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Abstract

The most powerful genome-scale framework to model metabolism, flux balance analysis (FBA), is an evolutionary optimality
model. It hypothesizes selection upon a proposed optimality criterion in order to predict the set of internal fluxes that
would maximize fitness. Here we present a direct test of the optimality assumption underlying FBA by comparing the
central metabolic fluxes predicted by multiple criteria to changes measurable by a 13C-labeling method for experimentally-
evolved strains. We considered datasets for three Escherichia coli evolution experiments that varied in their length,
consistency of environment, and initial optimality. For ten populations that were evolved for 50,000 generations in glucose
minimal medium, we observed modest changes in relative fluxes that led to small, but significant decreases in optimality
and increased the distance to the predicted optimal flux distribution. In contrast, seven populations evolved on the poor
substrate lactate for 900 generations collectively became more optimal and had flux distributions that moved toward
predictions. For three pairs of central metabolic knockouts evolved on glucose for 600–800 generations, there was a balance
between cases where optimality and flux patterns moved toward or away from FBA predictions. Despite this variation in
predictability of changes in central metabolism, two generalities emerged. First, improved growth largely derived from
evolved increases in the rate of substrate use. Second, FBA predictions bore out well for the two experiments initiated with
ancestors with relatively sub-optimal yield, whereas those begun already quite optimal tended to move somewhat away
from predictions. These findings suggest that the tradeoff between rate and yield is surprisingly modest. The observed
positive correlation between rate and yield when adaptation initiated further from the optimum resulted in the ability of
FBA to use stoichiometric constraints to predict the evolution of metabolism despite selection for rate.
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Introduction

Systems biology is beginning to provide insight into how

interactions within complex networks give rise to the holistic

behavior of biological systems, and how natural selection would

shape these systems over the course of adaptation. Some

mathematical models are made with the goal of translating known

parameters of components of a small system into predictions of

their function. This approach has been used to predict behavior

ranging from the oscillation of natural or engineered genetic

regulatory networks [1] to flow through small metabolic networks

[2,3]. For larger, genome-scale networks there is insufficient

information to generate direct predictions in the same manner.

Instead, one can ask how the system should behave were it to have

already been selected to function optimally given tradeoffs

between different selective criteria. One use of mechanistically-

explicit optimality models is to consider the possible optimality of

current biological phenomena, such as the optimality of the

genetic code [4] or of the enzymatic properties of RuBisCO [5].

On the other hand, optimality models can also be used directly to

predict phenotypic changes in a system that would occur over the

course of adaptation, such as the evolution of virulence [6] or

enzyme expression [7].

The most broadly applied metabolic modeling framework, Flux

Balance Analysis (FBA), is a constraint-based evolutionary

optimality model. It quantitatively predicts flux through a

metabolic network that will maximize a given criterion thought

to represent prior natural selection [8]. At the heart of FBA is a

stoichiometric matrix, which is a mathematically transformed list

of mass-balanced biochemical reactions that fully describes the

known topology of the metabolic network of a cell (or other

system). It is further assumed that the cell is in a metabolic steady-

state, such that the sum of fluxes in and out of each internal

metabolite are balanced. As additional constraints are considered

(e.g., maximal flux values, irreversible reactions, biomass compo-

sition), this matrix can then be used to help define and constrain
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the space of feasible flux distributions in the cell. Within this

feasible space, linear programing is subsequently used to solve for

an optimality criterion -such as maximal biomass per substrate (see

below)- to identify a feasible flux distribution that permits that

optimum.

Evolutionary optimality models are powerful tools as they make

it possible to build intuition about the forces that shape biological

diversity. However, as has been pointed out most famously by

Gould and Lewontin, they can also be misleading and can foster

the wrong intuitions [9]. Optimality models make three assump-

tions: 1) selection (and not other processes) is the primary

evolutionary force shaping a trait of interest, 2) we can identify

the criterion upon which selection is acting, and 3) there are not

underlying constraints which prevent a trait from being optimized.

Optimality models are constructive for understanding the evolu-

tion of traits only to the extent that these assumptions can be

evaluated.

FBA provides an excellent framework to generate testable

hypotheses as to which selective criteria are appropriate for a given

set of conditions [10,11]. In environments such as batch culture,

selection acts directly upon growth rate -as well as lag and survival

in stationary phase- but not upon yield [12]. The most common

optimality criterion for FBA is commonly referred to as

maximizing growth rate [11]. Because this is performed by

constraining one (or occasionally multiple) substrate uptake rate

(S/time), this criterion is fully equivalent to predicting the

maximum yield (i.e., BM/S) under the given, user-supplied

substrate uptake rate. Since FBA cannot predict absolute rates of

substrate uptake used as the key constraint, the question as to

whether adaptation would optimize BM/S during batch culture

critically depends upon the correlation between growth rate and

yield. There are solid theoretical grounds to expect absolute limits

to the maximization of both rate and yield of reactions [13], but it

is often unclear how close biological systems are to these

constraints.

In addition to maximization of biomass, various other cellular

objectives have been suggested as alternative selective criteria.

These include optimal energetic (rather than biosynthetic)

efficiency whereby generation of ATP per substrate (ATP/S), or

the minimization of the sum of fluxes (BM/Sv or ATP/Sv). The

latter are based upon the rationale that enzymes are costly, and

thus a general relationship between enzyme levels and reaction

rates (although actually quite weak for any given enzyme, [14])

would lead to selection to minimize the total burden of enzymes

needed. Finally it has been suggested that selection acts

simultaneously upon multiple, competing criteria, leading cells to

inhabit an optimal tradeoff surface known as a Pareto optimum

[15,16]. This approach constructs a surface on which no single

criteria can be further increased without reducing another. It is

then assumed that evolution pushes biological systems to exist

somewhere on this surface. Data from a variety of experiments

suggested that cells operate near to the Pareto optimum defined by

BM/S, ATP/S, and minimization of Sv [15].

Tests of the predictive capacity of FBA have differed in two

ways depending upon: 1) whether there was known or assumed

adaptation to the substrate in question, and 2) whether tests were a

direct or indirect comparison of predicted internal fluxes to measured

fluxes (Table 1). The majority of these tests have been conducted

with Escherichia coli, and have assumed past selection on BM/S.

