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Abstract

The computation represented by a sensory neuron’s response to stimuli is constructed from an array of physiological
processes both belonging to that neuron and inherited from its inputs. Although many of these physiological processes are
known to be nonlinear, linear approximations are commonly used to describe the stimulus selectivity of sensory neurons
(i.e., linear receptive fields). Here we present an approach for modeling sensory processing, termed the Nonlinear Input
Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise
from rectification of a neuron’s inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN)
cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron’s response,
which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire
neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a
given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by
providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently
optimized and appropriately regularized. Parameter estimation is robust and efficient even with large numbers of model
components and in the context of high-dimensional stimuli with complex statistical structure (e.g. natural stimuli). We
describe detailed methods for estimating the model parameters, and illustrate the advantages of the NIM using a range of
example sensory neurons in the visual and auditory systems. We thus present a modeling framework that can capture a
broad range of nonlinear response functions while providing physiologically interpretable descriptions of neural
computation.
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Introduction

Sensory perception in the visual and auditory systems involves the

detection of elemental features such as luminance and sound

intensity, and their subsequent processing into more abstract re-

presentations such as ‘‘objects’’ that comprise our perception. The

neuronal computations performed during such sensory processing

must be nonlinear in order to generate more complex stimulus

selectivity, such as needed to encode the conjunction of multiple

sensory features [1–3] as well as to develop invariance to irrelevant

aspects of the raw sensory input [4,5]. While these computations can

appear inscrutably complex, they are necessarily constructed from

the underlying neural circuitry, which exhibits several well-known

and relatively straightforward nonlinear properties.

Nevertheless, characterizations of sensory neurons still typically

rely on the assumption of linear stimulus processing, which is often

implicit in standard approaches such as spike-triggered averaging

and – more recently – generalized linear models (GLMs) [6–8].

While such descriptions can often provide good predictions of the

neuronal response [9–11], they necessarily leave out the nonlinear

elements of neuronal processing that likely play a major role in

building the sensory percept.

Unfortunately, the space of possible nonlinear models is not

bounded. While one might be inclined to incorporate details of the

system and circuitry in question, more complicated models require

more data for parameter estimation, and often involve poorly

behaved or intractable optimization problems. As a result,

practical nonlinear modeling approaches must make assumptions

that limit the space of functions considered by restricting to a

defined set of nonlinear interactions.

Several different approaches have been developed in this

regard. The most common is to identify a low dimensional

‘‘feature space’’ to which the neuron is sensitive, with the as-

sumption that its firing rate depends on a nonlinear function

applied only to these stimulus features. Prominent examples of this

approach include spike-triggered covariance (STC) analysis

[12,13], which uses the covariance of the stimuli that elicit spikes,

and information-theoretic approaches such as maximally infor-

mative dimensions (MID) analysis [14] and iSTAC [15]. With the

subspace determined, other methods can be used to estimate a

nonlinear mapping between the projection of the stimulus onto

this low dimensional feature space and the firing rate [13–19].

A second general approach is to assume the form of nonlinearities

present, most commonly based on a second-order approximation

of the nonlinear stimulus-response relationship, as with the Wiener-

Volterra expansion [20–24], and more recent versions cast in

a probabilistic context [25–28]. This category might also en-

compass neural network approaches, which characterize the
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stimulus-response relationship in terms of a set of fixed nonlinear

basis functions, using either generic network elements [29,30] or

more specific nonlinear models of upstream sensory processing

[31,32].

A final commonly used approach assumes that relevant

nonlinearities can be captured by directly augmenting the linear

model to account for specific response properties, such as the

addition of refractoriness to account for neural precision

[7,8,33–35], feedback terms that account for adaptation to

contrast [36–38], and other nonlinearities to capture response

properties such as sensitivity to stimulus intensity and local

context [25].

Here, we present a probabilistic modeling framework inspired

by all of these approaches, the ‘Nonlinear Input Model’ (NIM),

which limits the space of nonlinear functions by assuming that

nonlinearities in sensory processing are dominated by spike

generation, resulting in both rectification of the inputs to the

neuron, as well as rectification of the neuron’s output. By assuming

a neuron’s inputs are rectified, the NIM implicitly describes

neuronal processing as a sum over excitatory and inhibitory

inputs, which is increasingly being seen as an important factor in

sensory processing [39–43]. The NIM expands directly on the

GLM framework, and is able to utilize recent advances in the

statistical modeling of neural responses [7,8,17,44,45], including

the ability to model spike-refractoriness [7,8] and multi-neuron

correlations [8,44].

As we show here, this results in a parsimonious nonlinear

description of a range of neurons in both the visual and auditory

systems, and has several advantages over previous approaches.

Because of its relatively simple model structure, parameter

estimation is well-behaved and makes efficient use of the data,

even when the number of relevant inputs is large and/or the

stimulus is high-dimensional. Importantly, because its form is

based on an integrate-and-fire neuron, model selection and

parameter estimation can be guided by specific knowledge about

the inputs to a given neuron, and the elements of the resulting

model can often be related to specific physiological predictions.

The NIM thus provides a powerful and general approach for

nonlinear modeling that complements other methods that rely on

more abstract formulations of nonlinear computation.

Results

Nonlinear combination of multiple inputs: ON-OFF retinal
ganglion cells

Perhaps the greatest success of linear models is in the retina,

where it has been used primarily to describe the spike responses of

retinal ganglion cells (RGCs) [10,11,16]. For a given RGC,

estimating the components of the linear model typically involves

measuring its spiking response to a noise stimulus, and then

computing the average stimulus that preceded its spikes: the spike-

triggered average (STA). The STA linear filter can produce very

good response predictions for typical RGCs under stationary

stimulus conditions, but clearly fails for ON-OFF cells (commonly

found in rodents), which respond to both increases and decreases

of light intensity [46–49]. This failure for ON-OFF cells occurs

simply because the STA identifies only a single stimulus

dimension, and averages out the opposing stimulus features that

evoke ON and OFF responses.

To explore this situation, we construct a basic model of an ON-

OFF RGC, which receives separate ON and OFF inputs (Fig. 1A).

If these two inputs were to combine linearly, their effect would be

identical to that of a single input generated by the sum of the two

stimulus filters, i.e., (s?kON)+(s?kOFF) = s?(kON+kOFF) = s?kSUM.

Here the stimulus s at a particular time is represented as a vector

(which in general includes time-lagged elements to account for

stimulus history) such that the operation of a linear filter k is given

by a dot product. Because of the averaging implicit in linear

processing, a nonlinear transformation must be applied to each

input in order to enable the model ON-OFF neuron to respond to

both types of stimuli: i.e., f(s?kON)+f(s?kOFF). These f(.) are taken

to be rectifying functions (Fig. 1A), as seen experimentally [50,51],

and as modeled in [52–54]. As a result, the response of the neuron

to increases or decreases of luminance is dominated by the ON or

OFF pathways respectively (Fig. 1B), producing a response that is

selective to both ON and OFF stimulus dimensions. As expected,

the STA (Fig. 1C) for this neuron does not match either the ON or

OFF stimulus filters, but rather reflects their average.

Thus, this is a clear example where nonlinear characterization is

necessary to capture the RGC’s stimulus selectivity. One such

approach that has been applied to ON-OFF cells is spike-triggered

covariance (STC) analysis [49,55], which identifies stimulus

dimensions along which the variance of the spike-triggered

ensemble is either increased or decreased relative to the stimulus

distribution [12,13]. For the example neuron in Fig. 1, STC

analysis identifies a stimulus dimension along which the variance

of the spike-triggered ensemble is expanded (Figs. 1D, E). While

neither the STA nor STC filters correspond to the true ON or

OFF filters, together they define a stimulus subspace that contains

the true filters (Fig. 1E).

Given the dimensionality reduction achieved in determining the

STC subspace (or with other subspace identification methods), it is

possible in principle to completely characterize the neural response

function, i.e., r = F[k1?s, k2?s]. In two-dimensions, such as in this

example, this nonlinear mapping from the subspace to a firing rate

can be estimated non-parametrically [18,56] given enough data,

and potentially approximated in higher dimensions

[13,15,18,19,57].

