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Abstract

To investigate factors contributing to drug side effects, we systematically examine relationships between 4,199 side effects
associated with 996 drugs and their 647 human protein targets. We find that it is the number of essential targets, not the
number of total targets, that determines the side effects of corresponding drugs. Furthermore, within the context of a three-
dimensional interaction network with atomic-resolution interaction interfaces, we find that drugs causing more side effects
are also characterized by high degree and betweenness of their targets and highly shared interaction interfaces on these
targets. Our findings suggest that both essentiality and centrality of a drug target are key factors contributing to side effects
and should be taken into consideration in rational drug design.
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Introduction

Regardless of their effectiveness, most drugs come with side

effects of different types that affect patients’ life quality and may

even bring up additional health problems. It is estimated that

around two million patients suffer from serious drug side effects

each year and that the fourth leading cause of death in the United

States is severe side effects of medication [1,2]. Of the total

number of drug candidates failed during clinical trial phases II and

III, 20% of these failures are because of safety issues [3]. Hence,

evaluating potential side effects of drugs is important in rational

drug design and development, as well as successful marketing.

Binding of drugs to their on- and off-targets modifies the functions

of these targets and therefore is believed to account for their

efficacies as well as side effects [4]. Traditionally, properties of a

drug such as binding fingerprint and chemical structure are

evaluated to anticipate side effects [5,6]. Moreover, in vitro assays

or phenotypic tests in model organisms may not be able to capture

the same spectrum of side effects in human [7,8].

Recently, an increasingly accepted view is that integrating

biological networks would provide unique insights into under-

standing disease mechanisms and identifying novel drug targets

[9,10]. Network-based methods have been explored and success-

fully applied in finding disease-associated genes and inferring

underlying molecular mechanisms [11,12]. Similarly, phenotypic

responses to drugs can be better rationalized by considering their

overall effects in the context of molecular networks. Previous

studies have shown that drugs with shared targets or those that are

close in the interactome network often share similar side effects

[13,14]. Also, similar side effect profiles have been used to predict

drug-target interactions for potential drug repositioning [13]. Hase

et al. examined network degree distribution of different categories

of genes and suggested that connectivity is potentially important in

inferring drug side effects [15]. However, no actual adverse effect

data were used in their study. The relationships between drug

target properties, especially in the context of biological networks,

and its potential toxicity to human remains unexplored. Here, we

systematically investigate major contributing factors of drug side

effects, taking into consideration their direct targets and the local

network structures of these targets.

Results/Discussion

We obtained a list of 996 drugs and the associated 4,199 side

effects from SIDER 2 [16] and analyzed 645 FDA-approved drugs

that have at least one known human protein target based on the

DrugBank database [17]. Evaluation of severity of adverse effects

varies among individuals and is often affected by an individual’s

underlying health conditions. In general, drugs that cause more

side effects tend to have higher likelihood leading to severe

outcomes, including death (Figure 1). Although tremendous efforts

have been made on studying drug side effects in the pharmaceu-

tical industry, the number of side effects for FDA-approved drugs

significantly increases for those that were approved recently

(Figure S1), indicating the necessity in further studying the

contributing factors underlying drug adverse effects. By grouping

drugs into the categories of ‘‘nutraceutical’’, ‘‘approved’’, and

‘‘withdrawn’’ drugs, we find that, unsurprisingly, the nutraceutical

drugs have the least number of side effects (P-value = 0.00023,

when compared to the approved therapeutical drugs; Figure 2A),

while the withdrawn drugs cause significantly more side effects

compared to the approved ones (P-value = 0.04; Figure 2A).
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However, there is no significant difference between the average

numbers of targets of the three drug groups (Figure 2B). This

indicates that the occurrence of side effects may not simply be

explained by the number of targets a drug binds to. To investigate

this further, we performed a generalized linear regression with

negative binomial distribution for side effects over the number of

targets. At first, we observed that the number of side effects

significantly correlates with the number of targets (b = 0.045; P-

value = 0.0033; Figure 2C). However, further dissection of

properties of drug targets reveals that the positive correlation is

due to the presence of essential targets, those drug targets encoded

by essential genes. We find that the positive correlation between

the number of side effects and that of essential targets is much

more significant (b = 0.17; P-value = 1.861025; Figure 2D). On

the contrary, by analyzing drugs with no known essential targets,

we find that the positive correlation between the number of side

effects and targets no longer holds (b = 0.004; P-value = 0.93;

Figure 2D; see Figure S2 for the illustration separating the effects

of essential and non-essential targets). This discovery suggests that

it is the number of essential targets, rather than the number of total

targets, that governs the occurrence of drug side effects.

