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Abstract

Identifying the structure and dynamics of synaptic interactions between neurons is the first step to understanding neural
network dynamics. The presence of synaptic connections is traditionally inferred through the use of targeted stimulation
and paired recordings or by post-hoc histology. More recently, causal network inference algorithms have been proposed to
deduce connectivity directly from electrophysiological signals, such as extracellularly recorded spiking activity. Usually,
these algorithms have not been validated on a neurophysiological data set for which the actual circuitry is known. Recent
work has shown that traditional network inference algorithms based on linear models typically fail to identify the correct
coupling of a small central pattern generating circuit in the stomatogastric ganglion of the crab Cancer borealis. In this work,
we show that point process models of observed spike trains can guide inference of relative connectivity estimates that
match the known physiological connectivity of the central pattern generator up to a choice of threshold. We elucidate the
necessary steps to derive faithful connectivity estimates from a model that incorporates the spike train nature of the data.
We then apply the model to measure changes in the effective connectivity pattern in response to two pharmacological
interventions, which affect both intrinsic neural dynamics and synaptic transmission. Our results provide the first successful
application of a network inference algorithm to a circuit for which the actual physiological synapses between neurons are
known. The point process methodology presented here generalizes well to larger networks and can describe the statistics of
neural populations. In general we show that advanced statistical models allow for the characterization of effective network
structure, deciphering underlying network dynamics and estimating information-processing capabilities.

Citation: Gerhard F, Kispersky T, Gutierrez GJ, Marder E, Kramer M, et al. (2013) Successful Reconstruction of a Physiological Circuit with Known Connectivity from
Spiking Activity Alone. PLoS Comput Biol 9(7): e1003138. doi:10.1371/journal.pcbi.1003138

Editor: Olaf Sporns, Indiana University, United States of America

Received September 24, 2012; Accepted May 31, 2013; Published July 11, 2013

Copyright: � 2013 Gerhard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: FG is supported by the Swiss National Science Foundation (SNSF) under the grant number 200020-132871 and by EU-FP7 program (BrainScaleS project
269921). EM and GJG are supported by NIH grant MH 46742, and TK is supported by NIH grant F32 NS099590. UE is supported by NSF grant IIS 0643993 and
NINDS grant R01 NS073118 and MK and UE acknowledge joint support by NINDS grant R01 NS072023. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: felipe.gerhard@epfl.ch

Introduction

Nervous systems show highly complex dynamics. This com-

plexity originates from the intrinsic dynamics of each neuron, from

its synaptic connections, and modulation state [1–3]. Unfortu-

nately, information about synaptic relationships is generally sparse

or often completely missing (see, e.g. [4–6], and references

therein). Moreover, the inference of effective connectivity is based

on limited information, such as the timing of spikes emitted by a

subset of all neurons in the network. Here, effective connectivity is

considered to be the network of directed, causal effects of one

neural element over another (as opposed to structural or functional

connectivity, see [7]). We can use spike trains to estimate effective

connectivity networks, but how these effective networks relate to

actual connectivity remains an open question [8–10].

There are many ways to build effective networks based on

observed spiking activity. A commonly used network inference

algorithm is Granger causality analysis [11,12]. The strength of a

causal link between two network nodes is measured by how well

the knowledge of past activity of one node helps to predict the

activity of the other node. Granger causality analysis has been

applied to a variety of different imaging data at different spatial

scales of brain activity [13–19], including spiking activity [20–23].

However, an inherent difficulty exists in validating these inference

techniques because the underlying, true synaptic connectivity is

typically not known. Usually, connectivity inference algorithms are

validated on simulated data sets [15,20,24–28], and it remains

largely unknown how well their predictions match the underlying

structural connectivity.

In a recent study, Kispersky et al. [29] applied a linear Granger

causality analysis to spiking activity from a physiological prepa-

ration, whose circuitry is well studied and understood [30,31]. The

analysis suggested an effective connectivity pattern of a three-node

circuit that did not match the known physiological connectivity.

The authors attributed this result to the presence of strong

oscillatory components of the spiking activity and the inability of

the analysis to capture the intrinsic pacemaker rhythm.

In this paper, we will continue the analysis of the spike train

data with the goal of inferring network consistent with known

connectivity. Generalized linear models take into account the

point process nature of spike trains and have been used to infer

connectivity in other biological neuronal networks [9,23,32–34].
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Here, we will show for the first time that this approach, based on

spike train data only, can identify relative connection strengths

that match the known physiology of the pyloric circuit of the

stomatogastric ganglion (STG) of the crab even though synaptic

transmission in the pyloric circuit is graded and only partly

mediated by spikes. If a threshold is applied on the estimated

connection strengths, the physiological connectome of the circuit

can be correctly reconstructed from the model.

To obtain this result, it is important to consider the functional

shape and magnitude of the interactions in the model rather than

statistical significance as it is classically quantified by Granger

causality analysis. In the second part of the study, we show that

both a nonlinear point process model and our measure of coupling

strength are necessary to successfully infer the connectivity.

Finally, we show that inference using the point process model is

robust to parameter changes, can be reproduced across several

independent biological data sets, and can be used to predict how

altered connectivity affects network function, i.e., the generation of

the triphasic burst pattern. We demonstrate the ability of the

method to track changes in the effective network connectivity

structure caused by partial blocking of individual membrane

currents or synaptic transmission. Our results add to the evidence

in favor of applying point process statistical models to capture the

statistics of spike trains. They constitute the first step toward the

analysis of the relationship between structure and activity of larger

neural circuits.

Results

A point process model and a direct measure of the
coupling filter can correctly infer the known STG
connectivity

Extracellular recordings were obtained from three units of the

crab stomatogastric ganglion (STG), which produce the pyloric

rhythm [31]. Spike train activity follows a triphasic pattern starting

with bursts of the anterior burster/pyloric dilator neurons (AB/

PD, abbreviated as PD in the following), followed by sequential

activation of the lateral pyloric neuron (LP) and pyloric neurons

(PY) (Figure 1A, left). Neurons fired stereotypical bursts with a

similar number of spikes within each burst over the whole

recording session (mean Fano factor FF~0:054, calculated as the

variance over the mean of the distribution of spike counts per

burst, averaged over the three neurons).

The physiological connections between the three units of the

stomatogastric nervous system responsible for the pyloric rhythm

are well understood [31] (Figure 1A, right). Notably, all synaptic

connections are inhibitory, and there is no direct synaptic coupling

from the PY neuron to the PD unit. Synapses can be qualitatively

classified as weak and strong [35–38] (Figure 1A, right, strength

indicated by line width).

A central question is: Given the spike trains, can we infer the

connectivity of the circuit? Kispersky et al. demonstrated that in

the presence of the strong oscillatory components, Granger

causality analysis based on a linear firing rate model is unable to

deduce the physiological connectivity pattern [29]. Instead, it

identifies three strong interactions following the sequential

activation of the PD, LP, and PY neurons (Figure 1B, upper left).

Our results show that two modifications to the approach of [29]

permit accurate inference of the physiological circuit. First, the

linear rate model is replaced by a nonlinear point process model

that takes into account the structure of the data. Second, rather

than basing the strength of the coupling on a statistical significance

criterion as in Granger causality analysis [23], we propose to

measure coupling strength directly as the magnitude of the

estimated, directed coupling between two spike trains. With these

two modifications, a statistical fit to the data can approximately

recover the structure of the synaptic circuitry between the three

units (Figure 1B, lower right; note that the missing physiological

connection possesses the weakest coupling strength). Any other

possible combination of model and coupling measure leads to

inaccurate reconstructions (Figure 1B).

In point process models, the spiking activity of a neuron is

conditionally explained by the previous firing activity of the

neuron and activity of the recorded population (see Figure 2A for

an illustration). Each neuron’s previous spiking contributes to its

predicted activity through self-coupling filters and the firing of

other neurons in the population contribute with (possibly distinct)

cross-coupling filters. All contributions are linearly summed and

transformed into an instantaneous firing probability via a

sigmoidal, nonlinear transfer function. We define coupling

strength here as the net area under the (directed) cross-coupling

filter. This implies that a strong coupling could be obtained either

by a consistent influence of one neuron to the target neuron over

an extended period of time or via a strong, but timely interaction.

We fit such point process models to an extended recording of

spontaneous activity of the pyloric circuit and obtained highly

significant values for all possible cross-interactions. Hence, judging

network structure only from the statistical significance of the model

parameters did not reveal relative coupling strengths (see below for

a more detailed analysis using the Granger causality approach).

The coupling filters used by our model can be interpreted as

synaptic-like interaction filters (Figure 2B). Here, negative

(positive) values indicate an effective inhibitory (excitatory) effect

on the spiking probability at the specified delay. Self-coupling

filters (Figure 2B, panels along the diagonal) show three features:

an initial refractory period, a rapid transition to a positive peak

due to the natural bursting activity of the spike trains, followed by

an extended effective inhibition.

