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Abstract

Cell cycle is a complex and highly supervised process that must proceed with regulatory precision to achieve successful
cellular division. Despite the wide application, microarray time course experiments have several limitations in identifying cell
cycle genes. We thus propose a computational model to predict human cell cycle genes based on transcription factor (TF)
binding and regulatory motif information in their promoters. We utilize ENCODE ChIP-seq data and motif information as
predictors to discriminate cell cycle against non-cell cycle genes. Our results show that both the trans- TF features and the
cis- motif features are predictive of cell cycle genes, and a combination of the two types of features can further improve
prediction accuracy. We apply our model to a complete list of GENCODE promoters to predict novel cell cycle driving
promoters for both protein-coding genes and non-coding RNAs such as lincRNAs. We find that a similar percentage of
lincRNAs are cell cycle regulated as protein-coding genes, suggesting the importance of non-coding RNAs in cell cycle
division. The model we propose here provides not only a practical tool for identifying novel cell cycle genes with high
accuracy, but also new insights on cell cycle regulation by TFs and cis-regulatory elements.
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Introduction

As one of the most important cellular processes, the cell division

cycle is under precise regulation in all organisms. Mis-regulation of

the cell cycle can lead to catastrophic cellular events, e.g.

premature apoptosis or abnormal proliferation of cells, which

are the causes of some human diseases such as cancer [1,2]. Cell

cycle regulation has been studied intensively, with focuses mainly

on two aspects. First, cell cycle regulated genes have been

identified systematically using microarrays to detect periodic

expression of genes in cell cycle time course data [3,4]. Second,

the genes, particularly, the transcription factors (TFs) that

modulate cell cycle have been investigated, e.g. identifying their

genomic occupation using chromatin immunoprecipitation fol-

lowed by microarray hybridization (ChIP-chip) or massively

parallel sequencing (ChIP-seq) [5,6]. These studies have provided

many insights into cell cycle regulation during normal biological

processes and in cancers.

Genome-wide gene expression during the cell cycle has been

investigated using DNA microarrays in a wide range of organisms,

including bacteria [7], yeast [3,8–10], mouse [11], human

[4,12,13] and Arabidopsis [14]. Microarray cell cycle time course

data has been very successful at identifying a wide range of cell

cycle-regulated genes. Despite its success, the microarray-based

method has a few limitations. First, it is not effective for

determining if a gene expressed at low levels is periodic due to

low signal/noise ratios. Second, the synchronization procedure

itself may change the expression pattern of some genes during the

cell cycle, leading to false positive or false negative results. Third,

limited by probe design, it is often difficult to distinguish

expression patterns of different transcripts from the same gene.

For example, for a gene with alternative promoter usage, it is

possible that one isoform is cell cycle regulated while others are

not. Consequently, the two isoforms may not be distinguished by a

microarray based method if they share most of the exons.

Moreover, previous microarray-based studies have focused on

identification of cell cycle regulated protein-coding genes, while

the non-coding RNAs have been largely overlooked. These issues

can be overcome by measuring cell cycle gene expression using

RNA-seq experiments, which unfortunately has not been per-

formed.

The cell cycle is under precise gene regulation at different levels

of expression [15,16]. Particularly, at the transcriptional level it

has been shown that a series of TFs act at different phases of the

cell cycle and coordinate the sequential transcription of cell cycle

genes [17–19]. The periodic expression pattern of cell cycle genes

is encoded in cis in their promoters and can be manifested in trans

by the TFs that bind to them. Namely, we would expect cell cycle

genes to be bound by cell cycle regulating TFs. In this work, we

raise and verify the hypothesis that cell cycle genes can be

predicted by their genomic features (the motif occurrence in their

promoters) and TF binding features (binding affinity of TFs).
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Recently, the ChIP-seq genomic binding data for a large number

of human TFs have been published. In particular, the ENCODE

(the Encyclopedia of DNA Elements) project has published

binding profiles for more than 120 human TFs in different cell

lines and more ChIP-seq data are being produced [20]. Motivated

by these data, we aim to construct a model that integrates

microarray cell cycle expression data with ChIP-seq TF binding

data to predict new cell cycle genes and to understand the function

of TFs in cell cycle regulation.

In this article, we present a computational method that predicts

human cell cycle genes based on genomic and TF-binding features

of genes. The model uses a supervised machine learning approach

to integrate microarray cell cycle data, ChIP-seq TF binding data

and motif information from sequence analysis (Figure 1). We first

apply the model to all human RefSeq genes, which are well

annotated with high accuracy. We validate the effectiveness of the

model for cell cycle gene prediction by cross-validation, and we

explore the relative importance of different predictors in the

model. We then apply the model to the GENCODE TSS

annotations, which provide a more comprehensive list of human

promoters for both protein-coding genes and non-coding RNAs

[21]. This systematic analysis enables us to explore the human

genome to predict a full list of cell cycle-driving promoters. Our

approach is effective in identifying cell cycle genes with low

expression levels and is not sensitive to synchronization treatment.

Since it is applied at the TSS level, it can distinguish the different

isoforms of a gene regulated by alternative promoters. Further-

more, it can also be used to predict cell cycle regulated non-coding

RNAs, which we believe will substantially promote our under-

standing of cell cycle regulation.

Results

Transcription factor regulatory scores can discriminate
cell cycle from non-cell cycle genes

With the rationale that periodic expression of cell cycle genes is

driven by a subset of transcription factors (TFs), we first examined

whether cell cycle genes and non-cell cycle genes show different

binding strength by TFs. We collected the ChIP-seq data from the

ENCODE (The Encyclopedia of DNA Elements) project [20],

which provided high-resolution binding events of more than 120

human TFs in multiple cell lines. The binding strength of a TF to

the promoters of genes was calculated by a probabilistic model

called TIP (Target Identification from Profiles) we proposed

previously [22]. This model provides a significantly more accurate

measure of TF binding affinity to particular genes than the peak-

based method used in many studies [23].

