
Leveraging Prior Information to Detect Causal Variants
via Multi-Variant Regression
Nanye Long1*, Samuel P. Dickson1, Jessica M. Maia1, Hee Shin Kim1, Qianqian Zhu2, Andrew S. Allen3

1 Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, United States of America, 2 Department of Biostatistics, Roswell Park

Cancer Institute, Buffalo, New York, United States of America, 3 Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North

Carolina, United States of America

Abstract

Although many methods are available to test sequence variants for association with complex diseases and traits, methods
that specifically seek to identify causal variants are less developed. Here we develop and evaluate a Bayesian hierarchical
regression method that incorporates prior information on the likelihood of variant causality through weighting of variant
effects. By simulation studies using both simulated and real sequence variants, we compared a standard single variant test
for analyzing variant-disease association with the proposed method using different weighting schemes. We found that by
leveraging linkage disequilibrium of variants with known GWAS signals and sequence conservation (phastCons), the
proposed method provides a powerful approach for detecting causal variants while controlling false positives.
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Introduction

Next-generation DNA sequencing technologies allow discovery

of genetic variants across the full spectrum of allele frequencies,

thereby enabling exhaustive screens for association between

diseases and variants. Numerous statistical methods [1] have been

developed for analyzing sequence variants. Recently, these

methods have increasingly focused on rare variants because of

their functional implications [2,3], documented roles in disease

etiology [4–7], potential contributions to missing heritability [8],

and to the associations reported between common diseases and

common variants [9]. Testing rare variants one at a time tends to

have low power with a realistic sample size, especially in the

presence of low penetrance and allelic heterogeneity (multiple

variants at the same locus conferring risk). In an attempt to

overcome this problem, grouping-based strategies have been

proposed. These approaches typically involve grouping qualifying

variants based on their location within a gene or pathway and

testing the aggregated effect of the resulting set of variants. Several

strategies for aggregating variant effects have been proposed: from

simply collapsing rare variants [10] to summing weighted counts of

minor alleles [11–13], and to more sophisticated approaches that

attempt to incorporate the effect of both protective and neutral

alleles [14–18]. Grouping-based testing remains an active area of

methodological research and new methods continue to be

developed. However, there are two significant limitations of any

grouping-based test. First, the performance is critically dependent

on the extent to which the grouping strategy reflects the genetic

architecture of the disease being investigated. In order for

grouping to be an effective strategy one must put ‘weight’ on

those variants that are truly important. Putting ‘weight’ on

unimportant or null variants will add noise to the statistic

resulting in a loss of power. Since the genetic architecture of any

disease is unknown, it is not always obvious which grouping

strategy to prefer. Second, a significant grouping-based test

implicates a genomic region or pathway and not specific genetic

variants. Thus, the ultimate goal of identifying individual

causative mutations remains elusive. For these reasons, some

are reconsidering association testing of rare variation via

grouping-based tests [19].

Here we introduce a Bayesian multi-variant liability regres-

sion model that does not involve grouping and tracks directly to

individual variants. More generally, this model falls into a

broader framework of Bayesian hierarchical modeling, which

attempts to estimate all regression coefficients (variant effects)

simultaneously by imposing variant-specific shrinkage on the

estimated effects. This class of approaches has seen wide and

successful applications in predicting quantitative traits, partic-

ularly in agricultural species [20–22]. However, its effectiveness

in the analysis of sequence data in human disease studies is yet

to be investigated.

There are two attractive features of the proposed approach. The

first is that all variants are jointly analyzed so as to reduce bias of

estimated effects by borrowing information from and/or account-

ing for other variants. The second feature is its ability to

quantitatively incorporate prior information to weight individual

variants based on their prior likelihoods of causality. Both features

are expected to enhance power and reduce false discoveries. The

weighting scheme is entirely customizable and can represent

multiple sources of information. Here we have explored weighting

schemes that incorporate two sources of information: sequence

conservation (a natural measure of functionality of mutations
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[23,24]), and linkage disequilibrium (LD) with significant SNPs

detected by a genome wide association study (GWAS). The

motivation to utilize LD between candidate variants and prior

GWAS results is an attempt to mimic the real situation for most

common diseases where large scale GWAS have been performed

before any sequence data are analyzed and to effectively leverage

that prior information. GWAS signals can guide the search for

causal variants from sequence data both by defining candidate

regions and by ‘tagging’ causal variants. The latter is the very

assumption behind GWAS and has been recently shown to

happen relatively often, even between rare causal variants and

common tags [9].

We first tested the proposed Bayesian approach in fully

simulated scenarios. We focused on causal variants at low and

intermediate frequency (five MAF intervals between 0.2%–5%)

and an intermediate genotypic relative risk (GRR) of 3 under a

dominant model, which is when single variant tests would likely

underperform given a realistic sequencing sample size. We

evaluated performance by the power of the methods to correctly

identify the precise causal variants (as opposed to association

signals) and their false positive rates.

