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Abstract

Standard Gibbs energies of reactions are increasingly being used in metabolic modeling for applying thermodynamic
constraints on reaction rates, metabolite concentrations and kinetic parameters. The increasing scope and diversity of
metabolic models has led scientists to look for genome-scale solutions that can estimate the standard Gibbs energy of all
the reactions in metabolism. Group contribution methods greatly increase coverage, albeit at the price of decreased
precision. We present here a way to combine the estimations of group contribution with the more accurate reactant
contributions by decomposing each reaction into two parts and applying one of the methods on each of them. This
method gives priority to the reactant contributions over group contributions while guaranteeing that all estimations will be
consistent, i.e. will not violate the first law of thermodynamics. We show that there is a significant increase in the accuracy of
our estimations compared to standard group contribution. Specifically, our cross-validation results show an 80% reduction
in the median absolute residual for reactions that can be derived by reactant contributions only. We provide the full
framework and source code for deriving estimates of standard reaction Gibbs energy, as well as confidence intervals, and
believe this will facilitate the wide use of thermodynamic data for a better understanding of metabolism.
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Introduction

A living system, like any other physical system, obeys the laws of

thermodynamics. In the context of metabolism, the laws of

thermodynamics have been successfully applied in several modeling

schemes to improve accuracy in predictions and eliminate infeasible

functional states. For instance, several methodologies that reflect the

constraints imposed by the second law of thermodynamics have

been developed [1–3] and were shown to remove thermodynam-

ically infeasible loops and improve overall predictions. Alternatively,

thermodynamic data have been integrated directly into genome-

wide models and analysis methods [4–10]. Unfortunately, this

integration has been hindered by the fact that thermodynamic

parameters for most reactions are effectively missing (sometimes due

to scattered accessibility or non-standard annotations).

The nearly ubiquitous method for experimentally obtaining

thermodynamic parameters for biochemical reactions, specifically

their standard transformed Gibbs energies DrG’0, is directly

measuring the apparent equilibrium constant K ’ and then

applying the formula DrG’0~{RT ln(K ’), where R is the gas

constant and T is the temperature. Typically, the substrates of the

reaction are added to a buffered medium together with an enzyme

that specifically catalyzes the reaction. After the concentrations

reach a steady-state, the reaction quotient Q is calculated by

dividing the product concentrations by the substrate concen-

trations. It is recommended to do the same measurement in the

opposite direction as well (starting with what were earlier the

products). If the experiment is successful, and the steady-state

reached is an equilibrium state then both values for Q

(measured in both directions) will be equal to K ’ and thus to

each other. Notably, due to the nature of this method, only

reactions with DrG’0 close to the equilibrium value of zero can

be directly measured since current technology allows measuring

metabolite concentrations only within a range of a few orders of

magnitude. Although this method involves purifying substantial

amounts of the enzyme, it has been applied to many of the

enzyme-catalyzed reactions studied throughout the last century

and the results were published in hundreds or even thousands of

papers. A comprehensive collection of measured K ’ (among

other thermodynamic parameters), for more than 400 reactions,

has been published by the National Institute of Standards and

Technology (NIST) in the Thermodynamics of Enzyme-

Catalyzed Reactions Database (TECRDB [11]). However, even

this wide collection covers less than 10% of biochemical
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reactions in standard metabolic reconstructions, such as the E.

coli model iAF1260 [5].

In 1957 [12], K. Burton recognized that these apparent

equilibrium constants can be used (together with chemically derived

standard Gibbs energies for some simple compounds) to calculate

equilibrium constants of reactions with no known K ’ values. This

method is based on the notion that by knowing the DrG’0 of two

different reactions, one can calculate the DrG’0 of the combined

reaction by summing the two known standard transformed Gibbs

energies – as dictated by the first law of thermodynamics. For

example, although the reaction of ATP hydrolysis

(ATPzH2O ' ADPzPi) might be too far from equilibrium to

be measured directly, one can more easily measure the K ’ of the

reactions of glucose kinase (ATPzglucose ' ADPzglucose{6P;

DrG’0&{25 kJ/mol) and of glucose-6P phosphatase

(glucose{6PzH2O ' glucosezPi; DrG’0&{12 kJ/mol),

which are both closer to equilibrium. The standard transformed

Gibbs energy for the total reaction (i.e. ATP hydrolysis) would thus be

DrG’0&{37 kJ/mol.

In order to facilitate these K ’ calculations, Burton published a

table of about 100 inferred standard Gibbs energies of formation

(Df G0) which are defined as the standard Gibbs energy DrG
0 of the

formation reaction, i.e. the reaction of forming a compound out of

pure elements in their standard forms (e.g. 1
2

O2zH2'H2O).

Some of these values were taken from chemical thermodynamic

tables, and the rest were derived by Burton using the arithmetic

approach of combining reactions. For instance, if all species except

one in an enzyme-catalyzed reaction have known Df G0, and the

reaction’s DrG
0 can be obtained experimentally, then the last

remaining Df G0 can be calculated and added to the table. After

compiling such a table, the DrG
0 of any reaction involving species

that appear in the table can be easily calculated by summing the

formation energies of all the products and subtracting those of the

substrates. Throughout this paper we will refer to this method of

calculating DrG
0 as the Reactant Contribution (RC) method, since

it is based on the contribution of each reactant to DrG
0 (i.e. its

standard Gibbs energy of formation).

In the 50 years following Burton’s work, several such tables of

formation Gibbs energies have been published. Some of the most

noteworthy are the table by R. Thauer [13] and the larger

collection by R. Alberty [14,15]. Using these values, one can

determine Gibbs energies for more reactions at a wider range of

physiological conditions (pH, ionic strength) than the set of

reactions measured and stored in TECRDB. However, even this

advanced method covers less than 10% of reactions in the E. coli

model. This gap has prompted scientists to develop methods that

can estimate the missing thermodynamic parameters for genome-

wide models.