However, even if accurate estimation of this nonlinear mapping

were possible, such functions are difficult to interpret, even when

arising from the conjunction of simpler components. For example,

in our simulated ON-OFF RGC, neither the STA/STC filters

Author Summary

Sensory neurons are capable of representing a wide array
of computations on sensory stimuli. Such complex
computations are thought to arise in large part from the
accumulation of relatively simple nonlinear operations
across the sensory processing hierarchies. However,
models of sensory processing typically rely on mathemat-
ical approximations of the overall relationship between
stimulus and response, such as linear or quadratic
expansions, which can overlook critical elements of
sensory computation and miss opportunities to reveal
how the underlying inputs contribute to a neuron’s
response. Here we present a physiologically inspired
nonlinear modeling framework, the ‘Nonlinear Input
Model’ (NIM), which instead assumes that neuronal
computation can be approximated as a sum of excitatory
and suppressive ‘neuronal inputs’. We show that this
structure is successful at explaining neuronal responses in
a variety of sensory areas. Furthermore, model fitting can
be guided by prior knowledge about the inputs to a given
neuron, and its results can often suggest specific physio-
logical predictions. We illustrate the advantages of the
proposed model and demonstrate specific parameter
estimation procedures using a range of example sensory
neurons in both the visual and auditory systems.

A Nonlinear Neuronal Model of Sensory Processing
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themselves nor the measured nonlinear mapping make it clear that

the response is generated from separate inputs with relatively

straightforward nonlinearities.

This example thus motivates the modeling framework that we

present here, the Nonlinear Input Model (NIM), which describes a

neuron’s stimulus processing as a sum of nonlinear inputs, following

the structure of the generative model shown in Fig. 1. Below, we first

present procedures for estimating the parameters of the NIM before

demonstrating its ability to recover the inputs to the ON-OFF

RGC, as well as its application to a range of other simulated and

measured data from both visual and auditory brain areas.

Parameter estimation for the Nonlinear Input Model
(NIM)

The computational challenges associated with parameter

estimation are a significant barrier to the successful development

and application of nonlinear models of sensory processing. In the

standard linear-nonlinear (LN) model, the neuron’s response is

modeled by an initial stage of linear stimulus filtering, followed by

a static nonlinear function (‘‘spiking nonlinearity’’) that maps the

output to a firing rate (Fig. 2A). The more recent adaptation of

probabilistic models based on spike train likelihoods, such as in the

Generalized Linear Model (GLM) [6–8], allows for integration of

Figure 1. ON-OFF RGC simulation. A) Schematic showing the ON (top, red) and OFF (bottom, blue) inputs to the simulated ON-OFF RGC. The
temporal filters (left) process the stimulus, and the upstream nonlinearities (black, middle) are then applied to the filter outputs. The sum of the two
inputs is then passed through the spiking nonlinearity (black, right). The distributions of the stimulus filtered by the ON and OFF pathways, as well as
the distribution of their summed input to the simulated neuron are shown as gray shaded regions. B) A simulation showing how the response to a
15 Hz (Gaussian) white noise stimulus is constructed. The stimulus (black) is filtered by the ON and OFF temporal kernels (dashed red and blue), and
then transformed by the upstream nonlinearities (solid red and blue). The resulting instantaneous firing rate (green) is given by the sum of these
inputs passed through the spiking nonlinearity. C) The STA (black) resembles the average of separate ON (red) and OFF (blue) filters of the generative
model. D) Similar to panel C, the first STC filter (gray) resembles a mixture of the ON and OFF filters. E) Stimuli eliciting spikes (black dots) are
projected onto the two-dimensional subspace spanned by the STA and first STC filter, shown in units of z-score. The distributions of stimuli
corresponding to spikes (dashed lines on top and left) are compared to the marginal stimulus distributions (solid), demonstrating a systematic bias
along the STA (horizontal) axis, and an increased variance along the STC (vertical) axis. The true ON and OFF filters (red and blue) are also contained in
the STA/STC subspace, as indicated by the red and blue lines lying on the unit circle (green). The inner green circle has a radius of one standard
deviation. F) The neuron’s firing rate as a function of the stimulus projected into the 2-D STA/STC subspace (shaded color depicts firing rate:
increasing from blue to red).
doi:10.1371/journal.pcbi.1003143.g001

A Nonlinear Neuronal Model of Sensory Processing
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other aspects of neuronal processing into the linear stimulus-

processing framework, and can be used to model nonlinear

stimulus processing through predefined nonlinear transformations

[31,32,58]. Importantly, this approach also provides a foundation

for parameter estimation for the NIM.

A principal motivation for the NIM structure is that if the

neuronal output at one level is well described by an LN model,

downstream neurons will receive inputs that are already rectified

(or otherwise nonlinearly transformed). Thus, we use LN models

to represent the inputs to the neuron in question, and the neuron’s

response is given by a summation over these LN inputs followed by

the neuron’s own spiking nonlinearity (Fig. 2B). Importantly, this

allows us to account for the rectification of a neuron’s inputs

imposed by the spike-generation process. The NIM can thus be

viewed as a ‘second-order’ generalization of the LN model, or an

LNLN cascade [59,60]. Previous work from our lab [45] cast this

model structure in a probabilistic form, and suggested several

statistical innovations in order to fit the models using neural data

[45,61,62]. Here, we present a general and detailed framework for

NIM parameter estimation that greatly extends the applicability of

the model. This model structure has also been suggested for

applications outside of neuroscience in the form of projection

pursuit regression [63], including generalizations to response

variables with distributions from the exponential family [64].

The processing of the NIM is comprised of three stages (Fig. 2C):

(a) the filters ki that define the stimulus selectivity of each input; (b)

the static ‘upstream’ nonlinearities fi(.) and corresponding linear

weights wi which determine how each input contributes to the

overall response; and (c) the spiking nonlinearity F[.] applied to the

linear sum over the neuron’s inputs. The predicted firing rate r(t) is

then given as:

r(t)~F
X

i

wifi ki
:s(t)ð Þð Þzh:x(t)

" #
, ð1Þ

where s(t) is the (vector-valued) stimulus at time t, x(t) represents

any additional covariates (such as the neuron’s own spike history),

and h is a linear filter operating on x. Note that equation (1)

reduces to a GLM when the fi(.) are linear functions. The wi can

also be extended to include temporal convolution of the subunit

contributions to model the time course of post-synaptic responses

associated with individual inputs [45], as well as ‘spatial’

convolutions to account for multiple spatially distributed inputs

with similar stimulus selectivity [65]. Since equivalent models can

be produced by rescaling the wi, and fi(.) (see Methods), we

constrain the subunit weights wi to be either +/21. Because we

generally assume the fi(.) are rectifying functions, the wi thus specify

whether each subunit will have an ‘excitatory’ or ‘inhibitory’

influence on the neuron.

Parameter estimation for the NIM is based on maximum

likelihood (or maximum a posteriori) methods similar to those used

with the GLM [6–8]. Assuming that the neuron’s spikes are

described in discrete time by a conditionally inhomogeneous

Poisson count process with rate function r(t), the log-likelihood (LL)

of the model parameters given an observed set of spike counts

Robs(t) is given (up to an overall constant) by:

LL~
X

t

Robs(t)log r(t){r(t)ð Þ: ð2Þ

To find the set of parameters that maximize the likelihood (eq.

2), we adapt methods that allow for efficient parameter

optimization of the GLM [7]. First, we use a parametric spiking

nonlinearity given by F[x] = alog[1+exp(b(x-h))], with scale a,

shape b, and offset h. Other functions can be used, so long as they

satisfy conditions specified in [7]. This ensures that the likelihood

surface will be concave with respect to linear parameters inside the

spiking nonlinearity [7], and in practice will be well-behaved for

other model parameters (see Fig. S1; Methods).

Figure 2. Schematic of LN and NIM structures. A) Schematic diagram of an LN model, with multiple filters (k1, k2, …) that define the linear
stimulus subspace. The outputs of these linear filters (g1, g2, …) are then transformed into a firing rate prediction r(t) by the static nonlinear function
F[g1,g2,…], depicted at right for a two-dimensional subspace. Note that while the general LN model thus allows for a nonlinear dependence on
multiple stimulus dimensions, estimation of the function F[.] is typically only feasible for low (one- or two-) dimensional subspaces. B) Schematic
illustration of a generic neuron that receives input from a set of ‘upstream’ neurons that are themselves driven by the stimulus s. Each of the
upstream neurons provides input to the model neuron that is generally rectified due to spike generation (inset at left), and thus is either excitatory or
inhibitory. The model neuron then integrates its inputs and produces a spiking output. C) Block diagram illustrating the structure of the NIM, based
on (B). The set of inputs are represented as (one-dimensional) LN models, with a corresponding stimulus filter ki, and ‘‘upstream nonlinearity’’ fi(.).
These inputs are then linearly combined, with weights wi, and fed into the spiking nonlinearity F[.], resulting in the predicted firing rate r(t). The NIM
thus has a ‘second-order LN’ structure (or LNLN), with the neuron’s own nonlinear processing shaped by the LN nature of its inputs.
doi:10.1371/journal.pcbi.1003143.g002
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Because it is straightforward to estimate the linear term h, and

the wi are constrained to be +/21, the upstream nonlinearities fi(.)

and the stimulus filters ki are the key components that must be fit

in the NIM. While it is typically not feasible to optimize the

likelihood with respect to both sets of parameters simultaneously,

an efficient strategy is to use block coordinate ascent [66],

alternating between optimizing the ki and fi(.), in each case holding

the remaining set of parameters constant (see Methods). ‘Linear’

parameters, such as h and h, can be optimized simultaneously

during either (or both) optimization stages.

