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Abstract

Designed peptides that bind to major histocompatibility protein I (MHC-I) allomorphs bear the promise of representing
epitopes that stimulate a desired immune response. A rigorous bioinformatical exploration of sequence patterns hidden in
peptides that bind to the mouse MHC-I allomorph H-2Kb is presented. We exemplify and validate these motif findings by
systematically dissecting the epitope SIINFEKL and analyzing the resulting fragments for their binding potential to H-2Kb in
a thermal denaturation assay. The results demonstrate that only fragments exclusively retaining the carboxy- or amino-
terminus of the reference peptide exhibit significant binding potential, with the N-terminal pentapeptide SIINF as shortest
ligand. This study demonstrates that sophisticated machine-learning algorithms excel at extracting fine-grained patterns
from peptide sequence data and predicting MHC-I binding peptides, thereby considerably extending existing linear
prediction models and providing a fresh view on the computer-based molecular design of future synthetic vaccines. The
server for prediction is available at http://modlab-cadd.ethz.ch (SLiDER tool, MHC-I version 2012).
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Introduction

Artificial induction of immunity (immunization) is achieved by

priming the immune system with a specific antigen (epitope)

bearing the potential of activating the adaptive immune response

[1]. Vaccines are often synchronously administered with adjuvants

aiming at boosting the adaptive immune system by activation of

the innate immune system through pattern recognition receptors

[2,3]. Aside from introducing excessive non immune-stimulating

pathogenic material into the patient, drawbacks of all clinically

applied vaccines include poor or incomplete inactivation, rever-

sion of virulence and limitation to viral pathogens [4]. Utilizing

synthetic peptides as antigen mimetics bear the promise to avert

some of these effects [5–7]. The importance of prediction and

design of major histocompatibility protein I (MHC-I) bound

peptides that are recognized as a complex by receptors on

cytotoxic T cells (cell-mediated immunity) was outlined by

Rammensee and co-workers in 1993, who defined canonical

sequence motifs for a set of MHC-I alleles (Fig. 1) [8–10]. Residue

patterns emerged from a statistical assessment of the frequency

and effects of certain amino acids at specified epitope positions. In

the subsequent two decades, several prediction models were

established for various MHC-I alleles from different organisms,

taking into account not only isolated residue positions and their

amino acid occupancy but also their positional correlation [11].

Maximizing the predictive accuracy of these models by using

modern machine-learning approaches such as cascaded [12] or

deep-learning [13] architectures bears the chance of increasing the

probability of successfully designing synthetic epitopes, acknowl-

edging that MHC-I binding potential poses a necessary prereq-

uisite yet not a guarantee for inducing an immune response.

In this study we developed a cascaded machine learning

approach to learn patterns from the available MHC-I binding

information in the Immune Epitope Database (IEDB) [14]

regarding the murine H-2Kb allele. We selected this allele and

binding octapeptides due to the allele’s character as reference

model and data availability. Using our new predictive model, we

investigated the sequence variability of the well-studied ovalbu-

min-derived epitope SIINFEKL [15]. We scrutinized octapeptides

containing SIINFEKL fragments, while actual fragments were, in

contrast to earlier surface plasmon resonance studies [16] or

fluorescence labeling [15,17], tested in a thermal denaturation

assay [18] for their direct binding potential to an H-2Kb/IgG

fusion protein. Formerly understood patterns of epitope binding to

the H-2Kb allele were described in form of Rammensee’s

statistically derived canonical sequence motif (Fig. 1) [8,9], which

consists of a tyrosine or phenylalanine residue at position 5 and an

aliphatic amino acid at position 8 as so-called ‘main anchors’ as

well as a tyrosine at position 3 as ‘secondary anchor’: (3[Y]-5[Y,F]-

8[L,M,I,V]). As a result of our study this generic concept was

substantially extended with our machine-learning model and

validated with rapid direct-binding experiments, which ideally
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complement strenuous and resource-intensive cell-based assays

[19,20]. In contrast to the utilization of peptide libraries, the

computational approach offers a comprehensive alternative for the

analysis of epitope binding motifs with minimal experimental

effort involved, thereby additionally focusing on varying fragment

lengths and related requirements for binding.

