to stay close to

the nucleus [40], and we observe that both the ER proteins are

closer to the bud neck than the mitochondrial proteins

({0:94 vs 0:04, Pv10{60, two-sample t-test) but not as close to

the bud neck as the nuclear proteins ({0:94 vs {2:25, Pv10{53,

two-sample t-test).

We also observe the motion of the actin proteins in both the bud

and mother cells, which agrees with previous observations: actin

proteins localize at the bud periphery and then at the bud neck

[14,41]. Since the polarity of yeast cells is determined by the cell

stage, and cell polarization is controlled via the action of the actin

filaments [42], these results again indicate that our estimate of bud

size is a good cell stage indicator, and that the order of biological

events may be extracted directly from the class profiles. Although

these patterns were discovered through interactive exploration of a

particular clustering result, we note that these patterns correspond

to very strong signals in the data and were also easily identified in

clustering results derived from alternative similarity metrics or

alternative usage of the confidence measure (Suppl. Figure S6B).

Proteins in functional classes and complexes cluster

together. In our global analysis, we also observed clusters that

were statistically enriched in annotations that do not correspond to

subcellular localization classes or compartments (Figure 6). For

example, translation is known to occur in the cytoplasm [43].

Nevertheless, we observe a cluster of 316 proteins where 86 (27%)

correspond to structural components of the ribosome and a total of

121 (38%) are annotated as involved in translation. Consistent

with the known cytoplasmic localization for the translational

machinery, this cluster shows a similar overall pattern to

cytoplasmic proteins, but can be distinguished because the average

GFP intensity (presumably reflecting protein abundance) for these

proteins is much higher than most other cytoplasmic proteins

(Figure 6). As another example, we also noticed a cluster where 16

of 43 (37%) of proteins were subunits of the proteasome. This

cluster also contains 6 of 14 (43%) proteins annotated as vacuolar

ATP-ases. The pattern associated with this cluster shows high

levels of protein abundance and is similar to that of nuclear

proteins, but this is not sufficient to explain why these complex

subunits are distinguishable from the remainder of the highly

expressed nuclear proteins. The localization pattern for these

proteins is more compact than other nuclear proteins, and we

speculate that these complex subunits display similar, typical levels

of compactness and this is captured in our morphological distances

(Figure 6). These results suggest the possibility that a combination

of a small number of interpretable features (e.g., cytoplasmic

localization and high level of protein abundance) will define

certain functional classes (see Discussion).

In order to report on the statistical significance of functional

annotations in the hierarchical clusters, for each of the 2134 GO

annotations that are shared by at least 2 proteins, we found the

cluster within the hierarchy that has the most significant P-value.

We used the sum the log of these P-values as a summary statistic,

S, for the enrichment of annotations. For the real data we obtained

S = 27078. To test whether this value was more extreme than

what would be expected if the clusters were random, we permuted

the genes while conserving the hierarchical topology 10000 times,

and obtained S on average to be {2746+52 std. dev. Therefore,

the observed value was 80 standard deviations away from the

random expectation. Since we already have shown that the

hierarchical clustering results contain clusters that are enriched in

subcellular locations, this strong statistical significance is expected,

as subcellular location and functional annotation of proteins are

strongly connected. Therefore, we next tested whether functional

annotations were enriched in our clusters beyond what could be

explained from subcellular location enrichments alone. To do so,

we again generated the distribution of S, but this time constrained

the permutation so that proteins can be replaced in each iteration

only if they share the same set of discrete subcellular location

annotations [14]. Even with this constraint on the permutations,

we obtain a 32.1 std. dev. lower value of S than in the

permutations, and note that none of the 10000 permutations

showed a more extreme value of S (Pv10{4).

Figure 7. Subcellular location class profiles. a) Time series for protein abundance in buds. Nuclear proteins are the last to appear in the bud
(dashed line). b) The spatial distribution of protein expression is highly variable in the growing bud cell. Organelles appear to be pushed from the bud
neck at the time of the nucleus inclusion (dashed line). Note that the absence of nuclear protein in the bud leads to irrelevant variations in the
morphological distance features, perhaps due to auto-fluorescence captured in the GFP channel. Actin proteins migrate from bud tip to bud neck
(black traces). c) In the mother cell, organelles appear to maintain a typical distance to the bud neck, expect for the nucleus.
doi:10.1371/journal.pcbi.1003085.g007

Clustering of Protein Expression Patterns

PLOS Computational Biology | www.ploscompbiol.org 9 June 2013 | Volume 9 | Issue 6 | e1003085



To further demonstrate that the hierarchical clusters reflect

functional information about the proteins (beyond what is

contained in the discrete subcellular location annotations [14]),

we repeated these permutation tests on subsets of the GO

annotations partitioned based on the size of the set of proteins

annotated according to that function in our list of proteins. Again,

for both the constrained and unconstrained permutation tests, all

sizes of GO annotation groups are found significant (we never

observed such extreme values in the permutations, so all groups

have Pv10{4, Suppl. Table S3). We also found similar results for

Pfam domains and protein complexes, and extracted lists of

protein groups that contribute to these two observations (Suppl.

Tables S4, S5). To confirm that these results were not dependent

on the particular clustering algorithm or parameter settings, we

performed similar statistical analysis on clustering results obtained

using different distance metrics or clustering methods and found

similar results. (Suppl. Tables S3, S4, S5). These analyses imply

that the biological information in the hierarchical clusters cannot

be fully explained by the systematic subcellular location annota-

tions [14], and, more importantly, that this unsupervised analysis

must be capturing finer similarities in temporal and spatial

expression for many groups of functionally related proteins.

These results do not imply that the unsupervised analysis allows

prediction of subcellular location with accuracies on par with

supervised methods. Nevertheless, these results show that there is

more biological information in the subcellular localization patterns

than is summarized by the previous annotations of localization

classes. Therefore, we expect the unsupervised analyses to identify

novel patterns that are biologically meaningful. We next sought to

explore such novel patterns.