We prepared a dataset of cell cycle genes and non-cell cycle

genes in HeLa cells that have been experimentally verified with

high confidence based on the meta-analysis described in Cyclebase

[24]. In the 424 ENCODE ChIP-seq TF binding profiles, 46 were

performed in HeLa cells, for which we calculated the regulatory

scores using TIP and the average binding signals in a 2 kb DNA

region centering at the TSS of all genes (see Methods for details)

(Figure 1). Corresponding values of each measurement method

were compared between cell cycle genes and non-cell cycle genes

using Student’s t-test. The regulatory scores for cell cycle genes are

significantly contrastive (generally higher than) from those of non-

cell cycle genes. As shown in Figure 2A, comparative analysis of

the regulatory score distributions of both CMYC and E2F1 show

that cell cycle genes tend to have substantially higher regulatory

scores than non-cell cycle genes (P = 2e-55 and P = 1e-50,

respectively). This is indicative of the significant regulatory roles

CMYC and E2F1 have on the expression of cell cycle genes, thus

suggesting that they are important features to be used in a cell

cycle prediction model [25,26].

In comparison, the average TF binding signals can also

discriminate cell cycle versus non-cell cycle genes, but with much

lower significance levels. For example, when average signals of

CMYC and E2F1 binding were calculated, we observed less

significant difference in values between cell cycle and non-cell

cycle genes. The P-values of average signal comparisons are 2e-8

for CMYC and 9e-7 for E2F1 (Figure 2B), indicating that average

signals are less effective classifiers for predicting cell cycle genes

than regulatory scores.

Other than CMYC and E2F1, many other TFs also reflect

significant differences in binding strengths between cell cycle and

non-cell cycle genes, especially when TIP is utilized (Figure 2C

and Suppl. Table S1). This suggests that the discriminatory

efficacy of regulatory scoring is maintained throughout a high

percentage of TFs and is not confined to a particular subset of cell

cycle regulatory TFs. Thus, we will use regulatory scoring of TF to

genes to predict cell cycle genes.

It should be noted that cell cycle genes tend to have higher

expression levels than non-cell cycle genes; some of the TF binding

difference may reflect the expression level difference rather than

their involvement in cell cycle (see Discussion for details). We also

note that the cell cycle regulatory function of a TF may not be

reflected at the transcriptional level. Among the 46 TFs we

investigated, only 6 showed significant periodical expression

pattern in cell cycle: E2F1, BRG1, CJUN, RAD21, GABPB and

CTCF. The known cell cycle regulators, E2F4 and E2F6, are not

significant at the transcriptional level (P.0.01). The model that

relates TF binding with cell cycle expression pattern, however, can

be used to elucidate the function of TFs in cell cycle regulation by

calculating their relative importance.

Genomic features are predictive of human cell cycle
genes

Under the presumption that certain genomic features can

discriminate cell cycle genes from non-cell cycle genes, we

constructed Random Forest classification models to predict cell

Author Summary

Cell cycle is a complex and highly supervised process that
must proceed with regulatory precision to achieve
successful cellular division. Microarray time course exper-
iments have been successfully used to identify cell cycle
regulated genes but with several limitations, e.g. less
effective in identifying genes with low expression. We
propose a computational approach to predict cell cycle
genes based on TF binding data and motif information in
their promoters. Specifically, we take advantage of ChIP-
seq TF binding data generated by the ENCODE project and
the TF binding motif information available from public
databases. These data were processed and utilized as
predictor for predicting cell cycle genes using the Random
Forest method. Our results show that both the trans- TF
features and the cis- motif features are predictive to cell
cycle genes, and a combination of the two types features
can further improve prediction accuracy. We apply our
model to a complete list of GENCODE promoters to predict
novel cell cycle driving promoters for both protein-coding
genes and non-coding RNAs such as lincRNAs. We find that
a similar percentage of lincRNAs are cell cycle regulated as
protein-coding genes, suggesting the importance of non-
coding RNAs in cell cycle division.

Model for Cell Cycle Gene Prediction
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cycle genes using ENCODE ChIP-seq-derived TF-binding data

and TRANSFAC-derived motif matching data as predictors.

More specifically, we calculated the regulatory scores for all

human RefSeq genes as described above, resulting in 424 TF

binding profiles, each corresponding to a ChIP-seq dataset from

the ENCODE project. These binding profiles represent binding

strength of TFs to RefSeq genes in a number of different cell lines

such as K562, HESC, HeLa, etc. In addition, we also examine the

existence of all TRANSFAC TF binding motifs in the promoters

of RefSeq genes (from TSS to upstream 1 kb), resulting in a total

of 546 motif matching score profiles (see Methods for details). To

train the model, we used the cell cycle and non-cell cycle genes

identified by microarray experiments in HeLa cells [4]. Consis-

tently, from the 424 TF binding profiles we only included the 46

profiles from HeLa cells in our model.

We examined three models for classifying cell cycle versus non-

cell cycle genes using Random Forest method. In a TF model, the

trans TF-binding features were used as predictors; in a Motif

model, the cis motif features are used as predictors; and a

TF+motif model uses a combination of all the features. The

performance of these models was evaluated by 10-fold cross-

validation (see Methods for details). Our results suggest that both

TF binding features and motif features are informative for cell

cycle gene prediction, with a prediction accuracy AUC = 0.768

achieved by the TF model and AUC = 0.642 achieved by the

motif model (Figure 3A). This also suggests that the ChIP-seq

derived TF binding features are considerably more predictive than

motif features from in silico sequence analysis. Strikingly, a

combination of both sets of features results in a prediction

accuracy that surpasses that of both TF and Motif models, leading

to an AUC = 0.861 by the TF+motif model. This indicates that the

trans- information captured by ChIP-seq data and the cis-

information provided by the motif analysis complement each

other during cell cycle prediction.

In a Random Forest model, the contribution of an individual

feature to the overall predictive power of the model can be

estimated by its relative importance, measured as the Mean

Decrease in its Gini Coefficient (MDG) (see Methods for details).

Hence, we calculated the relative importance for all TF binding

(Figure 3B) and motif features (Figure 3C) in the TF+motif model.