The direct tests of FBA compared predicted to observed flux

distributions (Figure 1) by taking advantage of empirical data

generated by 13C-labeling techniques [17]. Briefly, this method to

assay relative metabolic fluxes takes advantage of the fact that the

carbon atoms of the growth substrate are shuffled in different ways

by alternative metabolic pathways, and that these rearrangements

leave a signature in biomass. Using gas chromatography-mass

spectrometry (GC-MS) to determine the 13C-labeling of protein-

derived amino acids, it becomes possible to infer the flux splits in

the metabolic pathways leading to their synthesis [17–23]. Notable

amongst these tests was a quantitative assessment of the relative

merits of a series of optimality criteria (and constraints) in their

ability to predict the intracellular fluxes of E. coli measured in six

environments [11]. Data for wild-type cultures indicated that

ATP/Sv2, BM/S or ATP/S were more predictive depending

upon the growth condition; however, in all cases there was still

significant variation between predicted and measured fluxes.

A key advance in the use and testing of FBA came from the

realization that the best test of an optimality model is to examine

whether there is movement toward predicted optimal phenotypes

following adaptation under known experimental conditions

(Table 1). In a classic paper, populations of E. coli were adapted

Figure 1. Evolution of metabolic fluxes and measures of
optimality and predictability. We consider three ways to analyze
changes in metabolism that relate an ancestor (Anc, blue) to an evolved
isolate (Ei, green) in regard to an FBA-predicted optimum (Opt, red). A)
Evolution of metabolic fluxes can be evaluated from the perspective of
changes in proximity to the theoretical maximum for a given optimality
criterion (D% Optimality). B) A vector of flux ratios defines a position in
multi-dimensional flux space. One can then consider the relative
Euclidian distance of a given evolved population in this space from its
optimum (DEO) compared to that of an ancestor from its optimum (DAO;
plotted as log(DEO/DAO)). C) At the most detailed level, one can
compare the FBA-predicted value for a given flux ratio versus that
observed via 13C labeling.
doi:10.1371/journal.pcbi.1003091.g001

Author Summary

The most common method of modeling genome-scale
metabolism, flux balance analysis, involves using known
stoichiometry to define feasible metabolic states and then
choosing between these states by proposing that evolu-
tion has selected a metabolic flux that optimizes fitness.
But does evolution optimize metabolism, and if so, what
component of metabolism equates to fitness? We directly
tested the underlying assumption of stoichiometric opti-
mality by comparing predicted flux distributions with
changes in fluxes that occurred following experimental
evolution. Across three experiments ranging in length
from a few hundred to fifty thousand generations, we
found that substrate uptake – an input to the model –
always increased, but supposed optimality criteria such as
yield only increased sometimes. Despite this, there was a
clear trend. Highly optimal ancestors evolved slightly lower
yield in the course of increasing the overall rate, whereas
more sub-optimal strains were able to increase both. These
results suggest that flux balance analysis is capable of
predicting either the initial metabolic behavior of strains or
how they will evolve, but not both.

Suboptimal Central Metabolism Evolves as Predicted
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to various carbon substrates for 100–700 generations [24]. The

authors ran FBA for all pairwise constraints of substrate and

oxygen uptake to predict the maximal BM/S within those

constraints, and what metabolites might be excreted. Remarkably,

adaptation on five out of six substrates conformed to the

predictions, remaining on or evolving toward a ‘line of optimality’

representing the optimal oxygen to substrate ratio. For only one of

these substrates did the population move away from the predicted

optimality. A follow-up study further showed that the genes

expressed in evolved lines correspond to the fluxes predicted to be

active by FBA [25]. Since flux changes are only sometimes well-

correlated with gene expression [26], however, it remains unclear

whether FBA can predict the change in internal fluxes. Although

indirect, these studies have suggested that FBA might reasonably

capture the evolutionary forces acting on cellular physiology and

hence would be capable of predicting the outcome of evolution

[27].

To our knowledge there have been only two studies in which the

internal fluxes have been measured for both ancestral and evolved

strains grown in a constant environment with a single growth

substrate. Both involved rapid, short-term adaptation (,1,000

generations) of E. coli under conditions where the cultures were

kept in continual exponential growth in batch culture by using

frequent, large dilutions. Hua et al [28] measured fluxes following

adaptation to the poorly-utilized substrate lactate, while Fong et al

[20] measured fluxes following adaptation of a series of E. coli

strains with knockouts (KOs) deleting individual enzymes of major

branches of central carbon metabolism (e.g., glycolysis). Interest-

ingly, both studies found rather divergent changes in flux

distribution across replicates, and found that most improvement

in growth rate was the result of increases in substrate uptake.

These studies were not compared to FBA predictions, however,

thus it remains unclear whether the assumed optimality criteria

improved, or whether observed intracellular fluxes moved toward

those predicted with a genome-scale FBA model.

In terms of using experimental evolution to test optimality, the

cultures that have had the greatest time to adapt are those from

the E. coli long-term experimental evolution (LTEE) populations

that have been evolving in the Lenski laboratory for over 50,000

generations [29,30]. These twelve replicate populations have

evolved in minimal medium with glucose since 1988, experiencing

100-fold daily dilutions that result in a short lag phase, nearly

seven consecutive generations in exponential phase, and then

stationary phase. The LTEE experiment has enabled an

unprecedented examination of genotypic and phenotypic change

over an extended period of adaptation [29,31]. Despite starting

with a wild-type strain capable of rapid growth on glucose, all

populations have increased dramatically in both growth rate and

competitive fitness through adaptation in batch culture [32,33]. It

should be noted however, that batch culture inherently incorpo-

rates some non-steady state conditions and that improvements in

lag or survival may have had pleiotropic consequences for growth.

Despite this, here we ask how well FBA predictions align with the

evolved changes in these populations. If FBA is unable to predict

adaptation to single-nutrient, seasonal batch culture conditions we

will not be able to apply it to most laboratory environments, not to

mention the variable habitats experienced in nature.

