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Abstract

Several theories propose that the cortex implements an internal model to explain, predict, and learn about sensory data, but
the nature of this model is unclear. One condition that could be highly informative here is Charles Bonnet syndrome (CBS),
where loss of vision leads to complex, vivid visual hallucinations of objects, people, and whole scenes. CBS could be taken as
indication that there is a generative model in the brain, specifically one that can synthesise rich, consistent visual
representations even in the absence of actual visual input. The processes that lead to CBS are poorly understood. Here, we
argue that a model recently introduced in machine learning, the deep Boltzmann machine (DBM), could capture the
relevant aspects of (hypothetical) generative processing in the cortex. The DBM carries both the semantics of a probabilistic
generative model and of a neural network. The latter allows us to model a concrete neural mechanism that could underlie
CBS, namely, homeostatic regulation of neuronal activity. We show that homeostatic plasticity could serve to make the
learnt internal model robust against e.g. degradation of sensory input, but overcompensate in the case of CBS, leading to
hallucinations. We demonstrate how a wide range of features of CBS can be explained in the model and suggest a potential
role for the neuromodulator acetylcholine. This work constitutes the first concrete computational model of CBS and the first
application of the DBM as a model in computational neuroscience. Our results lend further credence to the hypothesis of a
generative model in the brain.
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Editor: Boris S. Gutkin, École Normale Supérieure, College de France, CNRS, France

Received January 25, 2013; Accepted May 28, 2013; Published July 18, 2013

Copyright: � 2013 Reichert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by grants EP/F500385/1 and BB/F529254/1 for the University of Edinburgh School of Informatics Doctoral Training
Centre in Neuroinformatics and Computational Neuroscience (www.anc. ac.uk/dtc) from the UK Engineering and Physical Sciences Research Council (EPSRC),

hin
publish,

or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: david_reichert@brown.edu

Introduction

Visual hallucinations can offer fascinating insights into the

mechanisms underlying perceptual processing and the generation

of visual experience in the brain. A pathology known as Charles

Bonnet syndrome (CBS) [1–4] is of particular interest, for two

reasons. First, hallucinations in CBS can be very complex in the

sense that they entail vivid, life-like, and elaborate imagery of

objects, people, animals, or whole visual scenes. Second, the

primary cause of CBS is loss of vision due to eye diseases, with no

clear pathology in the brain itself and no necessary impairment to

mental health other than the hallucinations. De-afferentation of

the visual system and sensory deprivation thus seem to be the

important factors in the development of CBS, and comparisons

have been made to phantom limb phenomena. Unlike for example

in the case of schizophrenia, most often accompanied by auditory

hallucinations [5], in CBS there thus does not seem to be a more

pervasive malfunction of the cognitive system, but rather some

form of over-compensation or maladaptation of the relatively

healthy brain to the lack of sensory stimulation.

From a theoretical perspective, there has been an attempt to

unify complex visual hallucinations in various pathologies in a

single qualitative model [6], but many argue that the underlying

causal mechanisms are too varied to do so [7–9]. That

hallucinations occur in many different circumstances however

speaks to them relating to essential aspects of perceptual

processing. Thus, theoretical explanations that pose that percep-

tion inherently involves some form of active synthesis of internal

representations might be well positioned to shed light on the

generation of spontaneous imagery in hallucinations, which occur

even in CBS where there seems to be little defect in the visual

system other than at the input stage. Therefore, two key questions

arise here: what do complex hallucinations tell us about perceptual

processing in general, and what are the mechanisms triggering

CBS in particular?

The purpose of this computational study is hence threefold.

First, to gain theoretical insights into important principles of

cortical inference by employing the deep Boltzmann machine

(DBM) as a model system which is based on such (hypothetical)

principles. Second, to examine concrete causal mechanisms for

CBS, we model homeostatic regulation of neuronal firing activity,

elucidating on various aspects of CBS. Moreover, to examine a

potential role of the neuromodulator acetylcholine, we introduce a

novel model of its action as mediating the balance of feedforward

and feedback processing in the cortical hierarchy. And third, with

our results we aim to demonstrate the relevance of Deep Learning
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approaches such as the DBM as models of cortical processing. A

preliminary version of the presented work has been published [10].

Charles Bonnet syndrome
CBS is characterised by complex recurring visual hallucinations

in people who suffer from visual impairment but no other

psychological condition or hallucinations in other modalities [1–

4]. In particular, patients generally gain insight into the unreality

of their experiences. The phenomenology of CBS is multifarious,

with the nature and content of hallucinatory episodes as well as the

conditions favouring their occurrence varying from patient to

patient or episode to episode. Common themes are the vividness

and richness of detail of the hallucinations, the elaborate content

often entailing images of people or animals (though often of a

bizarre nature–figures in elaborate costumes, fantastic creatures,

extreme colours, etc.), as well as possibly common triggers, such as

being in a state of drowsiness and low arousal. Episodes can last

from seconds to hours, and hallucinations can reoccur over

periods lasting from days to years.

The eponym CBS itself is somewhat ambiguous or even

controversial [4,11–13]. Some authors put the emphasis on

complex hallucinations in visually impaired but psychologically

normal people, where the visual pathology can be anywhere in the

visual system from the retina to cortex; others define CBS to be

necessarily related to eye diseases only. Similarly, the delineation

of the term ‘complex’, and whether CBS should include complex

hallucinations only, appears to be not fully clear. On one end are

simple or elementary hallucinations consisting of flashes, dots,

amorphous shapes, etc., while on the other are fully formed objects

or object parts like animals, people, and faces [4,6]. Somewhere in

between are geometric patterns (‘roadmaps’, brickwork, grids, and

so forth). Some authors include the latter in CBS [13,14]. It should

be noted that simple hallucinations are actually more common in

visually impaired patients than complex ones, with a prevalence of

about 50% vs. about 15%, respectively [4]. Both types can occur

in individual subjects, possibly with a tendency to progress from

simple to complex over time.

For this modelling study, we identify the following key aspects of

CBS we aim to capture and elucidate on. First, we take the

common definition of hallucinations as compelling perceptual

experiences in the absence of external stimuli. They are to be

contrasted [4,6] to illusions as misperceptions concerning an actual

external stimulus, as well as to mental imagery. Unlike hallucina-

tions, the latter is under complete volitional control, lacks

perceptual vividness (it appears to be ‘in the mind’s eye’ rather

than in the world), and might also have a different neurobiological

substrate [13].

Second, in the context of CBS we are interested in hallucina-

tions that are perceptually rich in the sense that the experience is

similar to that of actual seeing. Presumably, this implies that the

representations instantiated in the neuronal activity patterns share

significant commonalities in both seeing and hallucinating, though

this requires further elaboration.

Third, we consider hallucinations on the complex end of the

spectrum, i.e. objects, people, and so forth. As we currently lack

good generative models of realistic images (biological or otherwise,

not counting here of course purely generative algorithms from

computer graphics that cannot be inverted for inference) the

model we employ still relies on relatively simple binary images.

However, it attempts to capture at least some aspects of how

complex, object-based hallucinations might be created in the

brain. For example, the content of complex hallucinations

presumably cannot be accounted for by appealing to anatomical

organisational properties of lower visual areas, which [14]

suggested for simpler hallucinations of geometric patterns in

CBS (referring to anatomical ‘‘stripes’’ in V2 etc.). Our model

relies on distributed, high-dimensional, hierarchical representa-

tions that go beyond local low-level visual features (e.g. V1-like

edge detectors). The representations are learnt and reflect

structure in sensory data beyond local correlations.

Fourth, with regards to the issue of whether CBS should refer to

hallucinations in the context of eye diseases only, our model is

meant as a model of processing in the cortical hierarchy, and due

to the level of abstraction we only require that visual input is lost

somewhere at a preceding stage and do not differentiate further.

We do however address the distinct roles of cortical areas within

the hierarchy.

CBS is a complex phenomenon with manifold symptoms and

little data beyond clinical case reports and case series. The aim of

our computational model is thus to qualitatively elucidate on

possible underlying mechanisms, to demonstrate how several

common aspects of CBS could be explained, and to gain some

potential insights into the nature of cortical inference.

Hallucinations and generative models in the brain
The occurrence of complex visual hallucinations in various

pathologies [6,15] as well as the imagery we all experience in

dreams show that the brain is capable of synthesising rich,

consistent internal perceptual states even in the absence of, or in

contradiction to, external stimuli. It seems natural to consider

hallucinations in the context of theoretical accounts of perception

that attribute an important functional role to the synthesis of

internal representations in normal perception, not just in

pathological conditions. In particular, one relevant notion is that

of perception entailing an ‘analysis by synthesis’, which is an aspect

of approaches such as predictive coding or Adaptive Resonance

Theory [16–23]. The idea is that ambiguous sensory signals

inform initial hypotheses about what is in an image in a bottom-up

fashion (from low-level image features to high-level concepts, like

objects and faces). These hypotheses are then made concrete in a

synthesis stage that tests a hypothesis against the image (or low-

Author Summary

The cerebral cortex is central to many aspects of cognition
and intelligence in humans and other mammals, but our
scientific understanding of the computational principles
underlying cortical processing is still limited. We might
gain insights by considering visual hallucinations, specif-
ically in a pathology known as Charles Bonnet syndrome,
where patients suffering from visual impairment experi-
ence hallucinatory images that rival the vividness and
complexity of normal seeing. Such generation of rich
internal imagery could naturally be accounted for by
theories that posit that the cortex implements an internal
generative model of sensory input. Perception then could
entail the synthesis of internal explanations that are
evaluated by testing whether what they predict is
consistent with actual sensory input. Here, we take an
approach from artificial intelligence that is based on similar
ideas, the deep Boltzmann machine, use it as a model of
generative processing in the cortex, and examine various
aspects of Charles Bonnet syndrome in computer simula-
tions. In particular, we explain why the synthesis of internal
explanations, which is so useful for perception, goes astray
in the syndrome as neurons overcompensate for the lack
of sensory input by increasing spontaneous activity.

Charles Bonnet Syndrome in a Generative Model
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level representation thereof) by making top-down predictions using

a generative process.

