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Abstract

The characteristics of the host contact network over which a pathogen is transmitted affect both epidemic spread and the
projected effectiveness of control strategies. Given the importance of understanding these contact networks, it is
unfortunate that they are very difficult to measure directly. This challenge has led to an interest in methods to infer
information about host contact networks from pathogen phylogenies, because in shaping a pathogen’s opportunities for
reproduction, contact networks also shape pathogen evolution. Host networks influence pathogen phylogenies both
directly, through governing opportunities for evolution, and indirectly by changing the prevalence and incidence. Here, we
aim to separate these two effects by comparing pathogen evolution on different host networks that share similar epidemic
trajectories. This approach allows use to examine the direct effects of network structure on pathogen phylogenies, largely
controlling for confounding differences arising from population dynamics. We find that networks with more heterogeneous
degree distributions yield pathogen phylogenies with more variable cluster numbers, smaller mean cluster sizes, shorter
mean branch lengths, and somewhat higher tree imbalance than networks with relatively homogeneous degree
distributions. However, in particular for dynamic networks, we find that these direct effects are relatively modest. These
findings suggest that the role of the epidemic trajectory, the dynamics of the network and the inherent variability of metrics
such as cluster size must each be taken into account when trying to use pathogen phylogenies to understand
characteristics about the underlying host contact network.
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Introduction

The structure of human contact networks both facilitates and

constrains the spread of pathogens. Particularly for sexually

transmitted infections (STIs) and infections spread via shared

intravenous drug use, specific types of contact are needed for

transmission to occur, and people are likely to know when a

relevant contact has occurred. The realisation that heterogeneity

in contact numbers can have a large impact on the transmission of

a pathogen [1] has spawned considerable interest in networks in

epidemiology. Research ranges from developing theoretical tools

relating network structure and dynamics to the spread and control

of pathogens [2–9] (to list but a few), and in developing sampling

strategies to learn more about networks [10–12].

Data on human contact networks are notoriously difficult to

gather [13–16]. For sexual contact networks, contact tracing and

snowball sampling are good approaches [17,18] but they depend

on individuals being willing to name others, which has disadvan-

tages where the underlying behaviour is stigmatised or illegal.

Respondent driven sampling (RDS) aims to address this last

concern by rewarding individuals for recruiting their contacts to

the study, but without requiring them to name these contacts (each

individual decides whether to participate) [10]. But for many

infections, such as those transmitted by casual respiratory contact,

individuals will not even know who most of their contacts are. All

sampling approaches used for measuring host contact networks

share certain drawbacks: they access only a small portion of the

population; they are sensitive to the choice of the individuals with

whom the sample originates and they are not representative

samples (though ideal respondent-driven sampling can give results

independent of the seeding individuals [10]). In addition, they

often cannot measure the dynamic aspects of contact networks,

though individuals do report relationship durations in some cases

[14]. Due to these constraints, survey samples may not provide

sufficient characterisation of the nature of contact networks to

inform network simulation models or direct public health

interventions to the optimal part of the network.

As the cost of genome sequencing falls, interest in using genetic

data to understand epidemic patterns has grown [19–27]. It is now

possible to obtain sequence data from large numbers of isolates in

epidemiological studies [28–31,31–33], and the collection of these

data is becoming increasingly common. Because a pathogen’s

opportunities for reproduction depend on the contacts made by its

host, we expect host contact patterns to influence pathogen
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evolution. Recent work [24,34] indicates that host contact

networks can have significant effects on phylogenetic trees, and

indeed, phylogenetic methods are now being used to study a range

of epidemiological phenomena, particularly for viruses [35].

Pathogens with identical biological characteristics can cause

very different types of epidemics depending on the structure of the

underlying host contact network (see [4,7,36]). In networks with

sufficiently long-tailed degree distributions, large epidemics can be

caused even by pathogens with very low transmissibility [2,37]. As

described by both coalescent theory and birth-death models [38–

41], these differing population dynamics affect phylogenetic trees

[34,42]. Phylogenies can be used to infer population dynamics

[39,43,44], although recent work indicates that network effects can

reduce the accuracy of some estimates [23]. We have schemat-

ically illustrated the mechanisms by which the host contact

network and the pathogen population dynamics shape pathogen

phylogenies (Figure 1). The route labelled ‘A’ represents direct

effects of the network in influencing the pathogens’ genetic

diversity and patterns of ancestry, and hence the tree. The route

labelled ‘B’ represents how network structure can indirectly

influence diversity by modifying the population dynamics of the

pathogen. This latter indirect route is where coalescent theory and

population genetics are well developed.

Epidemic reporting such as incidence notification, combined in

some cases with inference of prevalence and/or incidence from

pathogen phylogenies themselves, means that we typically have at

least some understanding of the stage of an epidemic at the time

substantial data are available. But whether, given comparable epidemic

stage and history, properties of phylogenetic trees can help us to infer

otherwise unknown properties of the host contact network over

which the pathogen is spreading is important. We would expect

different future epidemic trends for different networks (even if the

current stage looks the same), and we would aim to use different

interventions based on what type of contact network exists [7].