Moreover, the human interactome network has been demon-

strated to be highly valuable in understanding pathogenic

mechanisms of many disease genes [9], since most proteins

interact with other proteins to carry out their functions [18].

Therefore, it is also important to assess drug side effects by

considering network properties of their targets within the human

protein interactome. Here, we examined whether the degree

(number of proteins that directly interact with the targets) and

betweenness (number of shortest paths going through the targets)

[19] of drug targets in the network contribute to side effects. These

are two of the most important network parameters, measuring the

centrality of the target proteins within the network. We

constructed a high-quality human protein-protein interactome

network that consists of 30,713 interactions between 8,357

proteins and then mapped all the drug targets onto the

interactome (Materials and Methods; the sub-network containing

the drug targets is shown in Figure 3A). This high-quality human

protein-protein interactome network can provide insights into

potential toxicity of drugs based on the network properties of their

targets.

To systematically investigate the relationship between a drug’s

side effects and its target degree within the interactome network,

we focused on drugs with only one non-essential target to separate

potential confounding effects of the number of total and essential

targets. The results show that the number of side effects correlates

significantly with the degree of drug targets (b = 0.31; P-

value = 0.041; Figure 3B). Furthermore, we analyzed the occur-

rence of side effects with respect to the number of targets that are

bottlenecks [19] (network nodes with betweenness among top

20%) and found significant positive correlation between them

(b = 0.21; P-value = 0.0057; Figure 3C). This positive correlation is

consistent when we set the betweenness cutoff at top 5%, 10%,

and 40% for identifying bottleneck proteins (Figure S3). This

observation indicates that the centrality of drug targets in

biological networks also plays a key role in producing various

side effects. We further partitioned the drugs into cancer and non-

cancer drugs and repeated the calculations for essentiality and

centrality that we presented above. We found the same

conclusions for both cancer (Figure S4) and non-cancer drugs

(Figure S5).

Our recent study has shown that reconstructing the human

protein interactome into a three-dimensional (3D) structurally

resolved network can provide insights into molecular mechanisms

of disease genes and their mutations [12]. To understand distinct

perturbations of the interactome network by various drugs, we

then examined the properties of their targets within the framework

of our 3D-interaction network. The structural details in this 3D-

interaction network allow us to distinguish the effects of drug

targets with distinct binding interfaces (i.e., multi-interface targets,

which bind their different interaction partners at different

interfaces) and those with a common interface (i.e., single-interface

targets, which bind their different partners at the same interfaces)

[20]. We hypothesize that more adverse effects are expected for a

single-interface target due to a higher likelihood of altering all of its

interactions by a drug disrupting its only interaction interface. By

analyzing side effects of a drug with the proportion of shared

interaction interfaces of each drug target with its interaction

partners, we observe that the number of side effects increases

significantly with the proportion of shared interaction interfaces on

a target (b = 1.5; P-value = 0.00014; Figure 3D). This observation

confirms our hypothesis that single-interface targets are likely to

cause more side effects than multi-interface ones. We show that

this finding is not due to potential biases contributed by hubs or

bottlenecks since these nodes tend to have smaller proportions of

shared interaction interfaces (Figure S6).

We further identified genes associated with human genetic

disease and mapped them onto our human protein interactome

network [12]. We calculated the average shortest distances

between drug targets and disease-associated genes to represent

potential molecular steps needed for a drug to affect the

corresponding disease module/pathway. We find that although

there is an enrichment of shorter distance between drug targets

and their ‘‘indicated disease’’ genes, the distribution largely

overlaps with that of distance between targets and unrelated

disease genes (Figure 4A). Furthermore, the drugs that fail to

specifically interfere with the disease-associated module/pathway

result in many more side effects (Figure 4B). This result further

demonstrates the importance of incorporating network properties

of drug targets and corresponding disease genes in rational drug

design and development.