In computational neuroscience over the last two decades, this

notion of analysis by synthesis and related ones have often been

framed in probabilistic or ‘Bayesian’ terms. Generally speaking,

Bayesian approaches theoretically describe how inferences about

aspects of the environment are to be made from observations

under uncertainty (for reviews and introductions, see [24–26]). For

hallucinations, the relevant aspect of Bayesian models could be

that they offer a way of formalising notions of ‘bottom-up’

processing driven by sensory input, and internally generated, ‘top-

down’ processing conveying prior expectations and more high-

level learnt concepts. An imbalance of, or erroneous interaction

between, such ‘bottom-up’ and ‘top-down’ information could

underlie hallucinations [27–29]. More concretely, the mathemat-

ical entities in a Bayesian model or inference algorithm could map

to neural mechanisms and processing in the cortex. For example,

inference in a hierarchical model could describe hierarchical

processing [21]. Top-down processing then would correspond to

information flow from higher areas to lower areas, and inference

would be implemented via recurrent interactions between cortical

regions. Similarly, in the model of Yu and Dayan [27], a concrete

biological mechanism is hypothesised to represent the uncertainty

of the prior, namely the neuromodulator acetylcholine. The

authors thus refer the latter’s relevance in some hallucinatory

pathologies as evidence, where deficient acetylcholine, corre-

sponding to an over-emphasis of top-down information in Yu and

Dayan’s account, could lead to hallucinations [6,15,30].

As Yu and Dayan [27] state, a shortcoming of concrete

Bayesian models such as theirs is that they are often formulated

over very simple, low-dimensional, non-hierarchical variables. It is

not clear how their treatment of priors and uncertainty translates

to models that deal with high-dimensional problems like images in

a biologically plausible manner. This is what we need to address if

we hope to develop a computational model of CBS, and in this

context we will introduce a novel model of the action of

acetylcholine in similar spirit to Yu and Dayan’s framework.

Neuronal homeostasis as causal mechanism
While hallucinations in general might relate to an imbalance of

bottom-up and top-down in the cortex, the causes behind

specifically CBS and the involved mechanisms are poorly

understood (for discussion, see [1,4,12,15]). Evidence from CBS

and other pathologies suggests that an intact visual association

cortex is necessary as well as sufficient for complex visual

hallucinations to occur (e.g. [15]). For example, lesions to visual

cortex can cause hallucinations, but only if they are localised to

earlier areas and do not encompass the higher association cortex.

One of the insights emerging from the debate is that the pathology

in CBS appears to entail primarily a loss of input at stages prior to

association cortex. In contrast, hallucinations accompanying

epilepsy, for example, are thought to be caused by an irritative

process that directly stimulates association cortices.

How deficient input in CBS leads to the emergence of

hallucinations is unclear. Classic psychological theories suggest

that the lack of input somehow ‘releases’ or dis-inhibits perceptual

representations in visual association cortex. This somewhat vague

notion has been made more concrete by taking neuroscientific

evidence into account which shows that cortex deafferentiated

from input becomes hyper-excitable and generates increased

spontaneous activity. As [14] argues (also [12]), changes to

neuronal excitability as a consequence of decreased presynaptic

input, based on for example synaptic modifications, could thus

underlie the emergence of neuronal activity which establishes

hallucinatory perception in CBS.

Such adaptive changes of neuronal excitability have been

studied extensively over the last two decades in experimental and

theoretical work on homeostatic plasticity (see [31] for review; also

[32,33]). Rather than deeming them artifacts or epiphenomena,

such changes have been attributed important physiological

functions, allowing neurons to self-regulate their excitability to

keep their firing rate around a fixed set-point. Homeostatic

regulation is thought to stabilise activity in neuronal populations

and to keep firing within the neurons’ dynamic range, compen-

sating for ongoing changes to neuronal input either due to

Hebbian learning, or due to developmental alterations of the

number of synapses, connectivity patterns, etc.

A neuron might track its current activity level by measuring its

internal calcium levels, and several cellular mechanisms have been

identified that could then implement its homeostatic adaptation.

Among them is ‘synaptic scaling’, a change to synaptic efficacy

that is thought to affect all synapses in a neuron together, keeping

their relative strengths intact. Alternatively, the intrinsic excitabil-

ity of a neuron can be regulated by changing the distribution of ion

channels in the membrane. Both mechanisms have been observed

experimentally, dynamically regulating neuronal firing rate over a

time-span from hours to days [34] in compensation for external

manipulations to activity levels–in particular, in response to an

activity decrease caused by sensory deprivation.

Hence, with visual input degraded due to eye disease or other

defects in the visual pathways, homeostatic over compensation is a

strong contender to be the neuronal cause underlying the

emergence of hallucinations in CBS. This is the mechanism we

explore in our computational model.

Model

To address CBS, we need to work towards computational

models that can capture its key properties as identified earlier.

Such a model should be able to internally synthesise rich

representations of image content, such as objects, even in the

absence of (corresponding) sensory input. We now briefly describe

the deep Boltzmann machine (DBM). This being the first work

that applies DBMs as models of cortical processing, we discuss its

interpretation as a biological model. We also specify the

parameters used in the simulation experiments. For a more

extensive explanation and discussion of all aspects of the DBM

framework brought up in this section, see [35].

Deep Boltzmann machines
DBMs are probabilistic, generative neural networks that learn

to represent and generate data in an unsupervised fashion. They

consist of several layers of neuronal units arranged in a hierarchy.

The units fire stochastically, inducing a probability distribution

over the network state, parametrised by the weight (and bias)

parameters, i.e. the connection strengths between units. DBMs

were introduced recently in machine learning by Salakhutdinov

and Hinton [36]. While Deep Learning approaches such as the

DBM are often taken to be inspired by the brain [37], the

relevance of the DBM as a concrete model of processing in the

brain has not been explored so far. We argue that DBMs are

valuable as models of (hypothetical) aspects of cortical processing,

as the computational principles they are based on could play an

important role in cortical learning and processing as well.

A DBM is a special case of a general Boltzmann machine (BM)

by virtue of its specific architecture. BMs themselves were

developed in the nineteen eighties [38]. The reason that DBMs

Charles Bonnet Syndrome in a Generative Model
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have enjoyed recent interest in machine learning is not that the

basic underlying model formulation of a BM has changed; rather,

recent developments in learning algorithms have made it possible

to effectively train these models, taking advantage of their ‘deep’

structure to overcome earlier problems that made the application

of BMs difficult.

Concretely, a DBM consists of n layers of neurons (e.g. Figure 1).

Usually, the states of the neurons are taken to be binary, xi[f0,1g,
indicating whether a unit is ‘on’ or ‘off’, but other choices are

possible, such as continuous-valued, rectified linear units [39]. The

states of each layer are written as vectors, denoted by x(0), . . . ,x(n)

(together denoted by x). Units xi and xj in adjacent layers are

connected by symmetric connections with connection weight wij ,

the latter modelling synaptic strength. For each adjacent pair of

layers layers k and kz1, the weights can be combined into a

weight matrix W(k). Each unit also has a bias parameter bi that

determines its basic activation probability by functioning as a

baseline input. In a default DBM, there are no lateral connections

between units within a layer.

The first layer constitutes the visible units, i.e. they represent the

input data, such as the pixels of images. The higher layers contain

hidden units that are not given by the data. Rather, their states form

a distributed representation of the input data, the meaning of

which is assumed in learning. There, the parameters (weights and

biases) are adjusted to learn a good internal model of the sensory

input, in a sense to be described below.

Each unit i receives input zi from the other units it is connected

to via the weights (plus the bias),

zi~bizW(k{1)x(k{1)zW(k)x(kz1): ð1Þ

This input determines the probability for the unit to switch on. For

binary units, it is computed using a sigmoid (logistic) activation

function:

P(xi Dx\i)~
1

1ze{zi
, ð2Þ

where x\i denotes all unit states other than xi. P(xi Dx\i) is also

called the activation (probability) of unit i.
If the DBM is run over a long enough time, by stochastically

activating its units, then the probability to find the network in any

state x asymptotically converges to an equilibrium distribution. In

analogy to a system described by (classical) statistical thermody-

namics (specifically, the Boltzmann machine corresponds to an

Ising model), this distribution is given by the system’s Boltzmann

distribution (assuming a temperature of T~1),

P(x)~
1

Z
e{E(x), ð3Þ

where E(x) is called the energy of the system and is defined as

E(x)~
Xn

0

x(k)T W(k)x(kz1)zb(k)T x(k), ð4Þ

and Z is the normalisation constant.

DBMs as neural networks and probabilistic models
DBMs can be understood from two perspectives. The first is to

view DBMs as neural networks, simple models of neuronal

processing on a comparable level of abstraction and idealisation as

other connectionist-style networks used in machine learning and

computational cognitive models. In particular, BMs in general can

be seen as a generalisation of the Hopfield network [40,41], which

has been used as a basic model of memory storage and recall in

neuronal cell assemblies [42]. BMs differ from Hopfield networks

in two fundamental respects. First, in the latter, the activation rule

is deterministic. Initialised in some state, a Hopfield network will

converge to a state that forms a local minimum in the energy

‘landscape’. Learning aims to sets the weights such that this state

corresponds to one of the input patterns to be memorised. BMs on

the other hand explore the energy landscape stochastically,

potentially traversing several minima in the process. The second

difference is that Hopfield networks do not have hidden units.

Hidden units enable BMs to learn aspects of the data that are not

defined by pairwise correlations. Moreover, rather than just

capturing correlations between visible units (e.g. pixels in an

image) in the weights between them, hidden units can represent

specific patterns or features in the visible units, and explicitly signal

their presence or absence by virtue of their state. Thus, rather than

just memorising patterns, BMs can learn internal representations

of sensory data.

The fact that DBMs compute distributed hidden representations

in several non-linear processing stages also relates them to

feedforward neural networks. However, whereas the latter are

usually trained by providing desired output values (i.e., in a

supervised fashion), such as image labels, and tuning the weights

with the backpropagation algorithm [43], DBMs learn without

supervision, attempting to find an internal model from which the

input data can be generated.

The second perspective on BMs (and DBMs), perhaps more in

line with modern machine learning approaches, views them as

probabilistic graphical models of data. In this context, a BM is an

instance of a Markov random field, which is a probabilistic

graphical model whose independence relationships are captured

by an undirected graph (e.g. [44]). Rather than introducing BMs

Figure 1. Decoding the internal state. During perception, the
states of any hidden layer are decoded using a copy of the DBM as a
decoder. Starting from the hidden states of the layer in question, a
single deterministic top-down pass is performed to obtain a
reconstructed image.
doi:10.1371/journal.pcbi.1003134.g001

Charles Bonnet Syndrome in a Generative Model
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on the basis of the stochastic activation rule, one can instead start

from the Boltzmann distribution, Eq. 3, as a definition of the

model via its joint distribution over the random variables x, and

then derive the activation probability (Eq. 2) for each unit simply

as conditional probability. ‘Running’ the BM stochastically then

produces samples from the joint distribution. In fact, iteratively

sampling each unit’s state according to its conditional probability

implements Gibbs sampling, a Markov chain Monte Carlo

(MCMC) method (see e.g. [45]). MCMC and similar sampling-

based methods have been suggested to relate to cortical

probabilistic inference [26,46–51], and it is focus of our work on

modelling bistable perception within the DBM framework [35,52].