Overall, TF features exhibit higher relative importance than motif

features, with the best TF feature achieved by SYDH_E2F4

(SYDH is the Lab ID) (Figure 3B) and the best motif feature

achieved by V$GEN_INI2_B (Figure 3C). These data confirm

that TF-binding regulatory scores are much better predictors than

motif matching scores. The high relative importance of E2F4 is

consistent with the critical roles it plays in cell cycle regulation

[26].

To investigate whether the predictive accuracy of the model is

predominantly determined by a few features or by many, we

removed features one by one from the model and examine the

change in prediction accuracy. In each step we removed the most

predictive feature based on their relative importance, then

recalculated the accuracy of the new model and re-estimated the

relative importance of all remaining features. Our results show

that many TF binding features are predictive of cell cycle genes. As

shown in Figure 3D, removing the most predictive feature one by

one only slowly reduce the AUC score of the model. Such a

situation changes until most of the TF binding features have been

removed, which leads to a sudden drop in prediction accuracy. At

Figure 1. Schematic diagram of our analysis for predicting human cell cycle genes. The predictive model integrates three types of data
from microarray, ChIP-seq experiments and computational TF binding motif analysis.
doi:10.1371/journal.pcbi.1003132.g001

Model for Cell Cycle Gene Prediction
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this point, most of the predictors remained in the model are motif

features. In fact, we can achieve fairly accurate predictions by

selecting a small set of predictors. For instance, when the top 10

TF binding features and the top 10 motif features with highest

relative importance in the full TF+Motif model are selected as

predictors, we achieve a AUC = 0.850, only slightly lower than the

full model (AUC = 0.862).

Apart from the Random forest model, we also implemented

other machine learning methods, including support vector

machine (SVM) and penalized logistic regression (PLS). Results

from all these methods confirm the conclusions from the Random

Forest model, e.g. higher predictive accuracy of TF binding

features than motif features. Overall, Random Forest gives rise to

the best predictive accuracy and thus in this paper we focus on this

method in our analysis.

Cell cycle genes are tissue specific as suggested by
predictive models

Since experimentally verified cell cycle and non-cell cycle genes

(required to train the model) were determined based on

microarray experiments with HeLa cells, we restricted our analysis

to HeLa cells in that we only include HeLa TF binding profiles as

features in our models. In fact, in the 424 profiles from ENCODE

ChIP-seq data, there are 68 from GM12878, 94 from K562, 37

from HESC and 55 from HEPG2 cell lines, respectively (Suppl.

Table S2). We thus examined the cell line specificity of our cell

cycle gene prediction model. If cell cycle regulation is cell line

specific, we would expect to achieve the best prediction accuracy

using HeLa TF binding profiles; and otherwise a similar accuracy

throughout different cell lines. Our results exhibit highest

prediction accuracy when the TF binding features from the

HeLa cell line are used for predicting HeLa cell cycle genes,

which is the case in both the TF+motif model (Figure 4A) and the

TF only model (Figure 4B). The TF sets with ChIP-seq profiles in

distinct cell lines contains different TFs. We thereby compared

the prediction accuracy of models using the 32 common TFs in

HeLa and K562 as predictors. ChIP-seq data from HeLa cells

achieve AUC = 0.756 in the TF only model and AUC = 0.860 in

TF+Motif model, whereas ChIP-seq data from K562 cells

achieves AUC = 0.722 and AUC = 0.831, respectively. These

results suggest that at least a subset of cell cycle genes is cell line

specific.

Furthermore, we investigate the binding strength of TFs to their

target gene promoters in different cell lines. As shown in Figure 4C,

the regulatory scores from E2F4 binding to the known cell cycle

genes (those used in our model as positive set) are used as a metric

to compare differential cell cycle regulation in K562 and HeLa cell

lines. Although the scores calculated in HeLa and K562 cells are

highly correlated, there is a small set of genes that show differential

binding by E2F4, most of which show higher regulatory scores in

the HeLa cell line. In addition, when the target genes of E2F4

identified by TIP method in K562 and HeLa are compared, we

find that many targets are unique to a single cell line (Figure 4D).

This indicates cell line specific binding of TFs to genes and as such,

it is not surprising to observe cell line specificity of our cell cycle

gene prediction model.

Figure 2. Regulator scores of TFs on genes can discriminate cell cycle (CC) versus non-cell cycle (non-CC) genes. (A) Distributions of
regulatory scores for CMYC and E2F1 are significantly different between CC and non-CC genes (P = 2e-55 and P = 1e-50, respectively). (B) The average
signals of CMYC and E2F1 show similar distributions between CC and non-CC genes (P = 0.03 and P = 0.05, respectively) (C) The t-scores for CC versus
non-CC genes calculated by comparing regulatory scores and average signals of TFs. SYDH, UTA and HAIB are the Lab IDs of a dataset.
doi:10.1371/journal.pcbi.1003132.g002

Model for Cell Cycle Gene Prediction
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Prediction of phase specific cell cycle genes
Due to the periodicity of cell cycle genes, genomic features may

vary in predictive power across cell cycle phases. Therefore, we

examined whether genomic features are phase-specific by applying

the Random Forest classifier model to categorize genes expressed

in each phase. To generate training data, known cell cycle genes

were partitioned into G1/S, G2, G2/M, M, and S categories

based on the annotation in Cyclebase [24]. Model accuracy was

assessed via 10-fold cross-validation to yield an ROC curve for

each cell cycle phase (Figure 5A). Phase-specific cell cycle gene

classification via Random Forest proved to be robust as shown by

relatively high AUC scores for each phase (Figure 5A). AUC

scores of 0.858, 0.793, 0.864, 0.859, and 0.858 were obtained for

G1/S, G2, G2/M, M/G1, and S cell cycle phases, respectively.

The normalized relative importance of each genomic feature

was calculated to deduce its predictive differentiability in each cell

cycle phase (see Methods for details). In all phases, TF features

show significantly higher relative importance than motif features.