Quite coincidentally, a year after Burton published his

thermodynamic tables, S. Benson and J. Buss [16] published their

work on additivity rules for the estimation of molecular properties.

Benson and Buss called the law of additivity of atomic properties a

zero-order approximation, the additivity of bond properties a first-

order approximation, and the additivity of group properties a second-

order approximation. Groups were defined as pairs of atoms or

structural elements with distances of 3–5 Å. The contribution of

each group to the total was determined by linear regression. Using

the second-order approximation, DrG
0 is calculated as the sum of

the standard Gibbs energy contributions of groups that are

produced in the reaction, minus the contributions of groups that

are consumed. This method is commonly called the Group

Contribution (GC) method. Burton’s method of calculating the

Gibbs energy of formation for compounds (which we denote RC)

can be thought of as a ?-order approximation, where the entire

molecule is taken as the basic additivity unit for estimating the

DrG
0 (of course, this is not actually an approximation).

Group contribution methods were relatively successful in

estimating the thermodynamic parameters of ideal gases [16–

19], and later extended to liquid and solid phases [20]. Only in

1988 [21] was it brought to the world of biochemical reactions in

aqueous solutions and has since become the most widely used

technique for estimating the Gibbs energy of reactions [22–24].

GC methods can cover the majority of relevant biochemical

reactions (&90% and &70% of the reactions in E. coli and human

cell metabolic models respectively) [5,10,24]. The downside of GC

lies in its accuracy, since it relies on a simplifying assumption that

the contributions of groups are additive. Evidently, the average

estimation error attributed to GC is about 9–10 kJ/mol [23]. In a

recent study, we showed that an improvement of &14% can be

achieved by considering different pseudoisomers that exist

simultaneously for many of the compounds [24] (see Section S1

in Text S1 for details). Even with this improvement, error in GC

estimates is still significantly higher than in RC estimates (Figure 1).

In this paper, we aim to unify GC and RC into a more general

framework we call the Component Contribution method. We

demonstrate that component contribution combines the accuracy

of RC with the coverage of GC in a fully consistent manner. A plot

comparing the component contribution method to other known

methods is given in Figure 1.

Unifying reactant and group contribution methods
The extensive use of formation Gibbs energies for calculating

DrG
0 might create the impression that combining these two

frameworks (RC and GC) is a trivial task. Traditionally, the

formation energy of all pure elements in their standard forms is set

to zero by definition. All other compounds’ formation energies are

calculated in relation to these reference points. This is a sound

definition which creates a consistent framework for deriving the

DrG
0 of any reaction which is chemically balanced. However, the

difficulty of calculating the formation energy for some complex but

useful co-factors has been side-stepped by creating a somewhat

looser definition of formation Gibbs energy, where several non-

elemental compounds are defined as reference points as well (with

a standard formation energy of zero). For some rare reactions, this

Author Summary

The metabolism of living organisms is a complex system
with a large number of parameters and interactions.
Nevertheless, it is governed by a strict set of rules that
make it somewhat predictable and amenable to modeling.
The laws of thermodynamics play a pivotal role by
determining reaction feasibility and by governing the
kinetics of enzymes. Here we introduce estimations for the
standard Gibbs energy of reactions, with the best
combination of accuracy and coverage to date. The
estimations are derived using a new method which we
denote component contribution. This method integrates
multiple sources of information into a consistent frame-
work that obeys the laws of thermodynamics, and
provides a significant improvement in accuracy compared
to previous genome-wide estimations of standard Gibbs
energies. We apply and test our method on reconstruc-
tions of E. coli and human metabolism and, in addition, do
our best to facilitate the use of these estimations in future
models by providing open-source software that performs
the integration in a streamlined process.

Gibbs Energy Estimation by Component Contributions
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definition can create a conflict that will result in a very large

mistake in the DrG
0.

For instance, Alberty’s formation energy table [15] lists 16

compounds as having Df G0~0. Among these, only 5 are elements

(H2, I2, N2, O2, and S) and 11 are co-factors (CoA21, NAD(ox)21,

FAD(ox)22, FMN(ox)22 and seven other redox carriers). In most

reactions which use these co-factors as substrates, the ‘‘zeros’’ will

cancel out since one of the products will match it with a formation

energy which is defined according to the same reference point (e.g.

FAD(ox)22 will be matched with FAD(red)22 whose formation

energy is {38:88 kJ/mol in Albery’s table). Nevertheless, there are

a handful of reactions where this matching doesn’t occur. In the

reaction FAD(ox){2zH2O ' FMN(ox){2zAMP{1zHz

(catalyzed by FAD nucleotidohydrolase, EC 3.6.1.18), there is a

violation of conservation laws for FAD and FMN (both have

Df G0~0 in Alberty’s table). Therefore, using the table naı̈vely for

this reaction would yield a wrong value, namely DrG
0~{880 kJ/

mol. Combining formation energies derived using GC with ones

from RC greatly increases the number of reactions where different

reference-points are mixed together, and mistakes such as the one

described above become much more common.

One way to deal with the problem of reference-point conflicts, is

to use either RC or GC exclusively for every reaction DrG
0 being

estimated. Specifically, RC will by applied to all reactions that can

be completely covered by it. Only if one or more reactants are

missing from the formation energy table, we would use the less

precise GC method for the entire reaction. Unfortunately,

combining the frameworks in such a way can easily lead to

violations of the first law of thermodynamics. This stems from the

fact that inconsistent use of formation energies across several

reactions, coming from inaccuracies in the estimation method that

do not cancel out, can create situations where futile cycles will

have a non-zero change in Gibbs energy. An example for such a

futile cycle is given in Figure 2. Applying this method for large-

scale metabolic reconstructions will most likely lead to non-

physical solutions.