The relationship between host contact networks and pathogen

phylogenies may also be affected by the dynamic nature of host

contact networks (i.e. the contacts relevant for pathogen transmis-

sion are often not fixed over time). Using static networks,

Leventhal et al [24] concluded that heterogeneity in host degrees

increases the imbalance of phylogenetic trees. But, particularly in

the case of very heterogeneous networks, the numerous contacts of

the most highly active individuals are not likely to be made at the

same time. Rather, evidence for heterogeneity in contact numbers

comes from studies asking for the number of contacts people have

had over relatively long time periods, such as over 5 years or a

lifetime [45]. The relationship between the aggregated long-term

host contact network and the actual transmission network over

which the pathogen is transmitted depends on the duration of

infectiousness and the host contact dynamics [5]. This may affect

the relationship between the contact network and pathogen

phylogenies.

Here we ask to what extent dynamic host contact networks

shape pathogen phylogenies, under conditions when the epidemic

has similar trajectories on different networks (i.e. we examine route

A in Figure 1). We use two distinct types of networks, each of

which can be either static (with edges maintained over time) or

dynamic (with edges changing over time). One type of network is

based on the 2000 British National Survey of Sexual Attitudes and

Lifestyles (‘Natsal 2000’) [14], and the other type of network is a

randomly wired network based on an Erdos-Renyi (ER) random

graph; the ER-type networks have considerably less heterogeneity

in the numbers of contacts than the NATSAL networks. We

simulate pathogen transmission and evolution over these networks,

sample infected individuals and then construct phylogenetic trees

from the sampled sequences. We compare the trees’ branch

lengths, number of clusters, and tree imbalance.

Materials and Methods

Network formation and dynamics
NATSAL-like dynamic contact networks were created by the

method reported in [5]; further detail is provided in the

supplement, Text S1. These data are publicly available through

the UK Data Archive (www.data-archive.ac.uk). Erdos-Renyi style

networks were created using the same general approach but using

a Poisson distribution for the cumulative degree over the

simulation time frame.

Pathogen population dynamics
For each network, we tracked the number of infected hosts over

time. Epidemic trajectories depend on the pathogen’s duration of

infectiousness and on its transmissibility. We used pathogens with

durations of infectiousness of 10 weeks and 40 weeks (approxi-

mately 10 months), representing relatively short- and long-

duration sexually transmitted pathogens such as Neisseria gonorrhoeae

and Chlamydia trachomatis, respectively [46]. The 40 week duration

results are shown in the main text; others are in the supplementary

Text S1.

We then selected simulations matched by pathogen prevalence

and incidence over time based on sum-of-squares differences

between these curves, together with visual inspection of the time

traces. Minimizing sum-of-squares differences requires weighting

incidence compared to prevalence, and we found that choosing

such a weighting relied on visual comparison of trajectories. While

several algorithms aiming to create perfectly or very closely

matched epidemics on both networks were developed, these had

the drawback that they frequently returned no infection on either

network (a perfect match of population dynamics, but in a trivial

sense). Results reported here are based on prevalence and

incidence matching based on visual inspection, and we were able

to compare phylogenetic trees arising from epidemics with very

similar population dynamics. For static networks, we adjusted the

transmission probability to generate simulations in which the

pathogen prevalences were similar despite structural differences

Author Summary

Different pathogens spread between hosts in different
ways, and the nature of the resulting networks of relevant
host contacts can affect the spread and control of
infections. While gathering data on host contact networks
is very challenging, there is growing interest in using
information about the pathogens themselves to under-
stand transmission. In particular, as genomic sequencing
becomes increasingly accessible, we have the opportunity
to learn more about pathogen spread and evolution by
constructing pathogen phylogenetic trees (phylogenies)
from gene sequences. In this paper we aim to understand
how networks of contacts between hosts affect the
evolution of pathogens. This matter is complicated by
the fact that contact networks can have large effects on
how many infections there are, and the size of pathogen
populations also affects their evolution. We designed an
approach to simulate pathogen transmission and mutation
over host contact networks and found that accounting for
both the network’s effects and population dynamic effects
is necessary to use phylogenetic data to understand
underlying patterns of host contacts.

Contact Networks and Pathogen Phylogenies
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between the network types. For the dynamic networks, tuning the

duration of relationship parameter n was sufficient to yield

qualitatively matching simulations (Figure S1 in Text S1).

Sequence transmission and evolution
The parameters we use are relevant for sexually transmitted

pathogens with relatively long durations of infectiousness (10 or more

weeks) and for which sufficient mutations occur for phylogenetic

methods to be able to resolve transmissions. These requirements are

met by a variety of viral and bacterial pathogens causing sexually

transmitted infections, in particular chlamydia, gonorrhea and HIV. In

all of these, the importance of network structure and the role of core

groups in transmission is well established.