Out of all TF features measured through all cell cycle phases,

E2F4 is predominantly the most important predictor in G2/M,

G2, S, G1/S phases. However, in the M/G1 phase the prediction

accuracy is driven by multiple TF features; interestingly E2F4 still

has high relative importance but is not the most predictive feature

any more (Figure 5B). In line with these results, we observed that

E2F4 targets were enriched in cell cycles genes with peak

expression around G2/M and G1/S (Suppl. Figure S2). We note

that the ChIP-seq data were performed in unsynchronized cells

and reflect TF binding status in a mixed population of cells. We

would expect an improvement of phase specific cell cycle gene

prediction if phase specific TF binding features were available and

utilized as predictors.

Identification of novel human cell cycle genes
Having shown the effectiveness of our model in predicting cell

cycle genes using cross-validation, we applied it to identify new

RefSeq genes that are potentially cell cycle regulated. The model

was trained and then utilized to predict the cell cycle regulation of

a total of 17,023 unclassified RefSeq genes (gene dataset used in

model training were excluded). Each gene was assigned a

probability indicating the likelihood of a gene to be cell cycle

regulated. By setting the threshold to 0.7, we predicted 726 new

cell cycle genes with a precision of 92% (positive predictive value,

PPV = 0.92). Many of them are subunits of a protein complex that

is known to be cell cycle regulated. For instance, Whitfield et al.

measured the expression patterns of 12 centromere-associated

proteins [27] in HeLa cells, among which 6 were identified as

Figure 3. Statistical models for predicting cell cycle genes using Random Forest method. (A) The ROC curves for 3 classification models
that use TF-only, motif-only features or a combination of them as predictors. (B) The relative importance (measured as MDG, Mean Decrease in Gini
coefficient) of TF features in the combined model (TF+Motif). (C) The relative importance of motif features in the combined model. (D) The change of
prediction accuracy (measured as AUC scores) when remove the most important predictor from the full model one by one. Note that cell cycle genes
in the training data are from data in Hela cells, and thus we use only TF binding data from the same cell line in our model.
doi:10.1371/journal.pcbi.1003132.g003

Model for Cell Cycle Gene Prediction
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periodically expressed in the cell cycle (CENPA, CENPF,

CENPM, CENPL, CENPO, CENPQ and CENPT) [4]. Our

analysis predicts 2 additional subunits, CENPK and CENPN, to

be cell cycle regulated, suggesting that the model is complemen-

tary to microarray based analysis.

To further evaluate the reliability of these predicted cell cycle

genes, we carried out Gene Ontology (GO) enrichment analysis on

them. The results strongly support cell cycle related functions of

these new predicted genes (Suppl. Table S3). As shown, the top

enriched GO categories are all cell cycle related, such as

chromosome (GO:0005694), cell cycle (GO:0007049), cell cycle

process (GO:0022402), cell cycle phase (GO:0022403), M phase

(GO:0000279), etc.

Another method of evaluating prediction reliability is to

compare them with RNAi knockdown experimental datasets.

We downloaded two genome-wide RNAi knockdown datasets

published by Mukherji et al. [28] and Kittler et al. [29], in which

cell cycle regulators are identified by knocking down individual

genes and examining cell division defects that may result. We find

that the novel cell cycle genes we predict tend to exhibit increased

likelihood of cell division defect upon RNAi-induced loss-of-

function perturbation. In fact, the new cell cycle genes are highly

enriched in the cell cycle regulators identified by the two knock-

down experiments. A total of 686 and 901 cell cycle regulating

genes were identified by Mukherji et al. and Kittler et al.,

respectively, among which 47 were identified by both experiments

(P = 4e-4). Out of the 726 novel cell cycle genes we predicted, 50

and 55 were reported to be cell cycle regulating genes by Mukherji

et al. (P = 2e-4, Fisher’s exact test) and by Kittler et al. (P = 5e-3,

Fisher’s exact test) (Figure S1).

Moreover, we examined the interaction partners of known cell

cycle genes, the predicted cell cycle genes, and the predicted non-

cell cycle genes. We expect that cell cycle genes are more likely to

interact with one another and will therefore have more cell cycle

partners in the protein-protein interaction (PPI) network. As

shown, the known cell cycle genes interact with more partners

than other genes (Figure 6A), presumably due to the fact that they

are more intensively studied in their interactions, e.g. by yeast two

hybrid experiments. Moreover, the known cell cycle genes tend to

have more cell cycle partners in terms of both number (Figure 6B)

and percentages (Figure 6C). We note that after excluding these

known cell cycle genes, the remaining genes used for prediction

have substantially fewer partners, cell cycle partners and lower

percentage of cell cycle partners. However, compared with

Figure 4. Tissue specificity of cell cycle predictive models. (A) The ROC curves when TF binding data from different cell lines are used as
predictors in the combined model. (B) Similar to (A), but results are from TF-only model. (C) The regulatory scores of E2F4 on Hela cell cycle genes in
HelaS3 versus K562 cells. Note that a small subset of genes shows strong E2F4 binding only in Hela cells. (D) E2F4 regulates overlapping but different
target genes in HelaS3 versus K562. (C) and (D) are based on ENCODE ChIP-seq data.
doi:10.1371/journal.pcbi.1003132.g004

Model for Cell Cycle Gene Prediction
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predicted non-cell cycle genes (Probability ,0.3 in our model), the

predicted cell cycle genes (Probability .0.7) interact with

significantly more and higher percentage of cell cycle partners

(Figure 6B and 6C), implying their functions in cell cycle control.

Prediction of GENCODE promoters that drive periodical
expression

Having shown the effectiveness of our model for predicting cell

cycle genes, we then applied it to the GENCODE annotation

data, which provides a complete list of human transcripts

including protein-coding genes, several categories of non-coding

RNAs and so on. For all these transcripts, the precise positions of

their TSSs were determined and the expression level associated

with each TSS was quantified by CAGE (Cap Analysis of Gene

Expression) experiments [30,31]. We calculated the regulatory

scores of these TSSs based on the ENCODE ChIP-seq data and

their motif-matching scores for all motifs as we have done for

RefSeq promoters (see Methods for details). Finally, the TF+motif

Random Forest model trained using the above-mentioned RefSeq

cell cycle and non-cell cycle genes was applied to the GENCODE

dataset. Thus, by using the regulatory scores and motif-matching

scores as features, the model predicts whether a TSS is cell cycle

regulated and assigns a probability score to each TSS.