While the set of ‘upstream nonlinearities’ fi(.) can be represented

as parametric functions such as rectified-linear or quadratic

functions (see Methods), a powerful approach is to represent them

as a linear combination of basis functions Qj(.) such as piecewise

linear ‘‘tent’’ basis functions, i.e., fi(g) =Sj aijQj(g) [17,45]. In doing

so, estimation of the upstream nonlinearities reduces to estimating

linear parameters aij inside the spiking nonlinearity, with a single

global optimum of the likelihood function for a given set of

stimulus filters ki.

For a fixed set of upstream nonlinearities, the stimulus filters ki

can be similarly optimized, although the resulting likelihood surface

will not in general be convex because the ki operate inside the

upstream nonlinearities. Nevertheless, we have found that in

practice their optimization is well-behaved and that local minima

can be avoided with appropriate optimization procedures (Fig. S1;

see Methods). Furthermore, it is straightforward to evaluate the

likelihood function and its gradient with respect to the ki analytically

(see Methods), allowing for efficient gradient-based optimization.

Thus, optimal parameter estimates for the NIM can be

determined efficiently, even for models with large numbers of

parameters (see examples below). The time required for filter

estimation (typically the most time-consuming step) scales

approximately linearly with the experiment duration, the dimen-

sionality of the stimulus, and the number of model subunits (Fig.

S2). This is very favorable compared with alternative nonlinear

modeling approaches such as MID [14], which require using

simulated annealing and quickly becomes intractable as the

number of filters and/or stimulus dimensions is increased.

Furthermore, because the NIM provides an explicit probabilis-

tic model for the neuronal spike response, regularization of the

model components can be incorporated without adversely

affecting the behavior of the optimization problem [7] (see

Methods). This is particularly important when optimizing high-

dimensional spatiotemporal filters and/or models with many

inputs, which are both discussed further below. Likewise, as with

other probabilistic modeling approaches – but not those relying on

spike-triggered measurements [67] – the model can be optimized

using data recorded with natural stimulus ensembles (containing

complex correlation structure, and non-Gaussian distributions)

without introducing biases into the parameter estimates.

The NIM thus provides a nonlinear modeling framework in

which large numbers of parameters can be efficiently estimated

using data recorded with arbitrarily complex stimulus ensembles.

In addition to this flexibility, the NIM provides model fits that

are more directly interpretable due to its physiologically

motivated model structure. To illustrate these advantages, below

we first apply the NIM to the example ON-OFF RGC from

Fig. 1, and then demonstrate its wide applicability on recorded

and simulated neurons in several different sensory areas.

Nonlinear models of the ON-OFF retinal ganglion cell
example

Returning to the example ON-OFF RGC (Fig. 1), the NIM is a

natural choice given that its structure matches that of the

simulated neuron. Using the estimation procedures described

above, the NIM is able to successfully capture the true stimulus

selectivity of its individual inputs (Fig. 3A), including the ‘upstream

nonlinearities’ associated with each input, as well as the form of the

spiking nonlinearity (see Methods).

This example thus illustrates the core motivation behind the

NIM of modeling a neuron’s stimulus processing in terms of

rectified neuronal inputs. While the structure of the simulated

RGC neuron in this example may appear to be a convenient

choice, its form is consistent with other models of ON-OFF

processing [48,53], and with models of RGCs in general [54,68].

Thus, to understand the advantages and disadvantages of the

NIM structure, it is useful to compare it with the dominant

alternative approach for describing nonlinear stimulus processing:

‘‘quadratic models’’. Such models have recently been cast in an

information-theoretic context [15,27,28], as well as in the form of an

explicit probabilistic model [26] which has been referred to as the

‘Generalized Quadratic Model’ (GQM). The GQM can be viewed

as a probabilistic generalization of STA/STC analysis [26] and of

the second-order Wiener-Volterra expansion [20]. The GQM can

also be written in the form of a NIM where the upstream

nonlinearities fi(.) are fixed to be linear or squared functions:

r(t)~F kLszsT Cs
� �

&F kLsz
XM
i~1

wi ki
:sð Þ2

" #
, ð3Þ

where kL is a linear filter, and the M squared filters ki generally

provide a low-rank approximation to the quadratic component C
[26]. In this sense, the probabilistic framework described here is

easily extended to encompass quadratic models, providing a means

for direct comparison between different nonlinear structures.

For the ON-OFF RGC, the GQM finds one linear and two

quadratic filters, all of which are contained in the two-dimensional

subspace identified by STC analysis, meaning that the GQM filters

are also linear combinations of the true ON and OFF filters (Fig. 3B).

Note that while two filters are sufficient to span the relevant stimulus

subspace, the third GQM filter provides an additional degree of

freedom to capture the best quadratic approximation to the

underlying ‘neural response function’ (Fig. 3E).

Although in this example the resulting quadratic function

cannot completely capture the form of the response function

constructed from rectified inputs, we note that it still provides a

good approximation, as shown by only modest reductions in

model performance compared to the NIM (Fig. 3F). However, as

expected from a second-order Taylor series expansion, such an

approximation breaks down further from the ‘‘origin’’ of the

subspace. Thus, the quadratic approximation will typically be less

robust for stimuli with heavy-tailed distributions such as those

associated with natural stimuli [69–71]. To illustrate this point we

performed simulations of the same ON-OFF RGC presented with

white noise stimuli having a Student’s t-distribution, where the tail

thickness was controlled by varying the number of degrees of

freedom (Fig. 3G). The improved performance of the NIM over

the GQM is indeed substantially enhanced for stimulus distribu-

tions with heavier tails (Fig. 3H). We also verified similar effects for

a range of simulated neurons (data not shown).

We emphasize that one of the key advantages of the NIM over

previously described methods is that it provides a more

interpretable picture of stimulus processing as a sum of rectified

neuronal inputs. As we demonstrate through several examples

below in both the visual and auditory systems, it appears that

sensory computation by neurons will often adhere to this general

A Nonlinear Neuronal Model of Sensory Processing
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Figure 3. Comparison of NIM and quadratic model. A) The filters fit by the NIM (green dots) are able to capture the true underlying ON and
OFF filters (red and blue), as well as the shape of the upstream nonlinearities (right), which are shown relative to the corresponding distributions of
the filtered stimulus (gray shaded). The ranges of the y-axes for different subunits are indicated by the numbers above, for comparison of their
relative magnitudes. These ‘subunit weights’ are scaled so that their squared magnitude is one. B) The filters fit by the GQM, consisting of two
(excitatory) squared filters (magenta and light blue) and a linear filter (green trace), are different than the true filters (red and blue), but are in the
same subspace, as demonstrated in (E). C) The simulated neuron’s response function (shaded color depicts firing rate) and true filters (red and blue)
projected into the STC subspace (identical to Fig. 1F). D) Response function predicted by the NIM. The filters identified by the NIM (dashed green)
overlay onto the true filters. E) Same as (D) for the GQM, with colored lines corresponding to the filters in (B). F) Model performance is plotted for the
STC, GQM, and NIM fit with different numbers of filters (indicated by different circle sizes). Log-likelihood (relative to the null model) is shown on the
x-axis, and the ‘predictive power’ [99] is shown on the y-axis; both were evaluated on a simulated cross-validation data set. The NIM (blue)
outperforms the GQM (red), both of which outperform a nonlinear model based on the STC filters (black, see Methods). The STC model and GQM
achieve maximal performance with 3 filters, since this is sufficient for capturing the best-fit quadratic function in the relevant 2-D stimulus subspace,
while the NIM achieves optimal performance with two filters, as expected. G) To determine how model performance depends on the stimulus
distribution we simulated the same neuron’s response to white noise luminance stimuli with Student’s t-distributions, ranging from Gaussian (i.e.,
n = ‘, dashed black) to ‘‘heavy tailed’’ (decreasing n from red to blue). H) The log-likelihood improvement of the NIM over the GQM increases as a
function of the tail thickness (parameterized by 1/n) of the stimulus distribution (which also determines the tail thickness of the filtered stimulus
distributions). The GQM is able to provide a very close approximation for large values of v (i.e., a more normally-distributed stimulus), but has lower
performance compared to the NIM for more heavy-tailed stimuli.
doi:10.1371/journal.pcbi.1003143.g003
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form, which is motivated primarily by physiological, rather than

mathematical, considerations.