DBMs as models of cortical inference
We argue that the DBM is promising as a model of

hallucinations, and other aspects of a hypothetical generative

model in the cortex, because it implements a generative model that

learns to synthesise representations of sensory data. A DBM can be

seen as an instance of a hierarchical probabilistic model, and thus

could capture the intuition of bottom-up and top-down processing

in the cortex reflecting the interaction between sensory informa-

tion and internal priors. An imbalance of such processing then can

be seen as a cause for hallucinations to emerge. At the same time,

the DBM is also a simple neural network, thus enabling us to

explore concrete neural mechanisms possibly underlying CBS.

Because the DBM does not just memorise given input patterns like

the related Hopfield network (which itself has been used to model

hallucinatory ‘memories’ in schizophrenia [53]), but rather learns

internal representations of input images, it is a more concrete model

of perception rather than just memory. The ‘deep’ organisation of

the DBM into hierarchical layers as well as the image based

representations will allow us to make concrete connections to the

visual cortex.

The DBM being a generative probabilistic model of sensory

data, the act of perception corresponds to inferring the hidden or

latent variables that are consistent with and could have generated

the observed input. We make a clarification here in light of a

current debate concerned with the merit and meaning of

approaches to cognition termed ‘Bayesian’ [54–58]. The ap-

proaches in focus there are characterised as rational, optimal, or

ideal observer models. They are meant to describe specific

perceptual inference problems, capturing what can in principle be

inferred about a specified property of the environment from

sensory data. In contrast, in case of the DBM model, the

probabilistic framework is used to develop a (component) solution

to perceptual tasks, perhaps capturing aspects of processing in the

brain, but this solution does not need to be ‘optimal’ in any sense.

In particular, the hidden variables in the DBM do not have by

design a priori meaning assigned to them in terms of the

environment, but rather attain any meaning due to whatever

useful representations are discovered in learning. Thus models like

the DBM differ conceptually from ideal observer models [35], but

these different approaches can still be related to each other as they

are based on the same theoretical language of probabilistic

inference.

Seen as a model of aspects of cortical processing, the DBM is a

rough idealisation, but comparable in that regard to other related

modelling approaches [35]. As we will show, the DBM does

capture several hypothetical aspects of cortical processing relevant

for explaining CBS.

Learning
Developing flexible models that can learn useful representations

of many kinds of sensory data is one of the key motivations behind

Deep Learning approaches such as the DBM. Such versatile

learning could also be what makes the cortex so flexible and

powerful across many sensory modalities. The learning algorithms

for BMs, and DBMs in particular, are themselves not focus of our

work on hallucinations here, but we summarise the key points

below (see Supplementary Text S1 and [35] for further comments

on the biological relevance and plausibility).

Taking the probabilistic model interpretation of a BM, learning

can be derived as likelihood optimisation of the model parameters

given some sensory training data. Notably, the resulting iterative

update rule for the weights of the model involves only local

Hebbian learning, and an alternation between two phases where

the BM either performs inference over some input or freely

generates from its internal model (this second phase could possibly

offer a normative explanations for dreams [59]).

There are three key aspects to why BM-based models have

found renewed interest in machine learning over the recent years.

First, the focus turned to BMs with simplified connectivity, in

particular the Restricted BM (RBM), where neither visible units

nor hidden units have connections amongst their own type (a

RBM is equivalent to a 2-layer DBM). Second, making use of the

simplified inference in such models, more effective approximate

learning algorithms were developed, such as the Contrastive

Divergence algorithm [60]. Third, RBMs were used as building

blocks to train deeper, multi-layer architectures such as the DBM.

Treating each pair of adjacent layers as its own RBM, the DBM is

initially trained one subsequent layer at a time, with each hidden

layer learning to generate the unit states in the respective layer

below. Once the whole DBM is composed, further training can

then be performed on the whole model.

The biological relevance of deep RBM-based models such as

the DBM has been examined by matching the learnt neuronal

receptive fields to those of neurons in the visual cortex [61,62].

Our study here is the first to explore the potential of the DBM as a

biological model beyond receptive field properties.

Decoding the internal state
To model perceptual phenomena with the DBM, we feed

sensory input to the model by clamping the visible layer to images,

sampling the hidden layers, and then analyse what is represented

in the states of the hidden layers during inference. In the case of

hallucinations we are in particular concerned with perceptual

content that is not matching the actual visual input. To decode the

hidden states in terms of the sensory data they represent, we can

make use of the generative nature of the DBM and ask what

images would be generated from the hidden states in question. We

thus take another DBM instance with the same parameters as the

DBM used to model perceptual inference to implement a decoder.

For any set of hidden states, the decoder is applied to obtain

reconstructed input images for each hidden layer independently

(Figure 1).

Specifically, given the states of any hidden layer x(k), kw0, at

any point during perceptual inference, we set the respective hidden

layer in the decoder DBM to the states to be decoded, and then

perform a single deterministic top-down pass starting from there:

the activations in each subsequent lower layer are computed using

only the layer above as input (propagating P(x(l{1)Dx(l))), until a

reconstructed image is obtained in the visible layer of the decoder

(taking probabilities as grey-scale values). The weights in the

decoder are doubled to compensate for the lack of bottom-up

input (analogously to the bottom-up initialisation used in [36]).

Possible alternatives to this decoding procedure are discussed in

[35].
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Homeostasis in a DBM
We model CBS as resulting from homeostatic regulation of

neuronal excitability in response to degrading visual input. We use

DBMs that have learnt to represent images, having trained them

on either of two simple data sets. We then simulate the visual

impairment by using empty or corrupted input instead of the

original data, and have the model perform inference over them.

The change in sensory input could lead to changes in the

activation levels of the model’s neuronal units. To model

homeostatic mechanisms, we allow the neurons to adapt their

excitability in response.

As discussed earlier, homeostatic plasticity can be described as a

neuron adapting its excitability to match its current average firing

rate (as measured over hours or days) to a fixed set-point [33], and

there are several cellular and synaptic processes making this

possible. Here, for simplicity we model a single basic mechanism,

namely an iterative adaptation of each neuron’s intrinsic

excitability. With target activity pi and current average activity

ai, neuron i in the DBM should become either more or less

excitable according to the difference pi{ai. Its bias parameter bi is

thus iteratively incremented by

Dbi~g(pi{ai), ð5Þ

where g is a constant parametrising the rate of adaptation. Such an

adaptation of the bias has the effect of shifting the activation

function of the unit, i.e. the probability for it to switch on,

rendering it more or less excitable for a given amount of input

(Figure 2; cf. Figure 3a in [31] on homeostatic plasticity).

To define the target activity pi for each neuron, we simply take

the average activity of a unit during inference over the training

data (after training) as the normal, ‘healthy’ level of activity for the

representations learnt. An alternative would be to use the

homeostatic mechanism during training itself, specifying a target

activity level for the neurons. This corresponds to a regularisation

that has been used in machine learning e.g. to enforce sparsity in

the representations [61,63] (weight decay during training [64]

could be seen as another type of homeostatic mechanism akin to

synaptic scaling). We report here results without using this

mechanism in training itself, but we obtained similar results when

trying the latter. Thus, what mattered here is only that the activity

levels assumed during training were restored, regardless of whether

these levels were originally confined to a certain regime.

Simulation setup
We used two training data sets to explore different aspects of CBS

(Figure 3). The first is a custom set of binary images containing toy

shapes of various sizes at various positions. This shapes data set

allowed us to examine issues related to the localisation of visual

impairment, and due to its simplicity the perceptual content of the

corresponding hallucinations is straightforward to analyse by

directly comparing it to training images. The second data set is

MNIST, which contains images of handwritten digits and is a

standard benchmark used in machine learning. The advantage of

MNIST is that it contains objects that, if still simple, arguably have

some more interesting structure. With such kinds of data it has been

shown that DBMs can learn representations that generalise to

unseen instances of the data, not just in terms of classification

performance but also in terms of the data they generate themselves

[65]. This in particular demonstrates that learning does not simply

correspond to memorising training images.

For both data sets, the employed DBMs had three layers of

hidden units. The weights between layers were restricted to

implement localised receptive fields so that each unit was

connected only to a patch of adjacent units in the respective layer

below. Receptive fields in the highest hidden layer were global.

The biases of the units were initialised to negative values before

training to encourage sparse representations. In particular, this

lead to a breaking of symmetry between on and off states: by

encouraging units to be off most of the time, they learn

representations where they signal the presence of specific content

in an image by switching on [35,66]. Input degradation (which

models visual impairment) then generally had the effect of

decreasing neuronal activity, and in consequence homeostatic

regulation would have to recover firing rates by increasing the

excitability of the units. This matches the findings that cortical

neurons become ‘hyper-excitable’ under sensory deprivation (as

reviewed e.g. by [14]). Other than the sign of the activity changes,

overall results as reported in this study did not however depend on

representations being sparse.

For MNIST, the visible layer had 28|28 units corresponding

to the size of the images in pixels, and 28|28, 28|28, and

43|43 units in the three hidden layers, from lowest to highest,

respectively. Receptive field sizes were 7|7, 14|14, and 28|28.

The model was trained layer-wise for 30 epochs (i.e. iterations

through the training data) in each layer, using 5-step Persistent

Contrastive Divergence (Supplementary Text S1). The training set

contained 60,000 images, 6,000 per digit category (0 to 9). For the

shapes data set, the visible layer had 20|20 units and the hidden

layers 26|26 units each, with receptive field sizes 7|7, 13|13,

26|26. Here, layer-wise training consisted of 30 epochs of 1-step

Figure 2. Homeostatic excitability shift. The activation probability
(given by the logistic function) of a neuron shifts depending on the
value of the bias parameter b.
doi:10.1371/journal.pcbi.1003134.g002

Figure 3. Examples from the training data sets. See main text for
details. (A) A custom data set of simple shapes at various positions. (B)
The MNIST data set of handwritten digits, a standard benchmark in
machine learning.
doi:10.1371/journal.pcbi.1003134.g003
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Contrastive Divergence (Supplementary Text S1). The training set

again had 60,000 images in total, from six categories (squares,

triangles in two orientations, all in two different sizes). It should be

noted that, due the limited variability in the shapes data set, all

possible image instances were covered by the training set. Hence,

only the MNIST data set is suitable to test the generalisation

performance of the model. Lastly, for neither MNIST nor the

shapes data set were the models trained further after the layer-wise

pre-training. See Supplementary Text S2 for further details on the

training parameters used.