Results

Cascaded machine-learning model
We extracted peptide data from version 7/2012 of the IEDB

[14] to train an ensemble machine-learning model utilizing a

cascaded architecture. After selecting octapeptides with binding

information on the mouse H-2Kb allele (Fig. 2), a filter was applied

draining ambiguous entries resulting in a core set of 1,162

peptides. Binders and non-binders were approximately balanced

in this core data set (636 binders, 526 non-binders). We considered

these sequence data as diverse due to the abundance of canonical

motif complying and non-complying samples. Thus, the observa-

tion of often misleading performance estimates due to training

data redundancy perceived in a study for MHC-II binding site

prediction should not apply to our model [21].

The core training set was split into a 10-fold cross-validation set

and an external validation set by a ratio of 4:1 in order to retain

two evaluation scenarios (Fig. 3) [22]. Six amino acid descriptors,

namely AAFREQ, BINAATYPE, BINPEP, PEPCATS, PPCA

and PPCALI were calculated for every respective training fold.

Two classifier models, multilayer Perceptron artificial neural

networks [23] (ANN) and support vector machines [24] (SVM),

were utilized for auto-parameterized first stage training resulting in

a total of 662 = 12 first stage models (base classifiers) for every

respective evaluation fold. All first stage models were subjected to

implicit parameterization employing a grid-based five-fold cross-

validation approach during training, utilizing online backpropaga-

tion of errors for ANNs [25] and a SMO-type [26] decomposition

method for SVMs as training algorithms. ANNs were parameter-

ized with respect to the number of neurons h M [2,10] in the

hidden layer, the learning rate g M [0.1,1.0] and the momentum

a M [0.1,1.0], whereas SVMs were parameterized with respect to

the cost parameter C M [0.5,8.0] and kernel specific parameters

degree d M [1,3], c M [0.01,0.10] and coef0 M [0,6].

The 12 trained base classifiers were subsequently fed with the

same data they were originally trained on to compute the input

(i.e., output neuron values from ANN or probability estimates from

SVM; from the interval [0,1[) for the second-stage or ‘jury’ ANN

classifier. We tested all possible input combinations, resulting in

212 = 4096 jury neural networks, where each training instance for

a jury ANN had as many dimensions as first stage classification

models included. Test data was then presented to the trained first

stage models for prediction and the fired output values were

propagated to the according trained jury networks, which finally

delivered a predicted output class (binder/non-binder; score

threshold = 0.5). The output class prediction for every test data

Figure 1. Volume representation of the MHC H-2Kb peptide
binding cleft derived from a crystal structure model (PDB-ID
[63]: 1vac [64]) with the protein-bound epitope SIINFEKL.
Numbers within dashed boxes correspond to sequence positions in
the respective epitope. Red boxes and associated amino acid codes
indicate anchor positions and preferred amino acid composition
respectively. The yellow box indicates the secondary anchor at position
3, according to the H-2Kb canonical sequence motif.
doi:10.1371/journal.pcbi.1003088.g001

Figure 2. Training data derivation. The Immune Epitope Database
(IEDB) served as data source [14]. The murine H-2Kb allele and a length
of eight were selected due to good data availability and reference
model character. The core set exhibits similar contributions of positive
(636) and negative (526) examples, while redundant ambiguous entries
were removed. The core set contained binders and non-binders
partially, fully and not agreeing with the canonical sequence motif.
doi:10.1371/journal.pcbi.1003088.g002

Author Summary

Future success in vaccine development will critically
depend on identifying potent epitopes with reduced side
effects. Among such candidate molecules, immunogenic
peptides binding to major histocompatibility protein I
(MHC-I) represent a preferred class of biomolecules for
vaccine design. Computational models assist in the
selection of the best candidate peptides by providing a
mathematical rationale for antigen recognition by MHC-I.
Here we present a machine-learning model that was
trained on recognizing features of known MHC-I binding
and non-binding peptide sequences with sustained
accuracy. We were able to biochemically validate the
computational predictions in a direct binding assay
measuring complex formation between synthesized can-
didate peptides and MHC-I. Strong correspondence
between the predictions and the experimentally deter-
mined binding potential corroborate the machine-learning
model as viable for future antigen design. Thus, our study
provides a concept for rapidly finding innovative MHC-I
binding peptides with limited experimental effort.