Inferring the interplay of excitation and inhibition in
visual and auditory neurons

One of the main advantages of the NIM structure is the ability

to specifically model the effects of inhibitory inputs, which are

increasingly being shown to have a large impact on neuronal

processing in many sensory areas [72–74]. Indeed, the NIM

generates predictions of the functional tuning of excitation and

inhibition, and provides insight into their role in sensory

processing. To demonstrate this, we apply the NIM to example

neurons from visual and auditory areas.

We first consider an example cat LGN neuron during the

presentation of natural movies [45,75,76]. Accurate characteriza-

tion of LGN processing poses substantial challenges for previous

nonlinear approaches, due to the high temporal resolution of LGN

responses in this context [77] combined with the large number of

spatial dimensions of the stimulus. As a result, previous nonlinear

applications have either utilized lower temporal resolutions [78,79]

or parametric models of the spatial processing [38,45,80]. The

methods described here allow for (appropriately regularized)

spatiotemporal receptive fields (STRFs) of LGN neurons to be

fit at sufficiently high resolution, using natural movies. We find

that the response of the example LGN neuron consists of an

excitatory receptive field that is delayed relative to the linear

STRF (Fig. 4A), along with a second, more delayed ‘suppressive’

receptive field (Fig. 4B), corresponding to putative inhibitory input.

Unlike in previous studies, the tractability of the fitting procedures

used here allows for high spatial and temporal resolution of the

putative inputs (Fig. 4B), as well as the application of sparseness

and smoothness regularization (see Methods). By comparison, the

GQM identifies similar STRFs, but has worse performance

(Fig. 4C), as well as a different nonlinear structure and resulting

physiological interpretation (Fig. S3).

Next we consider an example neuron from zebra finch area MLd,

as the animal is presented with conspecific bird songs [81–83].

These neurons respond to specific frequencies of the song input, and

hence their stimulus selectivity can be characterized by a linear

spectrotemporal receptive field (STRF) [9], which can be recovered

in an unbiased manner using maximum-likelihood estimation

(Fig. 5A) [84] despite the presence of higher order correlations in the

stimulus. Application of the NIM to this example neuron again

recovers both an excitatory and a temporally delayed suppressive

component (Fig. 5B). The description of the neuron’s stimulus

tuning provided by the NIM is closely related to that given by the

linear model, but instead of identifying positive and negative

domains of the linear STRF as excitatory and suppressive, these

effects are segregated into different nonlinear processing subunits,

each individually rectified. The separate excitatory and suppressive

inputs provide a more accurate description of the underlying

stimulus processing than a single linear STRF, as demonstrated by

the significantly improved model performance of the NIM

compared with the LN model (Fig. 5C). As with the LGN example,

the GQM identifies similar excitatory and suppressive filters as the

NIM, but again provides a less physiologically interpretable

description of the underlying computation (Fig. S4), and has

comparable, if slightly reduced, performance (Fig. 5C).

Modeling complex neural response functions in terms of
rectified inputs

Thus far we have only considered cases where the neuron’s

response is described by a NIM with a small number of inputs,

consistent with simpler stimulus processing in sub-cortical areas. In

contrast, in the visual cortex, even V1 ‘simple cells’ can exhibit

selectivity to large numbers of stimulus dimensions [57,62].

Further, the dominant model of V1 ‘complex cells’ is the

nonlinear ‘‘Energy Model’’ [10,85–87], which posits quadratic

Figure 4. Spatiotemporal tuning of excitatory and suppressive
inputs to an LGN neuron. A) The linear receptive field can be
represented as the sum of two space-time separable components,
corresponding to the receptive field center (red) and surround (blue). B)
The NIM with excitatory (top) and suppressive (i.e., putative inhibitory,
bottom) inputs. The excitatory and suppressive components (solid)
both have slower, and less biphasic, temporal responses (left) compared
with the linear model (dashed). The suppressive input is also delayed
relative to the excitatory input. Both excitatory and suppressive inputs
have roughly the same spatial profiles (middle), and both provide
rectified input through the corresponding upstream nonlinearities
(right). C) The NIM has significantly better performance, as measured by
cross-validated log-likelihood, compared to the linear model (p = 0.002;
n = 10 cross-validation sets; Wilcoxon signed rank test) and the GQM
(p = 0.002).
doi:10.1371/journal.pcbi.1003143.g004
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stimulus processing that results in the response representing the

amount of local, oriented, band-pass ‘‘stimulus energy’’. The

Energy Model has been broadly tested [10,87], and is well

supported by previous nonlinear modeling approaches

[13,26,27,57,88]. While the Energy Model provides a functional

description of stimulus processing for V1 complex cells, it is less

clear how such stimulus selectivity is constructed, and how it is

related to V1 simple cell processing. Here we demonstrate that the

NIM can describe both simple and complex cell processing as a

sum of rectified inputs, providing a basis for a unified description

of visual cortical neuron computation [62].

We first consider two simulated V1 neurons in order to

demonstrate the capacity for such a unified description, before

applying the NIM to experimental data. We generate simulated

data using a one-dimensional white-noise bar stimulus aligned

with the simulated neurons’ preferred spatial orientation (Fig. 6A),

which is a common, relatively low-dimensional, stimulus used in

nonlinear characterizations of V1 neurons [57,88,89]. The first

simulated neuron’s response is constructed as a sum of six rectified

direction-selective inputs (Fig. 6B), consistent with the structure of

the NIM, while the second neuron’s response is constructed from

four such inputs processed by a squaring nonlinearity, similar to

the standard Energy Model of V1 complex cells [85].

For the neuron with rectified inputs, the NIM fitting procedure

is indeed able to identify the true underlying stimulus filters and

the form of the rectifying upstream nonlinearities (Fig. 6C).

Additionally, while the optimal number of filters can be

determined using the cross-validated model performance, the

identified stimulus filters, and the resulting model performance

itself, are relatively insensitive to specification of the precise

number of model subunits (Fig. S5). This demonstrates the ability

of the NIM to robustly identify even relatively complex stimulus

processing, in cases where such processing arises from a sum of

rectified inputs.

Furthermore, as with the ON-OFF RGC example above (Figs. 1

and 3), STC analysis of this simulated V1 neuron can identify the

appropriate stimulus subspace, although not the true underlying

filters (Fig. 6D). Because of the high dimensionality of the resulting

subspace, however, it is more difficult to estimate the mapping

from the subspace to the neuronal response compared with the

ON-OFF example. The lack of alignment between the STA/STC

filters and the true filters further complicates a straightforward

interpretation of the estimated function.

By comparison, the GQM identifies filters with characteristics

that more closely resemble those of the true input filters (e.g., more

localized, fewer lobes). The improved performance of the GQM

compared with an STC-based model (Fig. 6E) highlights the

greater power and flexibility of a probabilistic modeling frame-

work, particularly the importance of regularization. Nevertheless,

the GQM filters still reflect non-trivial linear combinations of the

true filters, as with the STC filters (Fig. 6E, bottom).

Of course, one would expect the NIM to outperform other

models when the generative model is composed as a sum of

rectified inputs. In a second simulated example, however, we

illustrate the flexibility of the NIM in capturing other neural

response functions. The second simulated neuron is constructed

from four direction-selective inputs that are squared and summed

together to generate a quadratic response function (Fig. 6F). The

NIM is still able to identify the true generative model using pairs of

rectified inputs with equal but opposite input filters to represent

each quadratic filter (Fig. 6G). This representation is certainly not

the most efficient in this case, as the GQM is able to identify the

correct filters (Fig. 6I) using fewer parameters and a more

straightforward estimation procedure.

These two simulated V1 examples thus illustrate the potential

tradeoffs between the NIM and GQM. On the one hand, the NIM

provides a more flexible framework that can capture a broader

range of nonlinear stimulus processing. In fact, any response

function can in principle be represented with this structure [90].