Reference-point conflicts and first-law violations can both be

avoided, by adjusting baseline formation energies of compounds

with non-elemental reference points to match group contribution

estimates. This approach was taken in [8] and [10]. The formation

energies of FAD(ox)22 and all other reference points in Alberty’s

table were set equal to their group contribution estimates. All

formation energies that were determined relative to each reference

point were then adjusted according to Alberty’s table to maintain

the same relative formation energies. The main disadvantage of

this approach is that the set of reference points is fixed and limited

to a few common cofactors. The coverage of reactant contribu-

tions could be increased by also defining less common metabolites

as reference points, but listing them all in a static table would be

impractical and inefficient.

The component contribution method, which is described in

detail in the following sections of this paper, manages to combine

the estimates of RC and GC while avoiding any reference-point

conflicts or first-law violations. In the component contribution

framework, the maximal set of reference points given a set of

measured reactions is automatically determined. We maintain the

notion of prioritizing RC over GC, but rather than applying only

one method exclusively per reaction, we split every reaction into

two independent reactions. One of these sub-reactions can be

evaluated using RC, while the other cannot – and thus its DrG
0 is

calculated using GC. We use linear orthogonal projections in

order to split each of the reactions, ensuring that all estimated

Figure 1. The development of Gibbs energy estimation
frameworks. The coverage is calculated as the percent of the relevant
reactions in the KEGG database (i.e. reactions that have full chemical
descriptions and are chemically balanced). The median residual (in
absolute values) is calculated using leave-one-out cross-validation over
the set of reactions that are within the scope of each method. Note that
the reason component contribution has a higher median absolute
residual than RC is only due to its higher coverage of reactions (for
reactions covered by RC, the component contribution method gives the
exact same predictions). *The residual value for Alberty’s method is not
based on cross-validation since it is a result of manual curation of
multiple data sources – a process that we cannot readily repeat.
doi:10.1371/journal.pcbi.1003098.g001

Figure 2. An example of a futile cycle where Gibbs energies are
derived using RC and GC. The combined stoichiometry of (1)
threonine aldolase, (2) acetaldehyde dehydrogenase (acetylating), (3)
glycine C-acetyltransferase, and (4) threonine:NAD oxidoreductase
creates a futile cycle where all the inputs and outputs are balanced.
Using RC we are able to derive the DrG

0 of reactions 1 and 2 (green),
but since 2-amino-3-oxobutanoate does not appear in formation
energy tables – we must use GC for reactions 3 and 4 (magenta). The
sum of all DrG

0 in this case is 26.0 kJ/mol which is a violation of the
first law of thermodynamics.
doi:10.1371/journal.pcbi.1003098.g002

Gibbs Energy Estimation by Component Contributions
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DrG
0 values are self-consistent. The choice of orthogonal

projections is somewhat arbitrary, and is based on the assumption

that it is beneficial to minimize the euclidean distance to the

projected point that can be estimated using RC. This framework

also enables us to calculate confidence intervals for standard

reaction Gibbs energies in a mathematically sound way.

Results

The component contribution method
The component contribution method integrates reactant

contributions and group contributions in a single, unified

framework using a layered linear regression technique. This

technique enables maximum usage of the more accurate reactant

contributions, and fills in missing information using group

contributions in a fully consistent manner. The inputs to the

component contribution method are the stoichiometric matrix of

measured reactions, denoted S [ Rm|n, and a list of measure-

ments of their standard Gibbs energies DrG
0
obs [ Rn (see Table S2

in Text S1 for a list of mathematical symbols). In our case, all data

is taken from TECRDB [11] and tables of compound formation

energies [13,15]. As a pre-processing step which is used to linearize

the problem, we apply an inverse Legendre transform to the

observed equilibrium constants in TECRDB and the formation

energies, if necessary (same as in [24], see Section S1 in Text S1).

To provide context for the mathematical formulation of the

component contribution method, we precede it with general

formulations of the reactant and group contribution methods, and

discuss the limitations of each. The reactant and group contribution

methods are both based on linear regression. The difference

between the two methods lies in the regression models used in each.

Reactant contribution method. The regression model used

in the reactant contribution method is based on the first law of

thermodynamics (conservation of energy). The first law dictates

that the overall standard Gibbs energy of a reaction that takes

place in more than one step, is the sum of the standard Gibbs

energies of all the intermediate steps at the same conditions [25].

Consequently, if Df G0 [ Rm is the vector of standard Gibbs

energies of formation for compounds in S, then the standard

Gibbs energies of reactions in S are given by the equation

DrG
0~ST:Df G0: ð1Þ

From Eq. 1 it is apparent that DrG
0 is in the range of ST, which

we denote by R ST
� �

. In practice, this may not be readily true for

DrG
0
obs from TECRDB, since its values are empirically derived

and thus subject to measurement noise. Also, the exact ionic

strength is not known for most measurements and the extended

Debye-Hückel theory of electrolyte solutions [26] (which the

inverse Legendre transform is based on [27]) is itself an

approximation. The linear regression model used in the reactant

contribution method for DrG
0
obs therefore takes the form

DrG
0
obs~ST:Df G0zerc, ð2Þ

where erc encompasses the error from the aforementioned sources.

Least-squares linear regression on the system in Eq. 2 gives the

reactant contribution estimate of the standard Gibbs energies of

formation for compounds in S

Df G0
rc~ ST

� �z:DrG
0
obs: ð3Þ

The Moore–Penrose pseudoinverse ST
� �z

is used because ST is

typically column rank deficient. Reactant contribution fitted

standard Gibbs energies for reactions in S are,

DrG
0
rc~ST:Df G0

rc~ST ST
� �z:DrG

0
obs ð4Þ

i.e., they are the orthogonal projection of DrG
0
obs onto R ST

� �
.