The goal of the current work was to test whether the central

metabolic fluxes of replicate populations of E. coli with known

selective history in the laboratory evolved in a manner that is

predictable by FBA (Figure 1). We compared the fluxes inferred

from 13C labeling to the ranges predicted to permit optimal

performance and summarize these changes in three ways: the %

optimality possible given the inferred fluxes, the minimal distance in

flux space between the inferred fluxes and the optimal space of

distributions, and a flux-by-flux comparison to see how each flux

changed relative to predictions. Testing the ability of optimality

criteria to predict adaptation not only provides insight into the

mechanisms of evolution, but also represents a critical test of the

central optimality assumption of FBA. The LTEE lines began with

an ancestor operating at near-optimal BM/S, but the independent

populations evolved to use central metabolism less optimally. This

was reflected in both a small, but statistically significant, decrease

in the % optimal BM/S, and a corresponding increase in the

distance from the observed to optimal flux state. In contrast, the

seven lactate-evolved populations evolved to increase BM/S and

Table 1. Major approaches to test of FBA predictions depending upon whether there was known selection under experimental
conditions and whether there was direct measurement of internal fluxes.

Past adaptation
Test of internal
fluxes Major approaches Example papers

Assumed Indirect Growth rate and excretion. Varma & Palsson, 1994 [8]

Growth phenotypes or gene essentiality of knockouts. [41] Raghunathan et al, 2009 [41]

Direct Comparison of wild-type or knockout flux pattern to mutants in one
or more environments, usually using just BM/S or ATP/S as an
optimality criterion.

Emmerling et al, 2002 [42]

Explicit comparison of E. coli fluxes across environments to predictions
from multiple optimality criteria.

Schuetz et al, 2007 [11]

Known Indirect Uptake, excretion, and/or growth rates for evolved strains. Ibarra et al, 2002 [24]; Teusink et al, 2009 [43]

mRNA and protein levels correlated with predicted pathways in FBA. Fong et al, 2005 [44]; Lewis et al, 2010 [25]

Direct Flux changed during adaptation of E. coli evolved with key metabolic
knockouts or on the poor substrate lactate, but no comparison made
to FBA.

Fong et al, 2006 [20]; Hua et al, 2007 [28]

Flux changes during adaptation of E. coli to a fluctuating environment
compared to predictions of a Pareto surface.

Schuetz et al, 2012 [15]

Flux measurements following 50,000 generations of E. coli adaptation
and comparison of this and other datasets to FBA.

This study

doi:10.1371/journal.pcbi.1003091.t001

Suboptimal Central Metabolism Evolves as Predicted
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moved closer to an optimal flux distribution. The three pairs of

KOs had mixed results in terms of optimality and flux pattern.

Overall these results indicate that evolved increases in growth rate

largely resulted from increased substrate uptake. Furthermore,

ancestral strains operating far from optimal yield evolved as

suggested by FBA, whereas those close to the optimum experi-

enced a modest decrease in optimality and evolved to be further

from FBA predicted fluxes than their ancestor.

Results

Growth rate, cell dry weight and carbon uptake all
increased after 50,000 generations of adaptation on
glucose minimal medium

Prior to measuring internal metabolic fluxes, we first examined

key growth parameters for one isolate from the 50,000 generation

time-point for each of 10 independent LTEE populations (Table

S1). Growth rate increased by 45% on average (Table S1), which

is concordant with the 16% increase observed in these lines after

2,000 generations [32], and the 20% increase measured after

20,000 generations [33]. All evolved lines also increased their

glucose uptake rates (individually significant for 5 of 10 lines: A+3,

A22, A24, A25, A26; T-test, p,0.05, two-sample, equal

variance throughout unless noted otherwise, Table S1), with an

average increase of 18%. The cell dry weight per gram of glucose

also increased by an average of 20% while max OD600 increased

by 68%. This did not come from decreasing their excretion of

organic acids, however, as acetate production actually increased

by an average of 50%. No other excreted ions were observed

above our limit of detection of ,50 mM (Table S1).

LTEE isolates have modest, but significant changes to
their relative central metabolic flux distribution

In order to determine whether the improved performance of the

LTEE isolates was reflected in changes in the relative use of central

metabolic pathways, we used 13C-labeling of protein-derived

amino acids [17] to infer several key flux ratios in central carbon

metabolism (Figure 2A). Often the goal is to extrapolate from the

measured flux ratios to calculate the flux for each reaction in a

network [15,23]. For this study, however, we limit our discussion

and analyses to the flux ratios themselves, as these represent the

actual number of inferences from the 13C-labeling data and thus

each cellular branch-point is given equal weight (Text S1). It

should be noted that 13C data for the LTEE isolates were analyzed

with a program, FiatFlux [17], which is based on a simplified

model of central carbon metabolism. This program was used for

the previous study comparing alternate optimality criteria

mentioned above [11], as well as for obtaining the flux data

about the lactate [28] and KO [20] lines we analyze below.

Inferences with this commonly used program are less variable than

inferences based on larger models [34].

We uncovered statistically significant, but modest variation in

the flux ratios of evolved isolates relative to their ancestor

(Figure 2B, Table S2). In terms of the overall pattern, a

MANOVA test found that flux ratios changed significantly as a

function of population (Pillai’s Trace = 3.80, p,0.001, Figure S1).

Additionally, ANOVA tests on the flux ratios for individual lines

found at least one significantly different isolate (p,0.05) for all

ratios except two, and all lines had significant change in at least

one flux ratio. A joint linear regression of the populations found 22

fluxes that differed from the ancestor at a p#0.05. The False

Discovery Rate (FDR) metric suggests that 18 more significant

changes were found than expected by chance, whereas the more

conservative Tukey HSD test finds that 10 flux changes remain

significant.

A few patterns emerged in terms of the actual fluxes found to

have changed in evolved isolates. First, the most parallel change

was that a small, but significant portion of glucose was routed

through the Entner-Doudoroff pathway (Figure 2, flux 2). In all

but one case this was accompanied by a similar decrease in the

proportion of carbon flowing through the pentose-phosphate

pathway (flux 3). On the other hand, replicate lines evolved in

opposite directions for flux through glycolysis (flux 1), and for the

fluxes producing oxaloacetate from phosphoenolpyruvate (fluxes 4).

Additionally, in all cases there was no significant change in the

lower bound of production of pyruvate from malate via malic

enzyme (flux 6) across evolved isolates.

Long-term evolution on glucose did not increase any
optimality criterion

As a first step in testing the validity of different optimality criteria,

we asked whether the flux ratios observed in evolved isolates led to

increased or decreased performance with regard to each criterion

(Figure 1A). The ‘% optimality’ can be calculated by comparing the

maximum value of a criterion when the model was constrained with

the observed flux ratios and substrate uptake rate to the maximum

value of the criterion in the absence of the flux ratio constraints.