The NIM structure is also more appropriate for explicitly

modeling neuronal inputs, and thus allows for more plausible

physiological interpretation of its components. On the other hand,

the GQM can capture the nonlinear mapping up to second order

more efficiently, and identifies the relevant stimulus subspace

robustly. This suggests the potential for combining these

Figure 5. Spectrotemporal tuning of excitation and suppres-
sion in the songbird auditory midbrain. A) The linear spectro-
temporal receptive field (STRF; left) contains two subfields of opposite
sign. B) The excitatory (top) and suppressive (bottom) spectrotemporal
filters identified by the NIM are similar to the positive and negative
subfields of the linear STRF respectively. However, these inputs are both
rectified by the upstream nonlinearities (right), resulting in different
stimulus processing (see Fig. S4). C) Comparison of log-likelihoods of
the LN model, GQM, and NIM. Red lines show the performance across
models for each cross-validation set. Note that the duration of the
recording, and the neuron’s relatively low firing rate, limit the statistical
power of model comparisons.
doi:10.1371/journal.pcbi.1003143.g005
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Figure 6. Modeling stimulus selectivity arising from many inputs. A) Simulated V1 neurons are presented with one-dimensional
spatiotemporal white noise stimuli (left). Their stimulus processing is constructed from a set of spatiotemporal filters (example shown at right),
depicted with one spatial dimension (x-axis) and time lag (y-axis). B) The first simulated neuron is constructed from six spatially overlapping direction-
selective filters (top), similar to those observed experimentally for V1 neurons. Below, the corresponding filtered stimulus distributions are shown
along with the respective upstream nonlinearities (blue). C) The NIM identifies the correct spatiotemporal filters (top), as well as the form of the
upstream nonlinearities (middle). The projections of the NIM filters onto the true filters (bottom) illustrate that the NIM identifies the true filters. D)
The STA for the simulated neuron (left), along with the three significant STC filters (right) are largely contained in the subspace spanned by the true
filters, but reflect non-trivial linear combinations of these filters (bottom). E) The GQM is composed of a linear input (left) and three excitatory squared
inputs (right). While the GQM filters are more similar to the true filters, they also represent non-trivial linear combinations of them (bottom). F) The
second simulated neuron consists of four similar, but spatially shifted, inputs that are squared. G) The NIM represents each true (squared) input by an
opposing pair of rectified inputs. H) The STA (left) does not show any structure because the neuron’s response is, by construction, symmetric in the
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approaches when investigating complex neuronal processing, such

as by using the GQM to identify the relevant stimulus subspace

and provide initial estimates of the number and properties of NIM

filters, followed by application of the NIM framework (see

Methods; Figs. S1, S3).

Application of the NIM to recorded V1 neurons
While the simulated examples above allowed for model

comparisons when the neurons’ response functions were known,

they also provide a foundation for understanding model fits to real

V1 data. We first consider a V1 neuron recorded from an

anesthetized macaque in the context of similar one-dimensional

white noise stimuli [57]. While this neuron has a clear STA and is

considered a simple cell by classical measures, STC analysis

identifies two excitatory and six suppressive stimulus dimensions

(based on inspection of the eigenvalue spectrum) in addition to the

STA (Fig. 7A). In this case, the GQM identifies similar filters to

STC analysis, although the application of smoothness and

sparseness regularization allows it to resolve more realistic stimulus

filters (Fig. 7B), and produce significantly improved model

performance (Fig. 7D) compared to an STC-based model (see

Methods).

We also fit a NIM with six excitatory and six suppressive

stimulus filters, where the number of filters was selected based on

cross-validated model performance (Fig. 7C; see also Fig. S5). As

expected, these 12 filters span a stimulus subspace that is largely

overlapping with the subspace identified by the GQM. However,

the additional stimulus filters, and the inferred upstream non-

linearities associated with each subunit, allow the NIM to capture

additional aspects of the neural response function that significantly

improve the cross-validated model performance relative to the

quadratic models (Figs. 7D, E). We also note that the NIM appears

to identify a more consistent set of stimulus filters than the

quadratic models.

Similar comparisons also come to light in when applying the

models to V1 complex cells, even in the most demanding stimulus

contexts. To illustrate this, we consider an example V1 neuron

recorded from an anesthetized cat presented with natural and

naturalistic stimuli (Fig. 8A) [62,91]. Because the stimuli are

sequences of two-dimensional images, the required spatiotemporal

stimulus filters span two dimensions of space and one dimension of

time (Fig. 8B), resulting in a very large number of parameters

associated with each subunit. Nevertheless, the parameters of the

GQM and NIM can be estimated directly utilizing appropriate

regularization (see Methods).

The GQM estimated for this neuron is comprised of a pair of

excitatory, direction-selective squared filters, as well as a weaker,

non-direction-selective linear filter (Fig. 8C). This characterization

reflects the neuron’s spatial-phase invariance, and is thus

consistent with an Energy Model description. While such

selectivity suggests that this neuron would be ideally suited for a

quadratic model, the NIM (Fig. 8D) significantly outperforms both

the GQM and a whitened STC-based model [9,58,62] (Fig. 8E).

The NIM identifies four rectified excitatory inputs that share

similar spatial tuning and direction selectivity, but with different

spatial phases (Fig. 8D). This description is similar to that provided

by the quadratic terms of the GQM, but by identifying the

nonlinearities associated with each of these inputs individually, the

NIM has additional flexibility that results in improved perfor-

mance (Fig. 8E). This suggests that a description of complex cells

using physiologically plausible inputs (in the form of the NIM) may

be a viable alternative to the Energy Model. The improved

performance of the NIM is also likely due, at least in part, to the

heavy-tailed distribution associated with the naturalistic movie

stimuli (as described above, Figs. 3G, H).

Thus, the application of the NIM to V1 neurons further

illustrates the generality of the method, and specifically emphasizes

its ability to capture substantially more complex stimulus

processing, with large numbers of inputs. We note that because

cortical neurons are several synapses removed from receptor

neurons, a cascade model with a longer chain of upstream LN

components might be more appropriate, although existing

methods could not be used for parameter estimation with such a

model. The ability of the NIM to capture a given neuron’s

stimulus processing thus relates to the extent to which the

upstream neurons themselves can be approximated by LN models.

In cases where this assumption is not appropriate, one can apply a

fixed nonlinear transformation to the stimulus resembling the

response properties of upstream neurons [31,32], thus allowing the

problem to be cast into a more general NIM framework.

Conclusions
We have presented a physiologically inspired modeling frame-

work, the NIM, which extends several recently developed

probabilistic modeling approaches. Specifically, the NIM assumes

a form analogous to an integrate-and-fire neuron, whereby a

neuron receives a set of rectified excitatory and inhibitory inputs,

each of which is assumed to process the stimulus linearly. The

parameters can be estimated robustly and efficiently, and the

resulting model structure is able to capture a broader range of

neural responses than previously proposed probabilistic methods.

Importantly, the physiologically inspired model structure of the

NIM also allows for greater interpretability of the model fits, as the

components of the model take the form of stimulus-driven

excitatory and inhibitory inputs. The NIM thus provides a

framework for connecting nonlinear models of sensory processing

directly with the underlying physiology that can be applied in a

range of sensory areas and experimental conditions.

Methods

Parameter estimation details
As described above, the key parameters in the NIM are the

stimulus filters ki and the set of coefficients aij representing the

upstream nonlinearities fi(.). While these parameters cannot

generally be optimized simultaneously, a powerful approach is to

use block coordinate ascent [66] and alternate between optimizing

the filters ki, and upstream nonlinearities fi(.), holding the

remaining parameters fixed in each iteration. The parameters of

the spiking nonlinearity function F[x; a,b,h] = alog[1+exp(b(x-h))]

can also be estimated iteratively, or as a final stage after

convergence of the ki and fi(.) (which we find is typically sufficient).

Note that the parameter b is not generally identifiable in the model

(being degenerate with the coefficients aij of the upstream

nonlinearities), but joint estimation of a and b after the other

model parameters are fixed allows for a more precise final fit to the

spiking nonlinearity function.

Thus, at each stage of the fitting procedure we have the problem

of maximizing a (penalized) log-likelihood function with respect to

some subset of parameters, while holding a remaining set of

stimulus. The four significant STC filters (right) represent distributed linear combinations of the four underlying filters. I) The GQM recovers the correct
stimulus filters, given appropriate sparseness regularization.
doi:10.1371/journal.pcbi.1003143.g006
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parameters fixed. In all cases, we use a standard line search

strategy to locate an optimum of the likelihood function given

some initial values for the parameters. Because we are often

optimizing very high-dimensional parameter vectors (specifically

when optimizing the ki), we use a quasi-Newton method with a

limited-memory BFGS approximation of the inverse Hessian

matrix [92] to determine the search direction. This code is

implemented in the Matlab function ‘‘minFunc’’, provided by

Mark Schmidt (available at http://www.di.ens.fr/,mschmidt/).