DrG
0
rc is therefore the closest point to DrG

0
obs that is consistent with

the first law of thermodynamics. The residual of the fit

erc~DrG
0
obs{DrG

0
rc, ð5Þ

gives an estimate of the error term erc in Eq. 2. We stress that there

is a conceptual distinction between the residual (erc) and the

statistical error (erc). erc is dependent on the specific sample of

equilibrium constants we use in the training set, while erc is a

random variable that can only be approximated. We use the term

error for the deviation of an observed or estimated Gibbs energy

(known values), from the (unknown) true Gibbs energy. The term

residual is used for the deviation of an observed Gibbs energy from

an estimate. We note that erc is in the null space of S, denoted

N Sð Þ, since the null space is the orthogonal complement of

R ST
� �

, according to the fundamental theorem of linear algebra.

The standard Gibbs energy DrG
0
x [ R of an unmeasured

reaction with stoichiometric vector x [ Rm can be estimated with

the reactant contribution method as

DrG
0
rc,x~xT:Df G0

rc~xT ST
� �z:DrG

0
obs: ð6Þ

This result is consistent with the first law of thermodynamics in the

following sense. In general, the first law implies that the standard

Gibbs energy of a linear combination of reactions, is the same

combination applied to the respective standard reaction Gibbs

energies. Mathematically, if x~Sw then DrG
0
rc,x~wT:DrG

0
obs. The

former equation gives w~Szx which is precisely the result in Eq.

6. Having compliance with the first law as the only assumption

explains the high accuracy of the reactant contribution method.

The reactant contribution method can be used to evaluate

standard Gibbs energies for x in the range of S, i.e. reactions that

are linear combinations of reactions in S (and thus have at least

one solution for x~Sw). Any component of x that is not in R Sð Þ
cannot be evaluated. Since S is rank deficient, its range represents

only a fraction of the entire space of reactions and thus most

reactions are under-determined by this method. For instance, the

CMP phosphohydrolase reaction (CMPzH2O ' cytidinezPi)

exists in the E. coli model but is not listed as a measured reaction in

TECRDB. Although CMP and cytidine both appear in other

measured reactions (CMPzATP ' CDPzADP and

cytidinezH2O ' uridinezNH4), it is impossible to use a

combination of reactions in TECRDB to find the DrG
0 of the

CMP phosphohydrolase reaction.

Group contribution method. Increased reaction coverage

can be achieved using the group contribution method, where each

compound in S is decomposed into a predefined set of structural

subgroups. Each decomposition is represented by a row of the

group incidence matrix G [ Rm|g, and DrG
0 is assumed to be a

linear combination of the standard Gibbs energy contributions

DgG0 of the groups in G. The linear regression model for the group

contribution method is

DrG
0
obs~STG:DgG0zegc: ð7Þ

Gibbs Energy Estimation by Component Contributions
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STG[Rn|g describes the group decompositions of reactions in S
i.e., the stoichiometry of groups that are consumed or produced in

the reactions. An estimate of DgG0 is obtained using linear

regression on the system in Eq. 7 i.e.,

DgG0
gc~ STG

� �z:DrG
0
obs, ð8Þ

and like in reactant contribution we define

DrG
0
gc~STG STG

� �z:DrG
0
obs and egc~DrG

0
obs{DrG

0
gc. The group

contribution estimate of the standard reaction Gibbs energy for x
can then be derived as

DrG
0
gc,x~xTG:DgG0

gc~xTG STG
� �z:DrG

0
obs: ð9Þ

The reaction coverage of the group contribution method is

much greater than that of the reactant contribution method in Eq.

6, because the column rank deficiency of STG is much smaller than

that of ST. However, this greater coverage comes at a price, since

the assumption of group additivity underlying the model in Eq. 7 is

not always accurate. We estimated the root-mean-square error

resulting from this assumption as 6.8 kJ/mol for all reactions in S
(see Section S4 in Text S1 for details). The reaction coverage of

group contribution methods is still limited to GTx[R GTS
� �

, i.e.

reactions with group decompositions that are linear combinations

of the group decompositions of measured reactions.

Mathematical formulation of the component contribution

method. The reactant contribution method covers any vector in

the range of S. The component contribution method takes

advantage of the fact that any reaction vector x in Rm can be

decomposed into a component xR in the range of S, and an

orthogonal component xN in the null space of ST. Let PR Sð Þ,

PN STð Þ[Rm|m be the orthogonal projection matrices onto the

range of S and the null space of ST, respectively. Then

xR~PR Sð Þ:x and xN~PN STð Þ:x (so x~xRzxN and xR\xN ).

The component contribution method applies the more reliable

reactant contribution method to evaluate xR, and only applies the

less reliable group contribution method to xN (see Figure 3). The

standard reaction Gibbs energy estimate for x is obtained by

summing up the contributions from the two components (see

Equations 6 and 9) i.e.,

DrG
0
cc,x~xT

R
:Df G0

rczxT
N
:G:DgG0

gc~

~xT PR Sð Þ ST
� �z

zPN STð ÞG STG
� �z� �

:DrG
0
obs

ð10Þ

(see the full derivation in Section S3 in Text S1). We note that

using the two orthogonal projections is only one option for

separating x to two components and applying RC and GC on

each one respectively. Other pairs of linear projections could be

applied as long as they fulfill the requirement that they sum up to

the identity matrix, and that the range of the first one is (R(S).
Here we chose PR Sð Þ and PN STð Þ because they minimize the

norm of the second component, and we assume there is benefit to

it.

The component xN in the null space of ST can only be

evaluated if GTxN is in the range of GTS, i.e. the space covered by

group contributions. We thus require that xN~xNR where xNR is

the component of xN in R GTS
� �

. If xN has a nonzero component

xNN:xN{xNR[N STG
� �

then the overall reaction x cannot be

evaluated using component contributions. In practice we assign an

infinite uncertainty to reactions where xNN=0 as discussed in

section Calculation of confidence intervals. The two orthogonal

components of xN~xNRzxNN are determined by orthogonal

projections onto the subspaces of GTS, in the same way that

x~xRzxN was decomposed by projections onto the subspaces of

S. Component contribution is thus based on two layers of

orthogonal decompositions; a first layer where x is decomposed

into xR and xN , and a second layer where xN is decomposed into

xNR and xNN (Figure 3).