We then performed the Bayesian analysis on a set of exome

sequencing samples, for which we assigned case/control statuses

according to well-documented disease causing variants. We

considered Crohn’s disease and hepatitis C virus (HCV) treatment

induced anemia. For Crohn’s disease, there are two SNPs

(rs2066844, MAF = 5.29%; rs2066845, MAF = 1.10%) in the

NOD2 gene that are known to be causal [25,26]. Furthermore,

GWAS run by the Wellcome Trust Case Control Consortium [27]

found a signal (rs17221417, MAF = 25.41%) in the NOD2 locus

that is significantly (p = 9.4610212) associated with Crohn’s

disease. For HCV treatment induced anemia, rs6051702 was

identified as the most significant signal (MAF = 17.81%,

p = 1.1610245) in a GWAS scan [28], and in the same study,

two functional variants (rs1127354, MAF = 7.55%; rs7270101,

MAF = 13.85%) in the ITPA gene were also identified as causal. A

subsequent biochemical study confirmed that these variants are

indeed causal and described biochemically how they protect

against treatment induced anemia [29]. Using these confirmed

causal variants and GWAS signal for a given trait, we simulated

case/control data from the available exomes, assuming heritability

(on liability scale) = 10%, and assessed performance of the

Bayesian approach.

Methods

Simulation study
Simulation of genotypes. The coalescent-based software

GENOME [30] was used to generate a population of 15,000

haploid ‘genomes’ (effective population size62), each consisting of

two 500 Kb-long independently assorting ‘chromosomes’. Muta-

tion rate and recombination rate per base were set to 1028 and

1028 respectively. Causal variants were chosen within the central

100 Kb region of the first chromosome. To distinguish between

the two chromosomes, the first was termed ‘causal chromosome’

and the second was termed ‘null chromosome’. Under this design,

among variants being interrogated approximately a half of them

were linked to causal variants to varying degrees and the other half

were unlinked to any causal variant.

We simulated a three-locus dominant genetic model and a

baseline disease risk of 1%. The presence of one or more causal

(always minor) alleles increased the risk by a factor of GRR = 3.

We were interested in the performance of the methods among

different scenarios of causal variant MAF. We considered five

MAF intervals: 0.2%–1%, 1%–2%, 2%–3%, 3%–4%, and 4%–

5%.

Overview of the simulation study. A diagram of the

procedure of analysis is shown in Figure 1. Briefly, a large GWAS

cohort (3000 cases and 3000 controls) was simulated to identify

significant association signals (p,1028) and a smaller sequencing

sample (500 cases and 500 controls) was used to detect causal

variants among candidate variants.

We used a two-stage approach. In the GWAS stage, tests were

limited to common SNPs (MAF.5%), since rare variants are

typically underrepresented on GWAS arrays. On the other hand,

in the sequencing data analysis, we focused on variants of MAF

lower than 5% (step 1 in Figure 1), including the causal variants.

We considered two types of statistical methods for identification

of causal variants. A univariate logistic regression model (step 3 in

Figure 1), which tests one variant at a time, was used as a

benchmark. In particular we fitted a genotypic model that typically

results in a x2 test with two degrees of freedom (or only one when

the variant is too rare for minor allele homozygotes to be

observed). This type of test cannot distinguish between causal

variants and variants that are in LD with causal variants.

The Bayesian regression approach we implemented incorpo-

rates information from GWAS signals and sequence conservation

(step 2 in Figure 1). We incorporated this information quantita-

tively into the Bayesian multi-variant model by assigning a weight

to each candidate variant. Three types of weights were considered.

First, based on the assumption that GWAS signals are in LD with

at least one causal variant, the degree of LD between GWAS

signals and a candidate variant is likely correlated with the

likelihood of the candidate variant being causal. Therefore, for a

given variant, we defined the ‘r weight’ as the maximum of r

values (square root of the LD measure r2) between the candidate

variant and all GWAS signals. Here, r was calculated using the

3000 GWAS controls (because LD is usually based on large

control samples and can be obtained from the HapMap data set,

for example). To prevent the r weights that enter the model from

getting too small, we set a minimum value at 0.01 so that all r

values less than that were forced to be 0.01. Second, we defined a

composite ‘phastCons weight’ as the weighted average of

phastCons among different lineages (1/2*vertebrateCons+
1/3*mammalCons+1/6*primateCons) based on the consideration

that conservation among a broader lineage scope implies

potentially stronger functionality. phastCons scores for causal

variants were drawn from the empirical distribution of ‘pathogen-

Author Summary

The decline in DNA sequencing cost permits the interro-
gation of potentially all variants across the entire allele
frequency spectrum for their associations with complex
human diseases and traits. However, the identification of
causal variants remains challenging. Existing single variant
tests do not distinguish between causal association and
association induced by linkage disequilibrium and tend to
be underpowered for rare or low-frequency variants,
whereas variant grouping methods do not identify
individual causal variants. We propose a novel Bayesian
hierarchical regression approach that estimates effects of
multiple variants on a disease trait simultaneously and
incorporates prior information on the likelihood of
causality. By simulation, we show that by combining
linkage disequilibrium with known genome wide associ-
ation signals and functional conservation, the proposed
method, the first of its kind, is powerful to correctly detect
causal variants.

Use Prior Information for Causal Variant Detection
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ic’ SNPs in the dbSNP database; and phastCons scores for non-

causal variants were drawn from the empirical distribution of all

variants on chromosome 20 in a whole-genome sequence data set

(161 samples) in our laboratory. As with r weight, the minimum

composite phastCons value was set to be 0.01. Third, besides ‘r

weight’ and ‘phastCons weight’ individually, we also calculated the

product of the two, ‘r6phastCons weight’. Finally, an

uninformative weight (all variants receiving the same weight,

one, or ‘no weight’ as we called it) was also considered for

comparison. All weights were scaled to be between 0.01 and 1 by

dividing by the maximum.