Scrutinizing MHC-I Binding Peptides
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Figure 3. Workflow for the development of the cascaded machine-learning model. ANN: feed-forward artificial neural network, SVM:
support vector machine. AAFREQ, BINAATYPE, BINPEP, PEPCATS, PPCA and PPCALI correspond to the utilized peptide descriptors (cf. Methods). TP,
FP, FN and TN correspond to entities of a confusion table with true-positives, false-positives, false-negatives and true-negatives.
doi:10.1371/journal.pcbi.1003088.g003

Scrutinizing MHC-I Binding Peptides
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instance was compared to actual class labels in the test data and

summarized in confusion tables (true-positives, false-positives, true-

negatives, false-negatives). Confusion tables were then mapped

into a single classification performance index (Matthews’ correla-

tion coefficient, MCC) [27] and the best performing final jury as a

compromise of cross-validated and external set performance was

selected and retrained on the entire core data.

The final jury (Fig. 4) model (MCCcross-validated = 0.64, MCCex-

ternal-set = 0.65) was selected and re-trained on the entire training

data set. The obtained MCC of 0.64 is well within the quality of

current state-of-the-art prediction tools for MHC-I prediction, and

with regard to the cross-validated MCC suggests that jury over-

training/over-fitting was avoided. The prediction method is

publicly available at http://modlab-cadd.ethz.ch (SLiDER tool,

MHC-I version 2012).

In silico MHC-I binding prediction
All octapeptides containing at minimum tripeptide fragments of

the positive reference binder SIINFEKL were categorically

grouped according to the respective fragment (Fig. 5a). Resulting

groups were classified with the best jury model receiving a score

between 0 (non-binding) and 1 (binding) regarding MHC-I H-2Kb

binding potential.

The heptapeptide fragment-containing groups (xIINFEKL,

SIINFEKx) comprising 20 peptides each exhibited the highest

score distributions (median values = 0.99). In contrast, all trimer

fragment-containing groups (xxxxxEKL, xxxxFEKx, xxxNFExx,

xxINFxxx, xIINxxxx, SIIxxxxx) showed a median at the other end

of the prediction range (0 to 0.03) with merely the xxINFxxx group

exhibiting values distributed more dispersedly over the entire

range [0,1[.

Tetrapeptide fragment-containing groups were categorized into

low median groups xxxNFEKx, xxINFExx and SIINxxxx (0.01),

and in opposition high median groups xIINFxxx (median = 0.75)

and xxxxFEKL (median = 0.98).

Pentapeptide-fragment containing groups were divided into a

high median category containing xxxNFEKL (0.98) as well as

SIINFxxx (0.99), and the low median groups xIINFEx (0.16) and

xxINFEKx (0.02), while the hexapeptide fragment-containing

groups all exhibited high medians: xIINFEKx (0.95), SIINFExx

(0.98), and xxINFEKL (0.99).

Examining groups with the same first non-arbitrary (non ‘x’)

residue from the amino-terminal tail revealed a decrease of

median predictions scores, when randomizing an increasing

number of amino acids from the carboxy-terminus (e.g., xxIN-

FEKL, xxINFEKx, xxINFExx, xxINFxxx). However, upon

randomizing glutamine at position 6 (E to x) this tendency was

perturbed by a slight median increase. Vice versa held true for the

amino-terminus with a similar yet weaker perturbation observed

for randomization of the isoleucine at position 3 (e.g., SIINFEKx,

xIINFEKx, xxINFEKx, xxxNFEKx, xxxxFEKx). In general,

randomizing amino acids at the main anchor positions 5 and 8,

which in the case of SIINFEKL comply with the canonical

sequence motif, always led to a decrease of the median score. The

same held true for randomization of isoleucine at position 2,

underlining a similar importance as the canonical anchors.