We predicted the probability of cell cycle regulation for all

GENCODE annotated human TSSs using our model. These

TSSs are associated with different genomic feature categories

Figure 5. Prediction of phase specific cell cycle genes. (A) ROC curves of models that classify cell cycle genes at specific phase against non-cell
cycle genes. (B) The relative importance of different TF features in the 5 phase specific models.
doi:10.1371/journal.pcbi.1003132.g005

Figure 6. Predicted cell cycle genes are more likely to interact with cell cycle partner in protein-protein interaction network. (A) the
average number partners; (B) the average number of cell cycle partners; (C) the average percentage of cell cycle partners. Note all known cell cycle
genes are excluded from the predicted cell cycle gene set. The P-values for difference in numbers of partners or cell cycle partners between two gene
classes are calculated by Chi-squared test.
doi:10.1371/journal.pcbi.1003132.g006

Model for Cell Cycle Gene Prediction
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including protein-coding genes, microRNAs, lincRNAs, snRNAs,

snoRNAs and pseudogenes. As negative controls, we also included

10,013 randomly selected genomic locations (i.e. artificial TSSs)

from the genome and predict their probability to be cell cycle

regulated using our model. Certainly, the number of positive

predictions is determined by the threshold setting and the

precision (also called PPV, positive predictive value, the percent-

age of true positives in all predicted positive predictions) at each

threshold can be estimated by cross-validation in our training data

(Figure 7A). To have a confident set of predictions, we set up a

stringent threshold (Probability score .0.7) in the following

analysis, corresponding to a PPV = 0.92. At this threshold, we

identify 3,322 protein-coding, 83 lincRNA, 6 miRNA, 8 snoRNA,

4 snRNA, 16 pseudogene, and 9 artificial TSSs that are predicted

to be cell cycle regulated (Suppl. Table S4). The percentage of cell

cycle regulated TSSs for each genomic feature category is shown

in Figure 7B. As shown, the percentage of positive artificial TSSs is

very low (,0.1%), indicating a high precision of our predictions.

Similarly, the percentage of positive pseudogene TSSs is also very

low (1%), since most of them are untranscribed ‘‘junk DNA’’. But

compared to the randomly selected artificial TSSs, it is possible

that some pseudogene TSSs are actually active and expressed in

cell cycle a dependent manner. Strikingly, lincRNA and protein-

coding genes show similar percentage of cell cycle regulated TSSs

(,3%) (Figure 7B), indicating that lincRNAs might also be

important in cell cycle regulation. Cell cycle regulated miRNA,

snoRNA, and snRNA are identified in relatively low percentages,

possibly due to low quality of annotation in their TSSs. For

instance, annotation of miRNAs usually begin at the +1 start site of

the corresponding pre-miRNA (,110 bp) as opposed to the

genuine TSS of pri-miRNA.

GO enrichment analysis was performed on the predicted cell cycle

regulated TSSs associated with GO terms, most of which are for

protein-coding genes. The results suggest that these positive

predictions are highly enriched in gene categories involved in or

related to cell cycle functions (Suppl. Table S5). Almost all of the top

enriched GO terms are cell cycle related, e.g. cell cycle

(GO:0007049), chromosome (GO:0005694), mitosis (GO:0007067),

etc.

Many genes possess multiple transcript isoforms with alternative

TSSs and our model can predict the probability of each TSS to be

cell cycle regulated. In fact, our results indicate that different

isoforms of the same gene may be either cell cycle regulated or not

cell cycle regulated, namely have distinct functions with respect to

cell cycle regulation. For example, the gene DBF4 (with Ensembl

ID ENSG00000006634) is annotated to have 8 different TSSs by

GENCODE, which forms two TSS clusters. The first cluster

contain 6 TSSs, which are all predicted to be cell cycle regulated

with a probability score .0.7; whereas the second cluster (11 kb

away from the first cluster) contains 2 TSSs with probability score

of 0.296 and 0.190 respectively. The DBF4 protein is known to be

essential for initiation of DNA replication [32] and the transcrip-

tion of its promoter is activated through cell-cycle box (MCB)

transcription elements [33]. Assuming the TSS annotation is

correct, our analysis imply that only the first cluster of transcript

isoforms are regulated in a cell cycle dependent manner; and that

the two isoforms in the second cluster may not be periodically

expressed during the cell cycle, either not being involved in cell

cycle regulation or impacting cell cycle in a different way from the

first cluster of isoforms.

Discussion

Compared to the average binding signals of TFs in promoters,

the regulatory scores we define are more informative for predicting

cell cycle genes (Figure 1). Regulatory scores can be regarded as

weighted average binding signals of TFs around the TSS of genes.

For each TF, a specific weight is assigned to each nucleotide

position in the 10 kb DNA region centering at TSS based on the

characteristic binding profile of the TF. Thus regulatory scores can

more accurately capture the regulatory potential of a TF to genes

than average signals. When utilized as predictors for classifying cell

cycle versus non-cell cycle genes, they generally reveal greater

differentiability between the two gene classes, suggesting they are

more powerful classifiers. In fact, the Random Forest model that

utilizes average signals for the same set of TFs as predictors

achieves a classification accuracy AUC = 0.683, which is similar to

the accuracy of the motif only model (AUC = 0.642), and is

significantly lower than the TF only model that is based on

regulatory scores (AUC = 0.768). Thus, it seems that by combining

with machine-learning methods, the regulatory scores calculated

from ChIP-seq data might also be promising in other applications,

for example, predicting tissue specificity or conditionally expressed

genes.