Bayesian multi-variant liability model. In a liability

model, it is assumed that a continuous latent variable (i.e. liability)

underlies case/control status, and the liability follows a Normal

distribution. A case (control) corresponds to a situation when an

individual’s liability is larger (smaller) than a threshold. A formal

description is provided below.

Let di and yi denote the disease status and liability, respectively,

of individual i (i = 1,…,n); there is a fixed threshold t such that

di = 1 if yi.t and di = 0 otherwise. Moreover, the liability is related

to a set of variants by the Normal regression model:

yi~mz
Xp

j~1

xijbjzei,

where p is the total number of variants; m is the population mean;

xij is the genotype of variant j in individual i, coded as 0, 1 or 2 for

aa, Aa or AA, where A is the minor allele of variant j. The genetic

effect of variant j is given by bj, an unknown quantity which we

wish to make inference about. Finally, ei is the random error with a

Normal distribution N(0,s2
e). To ensure model identifiability, a

standard choice is to set the threshold t = 0 and the error variance

s2
e~1.

In the above-mentioned liability model, the observed data

consists of the binary response variables di (i = 1,…,n) and

genotypes xij (i = 1,…,n; j = 1,…,p); the unknown parameters

consist of yi (i = 1,…,n), m and bj (j = 1,…,p). The central idea of

a Bayesian analysis is to combine what is known about parameters

before data are observed (represented by a prior probability

Figure 1. Workflow of the simulation study. Before carrying out these steps, a large pool of haplotypes (n = 15,000) was simulated. Given GRR
and MAF of causal variants, cases and controls were simulated by randomly choosing pairs of haplotypes and calculating the risk of each individual to
probabilistically assign phenotype.
doi:10.1371/journal.pcbi.1003093.g001

Use Prior Information for Causal Variant Detection
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distribution) with the information coming from the data (repre-

sented by a likelihood function) to arrive at a posterior probability

distribution. Once the posterior distribution is known, one can

make inference on parameters of interest (in our case, bj’s) using an

appropriate Markov chain Monte Carlo sampling method.

Our belief of a variant being causal a priori enters the Bayesian

modeling process through the specification of the prior distribu-

tions of bj’s. That is, we assume a Normal prior for bj: N(0, wjs
2),

where wj is the predefined weight of variant j, as noted earlier.

According to this distribution, the larger the weight, the more

likely that the variant has an effect. To complete the posterior

distribution, we also need to write the likelihood function as well as

prior distributions for m and s2. Following common practice, we

choose a flat prior for m (p(m)/1), and a scaled inverted Chi-square

distribution for s2, with both the degrees of freedom (u) and scale

(S2) being equal to 0.1. The final joint posterior distribution (up to

proportionality) can then be written as

P
n

i~1
I(yiw0)I(di~1)zI(yiv0)I(di~0)½ �

|P
n

i~1

1ffiffiffiffiffiffi
2p
p exp {

1

2
yi{m{

Xp

j~1

xijbj

 !2
2
4

3
5

|P
p

j~1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pwjs2

p exp {
b2

j

2wjs2

" #

| s2
� �{(n=2z1)

exp {
nS2

2s2

� �
, where I(:) is indicator function:

Using an iterative Gibbs sampler, one can draw values from each

unknown parameter’s conditional posterior distribution. Details

regarding sampling procedure are outlined in Text S1. A single

chain of Gibbs sampler was implemented, and the total number of

iterations was 100,000 with the first 50,000 being discarded. After

that, the chain was thinned by taking every 50th value. Empirical

evaluation of several random replicates of our simulated data

showed that the posterior estimates of variant effects were robust

to different initializations in the Gibbs sampling. For each variant

effect, we recorded its posterior mean and standard deviation for

significance test as described in the next section. A C++ program

was coded for the Bayesian analysis. With a sample size of 1000

(500 cases and 500 controls) and a total number of 1000 variants, a

complete run with 100,000 iterations took approximately 1 CPU

hour on a 64-bit, 2.5 GHz Linux workstation.

Permutation-based significance test. Phenotype permuta-

tion was employed to determine an empirical significance

threshold for statistically significant effects (causal). This method

has been theoretically justified in controlling family-wise type I

error [31,32] and applied in multi-marker based QTL mapping

[33]. The first step is to randomly shuffle case/control statuses

across individuals while keeping their genotypes unchanged, in

order to conserve LD structure. Suppose that the data are shuffled

B times. The second step is to apply a statistical test on each of the

B shuffled data sets and obtain a corresponding test statistic. For

single variant logistic regression, we chose the minimum model p-

value across all variants as the test statistic. For the Bayesian multi-

variant regression, we chose the maximum absolute standardized

effect size (the posterior mean of an effect divided by its posterior

standard deviation) across all variants as the test statistic. The

second step yields an empirical distribution of the test statistic

under the null hypothesis of no variant-disease association. Finally,

we compute a permutation p-value for each variant as (B0+1)/

(B+1), where B0 is the number of permutations that yield a test

statistic at least as extreme as the one from unshuffled data. We

used a significance threshold of p = 0.01 for all analyses

throughout. Because of the computational burden with the

Bayesian method and the need to replicate the study in different

scenarios, we ran B = 500 permutations, which corresponded to a

binomial standard error of p values of approximately 0.004

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01|0:99=500

p
).