Note that because this metric simply compares values of given

optimality criteria rather than a particular set of flux ratios it is not

affected by the existence of alternate optima for some fluxes.

Figure 2. Evolved changes in central carbon metabolism for
the LTEE populations after 50,000 generations of adaptation
on glucose. A) The flux pathways measured for the LTEE lines are
denoted with numbers and red arrows. The genes knocked out in the
knockout data set and the entry point of lactate into the network are
both indicated. B) A heat map of the difference between evolved and
ancestral flux ratios from the LTEE populations. The right side indicates
flux ratios predicted for the ancestral line according to each optimality
criterion. The number of the flux ratio corresponds to the numbered
pathways in A. Single asterisks denote significant changes as calculated
by ANOVA, double asterisks are also significant by Tukey-HD.
doi:10.1371/journal.pcbi.1003091.g002

Suboptimal Central Metabolism Evolves as Predicted
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There was a slight (0.8%) but significant drop in the average

percent optimal biomass production (BM/S; T-test, p = 0.008),

with 9 of the 10 evolved lines decreasing relative to the ancestor

(Figure 3A). Turning to alternative optimality criteria, we first

found that ATP/S did not change significantly (Figure 3D),

though unlike all other measures throughout, the output was not

normally distributed (Shapiro-Wilk test of residuals, p = 0.002; for

rest see Figures S2 and S3). Correspondingly, significance for

changes in this criterion was tested with the non-parametric

Mann-Whitney-Wilcoxon Rank Sum Test (p = 0.79). BM/Sv and

ATP/Sv behaved qualitatively similarly to BM/S and ATP/S,

respectively, but as neither change was significant these results are

displayed only in supplementary material (Figure S4). Finally, we

calculated the nearest possible flux distribution for each evolved

isolate to the Pareto optimum, and found that 9 of 10 isolates were

further from an optimal tradeoff between criteria than the ancestor

(Figure S5).

In order to test the sensitivity of these findings to assumptions

made in using FBA, we compared the effect of changing the values

used for O2 limitation, maintenance energy, and the possible

change in biomass composition that would result from the

documented increase in average cell size [12]. None of these

modulations changed the qualitative results and generally the

default values outperformed the others (Figures S6 and S7).

Therefore, the conclusion that adaptation did not lead to an

increase in any optimality criterion for the LTEE populations

seems rather robust.

Long-term glucose evolution resulted in movement of
the flux distribution away from predicted states

We next examined whether the flux distributions we inferred for

the LTEE isolates moved toward (or away) from the flux

distribution predicted to result from optimizing each criterion.

We calculated the distance to the optimal fluxes for each evolved

isolate relative to the distance between the ancestor and optimality

(Figure 1B). Because the per-substrate criteria (e.g., BM/S, ATP/

S) had many equally-optimal flux distributions, we identified the

optimal solution that minimized the Euclidean distance from

observed flux ratios. Choosing the FBA solution that is the closest

to our empirical flux observations should, if anything, bias in favor

of FBA.

Beginning with the overall pattern of fluxes, we quantified the

log ratio of evolved to ancestral flux distance to their nearest

optimum (Figure 1B). Both BM/S and ATP/S predicted optima

in the opposite direction of the evolutionary flux movement, and

hence evolved lines ended up significantly farther from optima

than the ancestor (Figures 3B,E; S2; BM/S, T-test p = 0.0008;

ATP/S, T-test, p = 0.0004). In both cases the movement away

from the optimum was primarily driven by changes in the flux of

oxaloaceate from phosphoenolpyruvate.

Turning to individual flux ratios, no criterion fared particularly

well (Figure 2B, 3C,F). None correctly predicted the observed

increased flux through the Entner-Doudoroff pathway, nor the

trend of reduced oxaloacetate from phosphoenolpyruvate in

evolved lines.

Metabolic changes in E. coli evolved on the poor
substrate lactate were well-predicted by FBA using BM/S
as an optimality criterion

A second data set we considered was the seven populations of E.

coli that evolved on the poorly-utilized substrate lactate for ,900

generations [28]. These populations improved in growth rate and

cell dry weight substantially (112% and 50%, respectively) in

addition to increasing lactate uptake by 40% [28].

We found that adaptation to growth on lactate led to a

significant increase of 8% in the predicted percent optimal BM/S

(Figure 4A; T-test, p = 0.02), whereas the % optimal ATP/S

decreased significantly (Figure 4D; T-test, p = 0.01) by 7%. The %

optimality for BM/Sv and ATP/Sv again qualitatively followed

the respective per substrate criteria (Figure S4). Similarly, fluxes

moved closer to the state predicted by BM/S by an average of

20% (Figure 4B; T-test, p = 0.005), largely as the result of changes

in the predicted and observed flux to acetate (Figure 4C,F). In

contrast, they moved away from the state predicted by ATP/S

(Figure 4E; T-test, p = 0.0004). Additionally, 6 of the 7 lactate

populations evolved to be further from the Pareto optimal surface

than their ancestor (Figure S5).

E. coli central metabolic knockouts did not evolve in the
direction of FBA predictions

As a third test of whether strains evolve in a manner consistent

with FBA predictions, we considered the results from evolution on

glucose for KO populations with lesions in central metabolism (see

Figure 2A). These data come from two populations each initiated

with strains lacking phosphoglucose isomerase (Dpgi), triose-

phosphate isomerase (Dtpi) or phosphoenolpyruvate carboxylase

(Dppc) and evolved for ,800, ,600, and ,750 generations

respectively [20]. Considering the improvement of these popula-

tions jointly, they increased in both growth rate and glucose uptake

(172% and 157%), had large changes in central metabolic fluxes,

but were largely unchanged in dry cell weight (3%). For analyzing

Figure 3. Measures of optimality and predictability after
adaptation of LTEE populations to glucose for 50,000 gener-
ations. A,D) The % optimality of the ancestor (black) and evolved
isolates (grey, same order as Fig. 2); B,E) distance to optimal flux
distribution (plotted as log(DEO/DAO)); and C, F) comparison of
predicted to observed flux ratios for FBA-predictions based upon BM/
S (A–C) or ATP/S (D–F). Error bars represent standard errors of three
biological replicates.
doi:10.1371/journal.pcbi.1003091.g003

Suboptimal Central Metabolism Evolves as Predicted
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changes in their metabolic fluxes, however, we do not present

statistical tests of significance given that we only have two

observations for each of these three ancestors.