Direct-binding experiments
To test the predictions made by our machine-learning model,

we synthesized all SIINFEKL fragments and measured MHC-I H-

2Kb binding in a thermal denaturation assay (Fig. 6). The

quadruplicate measurements exhibited high consistency between

predicted and measured binding, indicated by low standard

deviation for all peptide fragments with mean relative binding

values greater than zero (Fig. 5b). Based on the unpaired Welch-

test [28], the reference binder SIINFEKL showed a significant

increase in binding (100%, p,9.9?10212) in comparison to the

unloaded MHC-I complex (denoted as NoLigand in Table 1). The

amino-terminal serine-deprived heptapeptide IINFEKL showed

the highest remainder of relative binding potential (22%,

p,9.9?1028). The majority of the remaining fragments showed

no significant relative binding. Exceptions include the pentapep-

tide SIINF (p,0.002) and the hexapeptide INFEKL (p,0.003)

exhibiting 8% respectively 7% relative binding on average,

followed by the lowest yet still significant binding of SIINFEK

(5%, p,0.001) and SIINFE (4%, p,0.002).

Figure 4. Architecture of the best-performing cascaded machine-learning model based on six first stage classifiers originating from
three differing descriptor sets and two learning schemes (ANNs, SVMs) and a jury neural network containing three hidden
neurons. The model delivers a prediction score from the interval [0,1[, with high values indicating MHC-I H-2Kb binding.
doi:10.1371/journal.pcbi.1003088.g004

Scrutinizing MHC-I Binding Peptides
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It is noteworthy that the pentapeptide SIINF (8%) exhibited

significantly higher (p,0.037 and p,0.014, respectively) binding

compared to its elongated derivatives SIINFEK (5%) and SIINFE

(4%). A potential explanation is provided by acknowledging

glutamate as a suboptimal solution at position 6 (as reflected in the

prediction score analysis), thereby neutralizing and even reverting

the slightly positive effect on binding by solvent-interacting lysine

in position 7. Though, it remains questionable how the

pentapeptide SIINF lacking the C-terminal anchor backbone

and side-chain interactions is able to induce the formation of the

presumably highly flexible MHC binding cavity [1,29], especially

as the pentapeptide NFEKL containing both main anchors did not

exhibit significant binding. Alternatively, analyzing a co-crystal

structure of SIINFEKL in the MHC-I H-2Kb binding cleft (Fig. 1)

reveals a compartmentation of the peptide-binding cavity into a

small sub-pocket referred to as F-pocket [30], including the solvent

accessible residues 6–7 as well as the C-terminus 8, and a large sub

pocket from positions 1 to 5, which is presumably addressed by the

SIINF fragment. It is conceivable that the SIINF fragment bound

to the MHC protein solely stabilizes the larger sub-pocket by an

induced flexible fit. Overall, only fragments exclusively retaining

the C- or N-terminus of the fragment source showed significant

albeit weak remaining binding potential with at best five-fold lower

binding than the positive reference binder. The minimum

required length to measure a significant binding potential was

provided by the pentapeptide SIINF.

Figure 5. (a) Distribution of prediction scores for sets of n SIINFEKL-fragment containing octapeptides. High scores indicate MHC-I H-2Kb binding
predictions, while lower scores indicate non-binding predictions. Scores were computed with the final jury prediction model. (b) Binding of
synthesized SIINFEKL-fragments to a MHC-I H-2Kb:IgG1 fusion protein relative to the average binding of the positive reference (SIINFEKL, 100%) and
the unloaded fusion protein (NoLigand, 0%). Bars correspond to the arithmetic mean of quadruplicate measurements, with error whiskers depicting
the volatility in terms of standard deviation.
doi:10.1371/journal.pcbi.1003088.g005