Power and false positive rate. The entire procedure (data

simulation and statistical analysis) was fully and independently

repeated 200 times. Power of detecting a causal variant was the

proportion of the 200 replicates in which it was declared to be

significant. For non-causal variants, we calculated the proportion

of them that were incorrectly identified as causal, i.e., the false

positive rate (FPR). In each replicate, FPR was calculated

separately for non-causal variants on the causal chromosome

and those on the null chromosome. It was then averaged over the

200 replicates. Due to LD with causal variants, it may be

inappropriate to call a non-causal variant on the causal

chromosome a false positive if it was identified as causal. However,

we loosely used the term FPR for convenience.

Exome sequencing data analysis
Genotype data. 753 individuals of European ancestry were

whole-exome sequenced in our laboratory. A series of quality

control (QC) filtering (including read depth, base calling quality,

missing rate per SNP and per sample, genotype imputation

accuracy, Hardy-Weinberg equilibrium test and MAF) were applied

to remove SNPs and individuals. After QC, the NOD2 data included

728 individuals and 100 candidate variants, and the ITPA data

included 715 individuals and 338 candidate variants (Text S2). We

next describe briefly the way we obtained these variants.

In the three well-known NOD2 mutations on chromosome 16

for Crohn’s disease, we focused on rs2066844 and rs2066845 only,

because the third one (rs2066847) is an insertion variation and

absent from our exome data. In addition, the GWAS signal in

NOD2, rs17221417, was also unavailable in our data. However, we

found another SNP, rs2066842, located 5 Kb downstream of

rs17221417, is in complete LD with rs17221417 (both r2 and D9

are equal to one as verified in HapMap data) and is present in the

data, making it a perfect proxy for rs17221417. Attention was then

restricted to 1 Mb region centered around the position of

rs17221417. Within this region, variants with MAF$0.2% were

chosen as candidate (proxy SNP rs2066842 was excluded),

resulting in a total of 100 variants. While the overall LD pattern

showed small linkage disequilibrium among the variants, there

were a handful of SNP pairs in high or even complete LD (Figure

S1, upper panel). However, we did not observe SNPs in strong LD

with the two causal variants in this region.

The two ITPA variants on chromosome 20 responsible for HCV

treatment induced anemia, rs1127354 and rs7270101, as well as

the associated GWAS signal (rs6051702) were dealt with in exactly

the same way as the NOD2 variants. A perfect proxy was used in

lieu of the original GWAS signal, which was absent from our data.

Within 1 Mb region centered around rs6051702, there were 338

variants with MAF$0.2% and chosen for analysis. Inspection of

LD plot (Figure S2, upper panel) revealed a few LD blocks among

the 338 variants. In particular, there was one SNP in complete LD

(r2 = 1) with causal variant rs1127354 and two SNPs in almost

complete LD (r2 = 0.9) with causal variant rs7270101.

Phenotype simulation. To simulate case/control pheno-

types, we started by generating a quantitative liability for each

individual. Symbolically, l (liability) = g (genetic value)+e (error), as

noted from our previous description of liability model. Assuming a

Use Prior Information for Causal Variant Detection
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dominance model as above, we set g = 1 when a risk allele (always

minor) was seen at any of the two causal sites, and g = 0 otherwise.

The error was drawn from a Normal distribution with mean zero and

variance Ve; value of Ve was chosen such that heritability, Vg/(Vg+Ve),

was equal 10%, where Vg was estimated by the empirical variance of

g’s across samples. To achieve an equal number of cases and controls,

we used the median of all samples’ liability as a threshold so that a half

of samples below the threshold were designated as controls and the

other half as cases. Since only a small fraction of individuals carried

risk alleles, the entire liability distribution was dominated by that of

non-carriers. Also, as we assumed a low heritability (10%), the error

variance was therefore large, leading to a wide overlap between

liability distribution of carriers and of non-carriers (Figure S3). As a

result, a small portion of carriers contributed to the control

population whereas almost a half of non-carriers contributed to the

case population.

Analysis. Since the genotypes were from real data and thus

fixed, we were unable to assess statistical power and FPR

systematically as in the full simulation. On the other hand, there

will be uncertainty in the results from simulating only one set of

phenotypes given the genotype data and applying the test method.

To address this issue, we generated 100 sets of phenotypes using

the same causal effects, giving rise to 100 replicated data sets,

although each had the same genotype data. In each replicate,

statistical analyses followed previous description for fully simulated

data set, except that the number of permutations was increased to

1000. This way, ‘average’ performance of a method can be

evaluated.

Results

Full simulation study
Across the 200 replicates, the number of candidate variants

ranged from 862 to 1150, with a mean number 991. Each data

replicate was analyzed by the single variant test (benchmark) and

the Bayesian multi-variant liability regression model with ‘no

weight’, ‘r weight’, ‘phastCons weight’, and ‘r6phastCons weight’.

As expected, increasing causal MAF led to an increase in the

power of all methods (Table 1). Notably, even in the lowest MAF

range (0.2–1%), the best method, Bayesian model with ‘r6phast-

Cons’ weight, achieved an average (of the three causal variants)

power of 0.34 and was able to detect at least one causal variant

67% of the time. When MAF was raised to 4–5%, the average

power was 0.4 for single variant test, 0.7 for Bayesian models with

r weight and no weight, and 0.9 for Bayesian models with

phastCons and r6phastCons weight.