Our analysis of the flux data indicated that, for BM/S, Dpgi, and

Dtpi strains got worse while Dppc strains improved their %

optimality (Figure 5A). This pattern largely held for ATP/S as

well, though Dtpi strains showed essentially no change in %

optimality (Figure 5C). The KO data set is the only one in which

minimizing Sv led to qualitatively different behavior from the per

substrate analyses. Minimizing flux led to increases in the %

optimality for Dpgi and Dtpi when using BM/Sv as a criterion

(Figure S4).

Evolution pushed strains further away from optima in all cases

except Dpgi as predicted by BM/S (Figure 5B,D). Reduced

distance to the optima for Dpgi was driven by reduction in the flux

from oxaloacetate to phosphoenolpyruvate in evolved lines.

Finally, the two Dpgi evolved isolates evolved to be more Pareto

optimal, the Dtpi isolates were essentially equivalent to their

ancestor, and the Dppc isolates became less Pareto optimal (Figure

S5).

Discussion

Genome-scale metabolism is sufficiently complex that the

current state of the art in predictive models uses stoichiometry

and other constraints to define the space of possible flux patterns

and then suggests a given state that the cell would adopt if selection

had maximized a proposed optimality criterion. The application of

a mechanistic evolutionary optimality model to propose a solution

to an underdetermined physiological problem is elegant and has

been adopted broadly. However, there is a paucity of data testing

either the central assumption that intracellular fluxes are

optimized by a simple criterion, or which criterion best represents

the target of selection. Here we present an analysis of metabolic

evolution in the Lenski LTEE populations and make the first

direct comparison of observed flux evolution to genome-scale FBA

predictions.

Our analysis of the evolution of metabolic fluxes during 50,000

generations of adaptation of E. coli on glucose revealed changes in

both the absolute and relative fluxes. Concordant with faster

growth rates, we observed that all lines had increases in measured

glucose uptake. Beyond this, all populations altered the way in

which they utilize glucose, with significant changes in flux ratios

observed across the network of central carbon metabolism. The

most parallel changes in flux distribution were observed in the

glycolytic pathways with a universal small, but significant increase

in flux through the Entner-Doudoroff pathway, which was nearly

always accompanied by a decrease through the pentose phosphate

pathway. This is somewhat perplexing, as the Entner-Doudoroff

pathway provides less ATP than glycolysis and no important

biosynthetic intermediates. The Entner-Doudoroff pathway is

shorter than glycolysis, and hence potentially less enzymatically

costly. Indeed, what maintains the pathway in E. coli remains an

open question, though it has been observed to be upregulated in E.

coli during long-term starvation [35].

The major basis of improvement during selection upon growth

rate for the LTEE populations –as was observed for the lactate and

KO populations– came from increasing substrate uptake. We

found that the LTEE populations continued to increase their

growth rate over the 30,000 generations since it was last reported

[33]. Alternative measures of yield, such as cell dry weight and

OD600, also increased despite the slight decrease in efficiency of

biomass production by central metabolism. Cell dry weight

depends upon both BM/S in terms of carbon, but can also

change due to the relative biomass composition of elements such

as nitrogen or phosphorus. OD600 is even more indirect,

Figure 4. Measures of optimality and predictability after
adaptation to lactate for ,900 generations. A,D) The % optimality
of the ancestor (black) and evolved isolates (grey); B,E) distance to
optimal flux distribution (plotted as log(DEO/DAO)); and C, F) comparison
of predicted to observed flux ratios for FBA-predictions based upon BM/
S (A–C) or ATP/S (D–F).
doi:10.1371/journal.pcbi.1003091.g004

Figure 5. Measures of optimality and predictability after
adaptation of gene knockouts on glucose for ,600–800
generations. A,B) The % optimality of the ancestor (black) and
evolved isolates (grey); C,D) distance to optimal flux distribution for
FBA-predictions based upon BM/S (A,C) or ATP/S (B,D).
doi:10.1371/journal.pcbi.1003091.g005
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depending upon all of these factors as well as changes in optical

properties such as cell size, which is known to have increased in

the LTEE [32]. We only measured flux ratios in central carbon

metabolism, and thus would have missed significant adaptation

that happened in peripheral metabolic pathways. Alternatively,

either the bulk composition of biomass itself or the maintenance

energy might change. We addressed these latter two factors in

additional analyses (Figure S7), but neither of these factors

significantly alters results.

Data on the evolution of central metabolism for the LTEE

populations, combined with prior observations of flux evolution on

lactate or by a series of three KO strains provided the opportunity

to test several facets of whether the direction of evolutionary

change was consistent with FBA predictions.

Across experimental systems we ascertained which proposed

optimality criteria are most often consistent with the observed

evolution in central metabolism. On average across five different

ancestors, BM/S outperformed the other criteria in terms of either

increasing or going unchanged (Figure S8). The most dramatic

example was seen for the lactate-evolved populations, for which

BM/S increased while ATP/S decreased. The per flux criteria

(BM/Sv and ATP/Sv) behaved qualitatively the same as the per

substrate criteria in all but two of the cases (Dpgi and Dtpi). BM/Sv

outperformed BM/S in these two cases, but, for example, did not

significantly improve in the lactate populations. The data also

suggest that cultures quite often evolved to be further from their

Pareto optimum representing the space of optimal tradeoffs [15],

with 19 of 23 populations in total moving further from the Pareto

surface than their respective ancestral genotypes. These results

suggest that optimal biomass yield –which is the most commonly

utilized criterion for FBA– was the best overall stoichiometric

proxy for cultures where selection was directly upon growth rate. It

will be quite interesting to analyze populations grown in a manner

where yield (BM/S) is directly selected.