A common example where xNN=0 occurs where xN is a

reaction that includes the formation of an uncommon group. If

this group does not appear (or is always conserved) in all of the

reactions in the training set then the contribution of that group is

unknown. Since GTxN has a non-zero value corresponding to that

group, xN cannot be in the range of GTS.

Validation results
In order to evaluate the improvement in estimations derived

using component contribution compared to an implementation of

group contribution [24], we ran a cross-validation analysis (see

section Leave-one-out cross-validation for details). The results of this

analysis are shown in Figure 4, where we compare the

distributions of the absolute residuals (the difference between each

method’s estimated DrG
0 and the observed DrG

0 according to

TECRDB). For each estimation, the value of DrG
0 for that

reaction (or any other measurement of the same reaction) was not

used for training the group contribution and component

contribution methods.

Our results show a significant improvement for component

contribution compared to group contribution when focusing on

reactions in the range of S. The median of all residuals (absolute

value) was reduced from 4.6 to 1.0 kJ/mol (p-valuev10{36) for this

set of reactions. For reactions that were not in R(S), there was no

significant difference (p-value = 0.45) in the median absolute residual

between the two methods. The error in group contribution estimates

that is due to the assumption of group additivity does not depend on

the extent to which group contribution is used (see Section S4.2 in

Text S1). Because component contribution uses group contribution

to some extent for all reactions that are not in R(S), the error in

component contribution estimates for those reactions is not

significantly lower than the error in group contribution estimates.

Note that it is still very important to use component contribution for

these reactions (and not GC) for the sake of having consistent

estimations across whole metabolic models (see section Unifying

reactant and group contribution methods in the Introduction).

In each iteration of the cross-validation, one reaction was

excluded from the training set. To further validate the component

contribution method, we used the results of each iteration to

predict independent observations of the reaction that was

excluded. All available observations of that reaction were then

compared against the prediction intervals for its standard Gibbs

energy (see section Calculation of prediction intervals in the Methods).

Overall, we found that 73% of observations fell within their

respective 68% prediction intervals, 89% fell within their 90%

prediction intervals, 92% fell within their 95% prediction intervals,

and 97% within their 99% intervals. Prediction intervals obtained

with the component contribution method were on average 36%

smaller than those obtained with group contribution. Taken

together, these results show that the component contribution

method yields estimates with reliable confidence intervals, as well

as increased accuracy and reduced uncertainty compared to group

contribution.

Gibbs Energy Estimation by Component Contributions
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Figure 3. A diagram illustrating how the component contribution method projects the stoichiometric vector onto the different
spaces. (A) The reaction vector x is decomposed into the two components xR and xN , where the reactant contribution and group contribution
methods are used for the relevant components. Later, xN is decomposed into xNR and xNN . The same projection is shown graphically in (B) where
the green plane represents the range of S and the normal to that plane represents the null space of ST. (C) An example for a reaction which
decomposes into two non-zero components. In this case, the component xNN is equal to 0, which means that the reaction is covered by the
component contribution method.
doi:10.1371/journal.pcbi.1003098.g003

Figure 4. Cumulative distributions for the cross-validation results. The CDF of the absolute-value residuals for both group contribution
(DDercDD, pink) and component contribution (DDeccDD, purple). The reactions were separated to ones which are (A) linearly-dependent on the set of all other
reactions (sj is in the range of S(j), the stoichiometric matrix of all reactions except sj ), and (B) to ones which are linearly-independent (and thus
component contribution uses group decompositions for at least part of the reaction). We found an 80% reduction in the median for the former set
and no significant change for the latter (p-value = 0:45).
doi:10.1371/journal.pcbi.1003098.g004
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Application to genome-scale metabolic reconstructions
A major application of the component contribution method is

estimation of standard Gibbs energies for reactions in genome-

scale reconstructions. Such large reaction networks require

consistent and reliable estimates with high coverage. If estimates

are not consistent, the risk of reference point violations increases

with network size. As discussed in section Adjustment to in vivo

conditions, metabolic models generally require estimates of standard

transformed Gibbs energies, DrG’0est, at in vivo conditions. To meet

this requirement, we have integrated the component contribution

method into a new version (2.0) of von Bertalanffy [28] (see section

Implementation and availability of code).

Here, we apply von Bertalanffy 2.0 to two reconstruction; the E.

coli reconstruction iAF1260 [5] and the human reconstruction

Recon 1 [29]. Standard transformed reaction Gibbs energies had

previously been estimated for both reconstructions, with older

versions of von Bertalanffy [8,10]. Those older versions relied on a

combination of experimentally derived standard formation ener-

gies from [15], and estimated standard formation energies

obtained with the group contribution method presented in [23].

We compare estimates obtained with the new version of von

Bertalanffy, to both experimental data in TECRDB, and estimates

obtained with the older versions.

DrG’0est were obtained for 90% (1878/2078) of internal reactions

in iAF1260, and 72% (2416/3362) of internal reactions in Recon

1. External reactions i.e., exchange, demand and sink reactions are

not mass or charge balanced and therefore have no defined Gibbs

energies. To validate our estimates we compared them to available

experimental data. Measurements of apparent equilibrium con-

stants (K ’) were available in TECRDB for 163 of the evaluated

iAF1260 reactions, and 186 Recon 1 reactions. Multiple

measurements, made at different experimental conditions, were

often available for a single reaction. To enable comparison, the

data in TECRDB was first normalized to standard conditions by

applying an inverse Legendre transform as described in Section S1

in Text S1. The resulting standard reaction Gibbs energies

(DrG
0
obs) were then adjusted to the conditions in Tables 1 and 2

with von Bertalanffy, to obtain standard transformed reaction

Gibbs energies, DrG’0obs. Comparison of DrG’0est to DrG’0obs gave a

root mean square error (RMSE) of 2.7 kJ/mol for iAF1260, and

3.1 kJ/mol for Recon 1.

von Bertalanffy 2.0 relies on component contribution estimated

standard reaction Gibbs energies, whereas older versions relied on

a combination of experimental data and group contribution

estimates. Table 3 compares standard transformed Gibbs energy

estimates, for iAF1260 and Recon 1, between versions. Use of

component contribution resulted in both higher coverage and

lower RMSE than was achieved with the previously available data.