When using sparseness (L1) regularization we utilize the Matlab

package ‘‘L1General’’, also provided by Mark Schmidt. When

optimizing the coefficients aij of the upstream nonlinearities we

additionally enforce a set of linear constraints (described below),

and in such cases we utilize Matlab’s constrained optimization

routine ‘‘fmincon’’. A Matlab implementation of the NIM

parameter estimation routines described here is available from

our website: (http://www.clfs.umd.edu/biology/ntlab/NIM/)

Optimizing the filters ki

Optimization of the filters can be accomplished efficiently by

analytic calculation of the log-likelihood gradient with respect to

the ki, which is given by:

Figure 7. Models of multi-input stimulus processing in a V1 neuron. A) Standard spike-triggered characterization for this neuron reveals a
‘complicated simple-cell’ response [62], with a clear direction-selective STA (left), two excitatory STC filters (middle), and six suppressive STC filters
(right). B) The GQM identifies a set of filters (one linear, two squared excitatory, and six squared suppressive) that are roughly similar to the STA/STC
filters, but with smoother and sparser spatiotemporal structure (due to regularization). C) The NIM filters (top) and upstream nonlinearities (bottom)
reveal a similar description of the stimulus processing, although with greater consistency among the (six) excitatory and (six) suppressive stimulus
filters. D) Comparison of the cross-validated log-likelihood of the LN model (one linear filter), the ‘STC model’ given by fitting a GLM to the outputs of
the STA/STC filters (see Methods), the GQM, and the NIM. Given the neuron’s simple-cell-like response (i.e., large weight of the STA), a large fraction of
the response can be captured with the linear filter alone (the LN model). Nevertheless, all three multi-filter models provide substantial improvements
compared to the LN model. E) In order to compare the performance of the nonlinear (multi-filter) models directly, their improvement relative to the
LN model is depicted. This shows that the GQM significantly outperforms the ‘STC’ model (p = 0.002; n = 10; Wilcoxon signed rank test), and that the
NIM similarly outperforms the GQM (p = 0.002).
doi:10.1371/journal.pcbi.1003143.g007
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:s(t)ð Þ, F’[.] and fi’(.) are the derivatives

of F[.] and fi(.) with respect to their arguments, and sm(t) is the mth

element of the stimulus at time t. While the likelihood surface is not

generally convex with respect to the ki, the optimization problem

is well-behaved in practice. We note that while the derivatives of

the fi(.) are discontinuous (piece-wise constant) when using the tent-

basis representation (eq. 6 below), gradient-based optimization

methods still provide robust results, in particular because we use

regularization to enforce smooth fi(.) such that the contribution of

the discontinuities to the overall log-likelihood gradient is

negligible in practice.

To diagnose the presence of undesirable local maxima, and to

identify the global optimum of the likelihood function, we use

repeated random initializations of our optimization routine (Fig.

S1). In some cases, such as the ON-OFF RGC example (Figs. 1, 3),

this approach reveals that the choice of initial values for ki does

not affect the identified local optimum. In other cases, the

likelihood surface will contain more than one distinct local

maximum, although usually only a small number. For example,

when optimizing the filters for the example MLd neuron (Fig. 5)

we found two distinct local optima of the likelihood function. For

models with large numbers of subunits, the filter optimization

remains well-behaved, generally identifying a relatively small

number of local optima that correspond to similar models (Fig.

S1).

This procedure can be greatly sped up by initially optimizing

the filters in a low-dimensional stimulus subspace, rather than in

the full stimulus space. Such subspace optimization has been

previous used in conjunction with STC analysis to identify the

relevant stimulus subspace [15,62,93]; however the GQM

provides a means of generalizing the robust subspace identification

properties of STC analysis to arbitrary non-Gaussian stimuli, and

in cases where regularization is important. With a low-dimensional

subspace identified the filters of a NIM can be rapidly optimized,

and many filter initializations can be tested.

Fitting the upstream nonlinearities fi(.)
We begin the NIM fitting with its upstream nonlinearities fi(.)

initialized to be threshold-linear functions:

f (x)~
0 if xƒ0

x otherwise

� �
, ð5Þ

and perform initial estimation of the filters. While other rectifying

functions can be used, the use of scale-invariant functions such as

this one has the advantage that the effect of the upstream

nonlinearity is independent of the scale of the filter.

After estimating the ki, we then estimate the fi(.) nonparame-

trically, as a linear combination of a set of piecewise linear basis

functions fi(g) =Sj aijQj(g) [17,45], while holding the ki fixed. These

basis functions are given by:

Qk(x)~

x{xk{1

xk{xk{1
if x[ xk{1,xk½ �

xkz1{x

xkz1{xk

if x[ xk,xkz1½ �

0 otherwise

8>>>><
>>>>:

9>>>>=
>>>>;
: ð6Þ

These piecewise linear functions are particularly useful as they

provide a set of localized basis functions, requiring only that we

choose a set of ‘grid points’ xk. These points can be selected by

Figure 8. Models of a V1 neuron in the context of natural
stimuli. A) The natural movie stimulus used here has two spatial and
one temporal dimension. B) The neuron’s response is characterized in
terms of three-dimensional spatiotemporal filters. An example spatio-
temporal filter is comprised of a spatial filter at each time step (at 20 ms
resolution). To simplify the depiction of each filter, we take advantage
of their stereotyped structure, and plot the spatial distribution at the
best time slice (BTS, left), as well as the space-time projection (STP,
right) along an axis orthogonal to the preferred orientation (red line;
see Methods). C) The GQM for this neuron consists of one linear (top)
and two excitatory squared filters (bottom). The BTS and STP for each
filter are shown at left, and the distributions of the filtered stimulus, and
associated nonlinearities, are shown at right. Note that the two squared
filters roughly form a ‘quadrature pair’ of direction-selective Gabor
filters. There is also a linear filter (top), which has less clear spatial
structure, and is not direction-selective. D) The NIM consists of four
excitatory filters (left) that are qualitatively similar to the quadrature pair
of GQM filters. However, by identifying four inputs with inferred
upstream nonlinearities (right), the NIM has greater flexibility in
describing the neuron’s computation. E) Comparison of model
performance for the LN and STC-based models, as well as the GQM
and NIM, showing that the NIM substantially outperformed other
models for this neuron.
doi:10.1371/journal.pcbi.1003143.g008
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referencing the distribution of the argument of fi(.), i.e., p(gi) where

gi(t) = kiNs(t), either at n-quantiles of p(gi), or at uniformly spaced

points across the support of p(gi). In order to encourage

interpretability of the model subunits as ‘neural inputs’, we

constrain the fi(.) to be monotonically increasing functions by using

a system of linear constraints on the aij during optimization.

Because the model is invariant to shifts in the ‘y-offset’ of the fi(.)

(which can be absorbed into the spiking nonlinearity function), we

add the additional set of constraints that fi(0) = 0 to eliminate this

degeneracy. Furthermore, changes in the upstream nonlinearities

can influence the effective regularization of the ki, by altering how

each ki contributes to the model prediction. As a result, the

coefficients aij are rescaled after each iteration so that the standard

deviation of each subunit’s output is conserved. This ensures that

the upstream nonlinearities do not absorb the scale of the ki.

Regularization
An important advantage of explicit probabilistic models such as

the NIM is the ability to incorporate prior knowledge about the

parameters via regularization. Because each of the filters ki often

contains a large number of parameters, regularization of the filters

is of particular importance, as discussed elsewhere in the context of

the GLM [9,58,84,94–97], as well as other nonlinear models [26].

Such regularization can impose prior knowledge about the

smoothness [9,26,94], sparseness [58,84,94–96], and localization

[62,97] of filters in space, frequency and time.

We consider several different forms of regularization in the

examples shown, to encourage the detection of smooth filters with

sparse coefficients. Specifically, we add a general penalty term of

the form:

X
i

lLs
i Lskik k2zlLt

i Ltkik k2zls
i kik k1 ð7Þ

to the equation for the log-likelihood (equation 2), where Ls and Lt

are the discrete Laplacian operators with respect to spatial (or

spectral) and temporal dimensions respectively, and li
Ls , li

Lt and

li
s are hyperparameters which determine the strength of spatial

and temporal smoothness, and sparseness regularization, respec-

tively. Other types of regularization, such as those that encourage

localized filters [62,97], as well as approximate Bayesian

techniques for inferring hyperparameters [26,58,94,96] could be

incorporated as well, although we do not do so here.

Because we also expect the upstream nonlinearities fi(.) to be

smooth functions, we incorporate penalty terms when estimating

the parameters of the fi(.). Because we represent the fi(.) as linear

combinations of localized tent basis functions: fi(.) = aijQj(.), we can

encourage smooth fi(.) by applying a penalty of the form:

li
LILaijI2 to the set of coefficients aij corresponding to a given

fi(.), where L is again the one-dimensional discrete Laplacian

operator.

In general, the hyperparameters can be inferred from the data

using Bayesian techniques [94], or estimated using a (separate)

cross-validation data set. Both methods can be time-consuming,

however, and in practice we find that similar results can be

achieved by ‘manually’ tuning the hyperparameters to produce

filters ki and upstream nonlinearities fi(.) with the expected degree

of smoothness/sparseness. To demonstrate that our results were

not overly sensitive to the selection of hyperparameters, we

compare the NIM and GQM fit to the example V1 neuron from

Fig. 8 using a range of regularization strengths (Fig. S6).

Evaluating model performance
To evaluate model performance, we use k-fold cross-validation,

in general taking the log-likelihood as a performance metric. The

likelihood has the advantage over related measures such as R2 in

that it does not require repeated stimulus presentations to estimate,

and thus can be applied to most data sets. It can also capture

goodness-of-fit when spike history terms are incorporated [35].