One node was randomly selected to be the source of infection,

and the pathogen was then allowed to spread through the network

according to its edge structure, timings and the probability of

transmission. The pathogen was introduced after a ‘burn-in’

period of 50 weeks, so that results are taken from a time when the

relationship dynamics were well established and the number of

edges was approximately constant. The simulation strategy was

that of a Gillespie simulation; the time to the next transmission

event by an infected node was drawn from an exponential

distribution with mean determined by the transmission rate, and

the recipient node was chosen uniformly at random from the

node’s active contacts at that time.

The invading pathogen was assigned a randomly-generated

2500-character string of A, C, T and G, representing its genetic

sequence. This string was passed, possibly with mutations, to each

newly infected node. Some base positions were designated

‘‘invariant’’ (20%), and no mutation happened at these sites. All

mutations are considered neutral. A similar approach was used by

[47]. The mutation rate was an average of 3 mutations per week,

to ensure that even rapid successive transmissions by the same

individual were likely to be resolvable phylogenetically.

When a susceptible node was infected:

1. The number of mutations, M, which had occurred was drawn

from a Poisson distribution with mean mt, where m was the

Figure 1. Schematic illustrating the dependence of pathogen phylogenies on both the host contact network and the pathogen’s
population dynamics. Route A: direct effect of the host contact network on the pathogen phylogeny. Route B: the host contact network changes
the population dynamics, sometimes dramatically, and this in turn affects the pathogen phylogeny.
doi:10.1371/journal.pcbi.1003105.g001

Contact Networks and Pathogen Phylogenies
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mutation rate and t was the time since the infecting node’s

sequence was last checked (either for transmission or for

sequence sampling). This models mutations accruing at a

constant rate over time (hence the Poisson random variable

and the dependence on the time elapsed). For the results in

Figure S3 in Text S1 labelled ‘mutation on transmission’, an

average of 3 mutations was used regardless of the time elapsed.

2. M base positions were then randomly selected from the

sequence (invariant sites can not be selected) and mutated.

Different rates could be used for different types of mutation, for

example making transitions (A-G, C-T) more likely than

transversions (A-C, A-T, G-C, G-T); the default is that all

mutation types are equally likely.

3. The mutated sequence was stored as the pathogen sequence for

the newly infected node.

Homochronous sampling
At times 200 and 260 weeks, 100 infected nodes were selected at

random from all infected hosts. Separate trees were constructed

for each sampling time. Sampling time affects the sampling

density, as the prevalence is lower earlier in the simulated

outbreak. The PHYLIP (Phylogeny Inference Package) collection’s

DNAMLK routine was used for tree reconstruction from the

sampled sequences; this is a maximum likelihood method using a

molecular clock. PHYLIP is available online at http://evolution.

genetics.washington.edu/phylip.html. We also explored the possi-

bility of additional mutations occurring at the time of transmission

from one host to another, reflecting the ‘bottlenecking’ used in

modelling, for example, HIV evolution from one host to another

[27]; results are shown in Text S1 and supplementary Figures.

Heterochronous sampling
We used two different schemes to sample over time: uniform

sampling over all infectious nodes throughout the entire simula-

tion, and sampling at a constant rate in time throughout the

simulation. These approaches differ because the prevalence of

infection changed with time.

Clustering and branch lengths
A cluster is a set of leaf nodes whose most recent common

ancestor occurs at a distance less than or equal to a cut-off distance

from the tree’s root. In other words, if a tree is drawn with its root on

the left- and leaves on the right- hand side, with branch lengths

representing evolutionary distances (as determined by PHYLIP), we

draw a vertical line through the tree. If the most recent common

ancestor of a group of leaf nodes is on or to the right of that line,

then that group of nodes makes up a cluster. Under homochronous

sampling, all leaf nodes are at the same distance from the root due to

the molecular clock assumption of the program used to build the

trees (DNAMLK). The cut-off point used was 0.06 substitutions/site

for the clustering results unless otherwise indicated; this is

approximately one quarter to one third of the root-to-leaf distance

for most trees. We varied this choice to ensure our results were not

an artifact of the cut-off value. We also used cut-offs that were a

given portion of tree’s total distance (the distance to the most recent

common ancestor of all leaves) (see Text S1). Branch lengths were

computed by DNAMLK (DNAML for heterochronous sampling).

For all trees with labels, units are in substitutions/site.

Tree imbalance
A binary tree is considered to be perfectly balanced if each

internal (branch) node in the tree divides the leaves descending

from it into two equally-sized groups. The degree to which a tree

diverges from the perfectly balanced tree with the same number of

leaf nodes is its tree imbalance, for which several measures exist.

Several of these measures have previously been found to be

associated with variation in speciation rates among different strains

or species [48,49]; Agapow and Purvis [50] compared eight such

measures and noted that differences in the location of tree

imbalances (spread throughout the whole tree, or more concen-

trated towards its root) could be associated with different

evolutionary processes.

One of the most widely-used measures of imbalance is Colless’s

I, corrected by Heard to take account of different tree sizes [51].