Figure 6. (a) Melting curves of peptide-MHC-I (H-2Kb:IgG fusion protein) complexes depicting the normalized fluorescence F in relative fluorescence
units (RFU) for SIINFEKL and NoLigand as positive (red line) and negative (black line) controls, an exemplary epitope fragment (INFE) showing no
melting point shift (grey line) and all epitope fragments (IINFEKL, SIINF, INFEKL, SIINFEK, SIINFE) leading to a significant melting point shift (green
lines). (b) Analogously the first derivative of F (dF) reveals the melting points as local minima, with Tm denoting the presumable MHC-I heavy chain
melting point in the absence of peptide ligand (NoLigand).
doi:10.1371/journal.pcbi.1003088.g006

Scrutinizing MHC-I Binding Peptides
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Discussion

The results of this study demonstrate the potential of coupling

cascaded machine-learning models for predicting MHC-I antigen

presentation to a rapid thermal denaturation assay for validation

of direct binding to MHC. Even more, implicating from prediction

distributions of SIINFEKL-fragment containing peptides to direct-

binding measurements of actual fragments appears to be feasible.

The newly established model allows for a fine-grained grasp of

sequence motifs, suggesting that sequence length, as defined in

previous studies by an optimum of 8–10 amino acids for the H-

2Kb allele, plays a crucial role in the binding mechanism

[7,31,32]. Shorter fragment lengths or randomization of more

positions led to lower prediction scores and decreased relative

binding with a minimal but still significant effect exhibited by a

pentapeptide. The results confirm the importance of serine

respectively leucine as N- and C-termini for the example of

ovalbumin-derived SIINFEKL [33,34], as randomization of these

positions concludes to substantially lower scores and lower relative

binding measurements (Fig. 5). Comparison of relative binding

decrease upon removal of C-terminal leucine reveals this peptide

terminus as a dominant contributor even known to allow for

longer peptides extending beyond the F-pocket [35]. The superior

importance of the C-terminus is explainable by backbone and

aliphatic side chain interactions as an anchor residue.

Concerning the classic canonical sequence motif (Fig. 1) [10],

SIINFEKL main anchors (phenylalanine at position 5 and leucine

at position 8) were validated by predictions as well as testing,

though indication of an aliphatic secondary anchor at position 2 is

suggested by observing a reduction of relative binding from

IINFEKL (22%) to INFEKL (7%) and concurring predictions.

The known secondary anchor at position 3, not fulfilled by the

isoleucine of SIINFEKL, is confirmed by this residue’s negative

effect on binding. Furthermore a distinct negative effect of binding

can be concluded for glutamate at position 6 (SIINFEK 5%,

SIINFE 4%, SIINF, 8%), as albeit sequence length is decreased,

relative binding increased after glutamate removal. Thus, the

prediction model successfully captured both negative effects. In

general, the model delivers a more fine-grained and differentiated

perspective on the entire H-2Kb binding motif than the classic

canonical motif, by not only focusing on anchor residues [36].

A further prospective analysis of the entire slice-and-diced

mouse proteome revealed about 1.75% of octapeptides as

confidently (prediction score $ 0.99) classified MHC-I H-2Kb

binders. For successful rational vaccine designs, machine-learning

models with sophisticated meta-learning schemes such as cascaded

models should in future be trained for various alleles, rapidly

scanning pathogen proteomes for MHC-I ligands. In fact, recent

comparison of publicly available prediction tools and community

benchmark studies revealed machine-learning models as state-of-

the-art for MHC-I and MHC-II prediction, outperforming motif-

and matrix-based models [37,38]. We used a neural network as

jury classifier, because ANN have proven to exhibit among the

highest prediction accuracies (above 80% for a majority of alleles)

[39,40], having been successfully applied and experimentally

validated for MHC-I [41] MHC-II [42] ligands. Several

prominent MHC prediction tools utilize ANN algorithms, among

them NETMHC [43] and MULTIPRED [44].