Author Summary

To appreciate how neural circuits control behaviors, we
must understand two things. First, how the neurons
comprising the circuit are connected, and second, how
neurons and their connections change after learning or in
response to neuromodulators. Neuronal connectivity is
difficult to determine experimentally, whereas neuronal
activity can often be readily measured. We describe a
statistical model to estimate circuit connectivity directly
from measured activity patterns. We use the timing
relationships between observed spikes to predict synaptic
interactions between simultaneously observed neurons.
The model estimate provides each predicted connection
with a curve that represents how strongly, and at which
temporal delays, one circuit element effectively influences
another. These curves are analogous to synaptic interac-
tions of the level of the membrane potential of biological
neurons and share some of their features such as being
inhibitory or excitatory. We test our method on recordings
from the pyloric circuit in the crab stomatogastric
ganglion, a small circuit whose connectivity is completely
known beforehand, and find that the predicted circuit
matches the biological one — a result other techniques
failed to achieve. In addition, we show that drug
manipulations impacting the circuit are revealed by this
technique. These results illustrate the utility of our analysis
approach for inferring connections from neural spiking
activity.

Reconstructing Connectivity from Spiking Activity
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The magnitude and time scales of these features can be mapped

to biological findings. For example, the positive peaks at lags

between 20 ms (LP) and 50–60 ms (PD and PY) directly

correspond to the typical inter-spike intervals within the bursts.

The spike-triggered depolarization of the membrane potential is

on the same time scale and can be measured with intracellular

recordings [35]. The following spike rate adaptation is on the

order of 200 to 400 ms and longer (Figure 2B, panels along the

diagonal), consistent with reported (short) adaptation time scales of

200–300 ms [35,36]. Hartline also reported adaptation on longer

timescales (3–4 s) which is consistent with the shape of the self-

coupling filters in models for which longer time lags are

considered.

The six cross-history kernels (off-diagonal panels) can be

separated into two groups: couplings in the direction of the firing

order during the pyloric rhythm (PY-to-PD, PD-to-LP, and LP-to-

PY) and couplings counter to the order of a pyloric cycle (LP-to-

PD, PY-to-LP, and PD-to-PY) (Figure 2B). The first group has

weak to moderate inhibitory coupling, the second group is inferred

as strongly inhibitory over the whole range of examined time lags

because no spikes are observed in the target neurons during the

time lags.

The net interaction type of all inferred cross-couplings is

inhibitory, in accordance with known synaptic properties of these

neurons [31]. Notably, the only connection not present in the

biological circuit (PY-to-PD), is the weakest one inferred by the

point process model. Therefore, by applying a threshold based on

a priori knowledge of the approximate expected density of the

network (i.e., based on the expected number or strength of

synaptic interactions), a connectivity diagram can be obtained,

matching the known circuit connectivity (Figure 1B, lower right).

Not only is the physiologically absent connection the weakest in

the model estimate, the relative strengths of the other couplings

qualitatively match the known physiology: Experimental studies of

directly measured IPSPs between all coupled pairs have revealed a

qualitative distinction of synaptic strengths between ‘‘weak’’ and

‘‘strong’’ synapses. For the specific three-neuron circuit (PD, LP,

and PY) considered here, the LP-to-PY coupling is considered

weak, while all other connections are considered strong [35–38].

This is in agreement with our results (Figure 1B, lower right, and

Figure 2B). For the time scales of some interactions (LP-to-PD,

PY-to-LP, and PD-to-PY) we can only extract lower bounds based

on the model fit, but the order of magnitude matches with what is

known from physiology for these specific connections (time scales

of 80 ms [35] and longer [37]). The shape of the inferred

couplings from the PD to the LP unit shows a time scale of

approximately 50 ms, consistent with reported values (70 ms

[35,38]). The time scale of the LP-to-PY connection is with

approximately 20 ms in close agreement with experimental

findings (20–40 ms [35,36]).

Figure 1. Inferring network connectivity of the pyloric circuit of the crab stomatogastric ganglion (STG) based on extracellular
spike train recordings. A, Statistical models fitted on spike train activity (left) can be used to infer the effective coupling. The effective coupling
should match the physiologically known diagram of the pyloric circuit (right). All synaptic couplings in the pyloric circuit are inhibitory. B, Comparison
of algorithms for network inference. Neural activity can be either described in a firing rate model, e.g., in classical time series analysis, or using a point
process model or generalized linear model (GLM). For both models, couplings are introduced as interaction kernels between the stochastic processes.
The strength of the interaction can be either quantified through its statistical significance, i.e., a Granger causality-type measure, or through the
magnitude of the interaction, as measured by the net area under the interaction kernel. Only the combination of a point-process-based generalized
linear model with the definition of coupling strength as the magnitude of the interaction is able to recover a connectivity that is consistent with
physiology (lower right). All other combinations of models and measures infer inaccurate connectivity patterns.
doi:10.1371/journal.pcbi.1003138.g001

Reconstructing Connectivity from Spiking Activity
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Figure 2. A point process model provides a good fit to the experimental data and recovers the known physiological connectivity. A,
Schematic overview of the point process generalized linear model (GLM). One model is fit per neuron, conditioning its activity on its own previous
activity (Y) and the activity of all other simultaneously recorded neurons (X, Z). Spike trains are convolved with filters conceptually similar to spike-
triggered currents. All contributions are linearly summed and passed through a static sigmoidal nonlinearity. Spikes are assumed to be a sample from
the instantaneous intensity function. Coupling strength between two neurons is defined as the net area under the coupling filter. B, Maximum-
likelihood filters. Filters indicate how much the firing activity of the postsynaptic neuron is modulated by a spike in the presynaptic neuron at a
specified lag. Self-couplings (on the diagonal) have a maximal time lag of 0.4 s, cross-couplings have a maximal time lag of 0.1 s. These values were
determined by a model selection procedure. C, Simulated spike trains from the estimated model reproduce the pyloric rhythm. Spike trains were

Reconstructing Connectivity from Spiking Activity
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To characterize how well our model fits the observed spiking

pattern, we used the model to generate simulated spiking activity

following a period of observed spikes. We find that stochastic

simulations from the model generally produce a spiking pattern

qualitatively similar to the pyloric rhythm observed in the real data

set (Figure 2C). In spite of the involved stochasticity in simulating

novel spiking activity from the model, the rhythm is accurately

maintained for arbitrary periods of time (Figure 2C, the pyloric

rhythm was maintained for at least 500 s in 9 out of 10 stochastic

simulations). The mean burst Fano factor of the stochastic sample

is FF~0:104 and much smaller than 1, consistent with the

statistics of the real spike trains.

Although the model assigns a nonzero value to the PY-to-PD

coupling, it is not essential to produce or maintain the pyloric

rhythm expressed by the model circuit. To demonstrate this, we

set that particular cross-coupling filter to zero in the maximum-

likelihood fit and left all other parameters unchanged. When we

used this modified model to simulate new spike trains, it displayed

a triphasic rhythm (Figure 2D) qualitatively similar to the one

obtained using the full model (Figure 2C) or even the recorded

activity (Figure 1A, left). Thus we conclude that the estimated PY-

to-PD coupling is negligibly weak so that we can correctly predict

it to be missing from the biological circuit.

Inferred connectivity with a point process model is
robust to parameter changes and can be replicated
across independent data sets

First, we show robustness to the amount of data used for fitting.

Specifically, we fit a sequence of models with increasing amounts

of data used to train the model and observed the evolution of

coupling strengths over time (Figure 2E). We found that the

particular connection (PY-to-PD), which is absent biologically,

consistently possesses the weakest coupling strength among all six

inferred edges. In general, all estimates of coupling strengths

remain relatively robust with regard to the length of data analyzed.

Specifically, the difference between the mean coupling strength

calculated using half of the data compared to using the full data is

not significantly different from zero (paired t-test,

t(5 d:o:f :)~{0:02, Pw0:9). Convergent coupling strengths can

be obtained from 30 s or more of spiking data.

Model parameters ~bb were fitted using standard maximum-

likelihood techniques. Prior to fitting, explanatory variables that

perfectly predicted the absence of spikes were removed together

with the corresponding data bins. Their maximum-likelihood

coefficients diverge to minus infinity, so we set them to

bmin~{20. This ensured the resulting probability of spiking to

be practically zero. Relative coupling strengths remain unchanged

for all sensible values of the cut-off parameter (Figure 2F).

Therefore, our results are robust to changes in the value of bmin.

It is known that the maximal time period to consider history

effects can have a profound effect on the inferred networks, for

both linear and point process models. For the point process

model considered here, the maximal time lags for the self- and

cross-coupling filters were not chosen arbitrarily, but based on a

model selection procedure that selected an optimal time scale

based on a penalized likelihood criterion (Figures S1A and B).