This was calculated here using the following equation:

I~
2

(n{1)(n{2)

X
b
ETiR{TiLE where n is the number of leaf

nodes (number of samples), b is the set of internal branch nodes

and TiR and TiL are the number of leaf nodes descending from the

right and left branch of internal node i respectively. The expected

value of I for a tree with n leaves [51] is given by

E(I)~
2n

(n{1)(n{2)

Xn=2

j~2

1

j
when n is even, or E(I)~

2n

(n{1)(n{2)
½1
n
z
X(n{1)=2

j~2

1

j
� when n is odd.

The programs developed for network generation, dynamics and

pathogen transmission, evolution and sampling were written in

C++.

Box plots were created using MATLAB. In each box plot, the

median is indicated in red and the 25th and 75th quantiles

correspond to the limits of the boxes. Whiskers (black lines) extend

to the range not considered to be outliers, and outliers are marked

individually with redzsymbols.

Results

Figure 2 shows trees typical of samples taken from NATSAL

and ER-type networks. The NATSAL network’s tree (panel A)

shows relatively long branch lengths to the leaves (i.e. samples) and

short branch lengths near the root. In contrast, the trees resulting

from simulated evolution on the ER-type networks (panels B and

C) show somewhat more uniform branching through time.

However, these patterns are strongly affected by the population

dynamics. Under coalescent theory, the time during which there

are n lineages is exponentially distributed with mean N=
n

2

� �

[52]. The exterior branches (those terminating in leaves) of the

three trees illustrate this qualitative dependence on the population

dynamics: NBwNAwNC , and EBwEAwEC (where EA is the

mean exterior branch length of tree A, NA is the prevalence of

infection near the sampling time of 260 weeks and similarly for B
and C). However, we observe qualitatively different tree shapes for

very similar patterns of early prevalence and incidence (early

portion of trees in panel A and B of Figure 2), and also for

epidemics with similar prevalence at the time of sampling (panels

A and C). These simulations suggest that networks influence the

relationship between the number of lineages through time in a tree

and the epidemic trajectory of a pathogen.

Figure 2 illustrates two points motivating the approach we take

in the remainder of this work. The first is that pathogen population

dynamics can have a stronger impact on tree structure than the

network; the trees in panels B and C are both derived from ER

networks but look quite different. The second is that network

structure retains influence over pathogen phylogenies independent

of population dynamics: the NATSAL-derived tree in panel A is

different from the tree in panel B over the early period of the

Contact Networks and Pathogen Phylogenies
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epidemic when the epidemic trajectories are similar. Disentangling

these two effects is challenging, because networks play a major role

in determining patterns of pathogen incidence and prevalence.

To elucidate the direct effects of the underlying network

structure on phylogenetic trees (i.e. pathway A in Figure 1), we

compared trees drawn from simulations in which the networks’

transmissibility and the durations of contacts were adjusted to

produce matched epidemic trajectories.

Clustering
Figure 3 shows the mean numbers and mean sizes of clusters in

phylogenetic trees derived from dynamic and static underlying

networks with duration of infectiousness of 40 weeks. (A shorter

duration, and the case where mutation occurs on transmission

rather than over time are shown in the supplement, Text S1). In

the boxplot figures, the boxes should each be considered as two

pairs, with the first pair comparing the networks at the first

sampling time (t~200), and the second pair showing tree

summary statistics from the second sampling time (t~260). For

reasons of space Erdos-Renyi networks are labelled ‘ER’.

The NATSAL-based networks have greater variability in cluster

count, which is particularly evident in the static network case.

Because the ER networks are more regular in structure, the

pathogen spreads at a similar rate, regardless of the starting point.

In contrast, the underlying heterogeneity of the NATSAL-based

networks causes incidence to rise quickly when the pathogen

reaches a high-activity node, which due to assortativity is likely to

be linked to other high-activity nodes. We note that the

distribution of cluster numbers and cluster sizes depends on the

choice of cutoff; results for different cut-offs are shown in Figure S5

in Text S1. Furthermore, using a cut-off measured in substitutions

per site (i.e. in the branch length units computed by DNAMLK)

does not account for the fact that each tree has a different distance

between its leaves and their most recent common ancestor, so that

a cut-off of 0.06 may be halfway along one tree but 2/3 of the way

along another. For this reason, we also computed the mean cluster

number for cut-offs at fixed portions of the trees’ total distance

(Figure S6 in Text S1). This reduces the heterogeneity of the

results derived from NATSAL networks. But both illustrate the

same relationships as shown in Figure 3, namely that NATSAL

networks have more clusters and their numbers and sizes are more

variable. The sizes of clusters are generally inversely related to the

number of clusters (as the numbers in total must add to the

number of leaves).