FPR was overall controlled at a very low level (Figure S4).

Across all scenarios, the maximum averaged FPR was about 7 out

of 1000, as produced by single variant test on non-causal variants

on the causal chromosome. As expected, FPR on the causal

chromosome was consistently higher than that on the null

chromosome.

Next we describe in more detail results from the comparison

among different methods.

1) Bayesian multi-variant model with r weight con-
sistently improved power over the one without
weight. The percentage of increase was especially appre-

ciable in low MAF ranges. For example, the average power

under MAF = 1–2% was 0.097 and 0.17 for no weight and r

weight, respectively, corresponding to a 75% increase from

no weight to r weight (Fisher’s exact test p = 0.038). Likewise,

under MAF = 2–3%, we found a 41% increase in power

from no weight (0.32) to r weight (0.45) (Fisher’s exact test

p = 0.01). The advantage of using r weight was attributed to

its discriminative ability between causal and non-casual

variants (see the first two rows in Figure 2). Despite

substantial overlap observed between r distributions for

non-causal variants on the causal chromosome and for

causal variants, their difference was rather distinct. More-

over, for non-causal variants residing on the null chromo-

some, the difference became much more profound, since r

values of the vast majority of the non-causal variants with

GWAS signals were close to zero. These indicate that causal

variants were indeed preferentially in LD with GWAS

signals [34] and, more importantly, such information is

beneficial for detecting causal variants.

2) r6phastCons weight greatly boosted power as
compared with r weight alone. As noted earlier, there

was a substantial fraction of low r weight causal variants,

especially at low causal MAF. This is because common

GWAS signals cannot adequately tag a rare causal variant.

Moreover, due to LD with causal variants, it is likely for

some non-causal variants to receive r weights as high as

those for causal variants, thereby further attenuating the

contrast between causal and non-causal variants. Collec-

tively, these results suggest that r alone is not informative

enough and explain why it is underpowered at low causal

MAF. On the other hand, phastCons appeared to

distinguish causal variants from non-causal variants consid-

erably better than r did and, by design, was independent of

MAF. As a result, when using the product of r and

phastCons as weight, the power was significantly boosted

over r weight across all MAF ranges (Fisher’s exact test p all

smaller than 1025).

3) r6phastCons weight had higher power than phast-
Cons alone when MAF,2% and similar power
when MAF.2%. Comparing phastCons against r6phast-

Cons, it was found that both weights rendered the Bayesian

model equivalent average power (about 0.8,0.9) when

causal MAF was greater than 2%. Below 2%, however, the

advantage of r6phastCons was remarkable. In particular,

when MAF was between 0.2% and 1%, Bayesian with the

r6phastCons weight was markedly better powered than that

with phastCons (0.34 vs. 0.10, Fisher’s exact test

p = 9.661029). A closer examination of the distribution of

effect sizes (first row of Figure S5) revealed that estimated

effects of causal variants were generally larger with

r6phastCons weight than with phastCons, especially for

MAF between 0.2–1%. The increase of causal MAF resulted

in increased effect sizes for both weights and, in the

meantime, lessened their difference as well.

4) Bayesian with r6phastCons weight outperformed
other methods in controlling FPR. As causal variants

became more common, the degree of LD as measured by r

between them and linked non-causal variants also

increased, resulting in elevated FPR in general (first

column of Figure S4). Single variant test could not control

FPR well on the causal chromosome; many more false

positives were discovered, particularly at higher causal

MAF’s. The same was found for Bayesian models with no

weight and r weight. In contrast, Bayesian models with

phastCons and r6phastCons weights were relatively more

robust to causal MAF in maintaining FPR. This was most

clear in the two highest MAF ranges (3–4% and 4–5%),

where FPR by these two weights were substantially lower

than that by other methods.

Use Prior Information for Causal Variant Detection
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We next examined FPR of non-causal variants on the

null chromosome (second column of Figure S4). Not

surprisingly, the average FPR of these null variants was

close to zero by all methods. However, if we consider the

proportion of the 200 replicates where false positives

occurred, Bayesian model with phastCons weight ap-

peared to produce the greatest FPR. We were particularly

interested in the relative performance of r 6phastCons vs.

phastCons, and compared their effect estimates at these

null variants (second row of Figure S5). While the

estimated null effects were all concentrated around 0

distributionally, r6phastCons weight presented a much

sharper peak around 0. There was a ‘heavier’ tail on

nonzero values for estimated effects using the phastCons

weight, making this method more prone to false

discoveries. Such difference in the sizes of estimated

effects between the two weights may be explained by the

underlying distributions of the weights. Indeed, while the

vast majority of phastCons (4th row of Figure S6) of the

null variants was concentrated on the smallest value (22

on the log scale, or 0.01 on the original scale), there was a

fair amount of probability mass within range 21 to 0 (0.1

to 1 on the original scale). In contrast, we found virtually

zero mass for the r6phastCons weight (last row) beyond

21, and the entire distribution was shifted to the left as

compared to phastCons weight. These results indicated

that the incorporation of r into variant weighting

suppressed false positives effectively, making r6phastCons

weight the method of choice when considering both power

and FPR.