To investigate whether the difference between the weakest (PY-

to-PD) and the remaining connections was significant, we

computed the uncertainties associated with the coupling strengths

based on the maximum-likelihood estimate of the model and its

covariance structure (see Text S1). The standard deviations show

that the PY-to-PD connection is significantly weaker than any

other connection (effect size DCS~8:9 in standardized units; one-

sided z-test for the difference between the weakest and second-

weakest connection, z~6:32, Pv10{9 ; Figure S1C).

We also performed a goodness-of-fit test tailored to the point

process model based on the multivariate time-rescaling theorem

[39]. While the individual fit to the PD neuron is formally

rejected at a significance level of 5%, overall goodness-of-fit

indicates a reasonable model fit. Furthermore, goodness-of-fit

tests performed on the joint spike train of all three units do not

suggest a major model misspecification (see Figure S2 and Text

S1 for details). Passing all multivariate tests increases our

confidence that the dependency structure of the network is being

correctly inferred.

Finally, we repeated the model selection and fitting procedure

for three additional independent preparations from different

animals, each with spike train recordings of variable length. All

recordings qualitatively showed a stable pyloric rhythm, although

the temporal scales, like the burst cycle period and the exact

temporal phase relationships between units, varied considerably

across data sets.

For all four data sets, we found qualitatively similar results

regarding the inferred connection strengths (Figure 2G). Notably,

for all network patterns, the biologically nonexistent connection is

inferred to be the weakest compared with all possible connections.

Furthermore, relative connection strengths are comparable across

all four data sets and filter shapes showed similar qualitative

features (not shown). This finding indicates an additional

robustness of the presented analysis approach, namely that the

same network pattern can be observed in independent prepara-

tions.

An alternative definition of coupling strength based on
Granger causality fails to reconstruct the known
physiological connectivity

Kim et al. and others used a measure based on Granger

causality to quantify the effective coupling between spike trains

[22,23]. The Granger causality score quantifies changes in model

likelihoods that reflect statistical significance of couplings rather

than a functional interpretation. The Granger causality (GC) score

for a directed connection between neuron X and Y is derived by

comparing the relative predictions of two nested models: If we

improve the accuracy of prediction of a model that only uses Y’s

and other neurons’ histories by additionally incorporating the

activity of neuron X, the GC score will be significantly different

taken from the experimental recording for one second. Then, spike trains were simulated as a random sample from the point process model. The
simulated three-neuron network reproduces the stereotypical pyloric rhythm. D, Simulation with PY-to-PD connection forced to zero. If the PY-to-PD
connection is removed from the model, the remaining model network still exhibits a pyloric rhythm. Spike trains obtained from experiments were
used for one second, afterward spikes were simulated using the maximum-likelihood fit of the model. E, The strengths of all six directed couplings
are plotted as a function of the length of the data set used for fitting the model. F, Coupling strengths as a function of the minimal parameter value.
Relative strengths remain invariant for all reasonable choices of bmin. The value used throughout the analysis is indicated by a vertical, dashed line. G,
Results obtained from the point process model are reproducible across independent data sets. Data set 1 corresponds to the data set used in all
analysis and other subpanels, except where otherwise noted. Inferred network strengths are shown for three additional preparations. For all data sets,
the physiologically nonexistent connection is weakest. Horizontal scatter is for visualization only.
doi:10.1371/journal.pcbi.1003138.g002

Reconstructing Connectivity from Spiking Activity
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from zero. Granger causality scores are always non-negative and

do not distinguish between excitatory and inhibitory couplings.

We used this Granger causality measure using the same point

process model as above and parameters determined by the model

selection procedure and failed to obtain couplings consistent with

known physiology (Figure 1B, lower left). Neither by varying the

length of data used for fitting (Figure 3A) nor by varying the

maximal time lag of cross-coupling filters (Figure 3B) were we able

to yield a network pattern compatible with the known physiology.

This conclusion holds true for all four data sets (Figure 3C). In

general, we find no significant correlation between the Granger

causality scores and coupling strength (CS) defined as the net area

under the interaction filters (Figure 3D).

A linear rate model is insufficient to reconstruct the
circuit diagram

One might wonder whether a linear rate model as (implicitly)

used in [29] combined with our definition of coupling strength

might recover the known network architecture. To this end, we

constructed a multivariate linear firing rate model as in Kispersky

et al. [29] (see Materials and Methods and Figure 4A for an overview).

The analysis yielded nine couplings (self-couplings included)

between the three neurons (Figure 1B, upper right). All self- and

between-neuron couplings had highly statistically significant

coupling strengths (Figure 4B). Visual inspection of the coupling

filters offered little insight as to whether a potential coupling could

be classified as inhibitory or excitatory, and what relevant time

scales of the interaction would be.

To test whether the linear model provided a good fit to the data,

we used the estimated model to simulate activity after a period of

observed activity. If the model were appropriate, we would expect

it to produce qualitatively similar spiking activity consistent with

the observed data. Instead, we found the linear model is unable to

maintain the pyloric rhythm, and activity values start to diverge

after only two seconds of simulated activity (Figure 4C). While the

linear model qualitatively captures the alternating activation of the

three units, it fails to predict any stationary activity. Moreover, the

burst-like structure of the spiking activity and the fine temporal

relationships between bursts are lost as soon as model output is no

longer directly computed from the observed data (Figure 4C,

inset). Thus, stochastic sampling from the model produces activity

whose statistics are very different from the training data - a general

sign of model misspecification. A more detailed goodness-of-fit

analysis confirms this suspicion (see Text S1 and Figure S3) and

provides evidence that the linear model is insufficient to accurately

describe the statistics of the actual recordings.

A further exploration of the parameter space, similar to the

previous section, shows that no parameter choice, such as the

amount of data used and how far the coupling filters extend in

time, leads to a network that would be consistent with physiology

(Figures 4D and E). Overall, this indicates that the specified

coupling in the linear model is not capturing the true dependency

Figure 3. Using a Granger causality score with the point process model does not recover the physiological connectivity. A, Granger
causality (GC) scores as a function of time used for fitting. B, GC scores as a function of the maximal time lag used for fitting (same color scheme as in
A). C, Network inference for all four data sets, using the Granger causality score. The physiologically nonexistent connection does not correspond to
the weakest one in any case. Horizontal scatter is for visualization only. D, Coupling strengths (CS) and Granger causality scores (GC) are uncorrelated
for the point process model. For the point process model, the strength of the coupling can be either defined by the net integral of the interaction
filter (horizontal axis) or by the statistical Granger causality score (vertical axis). The scatter plot shows the six cross-couplings for each of the four data
sets. The two measures of coupling strength are not significantly correlated (r~{0:27, P~0:19).
doi:10.1371/journal.pcbi.1003138.g003

Reconstructing Connectivity from Spiking Activity
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Figure 4. A linear firing rate model is insufficient to reconstruct the correct connectivity. A, Schematic overview of the linear rate model.
First, spike trains are convolved with a smoothing filter to obtain smoothed time series of firing rates for all neurons (here denoted by X, Y and Z).
Linear models are estimated for each neuron (Y) by including auto- and cross-regressive terms from the filtered input of putatively presynaptic
neurons (here, X and Z). The firing rate is assumed to be Gaussian with the linearly predicted mean and fixed standard deviation. B, Estimated
interactions. Coupling coefficients for the auto- (diagonal) and cross-regressive terms (off-diagonal) of the linear model are shown. The maximal time
lag was chosen to be 400 ms to match the model of Kispersky et al. [29]. Coupling strength is defined as the net area under the interaction kernel. C,
The linear rate model fails to generate pyloric-like activity. Neural activity was simulated from the fitted model. First, model output was clamped to
the observed activity traces for one second (vertical line). Subsequent activity was simulated using the predictions of the model and a stochastic

Reconstructing Connectivity from Spiking Activity

PLOS Computational Biology | www.ploscompbiol.org 7 July 2013 | Volume 9 | Issue 7 | e1003138



structure of the neurons. In addition, we varied the two remaining

free parameters of the linear model: s, the kernel bandwidth to

obtain smooth rate estimates from the spike trains, and f, the

sampling frequency of the time series. None of the parameter

configurations led to the inference of the physiological network

architecture (results not shown).

When we analyzed all four data sets, the physiologically

nonexistent connection corresponds to the weakest one in only

two out of the four cases. In addition, coupling strengths grouped

by connection across all four networks did not show a consistent

pattern (Figure 4F, compare to Figure 2G). Moreover, coupling

strengths derived from the point process model and the linear rate

model were uncorrelated (Figure 4G).

For completeness, we reproduced the original analysis of [29]

that used the linear rate model together with the Granger causality

measure (Figure 1B, upper left). The failure to retrieve the

physiological connectome is independent of the definition of

coupling strength (see Figure S4). The analysis demonstrates that

although Granger causality estimates can be highly parameter-

dependent, the physiological network pattern was not among any

network patterns identified for any combination of parameters.

Therefore, the failure to recover the correct connectivity in this

framework was not due to an inappropriate choice of parameters.