Ensemble models have shown their general usefulness in

increasing predictive performance in comparison to their individ-

ual base classifiers [45,46], with special emphasis on cascaded or

stacked generalization architectures exhibiting significantly in-

creased generalization potential [47]. As missing out epitopes as a

consequence of false-negatives can be detrimental in perspective of

reverse vaccinology, i.e. scanning and predicting entire pathogenic

proteomes, and false-positives undoubtedly lead to increased

experimental costs, optimizing the predictive performance with

ensemble models can be the critical lever for successful epitope and

vaccine design. To best of our knowledge, Hiss et al. proposed the

only other cascaded model for MHC-I ligand prediction as a

scoring function in the scope of agent-based exploration of

sequence space [12]. This model incorporated only three base

classifiers with three different descriptors and one learning scheme

(ANN) propagating to a single jury neural network. For a recent

review on computational resources for MHC ligand prediction, see

Koch et al. [48].

It must be kept in mind though that for some pathogens, an

adequate immune response may require activation of not only the

cell-mediated MHC-I supported CD8+ T cell response but also the

assistance of MHC-II facilitated CD4+ T cell responses or

antibody-driven humoral responses [49]. Practical and theoretical

difficulties when using synthetic linear peptides arise when

considering this aspect [6]. In perspective of combatting pathogens

or pathogenic components in extracellular spaces, activation of B

cells for stimulation of antibody production requires antigen

recognition by B cell receptors (BCR). BCRs exclusively specialize

in the recognition of antigens located in specific conformations at

pathogenic protein or toxin surfaces [50]. These antigens, also

referred to as ‘neutralizing epitopes’, can rarely be mimicked by

short linear synthetic peptide sequences as those investigated in

this project [51]. Approaches to counteract this issue include usage

Table 1. Significance analysis examining quadruplicate
binding measurements of SIINFEKL fragments.

Peptide p-value , Relative binding mean (s)

EKL 0.9 -

FEKL 0.5 -

FEK 1 -

NFEKL 1 -

NFEK 0.9 -

NFE 0.9 -

INFEKL 0.001 7% (2%)

INFEK 0.4 -

INFE 1 -

INF 0.7 -

IINFEKL 0.001 22% (1%)

IINFEK 0.8 -

IINFE 0.9 -

IINF 0.9 -

IIN 0.5 -

SIINFEK 0.001 5% (1%)

SIINFE 0.001 4% (0%)

SIINF 0.001 8% (3%)

SIIN 0.9 -

SII 0.9 -

SIINFEKL 0.001 100% (1%)

NoLigand 0.5 -

The null hypothesis for the Welch-test [28] considers the distribution of
respective peptide fragments measurements to not be greater than the
distribution of NoLigand measurements.
doi:10.1371/journal.pcbi.1003088.t001

Scrutinizing MHC-I Binding Peptides
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of appreciably longer or cyclized peptides able to adopt a defined

conformational ensemble [29] or structure-based approaches [52]

trying to replace the peptide scaffold. We also wish to point out

that the linear peptides focused on in this project can pose putative

epitopes for priming of CD8+ cytotoxic T lymphocytes, while

others, subject to MHC-II presentation, may prime CD4+ helper

T cells (TH) [53]. Eventually the primed T cells will differentiate

into armed effector and memory cells, providing not only acute

but also long-term mediated recruiting of other immune agents by

cytokine and chemokine secretion (TH) and defense against

intracellular pathogen infection by induction of apoptosis [54].

Materials and Methods

Amino acid descriptors
PEPCATS is based on the CATS (Chemically Advanced Template

Search) [55] topological pharmacophore representation of druglike

molecules. Here we employed this concept to encode peptides in

terms of their side-chain functionalities [56]. Instead of typing

atoms, up to six different potential pharmacophore features are

assigned to the amino acid residues (L: Lipophilic, R: Aromatic, A:

Acceptor, D: Donor, P: Positive, N: Negative), which results in 21

different feature pairs (AA, AL, AR, etc.). Distances, in terms of

sequence position, between two potential pharmacophore points

of a respective residue pair are counted and binned for all pairs

within a user-defined distance range. We used distances up to

seven residue positions, yielding a 2167 = 147-dimensional length-

independent peptide descriptor. The resulting vector elements

were scaled by dividing each value by the sum of all occurrences of

the same feature pair type [57].