To measure the preferred activity pi for each hidden neuron, we

averaged its activation over all training data (after learning), with

one trial per input image consisting of 50 sampling cycles. Here and

elsewhere, the hidden states were generally initialised to zero at the

start of a trial. Similarly, to measure the current average activation

ai during homeostatic adaptation, activities were measured over 50

cycles in 100 trials per iteration. Depending on the experiment in

question, the visible units were set to a different image for each trial

or remained blank (when modelling complete blindness). The

adaptation rate g was set to 0.1 and 0.04 for models trained on

shapes or MNIST, respectively, with a lower rate for MNIST as the

model was found to effectively adapt faster for this data set. For the

overall results, the precise value of the rate did not matter.

To analyse the perceptual state of the model, we decoded the

states of the hidden layers as described earlier, obtaining a

reconstructed image for each layer at each sampling step. To

evaluate the internal representations w.r.t. their possibly halluci-

natory content, we analysed whether the decoded images

corresponded to the kind of objects the models had learnt about

in training, using the topmost hidden layer’s states after 50

sampling cycles for quantitative analysis. For the shapes data set,

we employed a simple template matching procedure, matching the

image to the shape templates used in training by convolving the

former with the latter (each image had its mean subtracted and

was then l2 normalised). The maximum value of the resulting 2D

vector was taken as quantitative measure for the correspondence,

termed the ‘hallucination quality’, where a perfect match

corresponded to a hallucination quality of 1.

For the more varied MNIST data set, there are no fixed

templates, nor do generated images necessarily match instances

from the training set (which is the point of having a model that can

generalise, as mentioned above). To obtain a measure of

hallucination quality, we classified the decoded image as belonging

to any of the digit categories, using the confidence of the classifier

as a measure of the image’s quality. Specifically, we used an

instance of the DBM model itself (not affected by homeostasis)

with a classification unit attached (see e.g. [67]). Taking the

maximum of the posterior over the digit categories again yielded a

measure with maximum value 1. Inspecting the generated image

and resulting posterior values, we also confirmed that for images

that did not look like well-defined MNIST digits, classification

scores computed in this manner tended to be lower. It should be

noted that the aim of our work was not achieving high

classification performance, hence we did not train the full model,

fine-tune the hyper-parameters, nor necessarily implement classi-

fication in an ideal fashion. Classification is merely used to analyse

the quality of the internal representations. The reported error rate

for MNIST (7%) is hence higher than the state of the art, the latter

being around 1% for this type of model (e.g. [68]).

Results

The hypothesis we explored is that homeostatic regulation of

neuronal firing rate in response to sensory deprivation underlies

the emergence of hallucinations in CBS. The possibility for

synthesis of internal representations is explained by the cortex

implementing a generative model of sensory input. As a first step,

we aimed to demonstrate that the homeostasis mechanism as

implemented in the model can actually be beneficial in this

context.

Robust analysis by synthesis due to homeostasis
In the following, we show how homeostatic adaptation could be

helpful in particular for a model that implements perceptual

inference by synthesising internal representations, by making the

learnt representations robust against exactly the sort of visual

degradation that ultimately causes CBS. To this end, we had the

model (trained on either the shapes or MNIST data sets) perform

inference over heavily corrupted versions of the images (Figures 4A

and 4E). The latter were created by taking images from the data

sets (digit instances not seen in training in the case of MNIST) and

setting 65% of the pixels to black.

Degrading the input in this manner lead to profound activity

changes in the neurons, which the model was then allowed to

compensate for by employing homeostatic adaptation. Figure 4

shows how activity levels changed under input degradation and

subsequent adaptation, plotted either against the number of

preceding iterations or the total shift of the bias parameter so far

(averaged over all units). For all three hidden layers, initial

activities were lower when compared to normal levels. Homeo-

static adaptation then led to a gradual restoration to the original

values.

Importantly, this recuperation of activity levels corresponded to

a restored capability of the model’s internal representations to

capture the underlying objects in the images. We decoded the

hidden states of the top layer and classified the resulting

reconstructed images using a classifier trained on the original

data sets. Input degradation initially lead to a sharp drop in

performance in classifying the corrupted images (Figure 4D and

4H). However, homeostatic adaptation lead to a significant

improvement of classification, reaching a performance that was

close to the one achieved on the decoded representations inferred

from uncorrupted images.

Hence, the homeostatic mechanism as defined by Eq. 5 can be

sufficient to restore the representations inferred over sensory input

as to be suitable for classification. This is despite the fact that it

only attempts to match the average activations, i.e. first order

statistics of the inferred posteriors averaged over all input images,

rather than the full distribution learnt in training, and only does so

by adapting the bias parameters. Thus, homeostatic adaptation

could offer a simple local neuronal mechanism that serves to make

learnt representations robust for example against degradation of

sensory input. It does not rely on further learning (in the sense of

parameter changes that incorporate incoming sensory data),

intricate synaptic changes, or network wide measurements.

Rather, each neuron only needs to remember its average activity

level and regulate its intrinsic excitability accordingly. However, as

we will see in the following, this stabilisation of perceptual

representations can be detrimental, ultimately decoupling internal

representations from a further degraded sensory input, causing

hallucinations.

Emergence of hallucinations
To model more profound visual impairment or blindness, we

then repeated the above experiment but with the visible units

permanently clamped to completely empty input. As before, the

model had initially been trained on images from either of the two

data sets. With the model now performing inference over empty
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input, homeostatic adaptation was again allowed to take place.

Any emergence of meaningful internal representations in the

absence of input would correspond to hallucinations. See Figure 5

for an overview of the CBS experiment.

Before presenting the results, we should briefly comment on

how the binary input images are to be interpreted so that

presenting a blank image corresponds to ‘taking the input away’,

i.e. blindness. After all, seeing a black image is not the same as not

seeing altogether. Rather, the binary images are here to be

understood as proxies of images already encoded in neuronal

activity at an early stage of visual processing (e.g. primary visual

cortex). We here do not model this earlier encoding for simplicity,

but will consider equivalent cases later in experiments where we

model loss of vision in higher stages of the hierarchy.

Figures 6A–C show the activity changes resulting from visual

impairment and subsequent adaptation for a model trained on

MNIST (results for the shapes set were equivalent, Supplementary

Figure S1). Again we found an initial drop of activity that was

subsequently fully compensated for, at least on average over each

hidden layer, by the shift of the intrinsic excitability of the neurons.

What was the nature of the internal representations that allowed

for a restoration of activity levels? After all, the purely local

adaptation of each neuron might have recovered individual

preferred firing rates on the basis of noisy firing or other activation

patterns that bore no meaningful representations according to

what the model had learnt about initially. Instead, when we

decoded the hidden states of the model we found that the

represented content after adaptation corresponded to the kind of

images seen in training, whereas prior to adaptation, decoded

images matched the empty input.

To quantify this, we measured hallucination quality (as defined

in the Model section) over the course of homeostatic adaptation. In

Figures 6D–F, each dot represents the quality of the image

decoded from the topmost hidden states at the end of the 50

Figure 4. Homeostatic adaptation restores activity levels and internal representations when input is corrupted. (A) Examples of
corrupted images for the shapes data set. (B) Average activity levels in each of the three hidden layers over the course of homeostatic adaptation.
Activity levels are plotted against the number of iterations so far. Dashed lines correspond to normal activity levels for each layer with uncorrupted
input. Activities initially dropped profoundly as input was corrupted, but then recovered as the neurons adapted. (C) As in B, but plotted against the
total homeostatic adaptation in the neuronal bias parameters (absolute differences between current bias values and initial values, averaged over all
units). (D) Classification error using the internal representations to classify the corrupted input (see text for details). Top dashed line is chance, bottom
one is performance on uncorrupted input (here, for the simple shapes data set, the error is very close to zero, hence the corresponding line is drawn
on top of the x-axis). Over the course of adaptation, internal representations are restored as well, allowing for classification performance close to its
original level. (E–H) Analogous to A–D, but for a model doing inference over corrupted MNIST images.
doi:10.1371/journal.pcbi.1003134.g004

Figure 5. Overview of the basic CBS experiment. A model has
been trained on simple images (here, MNIST digits). Initially, decoded
internal representations correspond to what is given as input in the
visible layer. To model visual impairment or blindness, sensory input is
then removed, eliciting internal representations devoid of content.
Subsequent homeostatic adaptation of neuronal excitability leads to
spontaneous hallucinatory representations emerging (right-hand side
images are decoded from the hidden layers, receiving no sensory input,
3, 20, or 30 sampling cycles after initialisation).
doi:10.1371/journal.pcbi.1003134.g005
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sampling cycles in a trial. It becomes apparent that hallucinations

started to emerge only after an initial period of silence, even as

excitability was already adapting. This is consistent with cases

reported in CBS where loss of vision was abrupt [4]. The reported

duration of this latent period, ranging from hours to days, in turn

matches well the time scale over which homeostatic adaptation

takes place [34].

In terms of quality, high-quality hallucinations were found soon

after the point when hallucinations emerged (see Figure 7 for

example decoded hallucinations). That point also marked a

profound increase in the rate of activity changes. This shows that

the emergence of stable internal representations is not just a

epiphenomenon of underlying activity changes, but rather itself

plays a key role in the system recovering normal activity levels.

Throughout the course of adaptation, we found there to be a

mix of hallucinations of various qualities. Lower quality images

could correspond to temporary states as the model transitioned

from one relatively stable state to another. Note that within any

one trial, the model never converges to a fixed internal state, as it

keeps stochastically sampling from the posterior. We did observe a

tendency to stay within one category of object (e.g. a specific class

of digit) towards the end of a trial, but this is simply a general

property of such models not specific to the hallucinations (we

address this issue in [35,52]). Similarly, hallucinations could come

from various object categories (among the digit or shape classes)

for an individual instance of the model. This matches reports from

CBS patients, which indicate there can be a variety of

hallucinatory content that varies from episode to episode for an

individual subject [2,4]. It is thus important that the model could

produce varied representations rather than just a few degenerate

states.