Even under conditions when the overall prevalence and

incidence are similar in the two networks, the NATSAL networks’

transmission patterns are likely to involve a small number of high-

activity individuals, whose descendant infections will be related

and form clusters in the phylogenetic trees. Variation in cluster

numbers arises due to the interplay between when high-degree

individuals are reached by the pathogen, when their descendant

infections arise (and hence how correlated these are genetically),

Figure 2. Trees constructed from pathogens spreading on the NATSAL and ER networks supporting very different epidemic
trajectories. A: Phylogenetic tree from the NATSAL network, corresponding to the pathogen prevalence in panels D and E (blue lines). B and C: tree
derived from the pathogen spreading on an ER network, corresponding to the red lines in D and E respectively. The ER prevalence was varied by
changing the transmission parameter. Sampling was done at time 260 weeks.
doi:10.1371/journal.pcbi.1003105.g002

Contact Networks and Pathogen Phylogenies
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and the extent to which these descendants are sampled. This effect

is not a consequence of population dynamics but is directly related

to network structure.

Differences in clustering patterns between NATSAL and ER

networks are also apparent by visual comparison of the trees

shown in Figure 4, which depict the distinct clusters with different

edge colours. In panel A, the NATSAL-based tree is divided into

34 small clusters (the largest of which contains 6 samples), while

the ER-based tree has only 7 clusters which are more varied in

size, containing 2, 2, 5, 13, 17, 17 and 21 nodes. Panel B

demonstrates the same qualitative effect, in which the NATSAL

network gives rise to more clusters than the ER network. In panel

C, where the entire epidemic trajectory matches most closely, the

difference remains but is more modest. Cluster size is related to the

inferred times of the earliest internal nodes: because cluster

numbers depend on a cut-off value, trees with earlier nodes have

more clusters for the same cut-off value.

Past work has implicitly assumed that clustering patterns in trees

would mirror the underlying contact network’s degree distribution

[53–56], though more recent work notes that clustering patterns

do not necessarily reflect network strucure [27,57]. In Figure 5, we

show the distribution of cluster sizes in phylogenetic trees and the

degree distribution of the transmission trees on which infection

spread. We find that that the cluster size distribution does not

particularly mirror the underlying contact network’s degree

distribution: while the NATSAL networks have a much broader

degree distribution, both in general and among those actually

infected even when prevalence and incidence match well, the

distributions of cluster sizes within the trees are very similar. We

computed the variance and skewness of the cluster size distribution

within each tree, and these were also not particularly different

between the networks.

Branch lengths
We compared the mean branch lengths of the phylogenetic

trees arising from pathogens sampled from epidemics spreading on

the different networks (see Figure 6). A significant difference in the

mean branch lengths was found between the ER and the

NATSAL-based groups at both sampling times, with ER networks

producing trees with higher mean branch lengths, particularly in

the static network case.

Differences in mean branch lengths may reflect either variation

in the root-to-leaf distance from one tree to another, or differences

in where the longer branches are (with short branches close to the

root requiring long branches closer to the leaves, where there are

more branches, resulting in a higher mean branch length). Both

are at play here. We find that the root-to-leaf lengths are generally

shorter in the NATSAL network-derived trees, probably because

Figure 3. Mean number and mean sizes of clusters of two or more samples in phylogenetic trees from the scenarios. A: cluster
numbers (dynamic with duration 40 weeks); B cluster numbers (static network); C cluster sizes (dynamic with duration 40 weeks); D cluster sizes (static
network).
doi:10.1371/journal.pcbi.1003105.g003

Contact Networks and Pathogen Phylogenies

PLOS Computational Biology | www.ploscompbiol.org 6 June 2013 | Volume 9 | Issue 6 | e1003105



of relatively shorter transmission routes (shorter in time as well as

smaller in numbers of edges traversed). A higher portion of

transmission in heterogeneous networks stems from a small

number of high-activity nodes, accounting for these shorter paths.

In this way, the most recent common ancestor of the sampled

sequences may not in fact be the common ancestor introduced in

the simulation, but some subsequent infection that reached a high-

degree individual. This occurs more frequently in NATSAL-

derived trees than in the ER-like networks. We also find that the

ratio of mean branch length to total branch length is far more

variable in trees derived from NATSAL networks than it is in

those derived from ER networks. While the differences in mean

branch lengths are due to differences in the total genetic distance

in the trees, the differences in variability are due to more variable

allocation of the trees’ total distance between early and later

branches.

We also compared internal and external (pendant) branch

lengths in the trees. A high ratio of internal branch length to

external branch length occurs in ‘star-like’ trees. Volz found that

faster-than-exponential growth in prevalence creates less star-like

trees than exponential growth [26]. We find that NATSAL-

derived trees are less ‘star-like’ than ER-derived trees, as shown in

Figure 7. This is consistent with Volz’s finding and the shape of the

prevalence curves in Figure S1 in Text S1, though this consistency

does not imply that the pathogen prevalence (or prevalence and

incidence) are the only factors affecting the branch lengths and

‘star-like’ quality of the trees.

Imbalance
We hypothesized that the greater heterogeneity in contact

numbers in the NATSAL networks compared to the ER

networks would affect the structure of the phylogenetic trees.