Instead, it was caused by intrinsic limitations of the analysis for the

type of data considered here. In agreement with the conclusions of

[29], the linear rate model is not an appropriate tool to accurately

infer the known physiological connectivity of the pyloric network.

The point process model predicts changing effective
networks due to pharmacological manipulation

To this point, we have considered the standard pyloric rhythm

in its default configuration. A useful method of network inference

should also detect and track changes that occur to the coupling

strengths. To this end, we applied the point process model to two

data sets where the isolated pyloric circuit is perturbed by

pharmacological agents.

In the first data set, CsCl was applied to a preparation of the

pyloric circuit of the STG. CsCl is known to block an intrinsic

current, the h-current (Ih), in all cells [40]. The Ih current is an

inward depolarizing current that slowly activates upon hyperpo-

larization of the membrane potential [41]. The spike train statistics

show that blocking the h-current has little qualitative effect on the

pyloric rhythm generated by the circuit (Figure 5A). This is in

agreement with previous experimental reports [40], although we

observe changes in individual bursting properties: The burst cycle

period increased and overall firing rates of the three neurons were

reduced, that is, each burst contained on average less spikes than

in the control condition. Firing rates were otherwise stationary

within the control and CsCl condition.

We expect that blocking Ih would affect the coupling filters in

our model in two ways: First, in both conditions, the PY-to-PD

coupling is physically nonexistent and therefore, its inferred

coupling strength should be the weakest among all estimated

couplings. Second, all other coupling strengths should increase.

This is because Ih is an inward current that counteracts inhibitory

(hyperpolarizing) synaptic coupling from other neurons. Blockade

eliminates the post-inhibitory rebound and reduces the likelihood

of spikes being triggered after inhibition. Hence, blocking the cell’s

intrinsic h-current should effectively amplify incoming inhibitory

couplings. The same reasoning would predict a strengthening of all

inhibitory components of the self-coupling filters, such as the fast

component responsible for the refractory period.

Fitting the point process model to the control data set shows a

similar pattern as the other four preparations considered so far

(Figure 5B). Particularly, the PY-to-PD connection strength is

estimated close to zero and is overall the weakest link in the

inferred network. After application of CsCl, all physically present

coupling strengths increased their magnitude significantly (mean

change in coupling strength for all couplings except the PY-to-PD

coupling strength: DCS~3:15, Wilcoxon signed rank test,

P~0:004 ; Figure 5B and relative changes in Figure 5C). This

difference should be contrasted to the change in the (nonexistent)

PY-to-PD coupling whose change between the two conditions is

two orders of magnitude smaller and in the opposite direction

(DCS~{0:05). Therefore, although blocking the intrinsic h-

current has no immediate effect on physical synaptic transmission

in the network, the predicted modulation of coupling strengths is

consistent with the observed changes.

For the second data set, we considered a pyloric circuit before

and after application of picrotoxin (PTX). PTX is known to block

inhibitory synaptic transmission in the STG [42] and affects the

functional pyloric rhythm (Figure 5D). When PTX is applied, LP

and PY units fire nearly tonically and for longer time periods

during a pyloric cycle and partly overlap with firing activity of the

PD unit. Overall, firing rates were otherwise stationary in the two

recordings.

In the STG, most synapses of the LP and PY cells are inhibitory

and mediated by glutamate [43]. Synapses of the PD cell use

cholinergic neurotransmission. However, the PD neurons are

electrically coupled to AB cells which in turn project to the LP and

PY neurons via glutamate [31]. Assuming the AB neuron’s activity

matches the observed PD activity and is left intact in the

preparations, the coupling filter originating from the PD neuron

summarizes the joint synaptic effects from the PD/AB group

[30,43]. Therefore, all of the five physical cross-couplings are

(partly) due to glutamatergic neurotransmission and we hypoth-

esize the application of PTX should decrease the coupling

strengths for all of these connections. The inferred coupling

strength of the nonexistent PY-to-PD link should remain close to

zero and unaffected by application of PTX.

Indeed, when we fit the point process model to the data sets

before and after application of PTX, we find cross-couplings are

decreased toward zero, i.e., become weaker (Figure 5E). Notably,

the PY-to-PD link remains the weakest coupling strength in both

conditions, as predicted. The decrease in strength of the five

physical synaptic interactions is significant (Wilcoxon signed rank

test, P~0:032) and its absolute effect size (DCS~{0:87) is two

orders of magnitude bigger than for the only nonexistent link

(DCS~0:0033, Figure 5F).

To find out which couplings in the network are crucial for the

presence of the stable pyloric rhythm, we simulated spike trains

from four different models estimated from the PTX condition.

realization of the noise term. The triphasic burst rhythm is not maintained and modeled neural firing rates diverge after a few seconds of simulated
time. D–E, The linear model does not accurately reproduce the known physiological connectivity for a wide range of parameter choices, such as the
length of the data set (D) or a maximal time lag different from 400 ms (E). F, Network inference using the linear model for all four data sets. The
physiologically nonexistent connection corresponds to the weakest one in only two out of the four cases. Horizontal scatter is for visualization only.
G, Coupling strengths (CS) for the point process model (horizontal axis) and linear rate model (vertical axis) are uncorrelated. The scatter plot shows
the six cross-couplings for each of the four data sets. The coupling strength for the two models are not significantly correlated (r~{0:01, P~0:96).
doi:10.1371/journal.pcbi.1003138.g004
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The models differed in the constraints placed on the allowed

network pattern. As before (Figures 2C and D) experimental spike

trains of the PTX condition were used for five seconds, afterward

spikes were stochastically simulated using either the fully

connected model network, a model with the PY-to-PD link forced

to zero, a network structure allowing only for non-glutamatergic

synapses or a model with no cross-interactions at all (Figure 5G,

from left to right and from top to bottom). All models except the

uncoupled one produce spike trains comparable to the real data.

The model without any cross-interactions shows burst-like and

tonic activity but neurons do not fire in a stable relative phase.

This demonstrates that the point process model captures the

physiological changes induced by PTX, i.e., the effective network

connectivity is reduced to the (weaker) PD-to-LP and PD-to-PY

links with all other couplings being effectively absent. In a network

with only one synaptic connection or in a fully disconnected

network, neurons with temporal irregular activity cannot maintain

their relative phase relationships (Figure 5G, bottom right).

Therefore, the network with two synapses is the minimal circuitry

to maintain the pyloric rhythm (Figure 5G, bottom left), consistent

with the experimental findings [37,38].

Overall, these results illustrate the utility of the point process

model in inference of effective connectivity. Bath application of

two pharmacological agents alter the expected circuit connectivity

by changing either the intrinsic currents of each neuron (CsCl) or

the synaptic interactions between neurons (PTX). In both cases,

the point process method detected the anticipated changes.

Discussion

In this work we considered the application of a point process

model to infer connections of a three-neuron circuit. To the best of

Figure 5. The point process model predicts changes of synaptic coupling strengths due to pharmacological conditions. A, Exemplary
spike trains from the control condition (left) and after application of CsCl, which blocks the h-current in all neurons (right). The pyloric rhythm is
maintained in both conditions. B, Inferred coupling strengths for the control (left) and CsCl condition (right). All coupling strengths (self- and cross-
couplings) become stronger, that is, more inhibitory. The mean of all eight coupling strengths (thick line, all except PY-to-PD) increases significantly
between the control and CsCl condition. The nonexistent PY-to-PD coupling remains the weakest coupling in both conditions (blue line). C, Relative
change of (signed) coupling strengths between the two conditions. Same data as in B, but expressed as the change of coupling strength relative to
the control condition. All couplings become more inhibitory with a mean relative change of 450% (left). The relative change of the PY-to-PD coupling
has the opposite sign (right). D, Exemplary spike trains from the control condition (left) and after application of PTX, blocking glutamatergic synaptic
transmission (right). The pyloric rhythm is qualitatively maintained in both conditions. E, Inferred coupling strengths for the control (left) and PTX
condition (right). All coupling strengths become weaker, that is, less inhibitory. The mean of all five existing cross-couplings (thick line) decreases
significantly between the control and PTX condition. The nonexistent PY-to-PD coupling remains the weakest coupling in both conditions (blue line).
F, Relative change of coupling strengths between the two conditions. Same data as in E, but expressed as the change of coupling strength relative to
the control condition. All couplings become weaker with a mean relative change of 285% (left). The relative change of the PY-to-PD coupling has the
opposite sign (right). G, Spike trains generated from the model of the PTX data set with various network constraints. Spike trains obtained from the
PTX condition were used for five seconds, afterward spikes were simulated using either the full model (left top), a model with the PY-to-PD link forced
to zero (right top), a network structure allowing only for non-glutamatergic synapses (left bottom) or a model with no cross-interactions (right
bottom). All models except the last one produce spike trains comparable to the real data. The model without any cross-interactions show burst-like
and tonic activity but neurons do not fire with a fixed relative phase.
doi:10.1371/journal.pcbi.1003138.g005
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our knowledge, these results provide the first successful application

of a network inference algorithm to spike train data recorded from

identified neurons within a circuit whose underlying synaptic

architecture has been fully characterized. Typically, such inference

algorithms have only been validated using simulation studies

[15,20,23,26,27,44,45]. We have also shown how measures of

effective connectivity can be useful in characterizing the effects of

pharmacological treatments on the network connectivity.