Figure 7. Prediction of cell cycle related promoters. Model is applied to ,138,000 GENCODE annotated promoters to identify novel cell cycle
genes of different types. (A) The number of cell cycle related genes identified the model when different threshold is used. The precision (1-FDR) is
shown as the increasing grey line. (B) The percentage of different types of genes that are predicted to be cell cycle related at threshold of 0.7
(Prob.0.7). FDR: false discovery rate.
doi:10.1371/journal.pcbi.1003132.g007
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Our analysis indicates that cell cycle regulation in different cell

lines may not be exactly the same but shows certain cell line

specificity: cell cycle genes identified in Hela cells can be best

predicted by ChIP-seq TF binding profiles from the same cell line.

Although the binding strengths of E2F4 to HeLa cell cycle gene

promoters in both HeLa and K562 cell lines are comparable, there

exists an observable small subset of genes exhibiting highly

differential E2F4 binding affinities; with the majority of them

showing more vigorous binding in HeLa cells. (Figure 4C). In fact,

a large percentage of E2F4 target genes identified by ChIP-seq

experiment are HeLa or K562 specific (Figure 4C). Moreover, we

compared the cell cycle genes identified via cDNA microarray

experiment in HeLa cells by Whitfield et al. (588 genes) [4] and in

fibroblast cells by Iyer et al. (480 genes) [12], and discover that

only 155 are cell cycle genes in both cell lines. Contrastingly, TF

binding data from other cell lines also prove predictive to HeLa

cell cycle genes with reasonably high accuracy, indicating

somehow a similar language of cell cycle regulation between cell

lines. From these observations, it seems that to some extent, cell

cycle regulation is cell line specific yet there may exist a core set of

genes that are cell cycle regulated across all cell lines.

The relative importance of predictors in our model suggests that

E2F4 is essential in cell cycle gene regulation. In addition, the TF

binding profiles for E2F1 and E2F6 also show significantly

differential binding strengths between cell cycle and non-cell cycle

genes, and exhibit high relative importance in our model. These

results are in accordance with existing literature, which assert that

the E2F family of transcription factors plays an inextricable role in

driving and regulating cell cycle [34]. E2Fs are regulated by the

pRB-family and pRB-related proteins (e.g. p130 and p107), that

are inactivated upon CDK-mediated phosphorylation [35].

Additionally, E2F exhibit dual properties in that E2F1–E2F3 act

as activators and E2F4–E2F8 as repressors [36]. In particular,

E2F4 is shown by ChIP-chip analysis to have a plethora of gene

targets involved in every phase of the cell cycle [26,34,37].

Principal targets of E2F4 include genes involved in cell cycle

regulation, DNA replication, DNA repair, chromatin remodeling,

and cell cycle checkpoints [26]. Evidently, these cellular processes

are all associated with cell cycle genes thereby forming an

integrated network of gene regulation [26]. Because E2F4 is a

negative regulator, it must be constantly repressed by pRb and

only expressed intermittently to allow the cell cycle to progress.

This allows cellular processes controlled by E2F4 to occur in a

phase-specific fashion (i.e. DNA repair during S/G2, DNA

replication during S, and chromosome remodeling during G2/

M) [26]. Additionally, a comparative genomics study carried out

by Linhart et al. proposes that there is substantial decrease in E2F4

binding during M/G1 phase of the cell cycle [38]. This is in

accordance with our results which show a decrease in normalized

relative importance of E2F4 during the M/G1 phase (Figure 5B).

Overall, these results suggest that E2F4 is repressed upon

termination of mitosis and subsequently de-repressed upon

initiation of G1 in daughter cells. The fact that E2F4 binding is

an effective discriminatory cell cycle-associated TF binding feature

demonstrates that our prediction model is indeed capable of

utilizing key inherent cellular predictors to classify a wide variety of

genes.

Previous studies have shown that TF binding signals are

predictive to the expression level of genes, accounting for .60%

variation of gene expression [39–42]. Here we show that TF

binding data can be used to predict cell cycle genes. The predictive

power of regulatory scores which capture the trans- information of

genes, can be further improved by the cis- information of these

genes, or the motif matching scores in their promoters. Our model

which uses TF+motif predictors achieves a classification accuracy

of AUC = 0.861, suggesting the regulatory code for cell cycle genes

is largely harbored in their promoter regions. The TF binding data

and the motif information complement each other, because (1)

none of the two data are complete (e.g. the ChIP-seq data of many

critical cell cycle regulatory TFs are not available) and (2) the

trans- TF binding data from ChIP-seq captures regulatory

information not only at the transcriptional level but also at the

epigenomic level, since TF binding is significantly affected by

epigenomic modifications (e.g. histone modifications and DNA

methylation). The periodical expression pattern of cell cycle genes

is also regulated at the post-transcriptional level, e.g. by miRNAs,

and we believe that predictive accuracy of our model can be

further improved when such information are included. One caveat

of the model is that ChIP-seq experiment captures TF binding in a

population of unsynchronized cells, which limits our model from

more precisely elucidating the cell line specific and phase-specific

regulation of TFs.

As we have described, microarray-based methods are less

effective in identifying cell cycle genes expressed at low levels. For

this reason, cell cycle genes detected from microarray experiment

tend to have higher expression levels compared to those of non-cell

cycle genes. In fact, when we statistically compare the expression

levels of cell cycle genes versus non-cell cycle genes in HeLa cells,

we observe significant expression disparity (P = 3e-42, Wilcoxon

rank sum test). Furthermore, it has been demonstrated previously

that TF binding is predictive of gene expression levels [39–42],

which makes expression level a confounding factor to account for

when classifying cell cycle versus non-cell cycle genes: the model

we propose here may be restricted to prediction of high versus low

gene expression rather than cell cycle genes. This also explains

why most of the TFs show very differential regulatory scores

between cell cycle and non-cell cycle genes (Figure 2), but only 6 of

them show periodical expression pattern during cell cycle in HeLa

cells. To address this confounding issue, we prepare a set of non-

cell cycle genes that have similar expression levels with cell cycle

genes in HeLa. When the regulatory scores are compared between

these genes and cell cycle genes, fewer TF features show significant

difference but the key cell cycle regulators (e.g. E2F1 and E2F4)

still maintain significant difference. This suggests that these key

regulators do in fact, bind differentially with cell cycle versus non-

cell cycle genes even after decoupling them from the influence of

expression levels. If average signals of TF features are compared,

none of the TFs show differential binding at the 0.001 significance

level, again demonstrating the advantage of regulatory scores.