Sensory deprivation due to noise or impoverished input
The emergence of hallucinations in the model does not require

complete lack of input. We obtained similar results when

performing the homeostasis experiment with images containing,

for example, some noise (10% white pixels on black background

randomly sampled for each image). In that case, fewer iterations

and less homeostatic adaptation were needed to trigger halluci-

nations (Supplementary Figure S2). Hence, the nature of visual

impairment can have an impact on when or whether hallucina-

tions are occurring. This could also offer one possible explanation

for why there might be a tendency for hallucinations in CBS to

cease once vision is lost completely [4]. If one assumes that there

are limits to how much neurons can adapt their excitability, then

some remaining input, even if it is just essentially noise, might be

necessary to drive cortical neurons sufficiently. On the other hand,

an alternative explanation for a cessation of hallucinations might

be long-term cortical reorganisation or learning (see Discussion).

Figure 6. Emergence of hallucinations due to homeostatic adaptation. The model was trained on the MNIST data set (results for the shapes
data set were equivalent, Supplementary Figure S1). (A–C) With empty images as input, activity levels dropped in all three hidden layers and then
recovered over the course of homeostatic adaptation (original levels as dashed lines; see Figure 4 for explanation of x-axes). (D–F) Quality of
hallucinations (i.e. how well decoded internal representations matched the learnt images). Each dot represents the decoded internal state after the 50
sampling cycles constituting a trial (5 out of 100 trials per iteration are plotted). Blue curve denotes mean quality over 100 trials in that iteration. After
an initial period of silence, hallucinations emerged abruptly, quickly rising in quality. The emergence of hallucinatory representations coincided with a
more rapid recovery of activity levels.
doi:10.1371/journal.pcbi.1003134.g006
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Still, one potential problem with our implementation of sensory

degradation so far, be it with empty input or noise, could be that it

corresponds to a rather extensive damage to the visual system.

Perhaps one would be inclined to interpret such input degradation

as a model of complete blindness rather than a more graded visual

impairment (or one that is more spatially restricted, see the next

section), where in the latter case there might be some structure in

the sensory data left. Moreover, in all experiments simulated so

far, the emergence of hallucinations occurred due to homeostatic

adaptation that compensated for a rather massive drop in

activation levels caused by the lack of input. However, if the

introduced homeostatic mechanism is truly effective at stabilising

the distribution of learnt internal representations, one could expect

that the system could be prone to hallucinate under much more

general conditions than just lack of input: as long as the ongoing

input does not evoke a wide variety of learnt percepts, those groups

of neurons that participate in representing the lacking percepts

might compensate by increasing their excitability, possibly causing

corresponding hallucinations.

To address these issues, we aimed to test whether hallucinations

were exclusively a consequence of compensation for overall lack of

input and resulting activity decreases, or whether they could still

emerge with structured input that was however highly impover-

ished in its variety. To this end, we simulated the homeostatic

adaptation for the shapes and MNIST models, with the visible

layer clamped to only a single fixed image from the respective data

sets over the course of the whole experiment. To clarify, as before,

this models slow neuronal changes over the course of perhaps days

or longer, rather than fast neuronal adaptation during ongoing

perception, with neuronal parameters being fixed during trials and

only updated gradually between them.

Results are displayed in Figure 8, depicting activity changes

over the three hidden layers and examples of decoded internal

representations at various stages. We found that hallucinations

did indeed develop: initially, the decoded internal states faithfully

represented the image in the sensory input. However, as the

neurons adapted over time to compensate for the impoverished

Figure 7. Example decoded hallucinations. Examples (right-hand side) are shown with corresponding scatter plots for reference (left-hand side;
from Figures S1D and 6D). (A) for the model trained on shapes, displayed are examples from the six shape categories (columns, as categorised by
matching to the shape templates), for four different qualities (rows, with quality values listed on the right-hand side; images were of that quality or
within +0.05 thereof). For entries marked ‘n/a’ there was no hallucination of that type and quality (note that the categories are not really meaningful
for lowest quality images anyway). (B) Similar to A, but for the model trained on MNIST. Examples shown were classified as belonging to digit
categories 0, 1, 5, 7, and 9 (columns), for five different qualities (rows, annotation as in A). MNIST hallucinations of lower quality often looked like less
well-defined digits or mixtures of different digit classes, or they would deviate from the categories in the training set in more subtle ways. Human
judgement of quality and class could deviate from the classifier’s results in such cases.
doi:10.1371/journal.pcbi.1003134.g007

Figure 8. Modelling sensory deprivation due to impoverished input variety. (A) Model trained on shapes. (B) Model trained on MNIST. The
input layers of the models were clamped to a single image from the respective data sets throughout the course of homeostatic adaptation. Plotted
are resulting activity changes and example decoded internal states. Initially, decoded images (1) corresponded to the input. As neurons adapted and
the internal percepts deviated from the true input, global activities dropped (2), then recovered driven by hallucinatory percepts (3 and 4). For
particularly the MNIST model, we also observed a more gradual improvement in hallucination quality (compare B3 to B4).
doi:10.1371/journal.pcbi.1003134.g008
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input, the internal representations entailed objects not actually in

the image, effectively decoupling perception from sensory input.

This result clarifies that the action of the homeostatic

mechanism can be much more specific than just recovering

overall activity levels. Indeed, for the fixed input images used,

initial global activity levels when doing inference were actually at

or above average, for the MNIST model and shapes model,

respectively (as is shown in the figures). The homeostatic

adaptation however acts locally for each neuron. With fixed

input, one sub-population of neurons, whose activation distribut-

edly codes for that input, will be highly active, while other groups

of neurons are less active than average. Adaptation of neuronal

excitability can then continuously shift the balance, even if activity

averages across a layer remain similar (we examined a related

functional role of neuronal adaptation on shorter time scales in

[35,52]).

As can be observed in the figures, there was an initial drop of

global activity levels, especially for the shapes model. Based on the

decoded representations at that point, we suggest that this results

primarily from the neuronal population that represents the initial,

veridical percept decreasing excitability. Then, as other neurons

increase their respective excitabilities, alternative, hallucinatory

internal representations take over, leading to a stabilisation of

global activity levels.

The degree of decoupling of the internal percepts from the

sensory input was striking. It appeared to be surprisingly robust,

overcoming not just a lack of input but even contradictory input. In

the case of the shapes in particular, the hallucinated objects do not

even necessarily share parts with the true input. It should be recalled

that the homeostatic mechanism merely adapts the local biases, and

thus does not at all change the connection strengths between units

or layers. Indeed, we could show that the flow of information from

sensory input to the higher layers was not completely prohibited in

the model after homeostatic adaptation. Running a model that

currently displayed hallucinatory representations as if decoupled

from input, we modestly increased the impact of feedforward

processing, using a mechanism meant to model the action of

acetylcholine (to be introduced below). The internal representation

then reliably realigned to the actual input image.

Localised and miniature hallucinations from localised
impairment

Visual impairment leading to CBS can also be constrained to

specific parts of the visual field. Although reports are conflicting

[4], for some patients at least hallucinations tend to be localised to

these regions. We tested whether we could reproduce this finding

using the model trained on the shapes data set, in which the

objects are distributed across various image positions. We

simulated a more localised impairment by repeating the homeo-

stasis experiment while blanking only half of the images (for

example the top half, Figure 9A). As before, the neurons’ activities

dropped initially and then recovered during adaptation as

hallucinations emerged (Figure 9B).

In the original homeostasis experiment, where visual impair-

ment involved the whole visible layer, hallucinated objects were

distributed across the whole visual field (Figure 9C). However,

when the model where only half of the images had been blanked

was tested (on blank images), hallucinated objects were restricted

to the image region that had been lesioned (Figure 9D).

Excitability changes due to homeostatic adaption are thus specific

enough in the network to have topographic properties.

Another occasional phenomenon in CBS is that hallucinated

objects appear to be ‘‘Lilliputian’’ or miniaturised. It has been

suggested that this can be explained as resulting from a mismatch

of hallucinated content and context, where hallucinations appear

against real visual background that happens to be too close in

relation to the size of the hallucinated objects [11]. On the basis of

our simulation results, we tentatively make another prediction: if

there is a propensity for hallucinatory content to consist of

meaningful wholes, such as full objects or faces, then in patients

where hallucinations are restricted to impaired regions of the

visual field there should be a correlation between object size and

the spatial extend of visual impairment. To see this in our model,

consider that in our shapes data set, objects could come either in

small or large versions. For models with full loss of vision,

hallucinations were biased towards the larger objects (Figure 9C).

Possibly, this is because larger shapes evoked higher overall activity

in the model and in turn were more suitable for activity restoration

(note for example in Figure 8A the transition from smaller to larger

Figure 9. Hallucinations with visual impairment restricted to the top half of the input. (A) Example images. (B) Hallucination qualities
during adaptation. Note that many of the corresponding decoded internal representations were not actually hallucinations, but rather matched
shapes that were in the unimpaired half of the visual input. In particular, in the early phase of adaptation there are two clusters at low and high
quality values. These correspond to void internal representations or veridical ones when shapes happened to lie completely in the impaired or
healthy halves, respectively. The former then were gradually replaced with emerging hallucinations. (C) Distribution of hallucinated small and large
shape categories across the image in the model with fully impaired input. Only hallucinations with quality greater than 0.85 were counted here. (D)
As C, but for the model that underwent adaptation with only the top half damaged (displayed data then taken with fully blank images as input as to
not be influenced by actual objects in the healthy region). Now, hallucinations were localised to the impaired region and favoured smaller shapes,
which would ‘fit’ within that region.
doi:10.1371/journal.pcbi.1003134.g009
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hallucinations as activity increases from point 3 to 4). On the

contrary, in models with lesions restricted to the top half of the

visual field, hallucinated objects were not only localised to the

impaired region as reported above, but the frequency ratio was

also reversed: smaller objects were much more common, and

larger objects were less frequent and narrowly centred relative to

the impaired region (Figure 9D). Moreover, we found that,

without a single exception, all hallucinations of larger shapes

happened to be of the ‘downwards-triangle’ category–the only

large category where most of the object could fit into the lesioned

region.

Thus, the process that generates hallucinations due to homeo-

static adaptation can specifically evoke only certain types of

content as determined by the nature of the visual impairment.

Here, it is those objects that happen to fit within the boundaries of

the lesion in the visual field.

The locus of hallucinations: cortical lesions vs.
suppression

We then turned our attention to the question of the roles of

different areas in the cortical hierarchy. As described in the

introduction, the complex content of hallucinations in CBS

suggests the involvement of visual association cortex and other

higher visual regions, and evidence implies that intact association

cortex is both necessary and sufficient to develop complex

hallucinations. For example, cortical lesions in early visual areas

can bring about the visual impairment that causes complex

hallucinations, but lesions that involve visual association cortex

appear to prohibit them.