Dynamic distinctions between bud neck classes. Because

our analysis explicitly models cell stage, we can identify dynamic

patterns where proteins move from one subcellular location to

another. For example, we identified a cluster of proteins that

showed a large range of distances to the bud neck, and for many of

them, the distance to bud neck varied over the cell stage (Figure 8).

In this cluster, we find a group of proteins that first appears in the

periphery of the bud, and then migrates at a particular cell stage to

the bud neck. Interestingly, these include Pkc1 and Lrg1 (Figure 8),

which are both in the cell-wall integrity pathway [44]. Another

functionally related group of proteins that shows the same

dynamic pattern are the subunits of the exocyst complex (e.g.,

Sec10 Figure 8), but they appear to be more compact in small

buds. This is in contrast to other profiles which represent proteins

that always located at the bud neck. Unlike Pkc1, Lrg1 or the

subunits of the exocyst, Bud3 shows a consistently small average

distance to the bud neck (Figure 8). It can therefore be considered

a pure ‘bud neck’ localization pattern, as opposed to Pkc1, Lrg1

and the exocyst subunits that are cycling from the bud periphery to

the bud neck analogous to the way the MCM subunits cycle from

the cytoplasm to the nucleus. This suggests that these dynamically

changing bud-periphery to bud neck proteins have localization

that is targeted by a shared cell-cycle regulatory mechanism. Yet

another subtle variation on this theme is illustrated by proteins that

are found specifically in the bud periphery, but do not migrate to

the bud neck (e.g., Cla4, Figure 8). We speculate that these

proteins lack a specific portion of the cell cycle regulation shown

by Pkc1, Lrg1 and the exocyst subunits.

We also find in the same cluster 23 proteins that were not

previously annotated in systematic studies as being bud-specific or

actin [14,16]. We predict that these proteins show dynamic

patterns within the bud during its growth, and were difficult to

describe using discrete annotations. For these proteins, SGD [45]

annotations mostly disagree with previous systematic annotations

(Suppl. Table S6). Among the 23 proteins, we find proteins that

have functional links to other proteins known to be bud-specific,

such as Ack1/YDL203C which is thought to function upstream of

Pkc1 [46]. Looking at the images, Ack1 shows a pattern similar to

Pkc1, with the difference that the protein abundance in the bud is

not strong relative to the basal cytoplasmic expression in the

Figure 8. A cluster of 91 proteins displaying time profiles with variable distances to the bud neck. a) Heat map of the cluster displayed
as in Figure 6. We observe several classes of dynamic patterns, which capture the localization to the bud neck and bud periphery. (*) 5 of the 8
subunits of the exocyst complex are found within 9 proteins. b) Examples of proteins with dynamic bud patterns. (**) The displayed GFP intensity was
scaled down by 75%.
doi:10.1371/journal.pcbi.1003085.g008
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mother cell (Suppl. Figure S7). Similarly, Msb3, Lte1 and Zds1

have been previously reported to show bud-related patterns in low-

throughtput analyses ([47], [48], [49]) and are found in this cluster.

Hence, we hypothesize that proteins are found in this cluster

(Suppl. Table S6) because they are showing various dynamic

localization patterns with respect to the bud. Indeed by further

inspecting the images we found a protein of unknown function,

YDR239C, that shows a dynamic bud pattern similar to Ack1.

This protein has not been previously characterized to localize to

the bud periphery or bud neck and therefore represents a new

positive prediction obtained from the unsupervised analysis. In

contrast, visual inspection of other images reveals that some

proteins in this cluster do not show obvious dynamic bud patterns.

For example, Tpo3 was characterized as a cell periphery [14,16]

and plasma membrane [45] protein. The subcellular location of

Tpo3 in our images is different than the dynamic bud patterns we

previously described. Yet, it was clustered next to Rtk1, which

appears in our images as a cell periphery protein that is is partially

localized at the bud neck at the expected cell-stage (Suppl. Figure

S7). This inclusion of Tpo3 was likely due to the similarity in the

pattern of Tpo3 and Rtk1. This is expected of hierarchical cluster

analysis, in that there are no hard delineations between the

quantitative patterns (see Discussion).

This cluster illustrates pattern discovery using biologically

interpretable features. We identified a group of proteins showing

complex expression patterns that have been difficult to define

previously. We believe this is due in part to the higher resolution of

our images, as well as our ability to assign dynamic, quantitative

patterns to these proteins. We note that not every protein in this

cluster actually shows (as far as we can tell by inspecting the

images) a dynamic bud pattern (Suppl. Figure S7). Nevertheless,

we could relate the consensus pattern in this cluster (variation in

our measurement of ‘average distance to bud neck’) to cell-cycle

dependent migration from bud periphery to bud neck.

Discussion

In silico synchronization of yeast cells
Previous studies have demonstrated the feasibility of uncovering

cell stage from images of unsynchronized cell populations, either

from time lapse movies [17] or from still images [18]. We apply

this approach to high-throughput still images of budding yeast. To

do so, we devised a segmentation method to identify and separate

the bud and mother cells, and uncover the cell stage based on

measurement of the bud size. Our method depends critically on

our estimates of bud size, and we show that the automatically

estimated sizes were comparable to those obtained from manually

identified cells. Several parts of the analysis may be improved. For

example, since the bud-site selection is predetermined by the

position of the preceding daughter cell [50], it could be used to

help determine the correct mother-bud assignments. Similarly, a

better model for the relation between daughter cell size and the

cell cycle could be used to infer a more accurate estimate of cell

stage.

Probabilistic model yields confidence estimates
We presented a cell identification pipeline that includes a

confidence measure which summarizes the probability that an

object identified in our images is actually a correctly identified cell.

To do so, we characterized the deviation of real cells from an

elliptical model using several quality measures whose distribution

for real cells we inferred from ellipses that had been manually fit to

cells by eye. Our confidence measure allows us to distinguish

correctly identified cells from artifacts and misidentified objects,

without specifying what the nature of artifacts might be (Suppl.

Figure S2). We believe that this type of approach for measuring

the confidence of automatically identified objects in image analysis

will be generally useful, because artifacts tend to vary between

microscope, experiments and computational methods, whereas

cell shapes are expected to be much more consistent. In addition,

this confidence measure is explicitly defined as a posterior

probability of an identified object to be a properly identified cell.