More importantly, when these expression-matched non-cell cycle

genes are used as the negative training set, we can still accurately

predict cell cycle genes with AUC = 0.706 using the TF only

model and AUC = 0.814 using the TF+motif model. Thus, we can

conclude that the model is effective for cell cycle gene prediction

when the influence of expression level is eliminated and a very

conservative training set is used.

Most previous cell cycle research is focused on protein-coding

genes, while in-depth systematic investigation of cell cycle non-

coding RNAs have not been conducted. A recent paper examined

the promoters of 56 cell-cycle genes using tiling array and revealed

extensive non-coding transcription near these genes [43]. This

explorative study highlights the potential importance of regulation

by non-coding RNA during cell cycle division. We applied our

model to more than 130,000 human TSSs annotated by

GENCODE project and systematically predicted the probability

of these TSSs to act as cell cycle driving promoters. The

GENCODE TSS list contains TSSs for not only protein-coding

genes but also for several classes of non-coding RNAs such as

Model for Cell Cycle Gene Prediction
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miRNAs, lincRNAs, snoRNAs, and snRNAs. Our predictions

suggest that there is at least equal percentage of lincRNAs that are

cell cycle regulated as there are protein-coding genes. Further

experimental investigation of these non-coding RNAs should

provide further insight into the non-coding world of cell cycle

regulation.

The enormous amount of genomic data from the ENCODE

project provide valuable resources for biological studies. However,

how to more efficiently make use of such data to facilitate

hypothesis driven studies is still an open question. Here we show

an example that combines large-scale ChIP-seq data from

ENCODE with motif data from genome sequence analysis and

cell cycle microarray data from small-scale laboratory studies. The

framework introduced in this paper may also be applied to address

other biological questions such as identifying tissue specific

expression of genes, gene classes, and environment-induced gene

expression and so on.

Methods

Microarray cell cycle time course data
In this work, we used a supervised model to predict human cell

cycle genes. To train the model, we obtained the known cell cycle

genes and non-cell cycle genes from the data produced by

Whitfield et al [4], which measured gene expression during the cell

division cycle in HeLa cells using microarray experiments. The

data contain four different cell cycle time course series, each

providing a list of cell cycle genes. To have a confident cell cycle

gene list, we referred to the meta-analysis performed by Cyclebase

[24], which combined the results of all these four time courses.

The cell cycle genes (positive training set) were selected as those

with a significant combined P-value for periodicity (P,0.011),

while the non-cell cycle genes (negative training set) were selected

as those that were not significant in any of the four time courses

(P.0.1). In total, we obtained 853 cell cycle Refseq genes and

1051 non-cell cycle Refseq genes. The phase-specificity of cell

cycle genes were determined based on their peak expression time

provide by Cyclebase. In Cyclebase, each cell cycle genes is

assigned a value of 0–100 indicating their peak expression time

with G1 (0–47), S (47–70), G2 (70–90) and M (90–100).

Accordingly, we selected 138 M/G1 (95–100 or 0–20), 257 G2/

M (80–95), 253 G2 (70–90), 175 S (47–70) and 185 G1/S (20–60)

specific Refseq genes for model training.

Calculation of transcription factor regulatory score
We calculated the binding affinity of transcription factors to the

promoter of a gene based on their corresponding ChIP-seq data.

The ChIP-seq data provides the binding signal of a TF at each

nucleotide of the genome. We utilized the method called TIP

(Target Identification from Profile) to quantify the regulatory

relationships between TFs and target genes [22]. Given the ChIP-

seq data of a TF, TIP builds a characteristic, averaged profile of

binding around the TSS of all genes and then uses this to weight

the sites associated with a given gene, providing a ‘regulatory’

score of this for each gene. From the ENCODE project [20], we

downloaded a total of 424 ChIP-seq data, representing the binding

data for about 120 different TFs in more than 10 cell lines such as

HelaS3, HESC, K562, etc. For each of them, we calculated the

regulatory scores for all RefSeq genes, giving rise to a matrix of

34,299 (RefSeq genes) rows and 424 columns (ChIP-seq datasets).

The average binding signals of a TF with a gene is calculated by

averaging the ChIP-seq signal of all nucleotide position in the

promoter DNA region (a 2 kb DNA region centering at the TSS)

of the gene.

Calculation of motif matching scores in promoter of
genes

We downloaded 565 vertebrate motifs from the TRANSFAC

database [44], which represent the potential binding sites of DNA

binding proteins, mostly transcription factors. We also download-

ed the promoter sequences (from TSS to upstream 1000 bp of a

gene) of 34,229 human RefSeq genes from the UCSC Genome

Browser [45]. For each promoter sequence, we used the MATCH

program [46] to examine the presence of these TF binding motifs.

The pre-calculated cut-offs provided by MATCH were used to

minimize the false positive rate. The MATCH program provides

all the potential binding sites and their matching-scores of all of the

RefSeq gene promoters. Based on these outputs, we constructed a

binding score matrix [B_i,j] of size N6M, in which each row

representing a RefSeq gene (N = 34,229) and each column

corresponding to a motif (M = 565). Each element B_ij was

calculated by aggregating the matching-scores of all the binding

sites of the motif j in the promoter of the gene i. The score was set

to 0 if there is no binding site in the promoter of a gene.