Interestingly however, a study by [69] suggests that lower areas,

when at least partially intact, can still contribute to hallucinatory

activity in an essential fashion. The authors examined a patient

suffering from CBS due to visual impairment caused by lesions in

early visual areas. Maybe contrary to expectation, applying

Transcranial Magnetic Stimulation (TMS) to early areas in a

way thought to cause cortical suppression lead to a temporary

cessation of the hallucinations. The authors argue that their

finding goes contrary to the ‘release’ theory of complex

hallucinations, according to which the lack of input to higher

areas from lower areas somehow disinhibits or releases perceptual

representations. Under this theory, the further suppression of the

already damaged early areas in the patient should only have

exaggerated the hallucinations.

Using the DBM model, we examined these issues relating to the

role of areas in the cortical hierarchy. The hierarchical compu-

tations in the DBM are simplistic compared to the cortical

equivalent; however, we show that a generative model consisting

of several subsequent processing stages differentiated at least by

increasing receptive field sizes is sufficient to explain the

phenomena at hand.

To begin with, we found that DBMs trained without the

topmost hidden layer failed to learn generative models of the data,

and thus were inevitably incapable of producing corresponding

hallucinations. This mirrors visual association cortex being

necessary for complex hallucinations, and can be explained in

the model with lower layers being incapable of learning the full

structure of objects in the images, due to their limited receptive

field sizes.

What about intact higher areas being sufficient for the

emergence of hallucinations, while lower ones are not necessary?

To model lesions to early visual areas, we repeated the homeostasis

experiment, only this time we did not blank the input but rather

‘lesioned’ the first hidden layer, i.e. we clamped units in the latter

rather than the units in the visible layer to zero (thus, with the first

processing stage blocked, the actual content in the visible units was

rendered irrelevant). As before, hallucinations did emerge over the

course of homeostatic adaptation (Supplementary Figure S3).

Hence, remaining layers in the model are sufficient in principle as

long as they form a network that can synthesise the relevant

information about visual objects.

Finally, we modelled the suppression of early visual areas with

TMS in a CBS patient as described by [69]. Unlike in the last

experiment, where early areas were permanently incapacitated

and higher areas adapted over time, the TMS experiment

corresponded to a temporary suppression in a system that had

already developed hallucinations, presumably due to prior

adaptation to visual impairment. Our setup thus used a model

that had undergone homeostatic adaptation in response to blank

visual input but with all hidden layers intact, as in the first

hallucination experiment, leading to hallucinatory activity. We

then temporarily clamped the first hidden layer to zeros, modelling

suppression with TMS (assuming that the cortical regions

suppressed by TMS in the patient can be modelled to be

downstream from the lesioned areas). This caused the hallucina-

tions to cease. Thus, even though this ‘early area’ represented by

the first hidden layer is neither sufficient nor necessary for the

model to develop hallucinations in the long run (as shown earlier

in this section), it can be essential for ongoing hallucinations if it was

in the first place part of the system when it underwent homeostatic

adaptation.

One possible interpretation of the relevance of lower areas could

be that they provide higher areas with unspecific input, in the

context of which the adaptation takes place. However, we suggest

that the role of lower areas could be more subtle thanks to

recurrent interactions with higher ones. As can be seen in the

example in Figure 5, the representations assumed in lower layers

during hallucinations are somewhat specific to the hallucinated

object, even though those layers by themselves are incapable of

synthesising it. Thus, this necessarily is a result of feedback from

higher areas. It seems plausible that the lower areas could also

contribute by stabilising the overall perceptual state assumed

across the hierarchy. Then, any significant interference with

representations in lower areas, not just suppression of activity,

might impede hallucinations. Indeed, in the study of [69], even a

TMS protocol used to cause not suppression but illusory flashes of

light (‘‘phosphenes’’), applied to primary visual cortex of the

patient, resulted in a disruption of hallucinatory content. In future

work, this could be tested by trying out different forms of

manipulations other than suppression in the hidden layers of the

model.

A novel model of acetylcholine and its role in CBS
Finally, one relatively common feature among CBS patients is

that hallucinatory episodes are more likely to occur in states of

drowsiness or low arousal. This suggests a role of cholinergic

systems, which in turn are implicated in complex hallucinations in

a variety of situations outside of CBS, whether drug induced or

disease related [15,30]. Indeed, in the (non-computational) model

of complex hallucinations of [6], acetylcholine (ACh) dysfunction

is attributed a major importance. At the same time, there is no

evidence that an actual ACh dysfunction exists in CBS. Rather, in

CBS the correlation with state of arousal might be effected by an

interplay of hallucinations with physiologically normal fluctuations

of ACh.

Making the connection between a lack of ACh and hallucina-

tions is natural as there is experimental evidence that ACh acts

specifically to emphasise sensory input over internally generated

information, mediating ‘‘the switching of the cortical processing

Charles Bonnet Syndrome in a Generative Model
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mode from an intracortical to an input-processing mode’’ [70]. In

the computational model of [27], ACh is modelled in a Bayesian

framework to modulate the interaction between bottom-up

processing carrying sensory information and top-down processing

conveying prior expectations. The authors noted the relation to

hallucinations, but to our knowledge, there is no computational

model exploring it concretely.

Here, we explore an extended interpretation of the action of

ACh as mediating the balance between external and intracortical

input: in the hierarchy of cortical areas, ACh could affect the

balance in the integration of feedforward and feedback informa-

tion at each stage of the hierarchy. At an intermediate stage,

feedforward information from lower areas indirectly carries

sensory input, and feedback information is more internally

generated, keeping with the idea of a ACh mediated switch

between external and internal inputs. However, both feedforward

and feedback inputs would in this case be intracortical (perhaps

with additional effects on any direct thalamic inputs).

We thus model the effect of ACh in the following way. In the

DBM model, each (intermediate) hidden layer receives input from a

layer below, conveying directly or indirectly sensory information, and

from a layer above that has learnt to generate or predict the former

layer’s activity. ACh is to set the balance between feedforward and

feedback flow of information. We introduce a balance factor a[½0,1�,
so that an intermediate layer x(k) is sampled as
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given states x(:) and weights W(:) above and below (biases omitted for

brevity). Hence, aw0:5 corresponds to increased feedforward flow of

information, assumed to model increased ACh levels, and a~0:5
recovers the normal sampling mode for normal levels. We note that

this mechanism is a heuristic in that it treats the DBM as a neural

network more than a well-defined probabilistic model. In particular,

for a=0:5, the effective connections between layers are no longer

symmetrical and thus the model no longer constitutes a Boltzmann

machine (in a sense, the factor a interpolates between inference in a

DBM and approximate inference in a deep belief net [67], defined

with the same parameters).

ACh and contour completion. Before we turn to the role of

ACh in CBS, we first briefly demonstrate its effect on the balance

between feedforward and feedback under normal sensory input.

One example where it has been suggested that feedback could play

a role is contour completion (see e.g. the hierarchical Bayesian

inference account of [21]). Given an incomplete stimulus, higher

areas might fill in missing information and subsequently convey it

to lower areas, possibly leading to the perception of illusory

contours.

We explored this phenomenon and a possible interaction with

cortical ACh levels by testing the models on modified images

where parts of the objects had been blanked out (Figure 10).

Shown are examples of the decoded representations inferred by

the model, for all three hidden layers and three different levels of

ACh in both intermediate hidden layers, each for two different

input images. We found that completion did indeed take place,

especially in higher layers. Increased ACh levels, modelled with

a~0:7, resulted in an emphasis on bottom-up processing, leading

to less completion, in particular in lower layers that now received

less top-down feedback. Decreased ACh levels on the other hand

had the opposite effect. It should be noted that the generative

nature of the DBM allows for much more extensive completion of

image information if the visible units are sampled where filling-in

should take place (e.g. [65]). In our model however, the whole

visible layer always remains clamped, because this layer represents

an early stage of processing where input is still represented

faithfully in a bottom-up fashion. Filling in only happens in the

subsequent hidden layers. Contour completion thus occurs more

gradually in the hierarchy, rather than completely surmounting

the sensory input itself.
ACh and CBS. We modelled the effect of drowsiness or low

arousal on hallucinations in CBS as follows. We assumed that

drowsiness is accompanied by a decrease in ACh, modelled as

a~0:3. This value was chosen to obtain a clear effect while still

allowing for both feedforward and feedback processing to play a

role during inference. As states of drowsiness are intermittent with

periods of normal or increased vigilance, we assumed that on

average, ACh levels are still balanced. Hence, the homeostasis

experiment was conducted such that at each iteration, activity

levels were taken as average over 100 trials as before (see the

Model section), but half of the trials were performed with low a,

and the remainder with increased ACh levels at a~0:7, yielding a

normal value of 0:5 on average.

Figure 10. Contour completion and interaction with ACh levels a. Incomplete images (lower left) were given to either shapes or MNIST
models as input. Displayed are decoded hidden representations for the three hidden layers (rows), for three different levels of ACh (columns). Mean-
field inference (i.e. propagating activities instead of samples [68]) was used here to reduce sample variability/noise. Filling-in of missing contours
occurs more in higher than lower layers. ACh shifts the balance towards bottom-up processing, leading to less filling-in with increased levels.
doi:10.1371/journal.pcbi.1003134.g010
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For both shapes and MNIST models, results are displayed in

Figure 11, both for trials with a~0:3 and a~0:7 (dark and light

curves, respectively). We found that with decreased levels of ACh,

less homeostatic adaptation of excitability was necessary to elicit

hallucinations (adaptation values not shown for brevity). In

particular, for some intermediate level of adaptation, hallucina-

tions only occurred with decreased but not with increased levels of

ACh. This would thus correspond to a situation where hallucina-

tions would only be triggered during drowsiness.

Throughout later parts of the simulation, activity levels for each

hidden layer were generally twice as high during trials with a~0:3
compared to those with a~0:7, restoring original activity levels on

average. Thus, alternating hallucinatory episodes and relatively

silent periods, triggered by changing factors such as ACh levels,

could restore mean activity levels, as long as the timescales over

which neurons measure their average activity are long enough to

encompass both. A possible prediction from our findings is that

cortical activation during hallucinatory episodes should actually be

higher than what they had been during healthy perception.

Hallucination quality actually peaked early on for low ACh

trials, coinciding with the point in time when activity levels in

those trials crossed approximately the original levels (point 1 in the

figures). Because the neurons measured current activity over both

low and high ACh trials, activity increased further, leading to a

decreased quality of hallucinations. This was especially true for the

MNIST model, where unnaturally high activity resulted in over-

expressed imagery that showed little variety (point 2). However,

over the further course of adaptation, activity levels for low ACh

dropped again somewhat as the trials with higher ACh began to

contribute activity, resulting in more distinct if still somewhat over-

expressed hallucinatory images (point 4).