The greater coverage was due to reactions where groups or

compounds that were not covered by component contributions

canceled out, because they appeared unchanged on both sides of

the reactions. Such reactions are easily identified and evaluated

within the component contribution framework.

Another improvement achieved with the component contribu-

tion method was the lower standard error, sr, of standard reaction

Gibbs energy estimates compared with previously available

methods (Table 3). This is an important improvement as standard

error has previously been shown to affect predictions made based

on reaction Gibbs energy estimates [6,8,10]. The reduction in sr

was obtained by accounting for covariances in parameter estimates

(see section Calculation of confidence intervals). As we showed in section

Validation results, the lower standard errors of component contri-

bution estimates yielded reliable prediction intervals for observed

standard reaction Gibbs energies. They can therefore be expected

to also yield reliable confidence intervals for true standard reaction

Gibbs energies.

The lower RMSE achieved with component contribution stems

primarily from two factors. The first is the normalization of the

training data by the inverse Legendre transform, which in [24] was

shown to lead to significant improvements in group contribution

estimates of Gibbs energies. The second factor is the greater

number of reactions that are fully evaluated with reactant

contribution (Eq. 6). Close to 10% of all evaluated reactions in

both iAF1260 and Recon 1, were fully evaluated using only

reactant contribution (Figure 5). Although this category represents

a minority of all reactions, it includes the majority of reactions in

central carbon metabolism. The greater accuracy in Gibbs energy

estimates for reactions in central carbon metabolism is expected to

have a disproportionally large effect, as these reactions are

involved in most metabolic activities. To support this claim, we

predicted 312 flux distributions for iAF1260 and 97 flux

distributions for Recon 1 (see Section S6 in Text S1 for details).

We found that the tenth of reactions that were fully evaluated with

reactant contributions carried approximately half of the total flux

in iAF1260 and a third of the total flux in Recon 1 (Figure 5).

Discussion

The component contribution method presented in this paper

merges two established methods for calculating standard Gibbs

energies of reactions while maintaining each of their advantages;

Table 1. pH and electrical potential in each compartment of
the E. coli reconstruction iAF1260.

Compartment pH
Electrical potential
(mV)

Cytosol 7.70 0

Periplasm 7.70 90

Extracellular fluid 7.70 90

Electrical potential in each compartment is relative to electrical potential in the
cytosol. Temperature was set to 310.15 K (37uC), and ionic strength was
assumed to be 0.25 M [14] in all compartments. Taken from [8].
doi:10.1371/journal.pcbi.1003098.t001

Table 2. pH and electrical potential in each compartment of
the human reconstruction Recon 1.

Compartment pH
Electrical potential
(mV)

Cytosol 7.20 0

Extracellular fluid 7.40 30

Golgi apparatus 6.35 0

Lysosomes 5.50 19

Mitochondria 8.00 2155

Nucleus 7.20 0

Endoplasmic reticulum 7.20 0

Peroxisomes 7.00 12

Electrical potential in each compartment is relative to electrical potential in the
cytosol. Temperature was set to 310.15 K (37uC), and ionic strength was
assumed to be 0.15 M [14] in all compartments. Taken from [10].
doi:10.1371/journal.pcbi.1003098.t002
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accuracy in the case of reactant contribution (RC) and the wide

coverage of group contribution (GC). By representing every

reaction as a sum of two complementary component reactions,

one in the subspace that is completely covered by RC and the

other in the complementary space, we maximize the usage of

information that can be obtained with the more accurate RC

method. Overall, we find that there is a 50% reduction in the

median absolute residual compared to standard GC methods,

while providing the same wide coverage and ensuring that there

are no reference-point inconsistencies that otherwise lead to large

errors. Furthermore, since our method is based on least-squares

linear regression, we use standard practices for calculating

confidence intervals for standard Gibbs energies (see section

Calculation of confidence intervals), and for weighing the measured

standard Gibbs energies used as training data (see Section S1.2 in

Text S1).

Since the empirical data used in our method is measured in

various conditions (temperature, pH, ionic strength, metal ion

concentrations, etc.) – it is important to ‘‘standardize’’ the input

data before applying any linear regression model [24]. In this

work, we used an inverse Legendre transform to normalize the pH

and ionic strength, but ignore the temperature effect and the metal

ion concentrations (see Section S1.1 in Text S1). In addition, the

proton dissociation constants were obtained from a third party

software estimator (by Marvin, see Methods) and have a mean

absolute error of about 0.9 pH units [30]. Notably, a commend-

able effort for creating a database of thermodynamic quantities

[31] has been published recently, where the data was standardized

using more reliable parameters and considering more effects. This

database currently only covers reactions from glycolysis, the

tricarboxylic acid cycle, and the pentose phosphate pathway.

Therefore, we chose to use the more extensive TECRDB database

and perform the inverse Legendre transform ourselves, effectively

increasing the coverage while compromising on the accuracy of

the data. Since the changes brought forward in the component

contribution method are independent of the source of input data,

we believe that it will benefit from any future improvements in

these databases.