This allows us to weight probabilistically data points according to

the posterior probability. For classes of cells where our model does

not fit as well, such as very early non-ellipsoidal buds, we expect to

downweight all the data points, but we can still include

information from these data points in our analysis. This is in

contrast to the situation where we used a hard threshold to exclude

artifacts. In that case, certain classes of cells are preferentially

excluded (Suppl Figure 1B), and the statistical significance of

downstream analyses is reduced (Suppl. Tables S2, S3, S4, S5).

Quantitative descriptions of subcellular expression
patterns

Typically, spatial patterns of protein expression are described by

assigning labels [14] or functional annotations [51]. Such discrete

classes are not sufficient to fully describe a protein’s expression if it

is present in quantitatively different localizations or abundances at

different cell stages, or if a protein is simultaneously present in

several locations with quantitatively different fractions [52];

because our approach assigns a quantitative expression profile to

each protein, we can characterize protein expression at a finer

scale than the resolution currently achieved by discrete classes.

Approximating protein expression patterns as discrete classes has

also led to challenges for computational analysis. For example, in

previous work based on discrete classes [16,21] many proteins are

often filtered out because they have either been annotated as

‘ambiguous’ or are reported to be located in several localization

classes.

Because we treat expression patterns quantitatively, our analysis

identifies clusters of proteins that are significantly enriched in

‘ambiguous’ proteins and proteins that were manually annotated

[14] as localized in multiple compartments. Furthermore, our

analysis identified and organized a group of proteins that show

complex patterns relating to the growth of the bud, that were not

consistently annotated previously using discrete categorizations

(Suppl. Table S6). To our knowledge no previous genome-scale

analysis of still microscopy images has identified groups of proteins

with subcellular localization patterns that change as a function of

cell-stage, such as the MCM and exocyst complex subunits

discussed above, although recent work on smaller collections of

time-lapse images has demonstrated that functionally related

proteins can be identified in unsupervised analysis of dynamic

protein expression profiles [13].

Clustering protein expression patterns
One limitation of cluster analysis is that the members of each

cluster identified are not always consistent between different

parameter settings, or different clustering methods. Indeed, the

remarkably specific groupings corresponding to specific regulatory

mechanisms (such as the clustering of all 4 of MCM complex

subunits and of all 3 DNA replication factor A complex subunits)

were not always observed when we varied the distance metric or

clustering method used (Suppl. Table S4).

Despite these limitations, our analyses consistently identified

clusters that were enriched in functional groups of proteins

(Ribosome, Proteasome, DNA-damage pathway, exocyst complex,

etc.; see Suppl. Table S4, S5) that are not usually associated with
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their own subcellular compartments. Because we used hierarchical

clustering of interpretable features, we could see that these

functional groups of proteins showed patterns of localization

similar to those localized in the same compartment, but in each

case showed subtle differences in pattern that allowed them to be

distinguished. These results suggest that high-resolution images

could be used directly for functional discovery as has been

reported for mammalian cells [12].

This work demonstrates that accurately identifying large

numbers of cells for each protein allows quantitative character-

ization of spatial and temporal characteristics of protein expression

patterns and permits direct interpretation of image-based

measurements without requiring human inspection of large

numbers of images to train classifiers. Our analysis gives new

insight into the relationship between protein function and protein

expression patterns inferred from high resolution microscope

images.

Methods

High-resolution yeast image dataset
Using yeast synthetic genetic array technology [23], a new GFP

collection was generated from the existing collection [14]. In this

new collection, a highly expressed RFP (a tdTomato [53]

fluorescent protein from the constitutive RPL39 promoter),

integrated at the HO locus, was introduced into the GFP

collection to mark the cell in order to facilitate automated image

analysis. Micrographs were acquired using a confocal microscope

(Opera, PerkinElmer). Eight micrographs were imaged (at

133161017, 12 bit resolution) from each strain, 4 in the red

channel and 4 in the green channel, yielding a dataset of 44 Gb of

image data.

Image correction
It was noted that the background noise had a mean and

variance that was not uniform across the image. Therefore, we

defined a background image that was subtracted from each image.

This background image was obtained by averaging all the images.

The background image intensity accounts at most for a third of the

RFP signal expected in mother cells, except for several defective

CCD pixels which systematically report the same value.

Image segmentation
For each image, we modeled the background and foreground

(cell) RFP intensity levels with Normal distributions. In order to

account for punctuate noise, we used a Pseudo-2D hidden Markov

model (P2DHMM) [54] to model the dependence of neighboring

pixels. In order to recover the maximum likelihood parameters for

the Normal distributions and state transition probabilities

efficiently, we performed expectation maximization (EM) on both

the image under the assumption that image rows are independent,

and on the same image where columns are now assumed to be

independent. Finally, we infer the probability for each pixel to

belong to the foreground, as the average of the two probabilities

that were calculated when we assumed rows and columns were

independent.

Edge Distance map
Given an image for which we know the probability of each pixel

to be from the background, we want to define a map of geometric

distance to background for each foreground pixel. We estimate

this quantity using an iterative motion on the image grid (which

includes diagonals and knight moves), where transitions from a

point deterministically select the neighbor through which the

shortest path to background is expected. We then compute the

expected path length under the assumption that pixels reached

along paths have background/foreground state transitions de-

scribed by a HMM with the parameters inferred from the

segmentation. The transition probabilities for diagonal and knight

moves are obtained by exponentiation of the transition matrix by

the distance between the two points. Since it is enforced that

transitions are only allowed from point of higher expected distance

to lower ones, distances can be computed directly by dynamic

programming, in linear time of the number of pixels in the image.

The Edge Distance map (Dedge) has several uses in our pipeline: to

generate the clump contours, as a quality measure for identified

objects and to evaluate the distance of a protein to the periphery.