A related finding was a relationship between global activity

levels and hallucinatory content in the shapes model. Corrobo-

rating what we observed earlier (see the experiment on localised

hallucinations), internal representation of smaller shapes evoked

less activation (averaged over a hidden layer) than that of larger

shapes. Because alternating ACh levels led to hallucinations mostly

during episodes of heightened activity, well-formed hallucinations

developed to be mostly shapes of the larger categories. Increased

activity levels thus caused hallucinations of larger extent in the

shapes model and over-expressed digits in the MNIST model.

Possibly, such over-activation of cortical neurons might explain

why hallucinations in CBS can be so vivid, for example involving

‘‘hyperintense, vivid, brilliant colours’’ [71].

Figure 11. Hallucinations with fluctuating ACh levels. Over the course of homeostatic adaptation, each iteration consisted of both trials with
low and high values of the ACh parameter, a~0:3 (dark curves, black dots) and a~0:7 (light curves, light blue dots), respectively. (A–B) Average
activities and hallucination quality for the shapes model. (C) Example decoded hallucinations at time points indicated in A–B. (D–F) Analogously for
the MNIST model. For both models, lower ACh levels led to hallucinations earlier and with less homoestatic adaptation. In particular, there is an early
phase in which hallucinations occurred only with a~0:3. Hallucinations that do emerge later on for a~0:7 remain weaker and less formed for most of
the simulation. The difference in frequency of hallucinations also entails a corresponding difference in activity levels.
doi:10.1371/journal.pcbi.1003134.g011
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Discussion

We modelled the emergence of complex hallucinations in CBS

as a result of homeostatic regulation of neuronal firing rate in

response to degradation of visual input. Our computational model

thus elucidates on similar suggestions in the literature [12,14]. The

homeostasis mechanism is meant to underlie specifically CBS.

Other pathologies involving complex hallucinations, such as

schizophrenia or Lewy body dementia [15], might have different

causes. In particular, it might not be feasible to unify complex

hallucinations in a single explanatory framework (as proposed in

[6]). What different conditions accompanied by complex halluci-

nations do have in common however is that they show that the

brain can spontaneously synthesise rich representations of visual

imagery, even in absence of or in contradiction to actual sensory

data. Following notions of the brain implementing perception as

analysis by synthesis, our study makes use of the DBM model that

can learn to synthesise internal representations of images, in an

unsupervised fashion, by virtue of being a generative model.

We reproduced a variety of qualitative aspects of CBS found in

some patients, such as an initial latent period, a possible

localisation of hallucinations to impaired parts of the visual field,

and the effect of suppression of cortical activity. We predict a

possible correlation between a tendency to experience miniature

versions of objects and the degree to which the spatial extent of

visual impairment is limited, as well as activity levels during

hallucinatory episodes possibly being higher than what they had

been during comparable, stimulus evoked normal perception. We

introduced a novel model of the action of acetylcholine (ACh),

suggesting that it could not only influence the balance between

thalamic and intracortical inputs [70], but also the balance

between feedforward and feedback at various stages of the cortical

hierarchy. In CBS in particular, a possible lack of ACh at cortical

sites, e.g. during normal fluctuations entailed in changes of state of

arousal, could be conducive to the emergence of hallucinations.

We suggest that interfering with cortical homeostatic mechanisms

might prevent the emergence of hallucinations in CBS. Whether

such an intervention would be feasible in practice is unclear, given

that the neurobiological mechanisms that underlie homeostatic

plasticity are much more complex [33,72] than our simple model of

homeostatic adaptation. Alternatively, perhaps counter to intuition,

it might be possible to suppress the formation of hallucinations in

CBS by up regulating cortical activity in deprived areas, through

pharmacological means or through methods such as TMS, as long

as the externally imposed activation is too unspecific to allow for

well-formed percepts to emerge.

In the model, internal representations of learnt objects were

robustly recovered by the homeostatic adaptation in a variety of

conditions, be it complete lack of input, noise input, or naturally

structured but highly impoverished input consisting of fixed

images. A key aspect of the model was that hallucinations did not

consist only of stereotyped images, but rather a variety of percepts

reflecting at least a part of the full distribution of objects learnt

initially. Such variety across episodes is also reported in many CBS

patients [2,4]. In the model, this variability was due to different

groups of neurons participating in coding for different percepts,

meaning that a local homeostatic restoration of activity levels for

the population required activation of a variety of percepts over

time. We would predict that less variety in hallucinatory content

should correlate with sensory deprivation being less extensive (e.g.

only affecting colour vision, see below).

That hallucinations emerged even when normal input images

were used but kept fixed over the course of homeostasis, shows that

it was not so much the total lack of sensory input or global drop in

evoked activity that mattered, but rather the failure of the given

input to evoke a wide range of learnt percepts. Whether

impoverished input can have such a powerful impact on

perception in reality should be explored further. There is indeed

evidence that sensory deprivation (in terms of general impover-

ishment, not just complete lack of sensory input) can cause

hallucinations in healthy individuals [4,29], but there seems to

have been little experimental work along that direction since the

nineteen sixties [73].

To our knowledge, our work constitutes the first computational

model that concretely explored aspects of CBS. Other neurological

pathologies have been studied before with neural network models

[74–77]. Probably most closely related to our work, Ruppin et al.

[53] modelled the emergence of hallucinatory memory patterns in

schizophrenia, using a Hopfield network (a line of work initiated

by [78]). The underlying mechanism, homeostatic plasticity in

response to input degradation, is quite similar, and some

analogous observations are made, including a beneficial role for

homeostatic regulation for stabilising neuronal representations.

However, in their model the hallucinatory ‘memories’, supposedly

residing in prefrontal cortex, are accounted for much more

abstractly, consisting of random patterns. Moreover, the retrieved

patterns in a Hopfield net correspond directly to the patterns

provided as input. It is thus not obvious how to relate their

network and the stored patterns to specifically visual processing,

which is essential for studying CBS. Our model can be seen as a

significant extension of their work in that direction. It involves

hierarchical, topographic representations of images, learnt in a

generative model framework. In particular, the synthesised

representations are interpreted to play an integral part in perception

itself, not just in unspecified memory-like pattern recall. A

generative model moreover relates to other approaches discussed

in the context of hallucinations (Bayesian inference, predictive

coding, adaptive resonance; [27–29,79]).

We emphasise the distinction between the roles that homeo-

static adaptation and learning play in our model and possibly the

cortex. Learning is to be seen as a lasting change of circuitry that

captures aspects of the sensory input in the neuronal representa-

tions, improving the network’s function according to some

criterion. In the generative model, that criterion would be the

ability to generate or predict the input itself, but it could also be

the utility of the representations towards some other goal, such as

discrimination of objects. Homeostatic adaptation on the other

hand could serve to stabilise neuronal representations. While such

stabilisation can in turn be important during learning itself [33],

we have shown in the model that it could offer a simple local

mechanism to make representations more robust once they have

been learnt, for instance to counteract degradation in input quality

[53] –thus effectively resisting changing aspects of the input, rather

than capturing them via learning.

At the point in time where we simulate homeostatic stabilisa-

tion, learning might have concluded, having taken place in earlier

stages of development, or it could still occur but over longer time

scales. A decoupling of the time scales of homeostatic adaptation

and learning could also explain why CBS can recede over time.

Hallucinations might initially be caused by the short-term

homeostatic regulation of neuronal activity, but long-term cortical

reorganisation could lead to their cessation [14]. In our

framework, such reorganisation would correspond to learning to

generate the impaired sensory input. Indeed, if we continue learning

in the model as the input layer is clamped to empty or noise

images, rather than just perform homeostatic adaptation, the

model learns to generate and thus represent the empty input,

losing the capability for hallucinations in the process.
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CBS in comparison to schizophrenia
In conditions such as schizophrenia, multiple sensory modalities

are affected and hallucinations are only one symptom among

many, including delusional beliefs. In contrast, hallucinations in

CBS are, by definition, restricted to the visual modality and

patients gain insight into the unreality of their percepts (at least

upon reflection or after being corrected by others [2,4]). These

features of CBS are explained by our account: in our model,

hallucinatory representations are restricted to neuronal popula-

tions most directly affected by lack of sensory drive (even

respecting retinotopy). Thus, there is no reason to expect that

non-visual areas should be impaired in any way, including

prefrontal areas. CBS patients should hence be able to reason

about their percepts being unreal.

As for the underlying mechanisms, we suggest that homeostatic

compensation triggered by degrading input is key to CBS but not

necessarily schizophrenia (though see [53]). Briefly, many neural

network models of schizophrenia [76,77] can be characterised as

proposing that internal disruptive neural changes (such as

increased noise or excessive synaptic pruning) destabilise internal

representations, primarily in non-sensory areas or across cortical

systems (thus affecting reasoning as well). In sensory areas deprived

of sensory input, it is not clear that unspecific maladaptive changes

such as increased noise alone could generate the lasting, complex,

coherent, and varying hallucinations of CBS. Instead our proposal

is that in CBS, it is in a sense a stabilisation of internal

representations, in response to external disruptions in the sensory

periphery, that causes hallucinations.

It should be noted that neurobiological changes such as

increased noise or synaptic pruning could also be explored in

the DBM. However, if non-sensory areas such as prefrontal cortex

are the subject of inquiry, then the DBM and the hierarchical

generative model it embodies might not be the most appropriate

framework.

Our study can also be compared to recently proposed Bayesian

accounts of schizophrenia [29,77]. Hallucinations in CBS could on

a high level be described as internal priors being too strong.

Bayesian accounts of schizophrenia, however, involve more

complex hypotheses about the role of feed-forward and feed-back

processing (e.g. in the context of predictive coding [29]) that are

not the focus of our study.

Some open questions in CBS
One of the issues we have not addressed is what limits the

incidence of complex hallucinations and CBS to about 11% to

15% of patients suffering from visual impairment [4]. Our

modelling results suggest however that a variety of parameters

can influence whether and when hallucinations occur. In the

model, the nature and degree of visual impairment as well the

effect and variability of other interacting factors, such as ACh

levels, determine how much homeostatic adaptation is necessary to

push cortical activity into the hallucinating regime. Limits on how

much cortical neurons can adapt their excitability therefore would

restrict hallucinations to only certain cases, and there might be

variability in such parameters of homeostasis across the population

as well. Thus, that only some patients with visual impairment

develop hallucinations could simply reflect the variance of the

underlying relevant parameters. Similar reasoning might explain

the diversity of symptoms among CBS patients.