The precision of the component contribution method is limited

by the accuracy of the measured reaction equilibrium constants

used in the regression model. In cases of isolated reactions, where

the empirical data cannot be corroborated by overlapping

measurements, large errors will be directly propagated to our

estimate of those reactions’ standard Gibbs energies. As the

number of measurements underlying an estimate is reflected in its

standard error, however, confidence intervals for such reactions

will be large. It is therefore recommended to use confidence

intervals, and not point estimates, for simulations and predictions

based on standard Gibbs energy estimates. In the future, it might

be worthwhile to integrate several promising computational

Table 3. Comparison of standard transformed reaction Gibbs energy estimates based on component contributions, to estimates
based on previously available data.

iAF1260 Recon 1

Fleming et al. [8] Current study Haraldsdóttir et al. [10] Current study

Coverage 85% 90% 63% 72%

RMSE (kJ/mol) 9.9 2.7 11.6 3.1

Mean sr (kJ/mol) 20.3 2.3 3.4 2.2

doi:10.1371/journal.pcbi.1003098.t003

Figure 5. Distribution of the fractions of reaction vectors (black) in iAF1260 (E. coli) and Recon 1 (human), that were in the range of S, and

were thus evaluated with reactant contribution (RC). For a reaction x, this fraction was calculated as ExRE2=ExE2 . Passive and facilitated diffusion
reactions, where the reactants undergo no chemical changes, are not included in the figure. 9.4% of all evaluated reactions in iAF1260 were fully
evaluated using only reactant contributions. These reactions carried approximately half of the total flux (red) in 312 predicted flux distributions. The
8.3% of evaluated reactions in Recon 1 that were fully evaluated with reactant contributions, carried close to a third of the total flux in 97 predicted
flux distributions.
doi:10.1371/journal.pcbi.1003098.g005
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prediction approaches [32] which are not based on RC and GC,

such as molecular mechanics methods [33], density functional

methods [34], and post Hartree-Fock approaches [35,36].

Although the computational cost of these methods can be

substantial depending on the theoretical method and the solvation

models [37] used, they have the advantage of being based on

computable chemical and physical principles, implying that a

100% coverage of all biochemical reactions is achievable (though

not yet practical). Currently, the accuracy of these methods for

reactions in solution is limited. Nevertheless, they might already be

useful for estimating DrG
0 of reactions that are not covered by

component contributions, or for validating the sparse measure-

ments. Alternatively, a method that infers DrG
0 from reaction

similarities named IGERS [38] manages to be much more

accurate than GC when predicting the standard Gibbs energy of

reactions which are very similar to a reaction with a measured

DrG
0. Adding IGERS as another layer between RC and GC using

the ideas presented in this paper might contribute to the overall

accuracy of our estimations. Finally, the laws of additivity

suggested by [16] include single atom (zero-order) and single

bond (first-order) contributions, which would be too crude to use

for approximating Gibbs energies directly, but might be useful as

two extra layers in a method like component contribution and help

cover a wider fraction of the reaction space.

The use of thermodynamic parameters in modeling living

systems has been hindered by the fact that it is mostly inaccessible

or requires a high level of expertise to use correctly, especially in

genome-scale models. In order to alleviate this limitation, we

created a framework that facilitates the integration of standard

reaction Gibbs energies into existing models and also embedded

our code into the openCOBRA toolbox. The entire framework

(including the source code and training data) is freely available.

We envisage a collaborative community effort that will result in a

simple and streamlined process where these important thermody-

namic data are widely used and where future improvements in

estimation methods will seamlessly propagate to modelers.

Methods

Calculation of confidence intervals
The component contribution estimated standard Gibbs energy

DrG
0
cc,x in Eq. 10, is a point estimate of the true standard Gibbs

energy DrG
0
x for reaction vector x. To quantify the uncertainty in

this estimate, we need to calculate confidence intervals for DrG
0
x. An

important advantage of integrating the reactant and group

contribution methods in a single, unified framework is that it

greatly simplifies calculation of confidence intervals. We present the

key equations in this section. A summary of the statistical theory

underlying these equations [39] is given in Section S7 in Text S1.

The covariance matrix Vrc for the reactant contribution

estimates (Df G0
rc in Eq. 3) is calculated as

Vrc~s2
rc
: SST
� �z

~
DDercDD2

n{rank(S)
: SST
� �z

,
ð11Þ

where the matrix (SST)z is scaled by the estimated variance s2
rc of

the error term erc in Eq. 2. Our estimate of the variance was

s2
rc~17:8 (kJ/mol)2. The covariance matrix Vgc for the group

contribution estimates (DgG0
gc) is likewise obtained as

Vgc~s2
gc
: GT SSTG
� �z

~
DDegcDD2

n{rank(STG)
: GT SSTG
� �z

,
ð12Þ

where the estimated variance of egc from Eq. 7 was s2
gc~62:0 (kJ/

mol)2.

For a reaction x, the standard error of DrG
0
cc,x is given by

scc,x
2~xT

R
:Vrc

:xRzxT
N
:GVgcGT :xN

~xT :(PR Sð ÞVrcPR Sð ÞzPN STð ÞGVgcGT PN STð Þ):x:
ð13Þ

The confidence interval for DrG
0
x, at a specified confidence level

c[ 0%,100%½ �, is given by

DrG
0
cc,x+zcscc,x, ð14Þ

where zc is the value of the standard normal distribution at a

cumulative probability of 100%zcð Þ=2. The 95% confidence

interval for DrG
0
x is therefore DrG

0
cc,x+1:96|scc,x.

In calculating scc,x, we employ the covariance matrices for

estimated parameters Df G0
rc and DgG0

gc. In contrast, Jankowski et

al. used only the diagonal of the covariance matrix for DgG0
gc in

their implementation of the group contribution method [23]. The

main advantage of using covariance matrices is that it leads to

more appropriate confidence intervals for DrG
0
x, that can be

much smaller. Knowledge about the relative Gibbs energy of two

groups or compounds, increases with the number of measure-

ments for reactions where those groups or compounds occur

together. This knowledge should be reflected in smaller confi-

dence intervals for reactions where the groups or compounds co-

occur. Covariance matrices provide a means for propagating this

knowledge. If only the diagonal of the covariance matrix is used,

this knowledge is lost and confidence intervals will often be

unnecessarily large.