PPCA [58] represents peptides in terms of their physicochem-

ical properties. Each amino acid in a peptide sequence is

represented by 19 real-numbered values, which we obtained from

a principal component analysis (PCA) performed on 143 acid

property scales collected by Tomii and Kanehisa [59]. The first 19

principle components already account for about 100% of the

variance, accordingly this results in a 20-residue619-score matrix.

Raw scores were scaled by unit variance, whereupon each row of

the PCA score matrix corresponds to a 19-dimensional description

of the respective amino acid.

PPCALI is a length invariant auto-correlated version of the

PPCA descriptor. At first the PPCA vector is calculated and

transformed into a matrix column-wise containing the 19 values for

each amino acid of a dedicated peptide sequence. Hence this matrix

is auto-correlated by summing up the products of matrix row

elements with a defined correlation distance for every row, resulting

in a total of 19 sums. This is performed for a user-defined correlation

distance range (here: zero to seven residue positions). In this case the

total dimension of the descriptor is given by concatenating 19 sums

from correlation distance 0 to 7 equates to 152 dimensions.

AAFREQ is a 20-dimensional descriptor containing the amino

acid frequencies as integers of a peptide sequence in a fixed order

(A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V).

BINAATYPE represents each amino acid by six bits, whereas

every bit encodes for the presence or absence of a certain

pharmacophore feature (Lipophilic, Aromatic, Acceptor, Donor,

Positive, Negative) [60]. BINAATYPE is based on the same

pharmacophore types as PEPCATS.

BINPEP represents the identity of each amino acid by a string

of five bits.

Machine-learning
We used WEKA [61] for ANN and SVM classifier training,

with the LIBSVM [62] C-support vector classification (C-SVC)

wrapped by the respective Java classes for training the SVM

classifiers.

Thermal denaturation assay
Thermal denaturation studies were conducted using a

StepOnePlus real-time PCR system (Applied Biosystems) with

MicroAmp optical 96-well plates (Applied Biosystems cat.

no. N8010560). Wells were loaded with 10 ml of H-2Kb:IgG

fusion protein solution (protein conc. = 0.5 mg6ml21; BD Biosci-

ences cat. no. 550750) – respectively 10 ml of PBS buffer (pH 7.36)

for ligand-only controls – 2 ml of peptide or peptide fragments,

2 ml of 106 SYPRO Orange (SigmaAldrich cat. no. S5692) and

6 ml (8 ml for negative controls) to yield a total volume of 20 ml per

well. Final concentrations calculated to 1 mM for H-2Kb:IgG

fusion protein, 100 mM for the peptides/peptide fragments and 16
SYPRO Orange. Fluorescence intensity was measured using the

Applied Biosystems ROX preset with respective excitation/

emission maxima at 587/607 nm, while heating the wells

continuously from 25uC to 99uC with a ramp rate of 1%

(temperature increase of 1.5uC per minute). Results were recorded

by StepOne 2.2.2 software and analyzed by identifying the local

minimum of the derivative of the melting curve for the segment

relevant for denaturation of the peptide-binding superdomain

(a1,2) of the MHC-I heavy chain.

Peptide synthesis and analytics
DMF (dimethylformamide), DCM (dichlormethane), diisopro-

pylether, piperidine and TIPS (triisopropylsilane) were purchased

from Sigma-Aldrich. NMM (4-methylmorpholine) and TFA

(2,2,2-trifluoroacetic acid) were acquired from Fisher Scientific;