Imbalance is one way to measure tree structure, and this metric

has the advantage that it is not directly affected by population

dynamics (as described by coalescent theory). Figure 8 illustrates

the patterns and variability in tree imbalance. We found that

Figure 4. Comparison of typical trees derived from ER-like networks (top row) and NATSAL networks (middle row) illustrating that
pathogen prevalence (bottom row) as well as networks both influence trees. The NATSAL trees displays early divergence compared to the
ER trees, and this affects the number of clusters. Panel A shows different epidemic trajectories and their corresponding trees, B shows more similar
trajectories, and C shows closely matched epidemics. The tree differences are most modest in panel C where the pathogen population dynamics are
closely matched. Edges in each cluster are drawn with the same colour. The threshold value for clustering was 0.1.
doi:10.1371/journal.pcbi.1003105.g004

Contact Networks and Pathogen Phylogenies
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Figure 5. Network prevalence, incidence and 1-cumulative degree distributions for ER (red) and NATSAL (blue) dynamic networks
with d~40. Note that the NATSAL network admits similar epidemic trajectories with markedly different degree distributions (A–C). Panels D, E show
the cumulative distributions of the cluster sizes in the ER (red) and NATSAL (blue) networks, and illustrate that these do not parallel the degree
distribution; NATSAL networks do not have particularly more variable cluster sizes within trees. Panels F and G show the variance and skewness in
boxplots; each box represents all trees from the given network and time point as in other figures.
doi:10.1371/journal.pcbi.1003105.g005

Contact Networks and Pathogen Phylogenies
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Figure 6. Branch lengths in phylogenetic trees from the scenarios. A: mean branch lengths in trees from dynamic networks with a pathogen
with duration of infectiousness 40 weeks; B mean branch lengths in static networks with duration of infectiousness 40 weeks. C, D: ratio of mean
branch length to total tree distance, from dynamic and static networks.
doi:10.1371/journal.pcbi.1003105.g006

Figure 7. Mean internal/external branch lengths for trees derived from epidemics on dynamic (d = 40 weeks) and static networks.
doi:10.1371/journal.pcbi.1003105.g007
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static NATSAL-type networks lead to greater imbalance than

ER-type networks, but this difference is diminished when the

networks are dynamic.

Heard [48] described variability in speciation and extinction

rates as an important cause of imbalance in phylogenetic trees.

Positive selection can produce tree imbalance since lineages

undergoing positive selection will experience higher speciation

(here, branching) rates than other lineages. Here, imbalance arises

in the absense of any positive selection, but asymmetric branching

rates may still account mechanistically for higher imbalance. This

may help to explain the static network results, in which the ER

networks produced the most balanced trees: in static ER networks,

every node has approximately the same number of contacts at all

time points, and so the rate of spread of infection should be

relatively regular, resulting in more symmetric lineage branching

rates than those in NATSAL networks where some lineages have

access to highly active nodes. This finding is consistent with the

recent imbalance results of Leventhal et al [24]. In contrast to the

static case, we found little difference in imbalance when the

networks were dynamic, though we note the difference in

imbalance was more pronounced for pathogens with shorter

duration of infectiousness (see Text S1).

Prevalence and incidence matching
Several of the comparative results presented could result from

differences in incidence and prevalence. For example, NATSAL

networks generate more variable population dynamics than ER

networks (see Figure S1 in Text S1), and this could explain the

higher variability of trees derived from NATSAL networks. To

investigate the independent effect of network structure (i.e.

mechanism A in Figure 1), we examined phylogenetic trees from

pairs of simulations on dynamic networks in which the pathogen

prevalence and incidence were very closely matched up to the 200-

week sampling time (see Figure 9). To verify that this matching

process does not simply select simulations for which few or no

highly active individuals were infected, we found the cumulative

distribution function for the degrees of those infected (Figure 5, top

row); NATSAL networks consistently include individuals with 10

times as many contacts as ER networks.

Using these matched epidemics, we found similar overall

patterns for branch length and clustering as we previously

described: ER-derived trees have smaller cluster count and longer

mean branch lengths. The NATSAL-derived trees showed

somewhat lower imbalance than those from the ER networks.

This finding is different than the results of Leventhal et al [24], and

suggests that allowing networks to be dynamic erodes the

networks’ effects on imbalance.

Figure 9 shows the number of lineages in the trees as a function

of the distance from the trees’ roots (known as a lineages through

time or LTT plot). These are similar for both sets of trees, which is

to be expected since both prevalence and incidence were similar

throughout the simulation prior to time t = 200 weeks where

sampling was done. The fact that noticeable differences in the trees

persist when the population dynamics and LTT plots are so similar

indicates that the differences we have observed are not an artefact

of the networks’ effects on the pathogen population dynamics.