Robust regression for ellipses
We used robust regression for matching ellipsoidal shapes to the

contour of the segmented area. An ellipse is characterized to be the

set of points for which the algebraic error Err(~xx) [55] is zero:

Err(~xx)~(~xx{~cc)T A(~xx{~cc){r2 ð5Þ

where~cc is the coordinate of the ellipse centre and r is an additional

parameter, proportional to the radius of a circle for a fixed matrix

A.

The matrix A may make the set of points with zero algebraic

error correspond to a hyperbole or a line, and a superfluous scale

parameter is observed in this parameterization. We therefore

constrain the form the of matrix A:
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where h is the angle corresponding to the orientation of the major

axis, and w is a parameter which determines the eccentricity of the

ellipse. This choice of this matrix to ensure that for any value for

the set of 5 parameters (in equation 5) generates an ellipse with

minor to major axis length ratio larger than 2
3
, as they are both

determined by the eigen values of the matrix A and then scale with

the parameter ‘r’ [55].

Contour pixels are first identified by finding foreground pixels

which are ƒ5 pixels away from some background pixel (using the

Edge Distance Map described above). Initial guesses for ellipses

are generated by first fitting a circle to 3 randomly sampled

contour points (that circle is unique). Initial guesses are rejected if

the circle does not fit within the rectangle clamping the contour

points, or if the center is a background pixel. The initial guess

ellipse will be set to match width (diameter) and center of an

accepted circle. A small eccentricity corresponding to w~0 and a

random angle h (drawn uniformly from 0 to p) is used to define its

remaining parameters.

If the set of contour pixels matches a single ellipse, we could

directly update the ellipse coordinates by minimizing the sum of

the algebraic error of all contour pixels. However, if the set of

contour pixels is best explained by several ellipses, the sum of

algebraic errors is likely to have local minima that are not close to

any of the true ellipse parameters. Therefore, we use robust

regression [56] and minimize the objective function:
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r(Err)~

P
~xx[C

Err(~xx)2

s2z
P
~xx[C

Err(~xx)2
ð7Þ

where C is the collection of coordinates of contour pixels and s is

the expected error, which is chosen to be 5, matching the thickness

of the contour. This effectively weights down the importance of

contour points with large deviations to the current ellipse, so that

the many local minima can correspond to actual ellipses.

Upon convergence, we discard ellipses that are not bounded by

the clamping rectangle, or that have a background pixel at the

center. Since a large number of local minima are expected, we

generate about 10 fold more sets of ellipse parameters than the

number of expected ellipses (based on number of contour pixels)

and select the ellipse with the best fit. Once we have identified the

best ellipse, we remove all contour pixels that have an error

smaller than s, and find the next ellipse using the remaining

contour pixels using the same procedure. Since some missed lone

pixels may remain, we reject the ellipse and remove the

corresponding pixels if the ellipse width is less than 3 pixels or if

the number of removed contour pixels accounts for less than 10%

of the amount expected from the ellipse parameters and known

contour width. This process is repeated iteratively, until no more

contour pixels can be removed. The running time of the

segmentation is linear in the number of pixels in images, and

the running time of cell-finding is linear with the number of

randomly sampled circles for the initialization of geometric ellipse

fit. On a single 2.83 GHz Intel core, 98 seconds were required to

analyze a single 133161017 image, which on average contained

82 cells and 31 artifacts.

Cell shape
We want to precisely recover the cell shape, as we will be

considering the size of the bud object as a cell-stage indicator, and

the position of the bud neck as a point of interest for uncovering

cell-stage dependent changes of protein localization. Because cells

are not exactly ellipsoidal in our images, we sought to capture

foreground pixels which partition the cell clumps into non-

overlapping cell areas (which we refer to as ‘shapes’). In our

images, cells are often separated by dim pixels, so we force

boundaries to match these dim areas.

We first use the watershed [57] transform to identify regions of

the clump that are entirely contained within single cells. For each

pixel which brighter than any of its neighboring pixels, we find the

set of pixels (catchment basin) which can be reached by a path of

monotonically decreasing intensities [57]. Secondly, we assign

each basin to a cell, by finding the ellipse closest to each maximum

intensity pixel. The proximity of a point to an ellipse is evaluated

using the algebraic error (Equation 5). This procedure ensures that

if two neighboring basins are assigned to different cells, we are

guaranteed that the boundary pixels are all dimmer than the

nearby inner pixels found inside one of the two basins.

Each such basin is then assigned to the closest ellipse, such that

the union of these regions forms the ‘shape’. The resulting shapes

may be highly non-ellipsoidal (Figure 1iii); for example, if a cell has

not be properly fitted by an ellipse, a portion of its area may

appended to the area of a neighbor cell instead.

Cell confidence
In addition to the mean RFP intensity in the object, we define

three shape measurements based on geometrical properties of

ellipses and circles. First, we compute the best fit of an ellipse to an

arbitrary shape ‘S’ by evaluating the following 6 statistics on the

coordinates of pixels in the shape (eq. 8).
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where~xx~fx0,x1g is the coordinate for a pixel from the shape ‘S’,

and DSD is the number of pixels in the shape (cell size). A function

defined on R2 which takes the value ‘D’ within the area of an

arbitrary ellipse has 6 degrees of freedom as well:

F~cc,A,r,D(~xx)~
D

0

(~xx{~cc)T A(~xx{~cc)ƒr2

(~xx{~cc)T A(~xx{~cc)wr2

(
ð9Þ

We can derive that there is a closed form for the parameters of the

above function that makes the corresponding statistics defined on a

continuous space match the statistics from the pixel coordinate of

any shape. For instance, the center of the fitted ellipse will

correspond to the center of mass of the provided shape:
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The major and minor axes length (‘2a’ and ‘2b’) are the square

root of the two solutions to a quadratic equation:

a2, b2~2:(s2
xzs2

y+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s2

x{s2
y)2z4(s2

xy)2
q

) ð11Þ

Finally, the recovered density ‘D’ is the ratio of number of pixels to

fitted ellipse area. Since the coordinates are drawn from a bitmap,

we observe that the measured densities typically are bounded

above by 1, except for the smallest objects. Any shape whose

density is above or equal to 1 is assigned to the artifact class,

otherwise we use the following first quality measure:

q1~log(1{D)~log 1{
DSD

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

x
:s2

y{(s2
xy)2

q
0
B@

1
CA ð12Þ

The second quality measure is based on the relationship between

the perimeter and the area of an ellipse. We compute the

perimeter of the shape by counting the number of pixels that have

3 or more background pixels among their 8 neighboring pixels.