Overall, approximately half of the flux data were consistent with

FBA predictions, and half refuted the common assumption that

evolution acts to optimize efficiency; what accounts for this

discrepancy? The major factor that appears to account for this

difference is the initial degree of optimality for the ancestor of the

evolved lines (Figure 6). For the lactate and Dppc populations,

which began at approximately 80% and 90% optimality for BM/

S, all 9 total replicates increased in BM/S. On the other hand, 13

of 14 populations starting at or above 95% efficiency –LTEE and

the other two KOs– decreased in BM/S. A negative correlation

holds whether one performs a parametric statistical test (Pearson

correlation, p,0.0001) or a non-parametric Spearman correlation

coefficient (p,0.0001), though it should be noted that the strength

of the correlation is largely driven by the lactate data set.

The finding that selection on optimal efficiency depends on

distance to the optimum is both of practical and fundamental

interest. The analysis represents the first direct demonstration that

FBA can be used to predict changes in intracellular metabolism

that result from adaptation on a single carbon source. This positive

result comes with the caveat that strains must begin far from the

optimum. Systems initially operating at high yield –like the LTEE

and the Dpgi strains that both began above 98% optimal– may end

up evolving to be further from optimal than they began. In other

words, this suggests one can either predict the initial physiological

state or the direction of evolution, but not both.

What is perhaps the most remarkable about these findings is

that even for cultures with a negative correlation between rate and

yield, the tradeoff was quite modest. Small decreases in BM/S

were more than made up for by large increases in uptake, leading

to a net increase in growth rate despite mild antagonism. Given

that there is no direct selection upon yield during batch culture,

this perhaps suggests the existence of constraints upon the further

improvement of substrate uptake. As long as uptake is held

constant then changes in yield would directly translate into

changes in growth rate. As such, this would maintain purifying

selection upon yield, even over 50,000 generations. On the other

hand, the low efficiency ancestors were able to evolve both

improved substrate uptake and yield simultaneously.

Although FBA is typically applied as a practical tool to guide

experiments –and it has had some remarkable successes, such as

correctly predicting a rather unexpected new metabolic pathway

in some cancers [36]– it also serves as a quantitative, testable,

falsifiable model that connects physiology to evolution. The

interplay of optimality models and laboratory adaptation will be

critical as the field continues to move toward a fuller understand-

ing of the selection and constraints that act upon biochemical

networks.

Materials and Methods

Strains and growth conditions during selection
Escherichia coli B isolates were obtained from the Lenski LTEE

experiment [29] after 50,000 generations. Briefly, 12 populations

of E. coli were founded with either the arabinose-negative strain

REL606 (populations A21 to A26) or the arabinose-positive

derivative, REL607 (A+1 to A+6). These were evolved in 10 mL of

Davis-Mingioli minimal medium with 139 mM glucose (25 mg/L)

as a growth substrate in 50 mL flasks since 1988. These lines have

been cultured at 37uC while shaking at 120 rpm and have been

transferred daily via 1:100 dilutions (,6.64 net doublings per day).

The isolates analyzed in the current experiment consisted of the

ancestral line, REL606 [29], as well as the ‘A’ clone from 10 of the

12 lines frozen at 50,000 generations that were used in an earlier

paper (A21 = REL11330; A22 = REL11333; A24 = REL11336;

A25 = REL11339; A26 = REL11389; A+1 = 11392;

A+2 = REL11342; A+3 = REL11345; A+4 = REL11348,

A+5 = REL11367) [30]. The A22 clone used is from the ‘large’

lineage that has coexisted with a cross-feeding ‘small’ lineage for

tens of thousands of generations [37]. The isolate from the citrate-

Figure 6. Evolutionary change in % optimality versus initial %
optimality of the ancestor across data sets for BM/S. Error bars
represent standard errors between evolved populations.
doi:10.1371/journal.pcbi.1003091.g006
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consuming population A23 (REL11364) was not used because it

adapted to citrate consumption in addition to glucose [38]. The

A+6 isolate (REL11370) was excluded from analysis because it had

inconsistent growth, and gave irregular flux data. This population

was previously excluded from a study of growth rate vs. yield at

20,000 generations for similar reasons [13].

Measurement of key metabolic flux ratios
Flux measurements were obtained based on the methods of

Zamboni et al [17]. Evolved isolates were grown in 150 mL of

Davis-Mingioli minimal media with 139 mM glucose without

sodium citrate (excluded to ensure that it was not used as a

secondary carbon source by any line). In order to obtain

information from different parts of central metabolism, 13C-

labeling either utilized a 20:80 ratio of [U-13C]labeled:unlabeled

glucose or 100% [1-13C]glucose (Cambridge Isotope Laboratories,

Andover, MA). The ancestral REL606 was grown in 200 mL to

obtain sufficient cell material. At mid-log phase (60–80% max

OD) all cells were pelleted from the media, hydrolyzed overnight

in 6 M HCl, and dried. The dry cell material was then derivatized

for an hour at 85uC with 40 mL each of dimethylformamide and

N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide with 1% tert-

butyldimethyl-chlorosilane. The derivatized cell material was

injected into a Shimadzu QP2010 GCMS (Columbia, MD). The

injection source was 230uC. The oven was held at 160uC for

1 min, ramped to 310uC at 20uC min21, and finally held at 310uC
for 0.5 min. Flow rate was 1 mL min21 and split was 10. The

column was a 30 m Rxi-1ms (Restek, Bellefonte, PA). Three

technical and three biological replicates were run for each isolate.

Data files from the GC-MS were analyzed in FiatFlux [17], as

had been used for the lactate [28] and KO [20] populations we

also analyzed. The data conversion files were rewritten to load the

raw spectra produced by our MS. Following the established

protocol, uninformative amino acid fragments were removed.

Means for each biological replicate were calculated from the

average of three technical replicates. Shapiro-Wilk tests were used

to validate the assumption of normally-distributed errors for

estimated flux ratios for each strain (Figures S2, S3). Variance in

flux ratios was then analyzed with a MANOVA test using the

Pillai’s Trace metric with flux ratios entered as separate dependent

variables (Figure S1). Univariate ANOVA tests were also run to

investigate which of the measured flux ratios changed significantly

for individual strains.

The flux of oxaloacetate (OAA) from phosphoenolpyruvate

(PEP) was further estimated by a Monte-Carlo method to

determine the contribution of the glyoxylate shunt. The method

follows Waegeman et al, 2011 [23] and uses MATLAB code they

kindly provided. In short, average mass distribution vectors and

standard deviations were calculated from the measured samples.