Predicting cell cycle genes using Random Forest
The Random Forest ensemble classifier was used to as a

machine-learning model to predict genes as cell cycle or non-cell

cycle. A prepared dataset containing known cell cycle genes

(annotation derived from RefSeq and Cyclebase) and their

associated TF features derived from ENCODE and TRANSFAC

databases was used to train the model. This dataset contained 863

known cell cycle genes and 1051 known non-cell cycle genes. To

generate the final training dataset, 81 TFs were chosen as pre-

selected features resulting in a total of 69,903 cell cycle TF-gene

pairs and 85,131 non-cell cycle gene pairs. Each cell cycle gene

was assigned a positive binary value (1) and each non-cell cycle

gene was assigned a negative binary value (0). Model accuracy was

assessed using 10-fold cross-validation in the following procedure.

First, each fold was carried out by randomly dividing the training

dataset into 10 partitions, irrespective of binary assignment.

Second, 9 partitions were used to train the Random Forest model

and the remaining partition was used as a test set to determine

model performance. This is repeated 9 more times to yield the

averaged sensitivity ([#True Positives]/[#True Positives+#False

Negatives]) and specificity ([#True Negatives]/[#True Negati-

ves+#False Positives]) of the model. This allows construction of a

Receiver Operating Characteristic (ROC) curve, which is a direct

representation of the relationship between sensitivity and specific-

ity. The area under the ROC curve (AUC) is calculated via

Riemann summation of 100 trapezoidal partitions. Calculation of

the AUC is the main evaluator of Random Forest model accuracy

in this study; AUC = 1 corresponds to 100% model accuracy and

AUC = 0.5 corresponds to random classification by the model,

thus completely non-discriminatory.

The relative importance (RI) of a predictor in a Random Forest

model can be measured by the metric ‘‘%IncMSE’’ (increase of

mean squared error) [47]. Given a trained model, ‘‘%IncMSE’’

measures the increase of prediction error in the test data when the

values for each individual predictor are permuted. The permuta-

tion of an important predictor will be expected to lead to a

considerable prediction error increase and therefore a large

‘‘%IncMSE’’. The relative importance of each genomic feature is

model specific. The relative importance of features for predicting

phase-specific cell cycle genes is calculated respectively from the

corresponding phase-specific model.

The R package ‘‘randomForest’’ was utilized to implement

these models.
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Predicting periodical expression driving GENCODE
promoters

Transcription start sites (TSS) information was derived from the

GENCODE gene annotation project [30] and the high confidence

TSS sets from GENCODE version 7 was used. This set includes a

total of 137,874 TSSs for different gene categories, including

protein coding genes (100,417), miRNAs (1,755), lincRNAs

(2,751), pseudogenes (13,164), etc. In the dataset, many genes

are associated with multiple TSSs which corresponds to these

genes having alternative promoters. As we have done for the

RefSeq genes, we calculated the TF regulatory scores and the

motif matching scores for all these TSSs using the above-described

methods.

We trained Random Forest using the RefSeq gene training data

described in the preceding section, and then apply the model to

predict the probability of these TSSs function as cell cycle driving

promoters. Meanwhile, we generated ,10,000 random TSSs that

are evenly distributed in the genome and fed them into the model

as controls. Given a cut-off, the false discovery rate (FDR) of our

model can be estimated by calculating the ratio of F_rand to

F_real, where F_rand and F_real are the fractions of predicted cell

cycle driving random TSSs and real TSSs (i.e. TSSs with

probability above the cut-off).

Enrichment analysis of E2F4 targets in cell cycle
We investigated the distribution of transcription factor target

genes in the cell cycle. First, we sorted the cell cycle genes in HeLa

cells according to their peak expression times. Then we examined

the enrichment of the target genes of a given transcription factor in

each sliding window of the cell cycle. We used a window size of 30

degrees with 10 degrees overlapping between neighboring

windows. We used the Fisher’s exact test to determine the

significance of enrichment of target genes for a transcription factor

in each cell cycle window (Suppl. Figure S2).

Other datasets and bioinformatic analysis
Systematic gene knockdown data for cell division genes

screening are available from Mukherji et al. [28] and Kittler et

al. [29]. In the two studies, the majority of human protein-coding

genes were knocked down in U2OS and HeLa cells, respectively,

to identify cell cycle regulating genes. We examined and calculated

the significance the enrichment of our predicted cell cycle genes in

gene sets identified by Mukherji et al. and Kittler et al. using

Fisher’s Exact test (Suppl. Figure S1).

To examine the enrichment of genes of different gene ontology

(GO) categories in our predicted cell cycle gene set, we performed

GO enrichment analysis by using the web-based tool from

DAVID database (the Database for Annotation, Visualization

and Integrated Discovery), which calculated significance of

enrichment based on Fisher’s exact test [48]. In the analysis, we

removed the cell cycle and non-cell cycle genes in the training set

to avoid their impact and limit bias

The human protein-protein interaction data is downloaded

from the Human Protein Reference Database (HPRD, Release 8)

[49]. Human RefSeq gene annotations are obtained from the

UCSC Genome Browser database [45].

Supporting Information

Figure S1 Validation of novel predicted cell cycle genes from

large-scale gene knockdown experiments. (A) Comparison of

predicated cell cycle genes with knockdown results from Mukherji

et al. (B) Comparison of predicated cell cycle genes with

knockdown results from Kittler et al. (C) Comparison of

knockdown results between Mukherji et al. and Kittler et al.

(TIF)

Figure S2 Enrichment of E2F4 target genes during the cell

cycle. Human cell cycle genes are ordered based on their peak

expression time in the cell cycle, and enrichment of E2F4 targets in

each time window is calculated by using Fisher’s Exact test.

(TIF)

Table S1 Regulatory scores and average signals of transcription

factors for cell cycle and non-cell cycle genes.

(XLS)

Table S2 The list of 424 ENCODE ChIP-seq experiment for

transcription factors.

(XLS)

Table S3 Gene Ontology analysis results of novel predicted cell

cycle Refseq genes.

(XLS)

Table S4 The number of positive prediction of different classes

of GENCODE annotated genes at different thresholds. PPV

(Positive Prediction Value) indicates the prediction precision

estimated by cross-validation.

(XLS)

Table S5 Gene Ontology analysis results of GENCODE

annotated protein-coding genes that are predicated to be cell

cycle regulated.

(XLS)
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