In summary, by simulation we showed that Bayesian multi-

variant liability regression model with informative weight assigned

to variants substantially improved the power to detect causal

variants, compared with single variant test and unweighted

Bayesian model. In particular, we found that the product of r

and phastCons constitutes a better weight than either alone in

terms of power and FPR, especially at low causal MAF.

Exome sequencing data analysis
We then applied our method to real exome sequence data with

simulated phenotypes. Information about the two NOD2 causal

variants (rs2066844 and rs2066845) and the two ITPA variants

(rs1127354 and rs7270101) is given in Table 2. In both data sets,

while LD of causal variants with GWAS signal was higher than

most of the non-causal variants, there existed non-causal variants

with higher LD (Figure S1, S2, lower panel). Such occasional high

LD with GWAS signal for non-causal variants was also observed

in the previous simulated genomes data. Similarly, for some non-

causal variants their phastCons scores were higher than those of

causal variants. This is not surprising because variants not causal

for one disease may be causal for other diseases. For example, in

the NOD2 data, 28% of non-causal variants had higher composite

phastCons scores than the causal variant rs2066844 (0.32), and in

Table 1. Power of different methods in the simulation analysis.

Causal MAF
Number of causal
variants detected

Single variant
test Bayesian w/o wt Bayesian wt = r

Bayesian
wt = phastCons

Bayesian wt = r 6
phastCons

0.2–1% At least one1 0.120 0.010 0.085 0.220 0.670

At least two2 0.005 0 0 0.070 0.310

All three3 0 0 0 0.020 0.050

Average4 0.042 0.003 0.028 0.103 0.343

1–2% At least one 0.445 0.270 0.420 0.845 0.945

At least two 0.085 0.020 0.075 0.590 0.685

All three 0 0 0.015 0.260 0.285

Average 0.177 0.097 0.170 0.565 0.638

2–3% At least one 0.660 0.700 0.795 0.990 1

At least two 0.180 0.220 0420 0.875 0.895

All three 0.010 0.040 0.130 0.515 0.535

Average 0.283 0.320 0.448 0.793 0.810

3–4% At least one 0.795 0.885 0.935 1 1

At least two 0.290 0.510 0.625 0.950 0.940

All three 0.030 0.100 0.145 0.610 0.570

Average 0.372 0.498 0.568 0.853 0.837

4–5% At least one 0.835 0.980 0.990 0.995 0.995

At least two 0.380 0.785 0.785 0.975 0.950

All three 0.060 0.285 0.320 0.720 0.660

Average 0.425 0.683 0.698 0.897 0.868

Results were based on 200 replicates. In each replicate, 500 cases and 500 controls were used to identify three causal variants from a total of ,1000 variants, with each
method being evaluated. We assumed causal variants have a constant GRR of 3 and render disease susceptibility under a dominant model.
1The proportion of replicate simulations in which at least one causal variant was detected.
2The proportion of replicate simulations in which at least two causal variants were detected.
3The proportion of replicate simulations in which all three causal variants were detected.
4The average power of three causal variants.
doi:10.1371/journal.pcbi.1003093.t001
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the ITPA data 34% of non-causal variants had higher scores than

the causal variant rs7270101 (0.17). However, it was rare for non-

causal variants to have both high r and high phastCons. This made

r6phastCons an attractive weighting scheme because it incorpo-

rates both measures to discriminate causal from non-causal

variants.

In Figure 3 (A) and (B), we first show a Manhattan plot from

single variant test and one from Bayesian liability model with

r6phastCons weight, based on one representative example out of

the 100 simulated data sets. We then summarize results from both

methods by displaying for each candidate variant the proportion of

the 100 simulations where it was detected (i.e., being declared as

significant).

As seen in Figure 3 (A), r6phastCons weights had a clear

pattern in the NOD2 sequence variants: the two causal variants

ranked 4th and 5th among all 100 variants; with a few exceptions,

almost all non-causal variants had very small weights. The last

panel illustrates by replicating simulations how well each method

identified causal vs. non-causal variants. For the relatively common

causal variant rs2066844 (MAF = 5%), it was almost always

identified by both methods across the 100 simulations. For the

low-frequency causal variant rs2066845 (MAF = 1%), however,

proportion of detection was about 40% and 20% by the Bayesian

model and single variant test, respectively. Considering the low

heritability (10%) and modest sample size (,700), 40% is a

substantial improvement over 20% for detecting causal variant at

an allele frequency of 1%. In the meantime, false detection among

non-causal variants produced by either method was negligible,

likely a result of the absence of linkage disequilibrium in this

region.

Compared with variants in the NOD2 region, variants in the

ITPA region had a less clear pattern in r6phastCons (Figure 3(B)):

causal variant rs1127354 ranked at the 4th whereas causal variant

rs7270101 ranked at the 21st. The lower weight of rs7270101 had

to do with the fact that it was an intronic SNP and was less

conserved. While the Bayesian model outperformed single variant

test for rs1127354 (MAF = 7.55%) by a large margin (80% vs.

30%), for rs7270101 (MAF = 13.85%) the pattern was opposite:

the proportion of single variant far exceeded that of the Bayesian

model (80% vs. 40%). However, the higher power of single variant

test was accompanied by a large number of false positives, as

opposed to virtually no false positives by the Bayesian model. This

is in fact a strength of our Bayesian model in that it is able to select

the correct causal variants out of many SNPs in LD. In addition,

the two causal variants were always the top ranked variants in the

Bayesian results while they were lower ranked in the single variant

test. This makes prioritization much more accurate and efficient

by the Bayesian model.