Differences in hallucinatory content, e.g. whether it does or does

not involve movement, faces, strong colours, etc., likely relate to

the specialisation of different cortical areas [3,71], and potentially

to their selective sensory deprivation (such as more extensive

impairment of colour vision possibly predisposing patients with

senile macular degeneration to experience coloured hallucinations

[3]). A specialisation of different areas to different aspects of the

sensory data was not a feature of our model. However, it seems

reasonable to extrapolate from our results to a model extended in

that regard. In our simulations, restricting sensory input by either

removing only parts of the images or by just fixing input to a single

image led to hallucinations that reflected the specific lack in the

input (namely hallucinations in the deprived part of the visual

field, or of object types not present in the fixed input image,

respectively). If different parts of the model were to distinctly

represent properties of visual input in analogy to for example

cortical areas V4 for colour and MT for motion, we would expect

a specific deprivation of that input property to lead to

corresponding hallucinatory representations.

An open question in CBS is also in how far hallucinated content

reflects visual memories of some sort [4], although the elaborate

and occasionally bizarre nature of the images might speak against

this (see [2,12] for examples). In this context it is relevant that the

DBM has been shown to be capable of synthesising images that

generalise beyond what it has been trained on [65]. Moreover, in

light of the bizarre or unusual hallucinatory imagery in CBS, some

hallucinations with low quality in our simulations (as measured

relative to training images) could possibly be interpreted as such

unnatural imagery (see e.g. Figure 8b (3); Ruppin et al. [53] made

a similar observation in their model).

Challenges for a computational model of CBS
The key for a model of CBS is to account for the ability of the

brain to synthesise rich internal representations of images even

without visual input, representations that possibly generalise over

earlier experienced inputs (as argued above). This does not

necessarily imply that the brain implements a generative model, in

the sense captured by the DBM. However, the strength of such

generative frameworks is that they account for these aspects

naturally, at least in principle.

For comparison, a perceptual Bayesian model defined over a

single low-dimensional variable can be sufficient to account for

perceptual illusions concerning a property of an object (e.g. due to a

prior for slow speeds [80]), but it is far-off from actually generating

a full visual representation of the object itself. Similarly, the

necessity for synthesis without input implies that a model

computing a rich code of a given image is on its own not sufficient

either. For example, the predictive coding model of [18] and the

sparse coding model of [81] are both formulated as generative

models that learn representations from images. Given an input

image, they can infer a code that is rich enough in information to

reconstruct the former. However, neither model can, when run

purely generatively, synthesise structured images or anything akin

to objects (although [82] demonstrate that memorised images can

be recalled). In particular, sparse coding trained on images tends

to discover localised patches of edges as independent ‘causes’.

Thus, without an extension to higher level causes, a generated

image will be a random superposition of such edges.

Similarly, neural networks like (deep) auto-encoders learn

internal representations by reconstructing input. Using bottlenecks

in the hidden layers, sparsity, input reconstruction from noise-

corrupted input and other techniques [37], they also learn about

the underlying structure in images, enabling them to reconstruct

from corrupted input, perform dimensionality reduction, or even

learn transformations of the content [83]. However, there is no

way of generating from these models in the absence of input (but

see the recent work of [84]). Hence, again such an approach might

be used to model illusions, but not hallucinations.
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Clearly, while our model, the DBM, is a generative model, its

capability to generate ‘images’ still leaves much to be desired when

it comes to matching the perceptual richness attributed to real

images (although the DBM and closely related models have shown

more potential in that regard than what is demonstrated here, see

[36,85,86]). As model of cortical representations and processing, it

also makes several simplifying abstractions, such as lumping

together the highly differentiated feedforward and feedback

connections in the cortex (e.g. [87]) into simple symmetrical

connections. Of particular interest are thus recent extensions that

could enhance the generative performance of DBM-like ap-

proaches while at the same time having biological relevance as

well, such as including lateral connections [88] or complex cell like

pooling [89,90].

However, our work here demonstrates that the DBM does in

principle capture several aspects important for explaining CBS,

idealisations notwithstanding. It is not meant as definitive model of

generative processing in the brain, but rather serves as a simple

idealised model system just complex enough to convey the points

in question. Among the relevant aspects it captures is, first, the

aforementioned capability to synthesise representations of input.

Second, its hierarchical and topographic representations allowed

us to model localised impairment and a role for ACh. Third, the

nature of the DBM as a neural network made it possible to model

concrete cellular homeostatic mechanisms. Fourth, unlike for

example the earlier Helmholtz machine model [91], the DBM uses

top-down interactions also during inference, not just learning,

another requirement for modelling the role of hierarchical bottom-

up and top-down processing for hallucinations. There are other

aspects of cortical processing that are not part of the DBM

framework but were not essential to the questions we sought to

address in this work. The DBM would be less suitable if, for

example, one were to hypothesise that some features of CBS relate

specifically to the anatomical or functional asymmetry of cortical

feedforward and feedback connections.

ACh and probabilistic inference
Our model of the action of ACh is closely related in spirit to that

of Yu and Dayan [27]. In a sense we addressed some of the issues

they identified with their own approach, namely only dealing with

a localist representation of a low-dimensional variable, and only

with a shallow hierarchy where the interaction of bottom-up and

top-down is confined to a single stage. As they write, ‘‘it would be

more biologically realistic to consider distributed representations

at each of many levels in a hierarchy’’, which might be closer to

what our model implements.

In Yu and Dayan’s model, the ACh mechanism implements an

approximation to exact inference: only a single hypothesis is

maintained at any point in time by the top-down part of the

system, with ACh controlling the impact of that hypothesis on

perceptual inference. This is comparable to the action of ACh on

the influence of higher layers on lower layers in our model.

However, the functional role of ACh was not the main focus of our

work, and in some ways their model is significantly more

sophisticated than ours in that regard. In particular, in their

model the ACh level is itself controlled by the system dynamically

during ongoing inference, whereas we merely manipulated ACh

manually to explore its impact on emerging hallucinations.

Whether such an internal control of the ACh parameter a could

be implemented in the DBM framework, in particular in a

principled fashion, is open.

Another issue is in how far the role of ACh, and the interaction

of top-down and bottom-up in hallucinations in general, is

necessarily to be interpreted in ‘Bayesian’ or probabilistic terms.

In Yu and Dayan’s model, ACh represents the uncertainty

associated with the current top-down hypothesis, and this

uncertainty is itself subject to ongoing probabilistic inference.

Because a mechanism for inferring this uncertainty is lacking in

our model, we would be more cautious to necessarily frame the

interaction of bottom-up and top-down as ‘Bayesian’ here. For our

approach here, the probabilistic nature of the DBM only comes

into play in so far as it allows for a means of formulating and

deriving a generative model of sensory data (we emphasise the

probabilistic aspect of the DBM model elsewhere [35,52]).

The nature of hallucinatory experience
A subtle issue is how much information needs to be synthesised

in the brain, and in what form, to generate the visual experience of

hallucinations. Mostly avoiding the difficult question of the neural

correlates of consciousness here (e.g. [92]), we can at least pose

necessary, though not sufficient, conditions for the generated

neuronal representations to evoke complex visual hallucinations:

they somehow must entail the information content that is implied

in the percepts (assuming CBS patients are not just confabulating).

For example, both seeing and hallucinating a dog entails much

more than just being aware (and able to report) that the object in

question is indeed a dog, i.e. some sort of category label. Rather, it

involves perceiving the shape, contours, texture, colours, and so

forth. Thus, internal activation of an abstract, low-dimensional

representation of the concept of a dog would not be sufficient.

For instance, consider a simple perceptual model consisting of a

neural network classifier such as a perceptron, which has learnt to

classify images of dogs against other images, using a single binary

output ‘neuron’. Internal activation of this unit alone cannot

possibly be accompanied by the visual experience of seeing a dog,

as the single bit of information conveyed by its state cannot

possibly be used to differentiate among the various possible

instantiations of dogs (a dalmatian in a specific pose rather than a

poodle in another, etc.) [93].

The synthesis of rich internal representations of data, and how

this capability is acquired through learning in the first place, is

naturally explained in strong generative models such as the DBM.

In the cortical hierarchy, a top-down generative component could

also offer a mechanism to recover more detailed low-level

representations from more high-level abstract representations,

details that might be discarded during bottom-up or feedforward

processing to obtain invariant representations (e.g. [94]). Alterna-

tively, such detailed information might still be present at the high-

level, but be only implicit and not easy to access by the rest of the

brain. Top-down processing could then serve to transform such

information into a more explicit (for the rest of the brain)

representation. Either could explain why the generation of

conscious experience might be related to re-entrant top-down

processing [92].

Conclusion
We have demonstrated how the DBM as a generative neural

network can provide potential insights into the mechanisms

underlying complex visual hallucinations in CBS. Our results here,

together with other work [35,52,66], offer a novel perspective on

perceptual phenomena by relating them to inference in a

generative model in the cortex.

Supporting Information

Figure S1 Emergence of hallucinations due to homeo-
static adaptation. Equivalent to Figure 6 in the main text, but

with a model trained on the shapes data set instead of MNIST. See
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main text for detailed explanation. (A–C) Removing the visual

input led to a drop of activity levels and subsequent recovery

through homeostatic adaptation (original activity levels as dashed

lines). (D–F) Quality of hallucinations (i.e. how well decoded

internal representations matched the learnt images), which

emerged after an initial period of silence. 5 out of 100 trials per

iteration are plotted. Blue curves denote mean quality over 100

trials in that iteration.

(EPS)

Figure S2 Comparison of results of homeostatic adap-
tation for blank input images or noise images. The noise

images contained 10% white pixels on black background. Light

curves and dark curves correspond to blank and noise images,

respectively. (A–C) Results (activity changes and hallucination

quality) for the model trained on shapes. (D–F) Results for the

model trained on MNIST. For both models, noise input caused

hallucinations to emerge after fewer iterations and with less

adaptation of the biases. Moreover, comparing the differences in

activity between first and second layer across conditions, it appears

that the recovery of the first was less delayed relative to the second

when the former was receiving noise input.

(EPS)

Figure S3 Hallucinations for models that had their first
hidden layer ‘lesioned’ (clamped to zero). The first hidden

layer was lesioned rather than the visible input layer, modelling

damage to early cortical areas rather than prior in the visual

pathway. Results are overall analogous to the latter case (see main

text for explanation). (A–C) Results (activity changes and

hallucination quality) for the model trained on shapes. (D–F)

Results for the model trained on MNIST.

(EPS)

Text S1 Learning. A brief overview of how representations are

learned in a DBM.

(PDF)

Text S2 Additional training details. Summary of training

parameters used for learning the DBM model in this study.

(PDF)
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