In summary, for the first time, we show that the number of

essential targets, not the number of total targets, is a determinant

of drug side effects. Furthermore, high incidence of drug side

effects is also characterized by high degree and betweenness of

their targets in the interactome network, as well as highly shared

interaction interfaces on these targets. Our findings reveal that

both essentiality and centrality of a drug target are important

Author Summary

The ultimate goal of medical research is to develop
effective treatments for disease with minimal side effects.
Currently, about 20% of drug candidates failed at clinical
trial phases II and III due to safety issues. Therefore,
understanding the determining factors of drug side effects
is of paramount importance to human health and the
pharmaceutical industry. Here, we present the first
systematic study to uncover key factors leading to drug
side effects within the framework of the human protein
interactome network. Our results show that it is the
number of essential targets, not the number of total
targets, of a drug that determines the occurrence of its
side effects. Furthermore, we find that the centrality, both
degree and betweenness, of the drug targets is also an
important determining factor of drug side effects. Our
findings will shed light on new factors to be incorporated
into the drug development pipeline.

Target Network Properties on Drug Side Effects
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factors to be considered in the drug development pipeline in order

to improve the efficiency of this lengthy and costly process.

Incorporation of these factors will be useful in the selection of drug

candidates at the early stages of the drug development pipeline.

When choosing from several drug candidates with similar chemical

properties, the one binding to proteins that are not essential and not

central in the network would have a higher chance of passing

clinical trials later. Moreover, in the efforts of computationally

predicting drug side effects [21], the inclusion of target essentiality

and centrality as additional features would also improve the

prediction performance. Furthermore, our results can serve as

guidance for minimizing side effects in clinical applications,

especially when prescribing multi-drug cocktails, which have been

proven to be much more effective than single drug approaches [22].

With the increasing coverage of the protein-protein interaction

network in human and the accessibility of interactions of high

confidence levels [23], more interesting analyses can be performed

to further dissect the properties of drug targets and the associated

side effects. This study of adverse effects of drugs within the

framework of the protein-protein interactome network demon-

strates that network-based pharmacology is of great importance in

the field of drug development and application.

Materials and Methods

Compiling a comprehensive list of drug side effects,
human targets, and target essentiality

We downloaded 4,199 side effects associated with 996 drugs from

the SIDER database release 2 [16]. For the drugs in SIDER 2, we

mapped them based on the generic drug names or PubChem IDs

[24] to the DrugBank database [17] downloaded on November 6,

2011, and extracted all of their direct binding human protein targets

(647 in total) with available uniprot IDs. We did not differentiate on-

and off-targets in all of our analyses with the rationality that they

could all potentially produce side effects when bound by the

corresponding drugs. Furthermore, we downloaded the database

containing the approval dates for each drug from the Drugs@FDA

database (http://www.accessdata.fda.gov/scripts/cder/drugsatfda/)

and the Orange Book (http://www.accessdata.fda.gov/scripts/cder/

ob/eclink.cfm). The earliest approval date was used when a drug had

a history of multiple approval events. We then cross-checked the list

with the ones reported by Rask-Andersen et al. [25] and removed the

drugs with conflicting dates. A list of essential genes was obtained by

taking the union of the human orthologs of mouse genes that result in

embryonic or postnatal lethality when disrupted [26] and the genes

reported as essential from a large-scale RNAi screen in human

mammary cells [27]. A drug target that belongs to the essential gene

list is abbreviated as an ‘‘essential target’’.

Generalized linear regression analysis
To find key factors contributing to the incidence of side effects,

we performed a series of generalized linear regressions based on

negative binomial distribution for side effects with the following

probability density function:

f (y; m,h)~
C(yzh)

C(h).y!
.

my.hh

(mzh)yzh

Figure 1. Drugs causing more side effects tend to be associated with more severe outcomes including death. Drugs were classified into
two groups: 1) drugs that have a reported side effect described as ‘‘death’’ in SIDER 2 (red) and 2) drugs that do not have a reported fatal side effect
(blue). The number of side effects for drugs more likely to lead to death has a right-shifted distribution.
doi:10.1371/journal.pcbi.1003119.g001