The theoretical relationship between the perimeter length of an

ellipse and its parameters has no simple form, but may be

approximated using the Ramanujan first approximation [58]:

L~p(3(azb){
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10abz3(a2zb2)

p
) ð13Þ
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The log ratio for the number of contour pixel to Ramanujan

ellipse perimeter length approximation is our second confidence

measure q2.

A third quality measure captures the deviation of the shape to a

circle, by reporting the log coefficient of variation of the sum of the

distance to the ellipse center and the distance to the edge for each

pixel in the area(eq 14). In a theoretical circle, there should not be

any variance, since the two quantities are to sum up to be exactly

the radius of the circle.

q3~
1

2
log

1

DSD

X
x[S

(Dedge(~xx)zDD~xx{~ccDD)2

1

DSD

X
x[S

Dedge(~xx)zDD~xx{~ccDD

 !2
{1

0
BBBBB@

1
CCCCCA ð14Þ

The last quality measure is the mean RFP intensity q4~
TR

DSD
. We

model each of the quality measures using a Normal distribution.

We observe that the quality measure spread displays a non-trivial

dependency on cell size. For this reason, we define 7 Normal

distributions, for each of the 4 quality measures, which correspond

to the distribution of quality measure for 7 bins of cell sizes. The

quality measure vector is then modeled by the linear interpolation

of a pair characterized random variables Xi and Xiz1(eq. 15).

~qq~(iz1{
DSD
500

)Xiz(
DSD
500

{i)Xiz1 whereDSD [ ½500 : i, 500 : (iz1)�

Xi*N(mi ,Si) where i [ f0, 1, 2, 3, 4, 5, 6g
ð15Þ

where ~qq~fq1, q2, q3, q4g and the Si are diagonal covariance

matrices.

We used the automatically identified shapes that were mapped

to the 4305 manually identified cells in order to infer the

parameters of the normal distribution at the 7 sizes (7 means and 7

standard deviations). In order to define the posterior probability of

cell, it remains to characterize the uniform distribution for the

non-cell objects and the mixing parameter P(cell) (eq. 1). The

uniform distributions were chosen to correspond to the extremum

in quality measure obtained from the complete collection of

identified objects that have not been labeled as artifacts. Finally,

we used soft expected maximization (soft-EM) [59] on the

complete collection to infer the mixing parameter, which rapidly

converged to 9.9% as all other parameters are already predefined.

Evaluation of cell identification performance
In order to evaluate the accuracy of our cell identification

method, we first compared the automatically identified ellipses to a

set of 4305 ellipses that had been drawn around cells manually.

We assigned each manually identified ellipse to the automatically

identified ellipse with closest center. We found that for 94.2% of

manually identified ellipses, there is an automatically identified

one with center occurring within 10 pixels. In these cases, the

average distance between the centers was 1.86 pixels (s~1:46).

The correlation between the areas of the automatically identified

and manually identified matched ellipse pairs was 0.882.

We next compared the center and area of the automatically

identified ‘shapes’ to the set of manually drawn ellipses. Here,

92.3% of the manually drawn ellipses have a corresponding

recovered shape that has a center within 10 pixels of the

manually drawn ellipse center. For these, the mean distance

between the shape and the manually drawn ellipse center was

1.41 pixels (s~1:21). The area of the ‘shapes’ have a correlation

of 0.953 with area of the automatically identified ellipses, and

0.928 with the area of manually drawn ellipses. Hence,

identifying the ‘shapes’ (the hybrid operation of assigning the

watershed regions to their closest ellipse) produces cells that are

on average closer both in location (1.41 vs. 1.86 pixels) and size

(correlation 0.928 vs. 0.882) to the manually drawn ellipses than

the automatically identified ellipses. We note that the ‘shape’ -

based analysis led to a slight reduction in the fraction of cells

identified (92.3% from 94.2%) but this was acceptable to us in the

context of the improvement in cell size estimation (0.928 vs.

0.882 correlation) because we use the cell size as an indicator of

cell stage.

In order to compare the accuracy of the simple cell-finding

method described above with an established method for cell

identification, we compared our results to Cell profiler [60]. For

background correction, we used the polynomial fit to the ensemble

of images, and subtracted the resulting amount from each image.

We identified the primary objects under Otsu global threshold

method, and used the ‘Shape’ method for defining boundaries

between objects and to distinguish the clumped objects. We chose

this method because the Cell profiler documentation suggests it as

proper to recover round objects in clumps. Using the same method

described above for our pipeline, we compared the cells identified

by Cell profiler to the manually drawn ellipses. We found that

89.0% of the manually drawn ellipses have a corresponding

identified cell within 10 pixels of their area centre. The mean

distance in the paired centers was 2.23 (s~1:80) and the

correlation in object sizes 0.876. Although these statistics are

slightly lower than for our simple methods, it did perform

significantly faster, identifying the cells in a typical image in *20
seconds.

In addition, 139 artifacts were manually identified. We used this

set to compute the false positive rate by pairing automatically

identified cell areas to the manually identified cells and artifacts

(Suppl. Figure S2). We also computed the false-positive rate as a

function of cell probability threshold. For example, filtering all

cells that have a cell probability below 0.8 reduces the false positive

rate. This is in agreement with previously reported results using

post processing [61]. Since we we found that the number of cells is

critical for the robustness of the time profile estimates (Suppl.

Figure S3) and that small buds have systematically lower cell

probability estimates (Suppl. Figure S1B), we prefered not to

choose a hard threshold. Indeed, we found that using a 0.8 cell

probability threshold reduces the robustness of the time profiles

(Suppl. Figure S3B). We also found that applying this threshold

would discard w50% of the small buds which were used to define

the first four of our ten cell-stage time points.