Subtracting the log-likelihood of the null model (that predicts a

constant firing rate, independent of the stimulus) provides a

measure of the information carried by the spike train about the

stimulus, in units of bits per spike [45,98]. This measure is also

directly related to the more traditional measure of deviance, which

compares the log-likelihood of the estimated model to that of the

‘saturated’ model. In order to provide a more direct connection to

standard measures of model performance based on repeated

presentations of a stimulus, we also computed the ‘predictive

power’ of the models for the simulated ON-OFF RGC (Fig. 3F),

which is defined as the fraction of ‘explainable’ variance accounted

for by the model [99]. Due to the lack of sufficient repeat trial data

for our recorded data examples we could not compute this

measure in those cases, however qualitatively similar results would

be expected.

Model selection
While selection of the optimal number of excitatory and

suppressive subunits can be performed using standard model

selection techniques, such as nested cross-validation, this choice

can also often be guided by the specific application. Importantly,

we find that the subunits identified by the NIM, as well as its

performance, are generally robust towards precise specification of

the number of excitatory and suppressive subunits, with ‘nearby’

models typically providing a very similar characterization of the

neurons’ stimulus processing (Fig. S5). This robustness is further

aided by the incorporation of sparseness regularization on the

filters, where the filters of extraneous subunits tend to be driven to

zero. The procedure of testing a series of NIMs with different

subunit compositions can again be substantially facilitated by

optimizing the filters in a low-dimensional stimulus subspace, such

as identified by STC or GQM analysis (Fig. S5).

RGC simulation details
In order to simulate the response of an ON-OFF RGC, we

generated a Gaussian white noise process sampled at 15 Hz (such

as a luminance-modulated spot stimulus), which was then filtered

using separate ON- and OFF-like filters (Fig. 1A). These filter

outputs were then rectified using functions of the form f(x) = lo-

g(1+exp(b1x)), summed together and the resulting signal was passed

through a spiking nonlinearity of the form F[x] = alog(1+exp(b2(x-

c))). This conditional intensity function was then used to generate a

set of spike times. To generate heavy-tailed stimulus distributions

(Figs. 3G, H), we sampled white noise from a Student’s t-

distribution with a range of values for the degrees of freedom to

control the tail thickness.

The data were simulated at a temporal resolution of 8.3 ms, and

model filters were represented at a lower resolution of 33 ms, with

a length of 1 s. For the GQM and NIM we incorporated

smoothness regularization on the filters, and for the NIM we also

incorporated smoothness regularization on the upstream nonlin-

earity coefficients aij.

To identify the STA/STC subspace depicted in Figs. 1 and 3,

we performed STC analysis after projecting out the STA. For

comparison with the NIM, we also created a simple model based

on the STA and STC filters, using a GLM-based optimization of

linear coefficients on the outputs of the STA filter and the squared

A Nonlinear Neuronal Model of Sensory Processing
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outputs of the STC filters, similar to previous work [58]. Note that

in order to maximize performance when estimating STC-based

models, we did not project out the STA before computing the

STC filters.

LGN neuron model fit details
Data for the LGN example were recorded extracellularly from

an anaesthetized and paralyzed cat by the Alonso Lab [45,75,76].

The stimulus consisted of 800 seconds of a 32632 pixel natural

movie, refreshed at 60 Hz, which was recorded from a camera

mounted on top of a cat’s head [100]. A 17617 pixel patch of the

movie was cropped around the receptive field, detected via STA at

the optimal latency, and the movie was up-sampled by a factor of

six, to produce a temporal resolution of 2.8 ms. Ten-fold cross-

validation was used for evaluating model performance.

Each filter was represented by space-time separable center and

surround components, and thus consisted of two sets of spatial and

temporal filters [101]. Temporal filters were represented with 30

equally spaced tent basis functions, with grid points ranging from 0

to 2240 ms. For the LN model, the spatial filters were initialized

as Gaussian functions with the same center as the STA and

different widths (1 pixel for the center and 6 pixels for the

surround). For the GQM and NIM, both excitatory and

suppressive filters were initialized to be the same as the optimal

linear filters. In the filter optimization stage, the spatial and

temporal filters were optimized alternately until convergence of

the log-likelihood. Both the GQM and the NIM were fit using

smoothness regularization for the spatial and temporal kernels,

and sparseness regularization for the spatial kernels. For the NIM,

we also used smoothness regularization on the aij when estimating

the upstream nonlinearities.

Songbird auditory midbrain model fit details
Data for the songbird auditory midbrain example were

provided by the Theunissen lab through the CRCNS database

[83], and details of experimental methods can be found in [81,82].

The example neuron was recorded extracellularly from the zebra

finch mesencephalicus lateralis dorsalis (MLd). Stimuli consisted of

20 different conspecific bird songs, each lasting 2–4 sec, and each

presented 10 times. These 20 songs were then divided into 5 equal

groups for five-fold cross-validation. The raw sound waveforms

were preprocessed by computing the spectrogram using a short-

time Fourier transform to produce a stimulus matrix X(t,f),

representing the power of the audio signal at frequency f and time

t. We used a time resolution of 2 ms, and 20 uniformly spaced

frequency bins, ranging from 250 Hz to 8 kHz. For estimating

spectrotemporal filters, we used 20 time lags. Thus, each filter was

represented by 400 parameters. Filter estimates were regularized

using sparseness and smoothness penalties, where the smoothness

penalty utilized the spectrotemporal Laplacian (with equal

weighting in the frequency and time dimensions).

V1 simulation details
The simulated V1 neurons shown in Fig. 6 were constructed as

LNLN models (Fig. 2C). The stimulus filters were spatial Gabor

functions that were amplitude- and phase-modulated in time (i.e.,

direction-selective). Stimulus filters were identical up to a spatial

translation, and were weighted by a spatial Gaussian envelope.

The filter outputs were then passed through a set of static

nonlinear functions (either x2, or log(1+exp(b1x))), before being

summed together, and passed through the spiking nonlinearity

(again, of the form alog(1+exp(b2(x-c))) to generate a conditional

intensity function. Spike times were simulated in response to

binary random bar stimuli [57], using a time resolution of 10 ms,

and 24 bar positions.

Both the GQM and NIM were fit using a sparseness penalty on

the filters. For the NIM, we also used smoothness regularization on

the aij when estimating the upstream nonlinearities. To measure

how well the estimated model filters matched the true filters, we

represented the model filters as linear combinations of the true

filters.

V1 neuron modeling details
The V1 neuron shown in Fig. 7 was recorded from an

anesthetized macaque [57]. The stimuli (refreshed at 100 Hz)

consisted of random arrays of black and white bars covering the

neuron’s classical receptive field, and oriented along its preferred

orientation. Full experimental details can be found in [57].

Spatiotemporal filters were represented by 16 ‘pixels’ and 14 time

lags. For model evaluation we used ten-fold cross-validation.

Model fitting was analogous to that described for the V1

simulations (Fig. 6). STC-based models were constructed as

described above for the simulated ON-OFF RGC.

The V1 neuron shown in Fig. 8 was recorded from an

anesthetized cat [91]. The stimuli consisted of natural and

naturalistic movies at various contrasts, including noise processes

with pink spatial and white temporal statistics, pink temporal and

white spatial statistics, pink temporal and pink spatial statistics, and

natural movies recorded with a ‘cat cam’ [100]. The mean

luminance across all stimuli (15 different stimuli, each lasting

2 minutes) was the same. The raw movies were 64664 pixels and

were sampled at 50 Hz. These raw movies were spatially down-

sampled and cropped to produce 20620 pixel patches that were

individually mean-subtracted. Model performance was evaluated

using five-fold cross-validation, with cross-validation sets con-

structed by taking 20% of the data from each stimulus type.

For all analysis we used 8 time lags to construct spatiotemporal

filters (each described by 8620620 = 3200 parameters). For STA/

STC analysis we first whitened the stimulus by rotating into the

principal component axes and normalizing each dimension to

have unit standard deviation [9]. Because the stimulus covariance

matrix for natural stimuli has many eigenvalues close to zero, we

avoided amplifying noise associated with these low-variance

dimensions by using a pseudoinverse of the covariance matrix,

effectively discarding the n lowest variance dimensions of the

stimulus [9,95]. In addition to removing biases due to pairwise

correlations in the stimulus, this method effectively imparts a prior

favoring spatiotemporally smooth filters, since the lowest variance

dimensions of natural stimuli have high spatial and temporal

frequencies. We retained 500/3200 of the stimulus dimensions for

STA/STC analysis.