The crab stomatogastric nervous system as a model
system for network inference

The crab stomatogastric nervous system is well suited to study

network inference algorithms like the point process model. The

circuit consists of a small number of elements whose synaptic

interactions are well studied and whose monosynaptic connectivity

is established [30]. Furthermore, one can routinely and concur-

rently record from the important units of the circuit. Despite the

small size of this network, the rhythmic activity of the neural

elements makes it challenging to infer the correct, causal

relationships [29].

Most of our analysis can be readily applied to other small neural

circuits, e.g. central pattern generators in the respiratory system in

vertebrates [46,47] or motor systems in invertebrates [48,49], as

well as to recordings of larger populations. When applying

effective network analyses like point process models to any circuit,

the challenge of assigning action potentials to single neurons (spike

sorting) arises. Identifying single spiking events and the accuracy of

categorizing them as arising from distinct neurons becomes

increasingly challenging in recordings of larger neuron popula-

tions. Fortunately, in the STG individual pyloric neurons can be

recorded on separate nerves making spike sorting trivial. We note

that, in general, efficient spike identification is a requirement for

the success of any network inference method like the one presented

here.

Synaptic transmission in the STG occurs as a graded (analog)

release of neurotransmitters and is thus mediated by sub-threshold

depolarizations as well as spikes [50,51]. Therefore, spikes are not

the major source of transmitter release, but are dominantly used to

signal to the muscles over long ranges. It is not evident a priori that

a model that treats the time of spikes as the sole input, i.e., does not

have access to the membrane potential, can correctly perform

connectivity inference. For the circuits considered here, this did

not seem to pose a problem because, at least in the STG,

prolonged membrane depolarizations always appear simulta-

neously with spiking activity. Therefore, spikes are proxy

measurements to determine the state of the membrane potential.

Furthermore, the time scales of the graded synaptic interactions

are similar to the ones observed from spike-triggered transmitter

release and the ones estimated in our model [51,52]. In other

circuits where graded transmission does not correlate with spike

times, knowledge of the subthreshold voltage activity of the

neurons might be necessary to infer structural circuit information.

We note that synaptic transmission in cortical networks is heavily

dependent on spike-triggered, chemical transmission, so the

proposed method does in principle generalize to these data.

A model of the central pattern generator for the pyloric rhythm

can be evaluated using at least two criteria: One criterion is how

close the model reproduces a given, observed set of spike trains

and their statistics, e.g., the number of spikes per burst and the

average inter-burst duration. For understanding the functional

behavior of the circuit, a broader criterion can be applied: A

model would match the data if it qualitatively reproduces the

stable, triphasic burst pattern, regardless of the exact spike train

statistics. It is evident that many models will fulfill either one or

both criteria with the first criterion being an additional constraint

on the second. This explains why deviations from the best-fitting

model (according to the first criterion) can still generate spike

patterns that may be equally functionally valid (e.g. by enforcing a

certain network structure different from the physiological or fully

connected case, see Figure 5G).

Finally, although the pyloric network generates a triphasic

motor pattern, these cells are part of a larger circuit, the

stomatogastric ganglion of the crab; and the inferred connections

are potentially confounded with indirect (cascade) synaptic effects

or unobserved common input [53–55]. In general, there is unlikely

to be a confound in the specific case of the pyloric circuit because

the three observed units (PD, LP, and PY) are sufficient for

generating and maintaining a pyloric burst rhythm in vitro [31]. In

principle, an effective coupling from the PY to the PD unit could

be realized by a polysynaptic pathway through the inferior cardiac

(IC) neuron [31]. This would render the potentially observed

coupling as effectively excitatory. However, we found no evidence

for an effectively excitatory PY-to-PD coupling in our analysis,

indicating a small magnitude of such second-order effects for this

circuit analysis. Furthermore, analysis of recordings that included

the activity of the IC neuron showed that inferred couplings were

not significantly altered by the rhythmically active IC neuron

(results not shown).

Limitations of previous approaches
To elucidate the reasons why Granger causality analysis using a

linear model failed to recover the true connectivity in [29], we

applied a series of goodness-of-fit tests to identify model

misspecifications. We identified that two major changes are

necessary for correct inference: First, the use of a nonlinear point

process model instead of a linear rate-based model, and second, an

alternative definition of coupling strength based on the net area of

the coupling filter instead of a reliance on statistical significance.

We will now discuss these two aspects in detail.

Analysis with an underlying linear rate model is based on the

assumption that neural firing rates are linearly interacting. Even

the inclusion of very long time scales in the linear model did not

lead to a correct inference using any of the proposed connectivity

measures. This observation points to a general limitation of the

simple linear autoregressive models. Further, the physical mech-

anism for the LP and PY neurons to initiate spiking is a release

from inhibition [56]. This mechanism cannot be sufficiently

captured by a linear model because a strong inhibition would

predict negative firing rates and thereby increase the mean-

squared error of the predicted activity - the criterion that linear

models try to minimize. The biophysical mechanisms that govern

the rhythm are highly non-linear, too. By contrast, the nonline-

arity in the point process model has more flexibility in modeling

inhibitory interactions (including modulated release from inhibi-

tion, e.g., via application of CsCl). Both the linear and nonlinear

models are multivariate, i.e., they condition the directed couplings

based on all other observed network activity.

A firing rate model includes a smoothing preprocessing step on

the input spike trains. When applied to data from the STG this

preprocessing preserves the qualitative phase relationship between

the neurons during the pyloric rhythm, but temporal information

about the spike timings is lost. In a system that relies heavily on

graded synaptic transmission, like the STG [50,51], this may not

result in a loss of information. However, in networks where spikes

causally affect the postsynaptic membrane potential, we expect

that fine temporal relationships between spikes and postsynaptic

activity (or absence thereof) are predictive of synaptic coupling.

Here, we circumvented the smoothing step by proposing a point
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process model that explicitly models neural data as a sequence of

events in time.

We have observed that the amount of available data strongly

influenced the statistical significance of a directed coupling.

Typically, for our data sets, 15 seconds of data or more are

enough to yield highly significant Granger causality (GC) scores

for all six connections, for both the linear and point process

models. Hence, statistical significance alone is not useful in this

case to determine the presence of effective coupling between two

neurons. Because the magnitude of the GC score varies as well

with the amount of data, its value cannot be used for inference of

coupling strength beyond relative comparisons (see also [57]).

Moreover, Granger causality scores were practically uncorrelated

with our proposed measure of coupling strength. This is because

Granger-based significance analysis strongly depends on the

amount of data used and absolute values of inferred GC coupling

strengths are difficult to interpret. In the statistical framework

proposed here, inference is based on the effect size of an inferred

coupling rather than statistical significance. We propose defining

coupling strengths as a property of the estimated filters. This

allows better interpretability of the results and the separation of

coupling strengths between the nonexistent biological connections

and the remaining ones.

Granger causality analysis and related approaches are some-

times called model-free procedures [45,58–60], but are still based on

implicit model assumptions. These assumptions are rarely checked

in practice, and the final GC scores and their P-values are

commonly the only factors used for inference. For the proposed

point process model and functional definition of coupling strength,

by making the model assumptions explicit, we allow for the

application of rigorous goodness-of-fit and model selection

procedures that help in choosing a suitable model.

The point process model as an example of a statistical
inference procedure

The point process model was primarily used as an inference tool

to deduce the connectivity between a set of observed neurons.

Although this constitutes a statistical and phenomenological model

(i.e., it does not explicitly model biophysical processes), we have

shown its potential as a generative model (Figures 2C and D). The

coupling filters of the point process model have both statistical and

physiological interpretations, analogous to biophysically-based

synaptic interactions.

Coupling filters interact in a multiplicative way, i.e., they

modulate an underlying baseline firing rate instead of increasing or

decreasing the firing rate by a fixed amount. The coupling

strength (the integrated area under the interaction kernel) is

related to the number of spikes that, depending on the

instantaneous postsynaptic firing rate, are generated or suppressed

on average due to a single presynaptic spike [35]. Because of the

sigmoidal nonlinearity between the linear summation of couplings

and the resulting firing rate, the effect of a presynaptic spike can

vary dynamically depending on the current gain (slope) of the

transfer function. Therefore, the model can partly distinguish

synaptic interactions from postsynaptic excitability unlike previous

approaches.