Interestingly, in examining the relationships among the branch

lengths, we found that the leaf-leaf distances were different

between ER and NATSAL-derived trees only when the preva-

lence and incidence closely matched. This is illustrated in

Figure 10, which shows the leaf-to-leaf distances (scaled to the

total distance in each tree, to avoid confounding the issue with the

differences in total variation). Longer leaf-leaf distances in

NATSAL networks reflect relatively earlier diversification along

the tree. The fact that longer leaf-leaf distances only become

apparent in the scenario where prevalence and incidence are

closely matched is interesting; it is possible that a knowledge of the

true prevalence and the leaf-leaf distances predicted under a null

model could form part a strategy to characterise network structure

from phylogenies. However, our results here suggest that branch

lengths are not sufficient to do this.

Heterochronous sampling
We hypothesized that homochronous sampling may be less

sensitive to differences in the networks because highly active

individuals are likely to be infected early, and so are unlikely to be

sampled directly in homochronous sampling performed when a

large outbreak has reached high prevalence. For these reasons, we

repeated our analysis with two different models of heterochronous

sampling: sampling each infected node throughout the simulation

with uniform probability, and sampling at a constant rate in time

throughout the simulation. The latter leads to a relative over-

sampling of nodes infected early in the outbreak, due to the lower

prevalence at earlier times.

Figure 8. Tree imbalance in phylogenetic trees from the scenarios (left) dynamic with duration 40 weeks; (right) static networks.
Dashed lines indicate the expected imbalance for trees of this size [51].
doi:10.1371/journal.pcbi.1003105.g008

Contact Networks and Pathogen Phylogenies

PLOS Computational Biology | www.ploscompbiol.org 10 June 2013 | Volume 9 | Issue 6 | e1003105



The cluster numbers and sizes, branch lengths and imbalances

in heterochronous trees is shown in Figure 11. As in Figure 3,

trees derived from NATSAL networks have more clusters at a

given cut-off, and this is particularly marked when sampling

uniformly in time (so over-sampling early infections). As in

Figure 6, mean branch lengths are lower in trees derived from

NATSAL networks, whatever the sampling scheme. Imbalance is

only different under uniform sampling in time, where we recover

the result of Leventhal et al [24] that imbalance is higher in

skewed networks.

Figure 9. Cluster count, branch length and imbalance (top row) for a pathogen with duration of infectiousness d = 40, taken from
simulations in which incidence and prevalence were as closely matched as possible. Dashed line indicates the expected imbalance for
trees of this size [51]. Prevalence and incidence over time in an ER network (blue) and NATSAL-based network (red) are shown in the bottom row for
dynamic ER and NATSAL underlying contact networks. The number of lineages through time (LTT) in the trees for ER (solid) and NATSAL (dotted) is
also shown. The LTT plots show the LTT for all trees; mean LTT at each time are indicated with dotted and solid lines and the coloured regions range
from the minimum to the maximum. Distributions were close to uniform over this range. The ranges almost entirely overlap.
doi:10.1371/journal.pcbi.1003105.g009

Figure 10. Mean leaf-to-leaf distance scaled to the total distance in each tree, for the matched prevalence scenario, unmatched
dynamic (d~40) and static.
doi:10.1371/journal.pcbi.1003105.g010
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Discussion

The effect of host contact network structure on the diversifica-

tion of pathogens is mediated through a complex set of interactions

that involve both how networks support different epidemic

dynamics, and how they present different opportunities for

pathogen evolution. Understanding the independent impact of

network effects on observed pathogen phylogenies is challenging.

Our models suggest that the structure of contact networks affects

pathogen diversification even when epidemic dynamics are

similar, evolution is by neutral mutation only, and the host

contact network is randomly wired apart from its heterogeneity in

contact numbers. In contrast to the work presented in [24],

however, we find that these effects are relatively modest, and in

particular, when networks are dynamic and when epidemic

dynamics are similar, networks with long-tailed degree distribu-

tions (here NATSAL-type networks) do not necessarily lead to

much higher levels of tree imbalance than homogeneous networks

(i.e. ER-type networks). The main exception is under a heteroch-

ronous sampling scheme in which nodes infected early are very

likely to be sampled; in this case, tree imbalance is consistently

higher for phylogenetic trees derived from NATSAL networks.

Much of the work to date on relating transmission patterns to

phylogenies has been done on HIV [27,53,54,56]; the mutation

rate is high and phylogenetic methods have been in use for

decades. Furthermore the duration of infectiousness with HIV,

even in the initial stage, is in the appropriate range for our model.

(Estimates of HIV transmission rates during different disease stages

identified a period of high infectivity lasting three months [58],

followed by a reduction in transmission rate until the acute phase

of infection.). Bacterial STIs also have long infectious durations,

with estimates of 55 days for gonorrhea [46,59] and 10 months for

chlamydia [46,60]. While bacterial and viral pathogens have very

different per site mutation rates, the greater length of bacterial

genomes compensates for bacterias’ lower mutation rates. A

number of recent studies have used whole genome sequencing to

resolve bacterial transmission [28,29]. In any case, as long as the

mutation rate is high enough that phylogenetic error is low, true

phylogenies do not depend on the mutation rate. Here, we chose a

mutation rate high enough that transmission events are highly

likely to carry mutations with them.