Target Network Properties on Drug Side Effects
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Figure 2. The number of side effects is positively correlated with the number of essential targets. (A) The number of side effects and (B)
the number of human targets are displayed for different groups of drugs. The Wilcoxon rank-sum tests were used to assess the differences in
distributions of side effects and human targets among different drug groups. The number of drug side effects is positively correlated with (C) the
number of total targets and (D) the number of essential targets (triangles). However, the analysis on drugs with no essential targets shows no
correlation between drug side effects and targets (circles). The results in panels (C) and (D) are obtained from generalized linear regressions based on
negative binomial distribution for side effects. In panels (C) and (D), gray symbols are raw data while the colored ones correspond to median counts
of side effects. Schematics under the x-axes illustrate a drug (hexagon) binding to its target protein(s) (filled circles).
doi:10.1371/journal.pcbi.1003119.g002
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Figure 3. The number of side effects is positively correlated with target centrality in the protein-protein interaction network. (A)
Network representation of the human protein-protein interactome for drug targets. Nodes represent proteins and edges correspond to interactions.
Colored nodes in the panel (A) indicate the known drug targets. The number of drug side effects is positively correlated with (B) the degree of a
target, (C) the number of bottleneck targets, and (D) the proportion of shared interaction interface on a target. All the results are obtained from
generalized linear regressions based on negative binomial distribution for side effects. Gray symbols in the panels (B)–(D) are raw data while the
colored ones correspond to median counts of side effects. Schematics under the x-axes illustrate a drug (hexagon) binding to its target protein(s)
(filled circles): In (B), open circles represent interaction partners of the drug targets. In (C), the filled circle is a bottleneck target and open circles
represent non-bottleneck proteins in the network. In (D), different interfaces of a multi-interface drug target are highlighted in colors; the interface of
a single-interface drug target is highlighted in black.
doi:10.1371/journal.pcbi.1003119.g003

Target Network Properties on Drug Side Effects
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Figure 4. Distribution of side effects for drugs categorized by distance between drug targets and disease genes. (A) The distribution
of distance between drug targets and their indicated disease genes highly overlaps with their distance to other disease genes. (B) Distribution of side
effects for drugs categorized by average distances between their targets and corresponding disease genes.
doi:10.1371/journal.pcbi.1003119.g004
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with mean m and shape parameter h. The expected value and

variance for the number of side effects are:

E(Y )~m

Var(Y )~mz
m2

h

This model is used because we observed over-dispersion with

Poisson distribution, which is normally modeled for count data.

The generalized linear regressions were built using the log-link

function:

ln(m)~Xb

where X is the independent variable (such as the number of

targets), b is the unknown parameter, and Xb is the linear

predictor. To minimize the effects of extreme observations, we

used median numbers of side effects as response variables for

regression analysis. For each regression, we obtained a P-value for

the effect of a tested factor based on the hypothesis testing: H0:

b = 0 (there is no effect of the tested factor) vs. HA: b?0 (the

incidence of side effects is contributed by the factor). Due to the

lack of data points, a few observations at the margin were binned

together. We first fitted regression for the number of side effects

over that of total targets and that of essential targets. To

distinguish the effect of total targets and essential targets on the

incidence of side effects, we repeated the regression analysis on the

drugs that do not have any essential targets.

Constructing a high-quality comprehensive protein-
protein interactome network and a three-dimensional
structurally resolved network

We compiled a list of human protein-protein interactions

combining high-throughput high-quality yeast two-hybrid inter-

action datasets [28–31] with six major protein-protein interaction

databases [32–37]. Since literature-curated interactions could

contain low-quality interactions [38,39], we filtered the dataset by

applying the criteria that each interaction has to be either from a

high-throughput high-quality experiment or supported by at least

two independent publications. The interactome network contains

30,713 binary and co-complex interactions between 8,357

proteins. To evaluate network properties of drug targets, we

mapped them to the high-quality protein-protein interactome

network and calculated their network properties.

To reconstruct the three-dimensional (3D) structurally resolved

network, we further filtered the interactions with binary evidence

codes, since the concept of interaction interface does not apply

when two proteins do not bind each other directly [12]. We then

constructed the 3D-interaction network based on known co-crystal

structures in the Protein Data Bank (PDB) [40] using a homology

modeling approach as described earlier [12]. This approach has

been demonstrated to be very effective and accurate in inferring

protein-protein interaction interfaces [12]. The resulting structur-

ally resolved protein interactome is composed of 6,594 interactions

between 3,630 proteins.