The ‘normrand’ function was then used to randomly draw from

these mean distributions 1000 times. For each draw, a grid search

was used to find the flux ratios that best fit the mass distribution

vectors. Substantial variation was found for the fraction of labeled

CO2 and flux through the glyoxylate shunt, but in all cases there

was very strong support for the flux ratio of oxaloacetate from

phosphoenolpyruvate that had previously been calculated by

FiatFlux.

Physiological measurements of growth rate, cell dry
weight, glucose uptake and acetate excretion

Uptake and production of cell material were determined in a

separate set of experiments. In these experiments glucose

concentrations were increased ten-fold to 1.39 mM so that enough

of the compounds would be present to measure precisely. A

volume of 250 mL of overnight culture was inoculated into 50 mL

of media grown in a 250 mL flask at 225 rpm. Growth rate was

determined by fitting a logarithmic model to OD600 measure-

ments. A 10 mL sample was removed at early (OD600 of 0.090–

0.120) and late (OD600 of 0.275–0.400) log phase. Cells were

immediately removed from the media by passage through a

0.2 mM filter. Glucose concentrations were determined in the

spent media using a glucose oxidase assay kit (Sigma, Saint Louis,

MO). Acetate concentrations were determined by ion chromatog-

raphy with a Dionex ICS-200 RFIC. The flow rate was 1.5 ml/

min and the column temperature was 30uC. Cell dry weight

(CDW), was measured as the mass of the pellet from 100 mL of

fully-grown culture after overnight lyophilization. Three replicates

were assayed for each measurement.

Calculation of variation in flux ratios across evolved
isolates

The degree of parallelism between replicates in the evolution of

flux ratios was determined by calculating the coefficient of

variation in flux ratios. For each flux ratio the standard deviation

between evolved replicates was divided by the mean of that flux

ratio. This value was then averaged across all flux ratios. Values

close to zero indicate a high degree of similarity between evolved

lines.

Prediction of FBA optima
Flux analysis was carried out with a genome-scale model of E.

coli metabolism (iAF_1260 [39]). The model incorporates 2382

reactions and 1668 metabolites. Substrate uptake and excretion

were constrained to that observed, otherwise the default minimal

media environment was used. The lower bound on maintenance

energy was left at the default value of 8.9 mmol ATP/g/hr.

Oxygen uptake rates were set to those observed for the lactate

strains; however these data were not available for the REL or KO

strains. In these cases, oxygen uptake for the ancestor was scaled

across the previously observed range of 11.5–14.75 mmol/

gCDW/hr [11]. Previous work demonstrated that oxygen uptake

varies as a function of evolution, but that the ratio of substrate to

oxygen usage remained largely constant [24]. Oxygen constraints

for evolved lines were therefore set based on evolved glucose

uptake rates and the ancestral ratio of oxygen/glucose. Changing

the value of ancestral oxygen constraint, or the slope of constraint

line had little qualitative effect (Figure S6), so just the results based

on an ancestral uptake of 14.75 mmol/g/hr and a slope

maintaining the original oxygen/glucose rates are reported in

the text. Gene knockouts were simulated by constraining flux

through the missing gene to zero.

For all data sets we systematically tested the predictive ability of

four different optimality criteria: max biomass per unit substrate

(BM/S), max ATP per unit substrate (ATP/S), max biomass per

unit flux (BM/Sv) and max ATP per unit flux (ATP/Sv). These

criteria relate to the best performers in Schuetz et al 2007 [11] and

were defined as in that study. The per-substrate criteria

maximized the criterion and then subsequently chose a flux

distribution that minimized the difference from the observed

isolate ratios. This process always provides a flux distribution with

maximal production of ATP (or biomass). The per-flux criteria

optimize the ratio of ATP (or biomass) to the sum of the flux.

Optimizing this ratio leads to a single optimal flux solution that

often produces less than the maximal ATP (or biomass). For ATP

criteria, flux to excess ATP use (via maintenance energy) was

maximized while constraining the lower limit of biomass

production to the ancestral growth rate.
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Minimizing the distance between observed and predicted

optimal flux distributions was accomplished by minimizing a

distance term. Flux ratios can be constrained by adding a row to

the S matrix such that:

V2{R � V1~0

Where Vn is the flux through reaction n and R is the ratio V2/V1.

To minimize distance between observed and predicted ratios the

equation becomes:

V2{R � V1zD~0

V2{R � V1{D~0

Where D represents distance from the observed ratio and is added

as two columns to the S matrix (and concomitant rows in the flux

vector). Biomass or ATP can be constrained to its maximum value

and then the flux distribution that is closest to observed values can

be calculated by running linear optimization minimizing D as the

objective function.

Comparison of experimental flux ratios to FBA-predicted
optima

We first tested whether flux ratios evolve to increase each

selective criterion. The optimal value of each criterion was

compared against the maximum value of the criterion when the

model was constrained to have the experimentally observed flux

ratios. Percent optimality, calculated as the constrained criterion

divided by optimal criterion, was determined for the ancestor and

evolved lines.

For the LTEE lines the constrained flux ratios were serine

through glycolysis, pyruvate through Entner-Doudoroff, oxaloac-

etate from phosphoenolpyruvate, phosphoenolpyruvate from oxalo-

acetate, and the pyruvate from malate. The ratios were calculated

following Fischer and Sauer 2003 [40]; the exact equations used

are provided in the supplementary material (Table S3). Each ratio

was constrained by adding a row to the S matrix that defined the

relationship between relevant fluxes (as described in the first

equation of the previous section). The ratio inferred for pyruvate

from malate was treated either as an absolute constraint or a lower

bound but because all optimality criteria push this value towards 0

the results were equivalent.

To propagate uncertainty in glucose uptake, acetate excretion

and flux ratios for the LTEE isolates, separate calculations of

properties such as BM/S were made for each of 3 biological

replicates, which themselves represented the average of 3

technical replicates. The mean and standard error for optimality

metrics was calculated for each strain from the biological

replicates.

Flux constraints for lactate and knockout data sets were

implemented as upper and lower bounds, because reported flux

ratios were relative to substrate uptake rather than other internal

fluxes. Lactate adaptation lines were constrained to have flux

ratios 65% of the values reported in Hua et al 2007 [28]. Gene

knockout lines were constrained with the flux ratios and errors

reported in Fong et al, 2006 [20].