Fmoc-protected Wang-resins, Fmoc-protected amino acids, and

HCTU (O-(6-chloro-1-hydrocibenzotriazol-1-yl)-1,1,3,3-tetra -

methyluronium hexafluorophosphate) were obtained from AAPP-

TEC. An Overture robotic solid phase peptide synthesizer (Protein

Technologies, Tucson, USA) was used to synthesize peptides on a

20 mmol scale utilizing 10-fold excess of Fmoc-protected amino

acids (200 mM) relative to the Fmoc-Wang-resin. Deprotection by

20% piperidine in DMF for 265 min. Double coupling was

performed in a conservative manner of 2615 min rotations with a

ratio of 1:1:2 (200 mM amino acid, 200 mM HCTU, 400 mM

NMM) in DMF. DMF washing was applied for 5630 sec after

deprotection and double coupling. Automated cleavage was

applied for 2 h with 95% vol.+2.5% vol.+2.5% vol. (TFA, H2O,

TIPS), after multiple washing steps with DCM (3630 sec). Using

ice-cold diisopropylether, the peptides were precipitated from the

final TFA-peptide solution and rewashed. All peptide products

were analyzed on an LC-20A HPLC instrument (Shimadzu) using

an rpC18, 110 Å, 5 mm, 15063 mm column (Macherey-Nagel),

with a linear gradient of 5–70% ACN/H2O (0.1% TFA) over

25 min with a flow rate of 0.5 ml6min21; UV-VIS detection at

210 nm. Masses were detected between 300–1500 Da with a

Shimadzu LCMS-2020 single-quad mass spectrometer (ESI+).

UV210 purity of all products: .98%. Peptide sequences are

denoted with the calculated molecular weight (mw, unit: Da),

observed retention times (Rt, unit: minutes) and masses (m+); some

peptides exhibited water clusters (*): SII (mw = 331.40, Rt = 9.87,

m+ = 332.15, 333.15, 663.4, 664.4), IIN (mw = 358.43, Rt = 6.86,

m+ = 359.15, 360.15, 719.40, 717.45, 718.45), INF (mw = 392.45,

Rt = 10.15, m+ = 393.15, 394.10, 786.30, 785.4, 1175.75), NFE

(mw = 408.41, Rt = 7.66, m+ = 408.10, 409.95, 817.35), FEK

(mw = 422.48, Rt = 6.45, m+ = 432.20, 424.20), EKL

(mw = 388.46, Rt = 7.59, m+ = 389.15, 390.15, 777.45), SIIN

(mw = 445.51, Rt = 8.86, m+ = 446.25, 447.25, 891.55, 892.50),

IINF (mw = 505.61, Rt = 10.36, m+ = 527.35*, 528.25*, 529.30*,
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957.30*, 958.40*), INFE (mw = 521.57, Rt = 9.77, m+ = 522.25,

523.20, 1043.55, 1044.55, 1045.50), NFEK (mw = 536.59,

Rt = 6.93, m+ = 537.25, 538.25, 539.25), FEKL (mw = 534.63,

Rt = 9.39, m+ = 536.35, 537.25, 538.20, 1071.65, 1072.60), SIINF

(mw = 592.68, Rt = 11.99, m+ = 593.30, 594.35, 596.25, 1184.85,

1185.75, 1186.70, 1187.70), IINFE (mw = 634.72, Rt = 10.76,

m+ = 635.35, 636.30, 637.30, 1269.70, 1270.80), INFEK

(mw = 649.74, Rt = 8.84, m+ = 325.75, 650.35, 651.35, 652.35),

NFEKL (mw = 649.74, Rt = 9.59, m+ = 650.35, 651.35, 652.30,

1300.85), SIINFE (mw = 721.79, Rt = 11.5, m+ = 722.40, 723.40,

724.30, 1443.9, 1444.90, 1445.90), IINFEK (mw = 762.89,

Rt = 9.77, m+ = 382.35, 763.40, 764.40, 765.40), INFEKL

(mw = 762.89, Rt = 10.84, m+ = 382.30, 763.45, 764.4, 957.45,

965.45, 965.45), SIINFEK (mw = 849.97, Rt = 10.51, m+ = 425.80,

850.50, 851.45, 852.45), IINFEKL (mw = 876.05, Rt = 11.51,

m+ = 438.95, 876.55, 877.50, 878.50).
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