Discussion

Here we developed and evaluated a Bayesian multi-variant

regression approach for detecting causal variants in sequence data.

We first tested its performance in simulated data using an

intermediate risk (GRR = 3), a moderate and realistic sample size

(500 cases and 500 controls), and a range of minor allele

frequencies for the causal variants. Compared with the standard

single variant test, our method, when coupled with informative

prior weights, showed a clear advantage in statistical power.

Application of the method to real exome sequence data in order to

Figure 2. Distributions of three informative weights (r, phastCons and r6phastCons) for causal variants and non-causal variants on
the causal and null chromosomes in the simulation study. In each MAF range, weights were collected from 200 replicates, and weights in
each replicate were scaled by dividing each by the maximal value so as to bound final weight between 0 and 1.
doi:10.1371/journal.pcbi.1003093.g002
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identify known causal variants implicated through GWAS showed

similar results. In particular, while the high LD among variants in

the ITPA data created great ambiguity in interpreting the results

from single variant test, the Bayesian model using r6phastCons to

weigh variants was able to effectively discriminate causal from

non-causal variants in terms of their effect size estimates.

The Bayesian multi-variant regression model entails leveraging

informative prior information on variants so as to better

distinguish causal variants from non-causal variants. In this study,

the uses of different kinds of weights give rise to different prior

specifications (shrinkage) of variant effects, which in turn affect

posterior estimation of variant effects and their statistical

significance. As we have shown in the Results section, power

and FPR of the Bayesian regression model were greatly dependent

on the choice of prior weighting scheme. A good weighting scheme

is data-dependent and often requires combining different pieces of

information. In the full simulation study, which served as a proof

of concept, we generated data assuming that variant causality is

correlated with its conservation as encoded by phastCons. We

found that the combination of significant associations from GWAS

and variant phastCons rendered the Bayesian model a highly

improved performance in power than one without weighting.

However, while there is a tendency for causal variants to be

evolutionarily more conserved for many diseases, this may not be

always true, especially for late on-set diseases that are not subject

to natural selection. In such scenarios, some form of prediction for

variant effect, such as the PolyPhen scores [35] for coding variants

would be a more appropriate functional measure.

Using prior biological knowledge in genetic association studies

has increasingly been adopted recently. Several studies have

proposed using variable significance threshold for variants. For

example, the Prioritized Subset Analysis (PSA) [36] partitions

variants to two subsets, a ‘prioritized set’ and a ‘complementary

set’, where the prioritized set contains variants that are more likely

to harbor causative loci. It then controls false discovery rate in

each set separately, resulting in different thresholds on nominal p

values for prioritized and complementary variants. The partition-

ing of variants into two different priority sets can also be iteratively

optimized given the data [37]. Alternatively, a more sophisticated

method is to have variant specific threshold or weight based on

their functionality [38]. In addition, grouping-based association

tests can also aggregate variants differentially according to some

prior knowledge [12,39]. One essential difference between our

method and previous methods is that we fit all variants

simultaneously while the variable threshold methods often

estimate significance for variants individually.

As in the common theme of Bayesian shrinkage regression

methods, our knowledge on variant effect appears only in its prior

variance, since all effects are shrunk toward a single prior mean,

which is zero. As such, the weight only indicates magnitude of

variant effect but not direction. Indeed, for variants with high

phastCons weights, it is unlikely for their minor alleles to have a

protective role in disease liability. Thus, it is desirable to assign a

positive prior mean for these variants in order to enhance the

power of discovery. On the other hand, for variants with near zero

weights, we still can use zero mean as prior. These considerations

require a different prior specification than presented here as well

as more complicated posterior computations [40], which will be

explored in further extension of the present work.

An alternative Bayesian approach to identifying variants

associated with disease is Bayesian model selection via Bayes

factor. A representative example under this framework is the

Bayesian risk index method [41], which allows for uncertainty of

inclusion of variants and the direction of the effect. As opposed to

fixing the number of variants, this feature offers the method some

advantage when the proportion of causal variants is low in a region

under study. Specifically, it provides a global evidence of a set of

variants for their association with the disease and, if there is a

global association, it furthers asks which variants are driving the

association. Our method differs from the Bayesian risk index in the

following essential ways. First, in our multi-variant regression

model, a fully Bayesian treatment is used for the estimation of

variant effects, whereas the computation of Bayes factor (as in

Bayesian risk index) relies on approximation of marginal likelihood

using maximum likelihood estimates of variant effects. That is, our

method captures the uncertainty of variant effects through prior

distributions. Second, variant-specific weights can be readily

incorporated in our regression model, which has not been made

possible in the Bayesian risk index. Furthermore, Bayes factor is a

quantity that evaluates evidence in favor of a specific model;

typically a value greater than 3.2 is interpreted as positive support.

However, deciding upon a significant threshold for Bayes factor

and thereby making decision is non-trivial and requires assump-

tions such as the relative cost of type II error to type I error [42].

Hence, our choice of using a test statistic followed by permutation

test to control family wise type I error appears to be more

convenient for declaring significance of a variant.