From a biological perspective, the sum of contributions of past

neural activity in a point process model can be interpreted as the

influence on the neurons’ membrane potential. The coupling

filters correspond to synaptic interactions, e.g., in the spike-

response model [61]. The shapes of the filters suggest the time

scales of the synaptic (or effective) interaction, their sign (excitatory

versus inhibitory), and amplitudes. The model is flexible enough to

allow for polyphasic responses although our definition of the

coupling strength reduces the response to a scalar value (see [37]

for examples of polyphasic interactions in the STG). Periodic

structure in the spike trains (such as bursting and the time scale of

the periodic pyloric rhythm) can be read off from the peaks in the

filters at the corresponding time lag because they represent the

modulation of the firing probability locked to the exact spike

timings. Although the coupling filters have a similar interpretation

in the linear model, in the STG analysis, their shapes were not

suggestive of the type of interaction.

The relationship between the effective coupling filters and

biological postsynaptic potentials is not unique. This is especially

true for inhibitory connections in the STG: Consider presynaptic

spiking activity that always occurs at a fixed relative phase of the

postsynaptic burst cycle in which the postsynaptic neuron is

already hyperpolarized. The observation of the absence of any

postsynaptic spike does not contain any information about the

amplitude of the synaptic conductance beyond a minimal value

that prevents the postsynaptic neuron from firing. In these cases,

estimates of coupling filters diverge and we cap them at an

arbitrary value that does not affect the qualitative results of the

analysis. This so-called phase response saturation has been shown

in experiments and detailed neuron models of the pyloric rhythm

[62,63] and should serve as a reminder that neural couplings

might not be uniquely identified when no information about the

subthreshold activity is available.

We note that while using the net integral of the coupling filters

as a measure of coupling strength has led to a good correlation

between inferred coupling strengths and the presence of real

couplings, other measures of coupling strengths might be useful to

consider as well. These could include other features of the kernel

(such as its peak amplitude) or be limited to certain temporal scales

(e.g., near-simultaneous, or short versus prolonged interactions).

For the point process model presented here, all available data

were used and free parameters were chosen with a straightforward,

but rigorous model selection procedure. Because a nonzero

coupling strength is recovered for each possible connection,

different binary connectomes can be obtained by varying a

threshold that determines whether a connection is substantial.

Using a threshold to determine a binary circuit diagram based on

statistical significance alone would result in the inference of a fully

connected network. Yet, we have observed that setting the known

missing physiological connection to zero did not change the

functional behavior of the modeled circuit suggesting that

statistical significance is not an appropriate metric for determining

functional interactions in this data set. It is known that networks

with different neuron parameters can express very similar pyloric-

like rhythmic activity [64,65]. A more sophisticated procedure that

chooses an optimal threshold in a data-driven way based on

physiological significance is desirable.

Finally, an advantage of point process models is the availability

of goodness-of-fit tests that are not always assessed in practice in

Granger causality analysis. When we applied model adequacy tests

to the linear rate model, we could identify its shortcomings in

capturing the structure of the data. The results hinted at the

necessary modifications to construct a model whose network

inference could match the physiology. Because any model-based

assessment of connectivity is expected to show model misspecifica-

tions given enough data, we suggest methods that explicitly

consider the structure of the data in building the model and use

interpretable measures of connectivity rather than statistical

significance levels. A series of goodness-of-fit tests, tailored to the

point process nature of the model, strengthened our confidence in

the model’s inferred network structure and demonstrated the

robustness of our results.
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Relevance to identification of large-scale networks
In general, effective connectivity will not necessarily be equal to

physiological or structural connectivity [66,67], even if our study

suggests sophisticated statistical models might permit inference of

actual physiological connectivity from extracellular recordings.

Especially for larger-sized (and cortical) networks, effective

connectivity between a subset of neurons will be different from

physiological connectivity. This is because of indirect connections

and shared, unobserved inputs. Nevertheless, because monosyn-

aptic direct couplings should form a subset of inferred effective

connections [68], such a measure can still be useful [22,23,34,66],

e.g., to improve decoding performance (see [69] for a recent

demonstration with multi-electrode recordings in different cortical

regions), to distinguish different network states or to track

plasticity-induced changes [33,70]. We have demonstrated, for

example, that partial blockade of synaptic transmission strongly

reduced the strength of inferred couplings. In addition, changes of

intrinsic currents not explicitly represented in our model can be

characterized using the notion of an effective coupling between

neurons or coupling of a neuron with itself. As such, we expect the

class of point process models presented here could also be useful in

other contexts of neurophysiology, such as characterizing single-

neuron responses [71,72] or general network dynamics [70,73].

Although we have shown that linear models do not recover the

physiological network architecture in the pyloric circuit, they may

be more applicable to large networks where measurements reflect

averaged population activity and nonlinearities may potentially

average out [12]. Ultimately, to compare the relative performanc-

es of the models put forward here, the approach taken in this study

must be scaled to larger networks and recordings [74]. Although

simultaneous recordings from many neurons are now routine, we

lack the necessary independent assessment of their structural

connectivity.

Experimental protocols necessary to obtain both signals and

structural information of neural circuits are being actively

developed: A recent study combined in vivo functional imaging

using two-photon calcium imaging with subsequent paired patch-

clamp recordings of the same individual cells in slices [75]. For a

small number of cell pairs, synaptic connectivity could be

unambiguously inferred using the intracellular recordings. Prog-

ress in multi-photon imaging has been made to achieve the

temporal resolution necessary to infer sequences of spikes from

such functional recordings [76–78]. Taken together, these

approaches could be used to validate connectivity inference

algorithms based on spike trains or imaging signals in the future

[79–81].

A growing scientific community is interested in multi-neuron

models and connectomics. As these data become more widely

available, principled methods that incorporate known statistical

structure in the data — such as the one proposed here — will be of

fundamental importance.

Materials and Methods

Experimental details
Full experimental details for the four data sets can be found

elsewhere [29]. Briefly, Jonah crabs (Cancer Borealis) were

purchased from a commercial food supplier (Commercial Lobster,

Boston MA) and held in artificial seawater tanks at 110C. Prior to

dissection, animals were put in ice for 30 minutes to numb them.

The stomach was removed from the animals and pinned into a

dish and immersed in physiological saline containing: NaCl,

440 mM; KCl, 13 mM; MgCl2, 26 mM; CaCl2, 13 mM; Trizma

base, 11 mM; maleic acid, 5 mM; pH 7.45. Under a microscope

the stomatogastric nervous system (STNS) was separated from

surrounding tissues and pinned into a smaller dish for electro-

physiological recordings.

Vaseline mixed with mineral oil was used to build waterproof

wells around identified nerves to record action potentials from

stomatogastric ganglion (STG) neurons. Steel electrodes were

placed into these wells with reference electrodes in the bath to

record electrical signals. These signals were recorded with an AM

Systems Model 1700 AC Amplifier and digitized with an Axon

Instruments Digidata 1440A (Axon Instruments, Sunnyvale, CA).

pClamp software (Molecular Devices, Sunnyvale, CA), running on

a PC computer, was used to record extracellular signals

continuously.

During recordings, saline was continuously perfused and

recording temperature was kept as close to 110C as possible with

a Peltier cooling system (Warner Instruments, Hamden, CT;

Harvard Apparatus, Holliston, MA). Spikes were extracted for

three different neurons (PD, LP, and PY) from three different

nerves (pdn, lvn, and pyn), respectively. Single spikes were

extracted by a threshold criterion. Spike trains were analyzed

off-line using Spike2 software (CED, Cambridge, UK) and then

exported to MATLAB for further processing.

Recordings were obtained from four preparations for recording

periods ranging between 140 and 300 seconds. Results reported in

the text and figures refer to a single data set (#1), unless otherwise

noted. Results are qualitatively similar for all four data sets.

For predicting changes of coupling strength by pharmaco-

logical conditions, data were acquired in a similar way as

described above. Specifically, CsCl at 5 mM concentration was

applied to the preparation to block h-currents. Recordings

include 300 s of data before the application (control) and 300 s

after application of CsCl (condition). Visible spike sorting

artifacts were removed by visual inspection. The model selection

procedure selected a maximal lag of 1 s for the self-history filters

and 350 ms for the cross-coupling filters where maximal lags

were jointly optimized for both data sets using the BIC-

penalized likelihood criterion.

For the application of picrotoxin (PTX), the control condition

consists of 360 s of recordings before the application and 120 s of

stationary activity 6 minutes after application of PTX (Sigma

Aldrich, St. Louis, MO) at 10{5 M added to the saline. Spike

trains were acquired as described previously. The model selection

procedure selected a maximal lag of 1300 ms for the self-history

filters and 100 ms for the cross-coupling filters where maximal lags

were jointly optimized for both data sets using the BIC-penalized

likelihood criterion. For the generation of stochastic spike trains

from the model, maximal lags for the model of the PTX condition

were manually chosen to accommodate the long period of the

pyloric rhythm (approximately 5 seconds).