Protein expression measurements
We characterize the protein expression phenotype within each

cell object using the absolute intensity of the GFP, as well as

geometrical distances between proteins to identified points of

interest. In both cases, we use the RFP signal to normalize the

observations made for the GFP signal. The RFP intensity was

found to be dependent on the object size, so we characterized the

expected RFP, mR(DSD), and used to normalize the GFP signal by

the fold difference to the expectation of the mean RFP intensity

(eq. 2). We defined mR(DSD) using three linear function segments

which fits the mean level of RFP in the 1.4M automatically

identified cells:
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mR(DSD)~

15z
12:DSD
1000

27z
DSD{1000

260

29:5z
DSD{1650

1175

DSDv1000

1000ƒDSDv1650

DSD§1650

8>>>>>><
>>>>>>:

ð16Þ

Some of the morphological distances require us to identify the

coordinates of a point of interest; the cell center, protein mass-

center and bud neck position are obtained by averaging the

coordinates of the cell pixels, of GFP-tagged proteins and Mother-

bud separation contour pixels, respectively. Assuming GFP

intensities are proportional to protein amount, we derive the

expected value for geometrical distances with respect to the

position of a randomly selected protein. The position of cell center,

protein mass center and bud neck are given by:

~cc~
1

DSD

X
~xx[S

~xx , mc�!~
X
~xx[S

~xx
G(~xx)

TG

, bn
�!

~
1

DSepD

X
~xx[Sep

~xx ð17Þ

where TG~
X
~xx[S

G(~xx) is the sum of GFP intensities and ‘Sep’ is the

set of contour pixels which separates the bud from the mother cell.

The other 2 distances have a slightly different form: first, the

distance to the perimeter for any coordinate has been computed

using Edge Map distance, so that:

E(DistProteins to Periphery)~
X
~xx[S

Dedge(~xx)
G(~xx)

TG

ð18Þ

Second, we derive the equation for the expected distance between

proteins:

E(Distbetween Proteins)~
X
~xx[S

X
~yy[S

DD~xx{~yyDD
G(~xx)

TG

G(~yy)

TG

ð19Þ

Once again we use the RFP marker to normalize these distances.

In the case of distance between proteins, the distance is normalized

by the expected distance between a protein and a RFP marker.

For that case, the reported log ratio representing a morphological

distance would be:

fbetween Proteins~log

X
~xx[S

X
~yy[S

DD~xx{~yyDD
G(~xx)

TG

G(~yy)

TGX
~xx[S

X
~yy[S

DD~xx{~yyDD
G(~xx)

TG

R(~yy)

TR

0
BBBB@

1
CCCCA ð20Þ

Time profiles
First, we model cell stage as a function of the bud size. Under

the assumption that the bud volume increases at a constant rate,

we expect that time scales linearly with (
ffiffiffiffiffiffi
DSD
p

)3. Because we have a

number of identified cells and distribution of object size that varies

throughout the collection of 4004 yeast strains, a common basis is

required to enable comparisons between the expression of different

proteins. For each strain, time series are defined as expected

feature values for objects observed at 10 equidistant cell stage

keypoints c0,:::c9~f0, 4465, 8930:::, 37485g. We use local regres-

sion (LOESS) to infer the mean and variance at each keypoint (eq.

21), where the ‘K(x)’ is Gaussian kernel function with bandwidth

parameter equal to 1700. In addition, because we have developed

a probabilistic cell confidence, which assigns to each identified cell

a posterior probability of being a properly identified cell, we use

the cell confidence to compute a weighted average, which is the

expected profile conditioned on each identified object being drawn

from the cell class:

E(F (cj))~

Pn{1

i~0

fiP(CellD~qqi,DSi D)K(DSi D
3
2{cj)

Pn{1

i~0

P(CellD~qqi,DSi D)K(DSi D
3
2{cj)

,

Var(F (cj))~

Pn{1

i~0

f 2
i P(CellD~qqi,DSi D)K(DSi D

3
2{cj)

Pn{1

i~0

P(CellD~qqi,DSi D)K(DSi D
3
2{cj)

{E(F (cj))
2

ð21Þ

where E(F (cj)) is feature value that is expected at the cell stage

keypoint cj from feature values ff0, f1,:::fng, which are measured

for the n identified object. f~qq0,~qq1,:::~qqng are the quality measures

for each shape and fDS0D,DS1D,:::DSnDg are cell sizes for bud objects.

Maximum likelihood agglomerative hierarchical
clustering

Each protein profile is a vector of means and variances of

observations. We use the Maximum likelihood clustering

criterion [37] (eq. 22) in order to agglorameratively join pairs

of protein profiles, proteins to cluster profiles, or pairs of cluster

profiles:

MLCC(n1, m1,S1, n2, m2,S2)~

n1zn2

2
log 1z

n1n2

(n1zn2)2
(m1{m2)T (

n1S1zn2S2

n1zn2
){1(m1{m2)

� �

z
n1zn2

2
log

n1S1zn2S2

n1zn2

����
����

� �
{

n1

2
log(DS1D){

n2

2
log(DS2D)

ð22Þ

where DSD is the determinant of a covariance matrix. This

criterion is the log likelihood ratio for two cluster of size

n1 and n2 to have their protein profiles modeled as two

multivariate Normal distributions (with their corresponding

parameters m and S), to a single multivariate Normal model

explaining both expression groups.

Initial cluster profiles are build from individual protein profile,

which corresponds to 12 concatenated time series of feature

values. As such, initial covariance matrices are diagonal matrices

whose values were estimated from the LOESS(see Var(F (c)) in eq.

21). New cluster profiles are characterized by a multivariate

normal distribution whose parameters are obtained from merging

two previous cluster profiles (eq. 23).

m’ /
n1m1zn2m2

n1zn2

S’ /
n1(S1zm1mT

1 )zn2(S2zm2mT
2 )

n1zn2
{m’m’T

ð23Þ
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where ‘ni’ are cluster sizes and fmi,Sig are normal distribution

parameters for merged cluster profiles.