We tested our method on a relative small candidate region

(1 Mb) around GWAS signals for convenient demonstration of the

method, mainly for computational feasibility as many replicates

needed to be run in the simulation study. The method can be

extended to a larger candidate region to account for the situation

that some causal variants could be far away from GWAS signals.

Also, while we focused on low frequency candidate variants in our

analyses, the method can readily encompass both common and

rare variations. In both cases where the number of variants to be

fitted in the model would be increased substantially, sample size

needs to be increased accordingly to ensure accurate estimation of

variant effects. On the other hand, as computing time grows when

a large number of variants are analyzed, it may be useful to

prescreen variants based on one or more criteria (e.g., exonic

versus intergenic). In addition, another incentive for prescreening

Table 2. NOD2 and ITPA causal variants in the exome sequencing data.

Gene Causal variant Chromosome Build 37 position (bp) MAF LD (r) with GWAS signal Composite phastCons score

NOD2 rs2066844 16 50745926 5.29% 0.39 0.32 (0.16, 0.24, 0.95)

rs2066845 16 50756540 1.10% 0.16 0.99 (1, 1, 0.96)

ITPA rs1127354 20 3193842 7.55% 0.34 0.99 (1, 1, 0.99)

rs7270101 20 3193893 13.85% 0.58 0.17(0.016, 0, 0.95)

The composite phastCons is weighted sum of vertebrate cons, mammal cons and primate cons (shown in parenthesis), with weight 1/2, 1/3 and 1/6, respectively.
doi:10.1371/journal.pcbi.1003093.t002
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is that, with a limited sample size, adding more non-causal variants

to the model would lead to less accurate effect size estimation for

causal variants. In fact, the same argument holds for single variant

test where prescreening can alleviate the burden of multiple

testing.

A common problem with a multiple regression model is

multicollinearity among variables. In our context, this is caused

by high LD between variants. In particular, variances of effect

estimates increase for variants that are in LD with at least one

other variant in the same model. This often leads to false rejection

of a true association. In our method, this problem is mitigated by

differential shrinkage on variant effects through differential

weighting. That is, despite being highly correlated in their

genotypes, variants in high LD can still be distinguished by

additional information such as the phastCons score. This may

explain why the supplement of phastCons to ‘r weight’ improved

power substantially. We also performed a small experiment (Text

S3) where highly correlated variants were clustered and tagged.

We tested the ability of the Bayesian model with ‘no weight’ to

detect variant clusters that contained the causal variant as opposed

to its ability to detect individual causal variants without clustering

and tagging. Interestingly, clustering improved the power from

56% to 96% for causal MAF between 4–5%. However, the

resolution to individual variants was lost by clustering and tagging.

Nonetheless, when an informative weight is not available, this

provides an efficient way to narrow down to variant clusters that

contain causal variants.

Our method is implemented to be able to include covariates

such as principal components of SNP genotypes. However, an

open issue exists with the permutation procedure in its validity in

the presence of confounding covariates. In this case, naive

shuffling of disease statuses would break the confounding structure

Figure 3. Causal variant detection in the exome sequencing data analysis. (A): NOD2 data; (B): ITPA data. The two top panels are from one
replicate of the simulation. For single variant test, SNP effect size was represented by 2log10 of p value from logistic regression model; for Bayesian
liability model, it was represented by the standardized effect estimated at each SNP. Red dots indicate two causal variants (see Table 1 for more
information). Blue vertical bars show values of SNP weights (r 6 phastCons). The horizontal dashed line indicates effect size at the significance
threshold (permutation p value = 0.01). The bottom panel shows proportion of simulations where a variant was detected (i.e., significant at
permutation p = 0.01 level). Causal variants are marked in red color.
doi:10.1371/journal.pcbi.1003093.g003
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observed in the original data. There are existing methods that can

effectively preserve relationships between confounding covariates

and genotypes as well as between covariates and disease statuses

[43].

Supporting Information

Figure S1 Upper: pairwise LD (r2) of the 100 candidate variants

in NOD2 region in the exome sequencing data. Lower: LD (r)

between each candidate variant and the GWAS signal. Causal

variants are marked in red color.

(PDF)

Figure S2 Same as Figure S1 but for the 338 candidate variants

in ITPA region.

(PDF)

Figure S3 Distributions of the simulated liability values for

exome sequencing samples. Dashed line marks median of the

distribution of all samples, which was used to classify samples to

cases and controls. (A): NOD2 data, where 12% of samples were

risk allele carriers. (B): ITPA data, where 39% of samples were risk

allele carriers.

(PDF)

Figure S4 Heatmap plots showing the number of non-causal

variants that were falsely identified as causal in each of the 200

replicates. Numbers on the right side of each plot are false positive

rates averaged across replicates for different methods.

(PDF)

Figure S5 Distributions of standardized variant effect estimates

from Bayesian liability model with phastCons weight and with

r6phastCons weight. In each scenario (plot), effect estimates of

Bayesian with phastCons weight (or r6phastCons) were collected

from 200 replicates to form a distribution density.

(PDF)

Figure S6 Same as Figure 2 except that weight is shown on the

log10 scale.

(PDF)

Text S1 Gibbs sampling in Bayesian liability regression model.

(PDF)

Text S2 Exome sequencing data processing and quality control.

(PDF)

Text S3 Using simulation to demonstrate effect of clustering

variants on power.

(PDF)
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