Point process model
A multivariate point process model of the spiking activity was

constructed using the conditional intensity framework [82] for

which the instantaneous firing intensity (or rate) lY (tDHt) for

neuron Y is given by:

lY (tDHt)~ lim
D?0

Prob(spike in(t,tzD)DHt)

D
, ð1Þ

where Ht summarizes the activity of all neurons up to time t and

possibly other extrinsic variables, and D denotes the length of a

time period. For a time-discrete model with D%1, the probability

of spiking in a time bin i becomes:
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pY (ti)&lY (ti DHti
)D: ð2Þ

Observed spike trains were converted into a binary sequence of

spiking activity Y (ti) that indicates whether or not there was a

spike in the time window ti{1ƒtƒti. The model can be easily

adapted to multi-unit activity (MUA) by replacing the Bernoulli

likelihood with a Poisson likelihood that allows an arbitrary

number of spikes per time bin. The point process likelihood is

approximated by the likelihood of the binary Bernoulli model

Y (ti)*Bern(pY (ti)) so that the log likelihood of the data is given

by:

log L~
X

i

Y (ti)log pY (ti)z(1{Y (ti))log(1{pY (ti)): ð3Þ

pY (ti) is modeled as a nonlinear transformation of a linear sum of

explanatory variables:

pY (ti)~
1

1zexp({hY (ti))
, ð4Þ

where hY (ti) sums the effects of the recent spiking activity of the

neuron itself (gY (t)), the activity of other neurons (gX (t) and gZ(t))
and possibly other factors. Hence, hY (ti) is the sum of these three

terms plus a constant baseline:

hY (ti)~b0zgY (ti)zgX (ti)zgZ(ti): ð5Þ

Here, the constant baseline b0 regulates the spontaneous firing

activity and gc(t) are convolutions of the spike train of neuron c

with a coupling filter. Coupling filters are modeled with spline

basis functions with knot points separated by 5 ms up to the

maximum lag (see [34] for details). Specifically, if ftn
cg denotes the

nth spike time of neuron c and Bj(Dt) is the jth out of mh basis

functions for a self-coupling filter (j~1,:::,mh), then:

gY (t)~
Xmh

j

X
tn
Y

vt

bY ,jBj(t{tn
Y ): ð6Þ

Similarly, the contributions from the cross-coupling terms are

given by:

gX (t)~
Xmc

j

X
tn
X

vt

bX ,jDj(t{tn
X ), ð7Þ

where the basis functions of the cross-coupling filters are denoted

by Dj , j~1,:::,mc (and similarly for gZ(t)). Note that although

spline basis functions are used for both self- and cross-coupling

filters, Bj=Dj due to different maximal lags (unless mh~mc). The

exact shape of the basis functions, i.e., the order of the spline

representation, did not have a significant impact on the reported

results (see Figures S1F and G).

We determined the maximal lags for the self- and cross-coupling

filters separately by a BIC criterion [83]. For the self-history

kernel, models with varying maximal lags (up to two times the

burst cycle period of the data set) were fit without any cross-

couplings. The burst cycle period is defined as the length of the

data set divided by the number of bursts separated by an interspike

interval of more than 200 ms. The negative log-likelihood {log L
evaluated on the data used for fitting (Equation (3)) was corrected

by a term
p

2
log(N) where p is the number of model parameters

and N is the number of sample points to yield the BIC value:

BIC~{2 log Lz
p

2
log(N). We then summed BIC values for all

neurons of the same data set.

Once we determined the maximal lag for the self-coupling filter,

we fitted full models including the cross-coupling filters and varied

their maximal lag up to 1.2 times the burst cycle period of the data

set. The maximal range of tested values was chosen so that a U-

shaped curve could be obtained in all cases. The lag that

corresponded to the minimal BIC value was then chosen as the

maximal lag for all six cross-coupling filters.

Model parameters ~bb were fitted using standard maximum-

likelihood techniques [84,85]. Prior to fitting, explanatory

variables whose presence allowed the perfect prediction of the

absence of spikes were removed together with the corresponding

data bins. This was the case, for example, whenever spikes of a

putative presynaptic neuron were never followed by a spike of the

modeled neuron at a fixed delay. The maximum-likelihood

solution for the value of the interaction filter at this delay diverges

to minus infinity. To ensure convergence of the model estimation

procedure, the corresponding coefficients were fixed to 220 so

that the resulting probability of spiking is practically zero.

Furthermore, a lower bound of 220 was imposed on all

coefficients. The results of the analysis are not dependent on the

exact value of this cut-off parameter (Figure 2F).

Statistical significance of single parameter values can be

(approximately) established using the Wald statistic [85]. Here,

we are interested in the statistical significance of a specific

interaction filter that is composed of mc basis functions with

associated parameters. If b̂bs denotes the subset of parameters of the

complete estimated parameter vector b̂b and I(b̂bs) the correspond-

ing entries of the observed Fisher information matrix, then the

compound test statistic b̂b
0
sI(b̂bs)b̂bs follows (approximately) a x2

distribution with mc degrees of freedom [85]. In practice, all

parameter estimates were highly statistically significant so that the

approximative nature of the formula is negligible.

Spike train activity was simulated from the model by drawing

stochastic samples according to Y (t)*Bern(pY (t)) with pY (t)
given by Equation (4) and similarly for neurons X and Z. The

initial spike-history terms gX ,Y ,Z(t) were computed from 1 second

of observed spike trains.

We applied the previously described analysis steps to all four

data sets. Specifically, the model selection procedure (using BIC-

corrected log likelihoods) is performed separately for each data set.

We report and visualize the results only for the first data set, unless

otherwise noted. For all data sets, we used the complete recording

periods unless otherwise noted.

Linear rate model
Firing rates for the three neurons X, Y and Z are obtained from

the spike train recordings by first convolving the spike trains with a

half-Gaussian (i.e., causal) filter with standard deviation

s~
100ffiffiffi

2
p ms. The resulting function is discretized into a time

series with sampling frequency of f ~100 Hz. The values of both

parameters, s and f, are chosen to be consistent with [29], but we

additionally analyzed variations of both parameters in the context

of a sensitivity analysis (see Results). Furthermore, linear trends of

all time series are locally removed [27].

A multivariate linear model is then constructed for the

(normalized, i.e., zero-mean) firing rate at time ti using auto-

and cross-regressive terms as follows:

Reconstructing Connectivity from Spiking Activity
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Y (ti)~
XMs

j~1

~bbY ,jY (ti{j)z
XMc

j~1

~bbX ,jX (ti{j)z

XMc

j~1

~bbZ,jZ(ti{j)z~EE(ti),

ð8Þ

where Ms is the maximal time lag to consider for the self-coupling,

bY ,j (bZ,j ) are the model coefficients for the self-interaction

(interaction with time-series Z) and ~EE(ti) is the noise term. All

model parameters were estimated using standard techniques of

linear regression. The maximal time lag was set to Ms~Mc~40
(i.e., maximal lag of 400 ms) [29], unless otherwise noted. A

threshold of a~
0:05

6
(Bonferroni-corrected for multiple compar-

isons; six cross-couplings) is used to determine significant

interactions.

To generate stochastic samples from the model, multivariate

models were first fit to each neuron. For the first second, the time

series X (t), Y (t) and Z(t) were taken to be the smoothed spike

trains of the real recordings and preprocessed as described before.

Then, for tiw1 s, new activity samples were iteratively simulated

via Eq. (8) with ~EE(ti) being now an i.i.d. sample from a normal

distribution with variance obtained from the model fit.

Definition of coupling strength
For the point process model, we define the directed coupling

strength between two neurons as the net integral of the

corresponding cross-coupling filter:

CS(X?Y )~

ð?
0

Xmc

j

bX ,jDj(t)dt

�����
�����: ð9Þ

An equivalent definition can be made for the linear rate model. In

our case, coupling strengths were qualitatively similar whether a

multivariate or only pair-wise model was used (Figures S1D and

E).

The type of the directed interaction between X and Y is

completely specified by the filter coefficients. The reduction of

the (potentially multifaceted) interaction into a single quantity

like CS is not unique. For the point process model, Equation

(9) captures the integrated modulatory effect of a spike of one

neuron onto the spiking activity of the other neuron. We chose

the integral of the filter in lieu of, e.g., its peak, because it is a

linear function of the model coefficients and thus is more

robustly estimated from a finite amount of data. Moreover,

potentially polyphasic interactions, such as interactions that

are both excitatory and inhibitory on different time scales, are

reduced to their dominant mode. An example of such

polyphasic dynamics for the self-interaction filter might

include short inhibitory refractory effects, followed by excit-

atory burst-like rebounds and longer suppressive periods.

We use the absolute value of the integral in Equation (9) to

obtain a measure of coupling strength that is independent of the

actual direction of modulation (excitatory versus inhibitory). This

direction of interaction can be assessed by computing CS(X?Y )
without taking the absolute value: CSv0 is classified as a net

inhibitory interaction, CSw0 is effectively excitatory. Due to the

constraints of the model, CS measures a combination of synaptic

interactions and post-synaptic excitability if the latter cannot be

completely accounted for by the self-coupling filters, like voltage-

dependent ion channel dynamics.