Class profiles
The 4004 proteins were grouped based on exact correspon-

dence of subcellular location annotation, as defined by Huh et al.

[14] (Suppl. Table S1). 22 classes correspond to unique subcellular

locations. We merged member profiles into a class profile

(m and S) using the operation defined above (eq. 23). The

Bhattacharyya metric (eq. 24) was used to compare each class

profile (Suppl. Table S1) and class profiles were clustered using

euclidean distance (Suppl. Figure S5A).

DB(m1,S1, m2,S2)~
1

8
(m1{m2)T (

S1zS2

2
){1(m1{m2)

z
1

2
log

S1zS2

2

����
����

� �
{

log(DS1D)zlog(DS2D)
4

ð24Þ

Enrichment of functional annotations
Protein subcellular location was characterized by Huh et al. [14]

by assigning one or many annotations to each protein. We report

about the enrichment of either separate annotations and/or exact

localization set correspondence. For example, proteins that were

only annotated to be nuclear obtained the label ‘pure nucleus’ and

new labels, such as ‘nucleus AND cytoplasm’ were reported. The

GO and PFAM annotation were obtained from Uniprot/

SwissProt [51]. In the reported hierarchical clustering results

(Figure 6), clusters were manually selected and the hypergeometric

distribution was used to model the occurrence of annotations of

proteins within them. Bonferroni correction was applied to the P-

values (1990 hypotheses, accounting for 3.3 in log scale).

Significance of hierarchical clustering
To assess the significance of the hierarchical clustering, we

performed permuation tests. For each protein annotation, we find

the cluster that yields the smallest P-value for annotation

enrichment. We then assess the statistical significance of the sum

of the smallest log P-values, ‘S’, by defining two background

distributions for ‘S’. In the first, we preserved the structure of the

tree, but chose random proteins to assign to each leaf. In the

second, we preserved the structure of the tree, but randomly

replaced the proteins with other proteins that had exactly the same

set of annotations of subcellular localization. In other words, for

this second ‘localization constrained’ permutation, we only allow

proteins of identical characterization in subcellular location terms

to be permuted, so that any enrichments of subcellular location (as

displayed in Figure 6) will be preserved for any permutation. We

found that the statistic ‘S’ was systematically higher in the 10000

permutations than for original hierarchical cluster. Therefore, we

report the corresponding Z-score, but we note that background

distribution for ‘S’ is not necessarily a normal distribution (Suppl.

Table S3).

In order to evaluate the resolution of functional enrichments in

the hierarchical clusters, we computed the significance for subsets

of annotations. We show in supplementary table S3 that

complexes characterized by GO annotation are found significantly

enriched, and that the ribosomal and proteasomal proteins, which

typically show high protein abundance, have a limited contribu-

tion in the sum. In addition, we applied the statistical tests on 14

subsets of GO annotations based on the number of annotated

proteins. This analysis was also performed on 5 alternative

hierarchical clustering results: This allows us to evaluate the

robustness of the results to a change of clustering algorithm

(Maximum likelihood clustering, Euclidean metric with complete

linkage, Correlation metric with complete linkage), and the usage

of the cell confidence (as a weight or using 0.8 as a filtering

threshold) (Suppl. Table S2, S3, S4, S5).

Data and code availability
Hierarchical clusters are available to be browsed online at:

http://www.moseslab.csb.utoronto.ca/louis-f/unsupervised/. In

addition, the source code for the cell identification and feature

measurements, the set of 17 images in which 4305 ellipses

corresponding to cells and 139 ellipses corresponding to artifacts

were manually drawn, as well as a table of feature measurements

for all 400 K mother-buds pairs are available.

Supporting Information

Figure S1 Confidence estimates for automatically identified cells

a) Histogram of Cell probability for Automatically Identified

Objects. Cell probability is calculated for each of the 1.3 million

identified cells as defined in the text. The assigned cell probabilities

are displayed using 100 bins. The majority of the identified shapes

have a probability to belong to the cell class which is above 95%. b)

Dependence on bud size for cell confidence on bud cells. The set of

405359 identified buds was partitioned into 10 groups based on bud

size, such that each group had the same number of cells. The mean

and standard deviation in the measured cell probabilities is shown

(grey bars). Smaller buds tend to have lower cell probabilities.

(TIFF)

Figure S2 ROC curve for cell identification with confidence

scores. A test set of 4305 cells and 139 challenging artifacts were

identified by manually drawing ellipses around objects in images.

Automatically identified cell areas were paired to manually drawn

ellipses if they were within 10 pixels. Other manually identified

cells were considered false negatives. The false-positive rate

(number of artifacts/number of predictions) and true positive rate

(or recall, which is the number correctly identified cells/number of

manually identified cells) are plotted as a function of cell

confidence. As a reference, we also display the performance using

a Cell profiler pipeline (red diamond, see ‘Evaluation of cell

identification performance’ in methods) and the baseline accuracy

of our method (blue triangle) without a cell probability cutoff. The

expected performance of random guessing corresponds to y = x in

this plot (thick black trace).

(TIFF)

Figure S3 Global evaluation of the robustness of time profiles -

a) We used the Jackknife [30] estimate of sampling variability

observed in time profiles computed from local regression (LOESS

[29], eq. 21). The measured variances were normalized by the

total cell-to-cell variance in the corresponding feature, so the

robustness of all the 40046106662 time points are presented.

The number of mother-bud pairs identified, which varies from

protein to protein, affects the robustness of the estimates. Bars

represent fraction of the total variance due sampling for proteins

with v26 mother-bud pairs (red bars), proteins with 26–99

mother-bud pairs (green bars) or proteins with 100–307 mother

bud pairs (blue bars). b) To evaluate the effect of our cell

probability weighting, we computed the time series for cell data

without weighting by cell confidence. Instead, any cell that had a

cell probability below 0.8 was ignored from the analysis. Hence, all

Mother-Bud pairs that have high enough confidence for both

objects equally contribute to the time-profile estimation. The

Clustering of Protein Expression Patterns
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jackknife estimate reports slightly higher levels of sampling

variability overall using the hard threshold.