We have designed our study to examine the effect of host

network structure on pathogen phylogenies in the absence of

strong differences in pathogen population dynamics, because the

latter can dominate the effects on the phylogenetic trees. However,

this choice has imposed a strong constraint relative to what might

be known in many realistic settings, and it reduces the apparent

effect of network structure. Furthermore, there is more work to be

done in characterising the differing roles of population dynamics

and host behaviour in shaping pathogen phylogenies. This might

include fixing population dynamics and explicitly exploring re-

wiring transmission trees that fit the (fixed) population trajectories,

or using optimisation methods to obtain best-fit population

dynamics matches over large numbers of simulations and varying

network parameters. In addition, future work could use substitu-

tion processes tuned to represent particular pathogens, to generate

simulated phylogenies whose properties could be compared with

phylogenies derived from data. Ultimately, using phylogenetic

data to detect the nature of, and changes in, host contact networks

would be a worthy goal, though our results here suggest that this

will require incorporating additional epidemiological information

and improved summary statistics for phylogenies.

Monitoring the early emergence of a pathogen or the beginning

of an outbreak is challenging, whereas more data are usually

available about recent and current incidence and prevalence. Our

results suggest that one way in which large sets of pathogen

sequences could help inform epidemic dynamics is by shedding

light on the shape of the early portion of an outbreak that may

have been difficult to observe.

In some cases sequence data have been combined with other

epidemiological data (contact tracing, interviews, etc.) to great

effect in characterising transmission routes [29,57,61]. However,

in many settings additional epidemiological data may be much

harder to obtain than pathogen gene sequences, particularly for

larger outbreaks and epidemics. Furthermore, while pathogen

phylogenies may provide detailed information about the trans-

mission trees among individuals who have already been infected

and subsequently sampled, how these phylogenies can inform a

broader understanding of the features of transmission networks

remains unanswered. While we have use simple sampling schemes,

the actual sampling approach (e.g. RDS, contact tracing,

convenience cross-sectional sampling) will affect pathogen phy-

logenies. This information will also need to be accounted for when

using phylogenetic data to make inference about transmission

patterns.

Here, we found that ER-type networks can result in more

variable cluster sizes despite having less variability in contact

numbers than NATSAL networks. This runs counter to the

intuition that cluster size and variability parallels the size and

variability of the underlying contact network. The extent to which

sequences occur in clusters, and cluster sizes, are a frequently

reported aspect of phylogenetic data [62–64]. It has been

implicitly or explicitly assumed that a clade in a phylogenetic tree

corresponds to a transmission cluster [53–56], and while sequences

that cluster together are related, we have found that the cluster size

distribution does not mirror the underlying contact network’s

degree distribution. This distinction between transmission trees

and phylogenetic trees has been clearly articulated by Jombart et

al [57]. In our simulations, clustering metrics show high variability

from tree to tree when trees are made from 100 randomly sampled

individuals from the same pathogen spreading on the same

network. If such high variability occurs in such idealised simulated

conditions, it indicates that inferences from these patterns should

be treated with caution, particularly when underlying contact

networks may have long-tailed degree distributions in which

variability is expected to be substantially greater.

The host contact network not only shapes the pathogen

phylogenetic tree, but more fundamentally, it shapes the

pathogen’s opportunities for reproduction and consequently for

evolution. In our results, the NATSAL networks (i.e. sexual

contact networks) yield phylogenies with lower branch lengths

overall, and also with proportionately early diversification,

compared to more homogeneously connected ER networks

(Figure 10). Early diversification can be a good strategy from the

point of view of a pathogen, because numerous opportunities for

advantageous evolution occur in a very short window of time

(giving the host population little time to respond). However, this

advantage would be greatly reduced if the infection conferred

Figure 11. Clustering, branch lengths and imbalance for heterochronous sampling on the dynamic network with d~40. Clustering
was done with a cut-off distance of 0.06 as in the results for homochronous sampling. The expected value of imbalance is 0.074 [51], considerably less
than the imbalance of the heterochronously sampled trees from both networks.
doi:10.1371/journal.pcbi.1003105.g011
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immunity, because highly connected individuals would become

immune quickly, diminishing the advantage for the pathogen (our

models assume a susceptible-infected-susceptible structure).

Our results support several findings described by Leventhal et al

[24], including that for static networks, tree imbalance is more

marked for pathogens spreading on heterogeneous networks.

However, we found this effect is eroded when the networks are

allowed to be dynamic and when the pathogen population

dynamics are similar. None of the metrics we examined are robust

detectors of network differences in the context of similar pathogen

population dynamics. Comparable pathogen population dynamics

imply that the epidemics would appear similar from a surveillance

perspective. Accordingly, while we found network-based differ-

ences for several tree metrics, we believe that these differences are

too small to robustly identify the structure of underlying host

contact networks, and methods to incorporate phylogenetic and

epidemiological data will need to be developed. Furthermore, if

phylogenetic methods are to be helpful in characterising sexual

contact networks, our results indicate that (over-) sampling nodes

as early as possible is likely to be more informative than sampling

later.
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