Granger causality analysis
Granger causality analysis attempts to assess the strength of a

causal (i.e., directed) interaction between two time series X and Y

in the presence of other explanatory variables, e.g. a third time-

series Z. We briefly describe the framework here, more details may

be found elsewhere (for linear models, see [27,86]; for point

process models, see, e.g., [22,23]).

To estimate the causal strength of the directed link X?Y , two

models are constructed: First, an autoregressive model of Y is built

using Y’s own history (and the activity of any other explanatory

variable, here, the activity of the third neuron Z) to predict its next

value. For the point process model, this leads to replacing

Equation (5) by:

hY (ti)~b0zgY (ti)zgZ(ti): ð10Þ

For the linear rate model, the corresponding equation is:

Y (ti)~
XMs

j~1

bY ,jY (ti{j)z
XMc

j~1

bZ,jZ(ti{j)zE(ti), ð11Þ

with residual term E(ti), i.e., the difference between the predicted

and observed value. In this context, we restrict the analysis to

linear autoregressive models with normal innovations, i.e., the

residuals are assumed to be independent random samples of a

Gaussian distribution.

To assess the interaction X?Y , this reduced model is

compared to the full, multivariate models as defined above. If

the inclusion of X’s history significantly decreases the variance of

the residuals, there exists a directed link from X?Y in the sense of

Granger causality.

For linear models, the reduction in variance can be measured by

the log ratio: GC(X?Y )~log
var(E(ti))

var(~EE(ti))
and its significance can

be tested using the F-test procedure (see [27] for details).

For point process models, the Granger causality score is defined

by the log-likelihood ratio, or, in other terms, the difference in

model deviances [23,84]. Because the two models are nested and

likelihoods are evaluated on the training data, Granger causality

scores are always non-negative.

Supporting Information

Figure S1 Results obtained from the point process
model are robust to changes of parameters. A, Model

selection for the maximal lag of self-coupling filters. To determine

the time scale for the self-history kernels, models using only self-

coupling terms were fitted to the spike trains and the model with

an optimal BIC (Bayesian Information Criterion) was chosen (blue

dot). B, Following the choice of the extent of the self-coupling

filter, we added cross-coupling terms to the models of varying

lengths and again selected for the optimal time scale according to

the model selection criterion (blue dot). The model selection

produced self-coupling filters slightly shorter than an average burst

cycle period and cross-coupling filters substantially shorter than

the burst cycle period so that interactions were deemed important

only for time lags on the order of 100 ms. C, Variability of

parameter estimates. Height of the bars indicate the inferred

coupling strength for each of the six possible directed interactions.

Error bars denote standard deviation and are obtained analytically

from the maximum-likelihood parameter estimates and estimated

covariance matrix. D–E, Results are independent of the choice of

a bivariate or multivariate model. For the linear rate model, using
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a bivariate (pair-wise) model instead of the full multivariate model

increased the absolute value of all Granger causality scores (D). In

no case is the physiologically absent connection (PY-to-PD, thick

blue line) estimated as the weakest. Similar results are obtained

when measuring coupling strength as the area under the filter

(data not shown). For the point process model, using a pair-wise

model versus the full multivariate model has little effect on the

inferred coupling strengths (E). This is because of the different

phases in which the three neurons fire in the pyloric rhythm and

the short extent of the coupling filters that lead to little to no

overlap between coupling filters. For both versions of the model,

the physiologically absent connection is inferred as the weakest

(PY-to-PD, thick blue line). F, Results do not depend on the choice

of the polynomial degree of the basis functions. For the point

process model, basis functions for the self- and cross-coupling

kernels were chosen as uniform B-splines of order 3, i.e. quadratic

degree [87]. Here, the coupling strengths of the six cross-couplings

are plotted as a function of different polynomial degrees, ranging

from piecewise-constant functions (degree 0), to linear (1),

quadratic (2) and cubic degree (3). Relative coupling strengths

remain unchanged for all spline orders. Therefore, our results are

robust to changes of the basis. The value used throughout the

analysis in the main manuscript is indicated with an asterisk. G,

BIC-corrected log likelihoods are shown for different choices of the

polynomial degrees of the kernel representation. Lower values

indicate a better fit. The choice of quadratic spline basis functions

(asterisk) is justified from a model selection criterion based on the

log-likelihood criterion.

(TIF)

Figure S2 Multivariate goodness-of-fit analysis for the
point process model increases confidence of the infer-
ence. A, Observed spike train and instantaneous firing rate

estimates. Spike trains (top) and estimated firing rates l(tDHt) are

plotted for the first 800 ms of recordings. Outside of the bursts, the

model assigns a zero firing probability to each time bin. Prior to

the first spike of each burst predicted firing rates begin to rise when

the ongoing inhibition weakens. This should be compared to the

linear rate model where modeled activity is nonzero in a broad

region around each burst and only slowly decays in the out-of-

burst regions (Figure S3A, middle). B–D, Multivariate goodness-

of-fit analysis. We employed the multivariate time-rescaling test as

a goodness-of-fit test for point process models. Residuals are

calculated based on the model fit and the observed spike trains and

should form a homogeneous Poisson process. Normalized residuals

(solid lines) should lie completely within the 95% confidence

intervals (dashed lines) to pass the goodness-of-fit test (B).

Residuals are normalized by the sample size to allow for global

confidence intervals. A necessary condition to pass the multivariate

time-rescaling test is that the superposition of all spike trains forms

a Poisson process with an independent mark sequence. The mark

sequence is the sequence of neuron identities which correspond to

the spikes in the superimposed process. Independence between

consecutive marks in the sequence is tested with a x2 cross-

tabulation test and shows the residual sequence is compatible with

the independence assumption (C, x2(4 d:o:f :)~2:81, P~0:59).

To pass the goodness-of-fit test, the scatter plot of normalized

intervals should uniformly fill the unit area (D). A x2 test of

independence indicates no significant departure from the inde-

pendence assumption (x2 test of serial independence,

x2(81 d:o:f :)~80:0, P~0:51, using 10 bins per dimension).

(TIF)

Figure S3 Goodness-of-fit analysis for the linear rate
model can reveal its inadequacy. A, Comparison of original

and fitted firing rates. The spike trains are smoothed with a half-

Gaussian kernel of fixed bandwidth to obtain a smooth estimate

of the firing rate (top). The fitted signals of the linear rate models

(middle) and the residuals (bottom), the difference between

original and fitted signals, is plotted for 150 consecutive time bins.

Qualitatively, the observed and fitted activity traces seem to

match; however, closer inspection of the residuals reveals that

they are neither Gaussian nor white. For a sufficient model fit,

residuals should form a sequence of independently distributed

Gaussian variables. B–C, Residual analysis shows the linear rate

model is an inadequate model. The histogram of residuals is

shown for the PD neuron (B). Lilliefors’ procedure rejected the

null hypothesis that the residuals are samples of a Gaussian

distribution (red line; Pv10{3). Furthermore, residuals should be

uncorrelated over consecutive time bins. A scatter plot of the

residuals for two consecutive time bins (C) illustrates that

residuals are not independent of each other (histogram-based x2

test of serial independence, x2(81 d:o:f :)~154:9, Pv10{5, using

10 bins per dimension). Here, residuals are normalized by their

empirical cumulative density function. Thus, fundamental

assumptions of the linear model, i.e., that the difference between

the observed signal and the model is Gaussian and random in

time, are violated.

(TIF)

Figure S4 A linear rate model using the Granger
causality criterion to define coupling does not accurately
reproduce the known physiological connectivity for a
wide range of parameter choices. A, Results of linear

Granger causality analysis for varying amounts of data used for

fitting. For comparison, previous analysis [29] used 5 s. The

physiologically absent connection (thick blue line) is never among

the weakest connections. B, Results of linear Granger causality

analysis for varying maximal time lags of the auto- and cross-

regressive filters. Previous analysis [29] used 400 ms (vertical dashed

line). The physiologically absent connection (thick blue line) is never

among the weakest connections. All connections are highly

statistically significant regardless of the maximal time lag. C, Linear

Granger causality fails to recover the known physiological

connectivity for all four data sets. Horizontal scatter is for

visualization only. The GC scores are not the same as in [29]

because we used the full set of recordings. Relative magnitudes are

consistent with previous analysis of [29]. Both analyses used a

multivariate version of the model. D, Granger causality scores for the

nonlinear point process model (horizontal axis) and the linear rate

model (vertical axis) are correlated (r~0:46, P~0:023). The scatter

plot shows the six cross-couplings for each of the four data sets.

(TIF)

Text S1 Additional methods. We present detailed informa-

tion about methods on evaluating goodness-of-fit for point process

models and linear rate models as well as how to quantify the

uncertainty in the coupling strength estimates.

(PDF)
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