(TIFF)

Figure S4 Evaluation of significance of cell-stage deviations in

protein expression. We display the local regression time profile for

the intensity of the proteins Ash1, Cdc6 and Sic6 (blue traces and

symbols). The background distribution of intensity estimated at

each time point is produced by permuting the cell-stage estimates

for each identified mother-bud pair 10000 times (red traces and

symbols. Error bars represent the standard deviation of the

empirical distribution of the permutations). Numbers below the

time points display P-values for the deviation of the time point

from the real data (positive and negative deviations in the 2.5%

tails of the empirical distribution of the permutations are reported).

(TIFF)

Figure S5 Comparison of time profiles for different subcellular

locations a) Hierarchical Clustering of the class profiles based on

Euclidean distance. Colours of location names indicate the 4

groups of subcellular locations that were defined based on

biological relationships. b) Average Bhattacharyya distance

between subcellular location class profiles within biologically

related groups (between members, blue bars) is smaller than the

average distances between these class profiles and those that are

not biologically related (to non-members, red bars). We note that

the sum of the difference in mean distance (difference between

blue and red bars) is significantly lower than expected by chance

(P~0:00015, 106 permutations of the subcellular locations that

belong to each biological group).

(TIFF)

Figure S6 a) Mitochondrial proteins show punctae in buds. We

expected single punctae to arise in small buds for mitochondrial

proteins based on the time profiles of our simple features. Visual

inspection of the cell populations of 5 randomly chosen

mitochondrial proteins allows us to identify mother-bud pair

examples that appeared to correspond to our expectation (punctae

indicated with arrows). For comparison we include mother-bud

pairs with smaller or larger buds (top and bottom rows,

respectively). Neither of these groups shows the single bright spot

of protein expression. Images have been contrast enhanced to

enable visualization of dim cells. b) Visualization of hierarchical

clusters obtained using alternative parameters. On the left, the

hierarchical clustering was performed on time profiles that used a

cell confidence threshold (of 0.8). On the right, the correlation

metric and complete linkage hierarchical clustering was used. The

inclusion of the nucleus in the bud is indicated with the dotted

yellow line, and the characteristic time for proteins to reach their

maximum distance to the bud neck is shown in light blue braces

for Mitochondrion, and light orange brace for ER.

(TIFF)

Figure S7 Examples of proteins in our dynamic bud cluster.

Images are representative of patterns for each protein. The

contrast of each image has been enhanced to display patterns

more clearly. These proteins were not previously annotated as

showing bud-related patterns by Huh et al. [14] or Chen et al.

[16]. The top 6 proteins (indicated using a green bar) are found

localized to the bud tip and/or bud neck, so that they exhibit a

dynamic bud pattern. For Tpo3 (indicated using a red bar), it is

doubtful whether this is the case: Tpo3 typically appears in the cell

periphery and nuclear periphery. Hence, Tpo3 is an example of a

negative prediction of a dynamic bud protein.

(TIFF)

Table S1 Distance between subcellular localization class profiles.

For each of the 22 subcellular location defined by Huh et al. [14],

we defined the average expression profile for each of the protein

that was annotated as appearing in only one localization class. The

maximum likelihood clustering agglomerative method was used to

define multivariate normal distributions representing a ‘profile’ for

each class (see ‘Class profiles’ in Methods). The Bhattacharyya

metric (eq 24) was used to evaluate the distances between profiles,

as it is not dependent on the number of proteins ‘n’ that defined

each profile, as opposed to the maximum likelihood criteria(eq 22).

(XLSX)

Table S2 Enrichment of subcellular localization in hierarchical

clustering results. For each subcellular location, the inner cluster

that shows the most significant enrichment was identified within

the hierarchical clusters. For 6 hierarchical clustering results, a P-

value is reported for the significance of the enrichment of each

localization class. The enrichments were computed for ‘pure’

patterns, and ‘partial’ patterns.

(XLSX)

Table S3 Significance of functional annotation enrichment in

the hierarchical clustering results. For each annotation, the most

significant enrichment among the cluster found within the

hierarchical clustering results was evaluated using the Hypergeo-

metric distribution. The sums of the log P-value (Log pvalue sum)

were computed for various sets of functional annotations. For

example, GO 19–24 is the GO annotations assigned to between 19

and 24 proteins in our set of 4004. Pfam and Complexes indicate

the annotations of Pfam domains and protein complexes. The

significance of sums of log P-values were evaluated by generating

the background distribution of sum of log P-value occurring by

permuting the proteins in the hierarchical clusters. To reject that

the enrichments are explained by enrichments in subcellular

location alone, we constrained the permutation to only protein of

identical assessment by Huh et al. [14]. In all cases, 10000

permutations never generated values for the ‘S’ statistics that were

as extreme as observed in the original hierarchical clustering

results. For that reason, significance is also reported as a Z-score

although the background distribution is not necessarily a Normal

distribution. Using a different metric or defining time-profiles

using only cells with confidence score above a threshold cells

produces similar observations.

(XLSX)

Table S4 GO annotations for protein complexes with highest

enrichment in hierarchical clustering results. The cluster with most

significant annotation enrichment is found for each annotation.

We correct for multiple hypothesis tests (277 complexes) using the

Bonferroni correction, which accounts for 2.44 in log scale.

Enrichments within 5 other hierarchical clustering results are also

reported. For instance, the all four MCM subunits are clustered in

5 out of the 6.

(XLSX)

Table S5 Pfam annotations with strongest enrichment. The

cluster with most significant annotation enrichment is found for

each annotation. We correct for multiple hypothesis tests (671

Pfam) using the Bonferroni correction, which accounts for 2.88 in

log scale. Enrichments within 5 other hierarchical clustering results

are also reported.

(XLSX)

Table S6 List of Dynamic Bud Proteins. For each protein from

figure 8, the Huh et al. [14] subcellular location, the revised

location proposed by Chen et al. [16] and the Cellular

compartment from SGD [45] is reported. We note that proteins
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that are not identified to be bud neck or actin by Huh et al.

typically have subcellular location that disagree between annota-

tion sources.

(XLSX)
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