The covariance matrices can likewise be used to propagate lack

of knowledge to scc,x. If GTx is not in R GTS
� �

then the reaction x

is not covered by the group contribution method or by the

component contribution method. Then DrG
0
cc,x obtained with Eq.

10 will not be a valid estimate of DrG
0
x, and should have a large

(infinite) standard error. This can be achieved by adding a term to

Eq. 13;

s2
cc,x~xT:(PR Sð ÞVrcPR Sð Þ

zPN STð ÞGVgcGTPN STð Þ

zGV?GT):x

ð15Þ

where V?~PN STGð Þ:?, and PN STGð Þ[Rg|g is a projection

matrix onto the null-space of STG. Eq. 15 will give scc,x~?
for all reactions that cannot be evaluated with component

contributions because xTG has a nonzero component in

the null-space of STG. In practice, we use a very large value

instead of ? (e.g. 1010 kJ/mol) which will dominate any

reasonable Gibbs energy in case xTG is not orthogonal to this

null-space.
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Leave-one-out cross-validation
Both group contribution and component contribution are

parametric methods that use a set of training data in order to

evaluate a long list of parameters. In order to validate these

models, we need to use more empirical data which has not been

used in the training phase. Since data regarding reaction Gibbs

energies is scarce, we apply the leave-one-out method in order to

maximize the amount of data left for training in each cross-

validation iteration. As a measure for the quality of the standard

Gibbs energy estimations from each method we use the median

absolute residual of the cross-validation results compared to the

observations.

Our entire training set consists of 4146 distinct reaction

measurements. However, since many of them are experimental

replicates – measurements of the same chemical reaction in

different conditions or by different researchers – we can only use

each distinct reaction once. We thus take the median DrG
0
obs over

all replicates (after applying the inverse Legendre transform) as the

value to be used for training or cross-validation. We choose the

median rather than the mean to avoid sensitivity to outliers. After

this process of unifying observations, we are left with 694 unique

reaction observations. Note that the repetitions do play a role in

determining the standard error in standard Gibbs energy estimates

(see section Calculation of confidence intervals). Finally, the vector of

DrG
0
obs values for the unique reactions is projected onto the range

of ST since we assume that the actual values comply with the first

law of thermodynamics (see section Reactant contribution method) and

that any deviation is caused by experimental error.

Calculation of prediction intervals
The c prediction interval for a reaction x, with estimated

standard Gibbs energy DrG
0
cc,x, is calculated as

DrG
0
cc,x+zc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

cczs2
cc,x

q
, ð16Þ

where zc was defined in Eq. 14, and s2
cc,x, the standard error of

DrG
0
cc,x, was defined in Eq. 15. s2

cc is calculated as

s2
cc~

ExRE2

ExE2
:s2

rcz
ExNE2

ExE2
:s2

gc ð17Þ

i.e., it is a weighted mean of the estimated variances for reactant

and group contribution, where the weights are the fractions of x

that are in R Sð Þ and N Sð Þ, respectively. A summary of the

statistical theory underlying calculation of prediction intervals [39]

is given in Section S7 in Text S1.

Adjustment to in vivo conditions
For an input reaction x, the component contribution method

outputs an estimate of the reaction’s standard chemical Gibbs

energy DrG
0
x. In a chemical reaction each compound is

represented in a specific protonation state. This is in contrast to

biochemical reactions, where each compound is represented as a

pseudoisomer group of one or more species in different protonation

states. To thermodynamically constrain models of living organisms

we require Gibbs energies of biochemical reactions at in vivo

conditions, known as standard transformed reaction Gibbs energies

DrG’0.

We estimated DrG’0 with version 2.0 of von Bertalanffy

[8,10,28]; a Matlab implementation of biochemical thermody-

namics theory as presented in [14]. A comprehensive summary of

the relevant theory is given in [10]. In addition to component

contribution estimates of standard Gibbs energies, required inputs

to von Bertalanffy are a stoichiometric matrix Srecon for a

metabolic reconstruction of an organism, pKa values for

compounds in Srecon, and literature data on temperature, pH,

ionic strength (I ) and electrical potential (w) in each cell

compartment in the reconstruction.

We estimated DrG’0 for reactions in two multi-compartmental,

genome scale metabolic reconstructions; an E. coli reconstruction

iAF1260 [5], and a human reconstruction Recon 1 [29]. The

environmental parameters pH, I and w were taken from [8] for E.

coli (Table 1), and from [10] for human (Table 2). pKa values were

estimated with Calculator Plugins, Marvin 5.10.1, 2012, Che-

mAxon (http://www.chemaxon.com).

Implementation and availability of code
The component contribution method has been implemented in

both Matlab and Python. The Matlab implementation is tailored

towards application to genome-scale metabolic reconstructions. It

is fully compatible with the COBRA toolbox [40] and is freely

available as part of the openCOBRA project on Sourceforge

(http://sourceforge.net/projects/opencobra/). The component

contribution method has been integrated into version 2.0 of von

Bertalanffy to provide an easy-to-use tool to estimate transformed

Gibbs energies at in vivo conditions. The Python implementation is

a stand-alone package that can be used by researchers with

suitable programming skills. The Python package includes a

simple front-end called eQuilibrator (http://equilibrator.

weizmann.ac.il/), which is a freely available online service. The

Python code for component contribution is licensed under the

open source MIT License and available on GitHub (https://

github.com/eladnoor/component-contribution). Our code de-

pends on the open source chemistry toolbox called Open Babel

[41].

Supporting Information

Text S1 Supporting text with sections on 1) the inverse Legendre

transform of the training data, 2) group decomposition, 3) the full

mathematical derivation of the component contribution method,

4) estimation of error in the group model, 5) reaction type statistics,

6) prediction of flux distributions, 7) the theory underlying

calculation of confidence and prediction intervals, and 8)

mathematical symbols used throughout the manuscript.

(PDF)
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