To determine whether strains evolved towards predicted

optimal intracellular physiologies we used a standardized metric

to ask if evolved lines were closer to an optimal solution than the

ancestor. This distance metric was calculated as:

log DEO=DAOð Þ

where DEO was the distance of the evolved flux ratios from the

closest optimal solution, and DAO was the distance of the ancestor

from its closest optimal solution. Distances were calculated as

Euclidean distance between the flux ratios observed in each data

set and those predicted. It should be noted that because optimal

flux ratios change with substrate uptake the ancestral and evolved

optima were different points. The metric is 0 if the evolved isolate

distance has not changed relative to the ancestor, increasingly

positive as the evolved strain moves nearer an optimum, and

increasingly negative as it moves further away.

Pareto optimality
A Pareto optimal surface was calculated for each line by

constraining the substrate uptake rate and then doing a nested grid

search [15]. A grid search across the range of feasible biomass

values was executed. At each value of biomass a grid search of

ATP yields was carried out and the sum of fluxes was subsequently

minimized at every interval. Conservatively, for each isolate we

then determined the closest possible position to its optimal surface

given the observed constraints. Distance between the isolate and

the Pareto optimal surface was calculated from the difference in

standardized criteria.

Statistical tests
The normality assumption for physiological measurements for

the LTEE populations and optimality metrics for all data sets were

checked with the Shapiro-Wilk test on the residuals of the linear

model fitting the metric against strains. In all but one case the null

hypothesis that the distribution was normal could not be rejected

at p,0.05. The % optimality for the LTEE lines with ATP/S as

the optimality criterion was not normally distributed. Q-Q plots

are presented in the supplementary material (Figures S2 and S3).

For the LTEE lines ancestral versus evolved values were

compared with two-sided, two sample T-tests assuming equal

variance. For the non-normal ATP/S comparison a Mann-

Whitney Wilcoxon Rank Sum Test was used instead. For the

lactate populations only a single value was available for the

ancestor so two-sided, one-sample T-tests were performed testing

against the ancestral value as the mean.

Supporting Information

Figure S1 Covariance of fluxes inferred for the LTEE.
To determine whether there was a significant change in flux ratios

between populations of the LTEE we ran a MANOVA as

described in the text; however, to provide further insight into the

basis of the significant differences that we observed we present a

chart of the correlations between all fluxes. A) The value of the

correlation and the significance are presented on the bottom half

of the chart. B) The proportion of variation explained by each

eigenvector.

(PDF)

Figure S2 Normality tests for data associated with the
LTEE. Q-Q plots and Shapiro-Wilk values are displayed for

growth parameters, and flux ratios. Additionally, data is displayed

about the normality of % optimality and distance for different

criteria.

(PDF)

Figure S3 Normality tests for data associated with the
lactate strains. Q-Q plots and Shapiro-Wilk values are

Suboptimal Central Metabolism Evolves as Predicted

PLOS Computational Biology | www.ploscompbiol.org 9 June 2013 | Volume 9 | Issue 6 | e1003091



displayed for growth parameters, and flux ratios. Additionally,

data is displayed about the normality of % optimality and distance

for different criteria.

(PDF)

Figure S4 Measures of optimality based upon BM/Sv
or ATP/Sv for all data sets. (A,B,E,F,I,J) The % optimality of

the ancestor (black) and evolved isolates (grey); (C,D,G,H,K,L)

distance to optimal flux distribution for FBA-predictions (plotted

as log(DEO/DAO)). These were performed based upon BM/Sv

(A,C,E,G,I,K) or ATP/Sv (B,D,F,H,J,L). The data sets are LTEE

(A–D), lactate (E–H), and KO (I–L). Error bars for LTEE

represent standard errors of three biological replicates.

(PDF)

Figure S5 Measures of optimality based on maximizing
the tradeoff between BM, ATP and Sv for all data sets.
The Pareto distance of the ancestor (black) and evolved isolates

(grey) for LTEE (A), lactate (B), and KO (C). Error bars represent

standard errors of three biological replicates.

(PDF)

Figure S6 Implementation of oxygen constraints. Fol-

lowing the example of Schuetz et al 2007 [11] we varied the

ancestral oxygen uptake rate across the range reported in the

literature (11.5–14.75 mmol/g hr). Ibarra et al 2002 [24] report

that the ratio of oxygen to glucose uptake remains largely constant

as cells evolve. We tested the impact of varying ancestral oxygen/

glucose ratio as well as the slope of evolutionary change from 0.5

to 1.5. There was no significant difference in the change in %

optimality for either BM/S (A) or ATP/S (B) across this wide

range of parameter values. Results are not presented for an

ancestral oxygen uptake rate of 11.5 for ATP/S because this

constraint caused infeasible solutions for several evolved popula-

tions. Results obtained with the default values used throughout the

manuscript, an ancestral uptake of 14.75 mmol/g hr and a slope

of 1, are highlighted in red.

(PDF)

Figure S7 The effect that potential evolution of con-
straints would have on average change in % optimality
between ancestor and evolved lines. A) Lipid content was

altered in evolved lines from 80–120% of the default values. B)

Maintenance energy in evolved lines was altered from 50–150% of

the default value of 8.39 mmol/g hr. Analyses for ATP/S are not

shown, as setting a lower bound on maintenance energy has no

effect if ATP production is being maximized. Results for

simulations run with default (red) and altered (blue) constraints

are shown for the LTEE set when optimized for either BM/S or

ATP/S. Error bars represent standard errors between replicate

lines.

(PDF)

Figure S8 Average difference in % optimality between
ancestor and evolved lines for each data set for each
criterion. The criteria tested were BM/S (blue), ATP/S (red),

BM/Sv (green) and ATP/Sv (purple). Error bars represent

standard deviations of replicate lines.

(PDF)

Table S1 Growth parameters for ancestral and evolved
LTEE isolates.

(PDF)

Table S2 Experimentally determined flux ratios for
ancestral and evolved LTEE isolates. PEP through PPP is

an upper bound (ub); PYR from MAL is a lower bound (lb).

(PDF)

Text S1 Equations used to calculate flux ratios. The

notation v(x) represents the flux through reaction x of the iaf1260

genome-scale model of metabolism.

(PDF)
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