Curating a list of known disease associated genes
We compiled a list of diseases for each drug based on the

‘‘indication’’ field from the DrugBank database. For each drug, we

then obtained the disease-associated genes for these diseases from

the disease-gene association map we compiled earlier based on

OMIM and HGMD databases [12,41,42]. We then calculated the

average shortest distance on the binary interactome network for 1)

pairs of target proteins and the genes associated with the

‘‘indicated’’ diseases and 2) pairs of target proteins and all other

disease-associated genes (Figure 4).

Calculation of shared interaction interfaces
For each drug target protein T that can be mapped to the

structurally resolved network with at least two interaction partners,

we measured the proportion of shared interaction interfaces by

calculating the Jaccard similarity coefficient [43]:

JTA,TB~
NTA\TB

NTA|TB

where NTA\TB is the number of interacting domains on drug

target protein T involved in both T-A and T-B interactions, and

NTA|TB is the number of interacting domains involved in either

T-A or T-B interaction. The mean of the Jaccard similarity

coefficient was taken when a target protein has more than two

interaction partners. To minimize potential confounding effects of

essentiality, we analyzed the drugs with only one non-essential

target to evaluate the effects of shared interaction interfaces of a

drug target on the number of side effects.

Bootstrapping approach for comparison of median
number of side effects between different drug categories

While the vast majority of drugs have average distances between

their targets and corresponding disease genes comparable to

network mean distance (mean distance = 4.4), there are some

drugs enriched with much smaller distances (distance,3;

Figure 4A). We categorized the drugs into two classes using an

average distance of 3 as cutoff to compare the median number of

side effects. We carried out the bootstrapping approach to evaluate

the difference of median number of side effects due to the

observation of extremely unequal sample sizes (12 drugs with

distance less than 3 and 319 drugs with distance equal to or bigger

than 3) and variances between the two classes. For each drug class,

we randomly sampled 10 observations with replacement and

generated the median of these observations. The procedure was

repeated 1000 times to obtain distributions of median number of

side effects for each of the two drug classes. Then the Wilcoxon

rank-sum test was used to evaluate the differences of median drug

side effects between the two drug classes (Figure 4B). By

randomizing the protein-protein interactions, the disease gene

sets, and the drug target sets, we demonstrated that the

observation is not due to potential biases in the data (Figure S7).

Supporting Information

Figure S1 Generalized linear regression for the number of drug

side effects over the FDA approval dates of drugs suggests an

increasing trend in the number of side effects.

(EPS)

Figure S2 (A) The number of drug side effects is positively

correlated with the number of essential targets. (B) The number of

side effects is not correlated with the number of total targets for

drugs with no essential targets.

(EPS)

Figure S3 The number of drug side effects is positively

correlated with the number of bottlenecks with the cutoff of

betweenness at (A) top 5%, (B) top 10%, and (C) top 40%.

(EPS)
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Figure S4 Analyses of drug side effects for cancer drugs in terms

of (A) the total number of targets, (B) the number of essential

targets, (C) the number of targets for drugs with no essential

targets, (D) average target degree, and (E) the number of

bottleneck targets with betweenness at top 10%. Poisson model

was used to address the effect of average target degree. Here the

degree analysis is not limited to the drugs with only one non-

essential target due to lack of data points.

(EPS)

Figure S5 Analyses of drug side effects for non-cancer drugs in terms

of (A) the total number of targets, (B) the number of essential targets, (C)

the number of targets for drugs with no essential targets, (D) target

degree, and (E) the number of bottleneck targets with betweenness at top

10%. Poisson model was used to address the effect of the target degree.

(EPS)

Figure S6 Distribution of the proportion of shared interaction

interface for (A) non-hub targets (degree,5) and hub targets

(degree$5), and (B) non-bottleneck targets and bottleneck targets

(betweenness at top 20%).

(EPS)

Figure S7 Median number of side effects for the two drug classes

from 100 randomization tests: (A) randomize protein-protein

interactions; (B) randomize drug target sets; (C) randomize

disease-gene associations. Error bars are standard errors. For

network randomization, the edges of any two randomly selected

interactions were swapped. Drug-target and disease-gene associ-

ations were randomly swapped.

(EPS)
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