To estimate filters of the LN model, GQM and NIM, we used

sparseness regularization, as well as penalties on the (two-

dimensional) spatial Laplacian at each time lag. To display the

three-dimensional spatiotemporal filters we plot the time slice of

each filter containing the most variance across pixels (‘best time

slice’), as well as the projection of the filter onto a spatial axis

orthogonal to the neuron’s preferred orientation (‘space-time

projection’) [62]. The preferred orientation was determined by

fitting a two-dimensional Gabor function to the best time slice for

each filter, and taking the (circular) average of the individual

Gabor orientations across all filters.

Supporting Information

Figure S1 Robustness of filter estimation. A) For the

simulated ON-OFF RGC in Figs. 1 and 3, the likelihood function
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with respect to the NIM stimulus filters shows only a single global

optimum (up to an interchange of the filters) over a broad range of

parameter space. To illustrate this, 100 iterations of the

optimization were performed with random initializations of the

filters, and in all cases the correct filters were identified. The

initial filters are projected onto the true ON and OFF filters

(inset), and are plotted along with the resulting optimized filter

projections. Each iteration of the optimization is thus represent-

ed by a pair of optimized filters (large blue and red circles),

along with a pair of initial filters (small blue and red circles,

color coded based on the resulting filter estimates). B) For the

example MLd neuron in Fig. 5, we found two distinct local

maxima when optimizing the NIM stimulus filters, correspond-

ing to the two clusters of the maximized log-likelihood across

many repetitions of optimizing the filters with random initial

conditions. The global optimum (right) corresponds to the set of

filters shown in Fig. 5, while a locally optimum solution (left)

corresponds to the excitatory filter matching the STA. C) For

the simulated V1 neuron shown in Fig. 6A, optimization of the

NIM is again well-behaved. In this case there are potentially

several spurious local maxima, illustrated by the distribution of

maximized log-likelihood values. However, these local maxima

correspond to models that are very similar to the identified

global maximum, as shown by the similar log-likelihood values,

as well as the similarity of the identified filters (example models

shown at left and right).

(EPS)

Figure S2 NIM parameter optimization scales approx-
imately linearly. A) The time required to estimate the filters

(black) and upstream nonlinearities (red) scales linearly as a

function of data duration for the ON-OFF RGC simulation (with

two subunits) shown in Figs. 1 and 3. The error bars show +/21

standard deviation around the mean across multiple repetitions of

the parameter estimation (with random initialization). Estimation

was performed on a machine running Mac OS X 10.6 with two

2.26 GHz quad-core Intel Xeon processors and 16 GB of RAM.

B) To measure parameter estimation time as a function of the

number of stimulus dimensions, we simulated a V1 neuron (similar

to that shown in Fig. 6A) receiving two rectified inputs (data

duration of 105 time samples). We then varied the number of time

lags used to represent the stimulus and measured the time required

for parameter estimation. Estimation of the stimulus filters scales

roughly linearly with the number of stimulus dimensions, while

estimation of the upstream nonlinearities is largely independent of

the number of stimulus dimensions. C) Parameter estimation time

for the filters and upstream nonlinearities also scales approxi-

mately linearly as a function of the number of subunits. Here we

again used a simulated V1 neuron similar to that shown in Fig. 6A,

although with 10 rectified inputs (200 stimulus dimensions and

data duration of 105 time samples). Note that the additional step of

estimating the upstream nonlinearities adds relatively little to the

overall parameter estimation time, especially for more complex

models.

(EPS)

Figure S3 Comparison of the NIM and GQM for the
example LGN neuron. The linear model (A), NIM (B), and

GQM (C) fit to the example LGN neuron from Fig. 4 are shown

for comparison. Here (A) and (B) are reproduced from Figs. 4A

and B respectively. Note that the spatial and temporal profiles of

the linear and squared (suppressive) GQM filters are largely

similar to the (rectified) excitatory and suppressive filters identified

by the NIM. Despite the similarity of the identified filters,

however, the NIM and GQM imply a different picture of the

neuron’s stimulus processing, as illustrated in Fig. S4.

(EPS)

Figure S4 Different predictions of the GQM and NIM
with excitation and delayed suppression. The GLM (A),

NIM (B), and GQM (C) fit to the example MLd neuron in Fig. 5

(A and B here are reproduced from Figs. 5A and B). The NIM

and GQM identify similar excitatory and suppressive filters, but

the GQM assumes linear and squared upstream nonlinearities

for these inputs respectively, while the NIM infers the rectified

form of these functions. Despite the similarities in the identified

filters, the different upstream nonlinearities in these models

imply distinct interactions between the excitatory and suppres-

sive inputs. To illustrate this, we consider how these different

models process two stimuli in (D) and (E), which highlight these

differences. D) First, we consider a negative impulse (left)

presented at the preferred frequency (horizontal black lines in

A–C). The outputs of the excitatory (blue) and suppressive (red)

subunits are shown for the linear model (top), GQM (middle),

and NIM (bottom). The combined outputs of these subunits are

then transformed by the spiking nonlinearity into the corre-

sponding predicted firing rates at right. In this case, only the

linear model responds to the stimulus, since the GQM is

strongly suppressed, and the NIM is largely unaffected due to

the rectification of the negatively driven inputs. E) Similar to

(D), we consider a biphasic stimulus (left), also presented at the

neuron’s preferred frequency. This stimulus drives different

responses in all three models. The response predicted by the

GQM is by far the weakest because the (squared) suppression

driven by the initial negative phase of the stimulus coincides

with the excitation driven by the positive phase of the stimulus,

causing them to partially cancel each other out. For the NIM,

the negative phase of the stimulus does not drive the

suppression, due to rectification, and the excitation is able to

elicit a much larger response. The response predicted by the

linear model is even larger since this is essentially the optimal

stimulus for driving the linear filter. This suggests targeted

stimuli that might be able to distinguish the computations being

performed by MLd neurons.

(EPS)

Figure S5 Selecting the number of model subunits. A)

To illustrate the robustness of NIM parameter estimation to

specification of the precise number of subunits, we first consider

the simulated V1 neuron from Fig. 6A, which was constructed

from six rectified excitatory subunits. Fitting a sequence of NIMs

(blue) and GQMs (red) with increasing numbers of (excitatory)

subunits reveals that the log-likelihood (evaluated on a simulated

cross-validation data set) initially improves dramatically, but

becomes nearly saturated for models with four or more subunits.

Here we plot log-likelihood relative to that of the best model,

and error bars show one std. dev. about the mean. While it is

possible in this case to identify the true number of underlying

subunits (six) from the cross-validated model performance of the

NIM, the model performance is relatively insensitive to

specification of the precise number of subunits. B) Stimulus

filters from example NIM fits from (A), with four, six, and eight

filters. Note that the identified filters are nearly identical across

these different models, and when more than the true number

(six) of subunits are included in the model, sparseness

regularization on the filters tends to drive the extra filters to

zero, yielding effectively identical models. C) To illustrate the

procedure of selecting the number of model subunits with real

data, we consider fitting a series of models to the example MLd
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neuron from Fig. 5. In this case there are both excitatory and

suppressive stimulus dimensions, so we independently vary the

number of each. Average (+/21 std. error) cross-validated

model performance is depicted for each subunit composition for

models with up to three subunits (the color indicates the number

of suppressive subunits). While we do not have sufficient data to

identify statistically significant differences, a two-filter model

with one excitatory and one suppressive filter appears to achieve

optimal performance. D) Three example NIM fits for one, two,

and three-filter models corresponding to the Roman numerals in

(C). (i) Model with one excitatory subunit. (ii) Model with one

excitatory and one suppressive subunit. (iii) Model with two

excitatory and one suppressive subunits. Note that the excitatory

and suppressive filters from the two-filter model are also present

in the three-filter model, and that the addition of a second

excitatory subunit (resembling the linear filter) provides little, if

any, additional predictive power. E) Similar to (C–D), we

consider fitting models with different numbers of excitatory and

suppressive subunits to the example macaque V1 neuron from

Fig. 7. In this case, the neuron is selective to a large number of

stimulus dimensions (Fig. 7A), and thus there are a large number

of possible excitatory/suppressive subunit compositions to

consider. To greatly speed this process (and illustrate a

procedure for rapid model characterization), we fit the NIM

filters in a reduced stimulus subspace (see Methods) that is

identified by a GQM with four excitatory and six suppressive

dimensions. The number of subunits in the GQM was selected

in order to ensure that all filters with discernible structure were

included. The figure then shows the average (+/21 std. error)

cross-validated log-likelihood (relative to a model with two

excitatory and one suppressive filters) for NIMs with varying

numbers of excitatory and suppressive subunits. Note that the

model performance increases initially, but tends to saturate for

models with more than about four excitatory and four

suppressive subunits. For comparison, the cross-validated log-

likelihood of the GQM (green line) – which established the

stimulus subspace – is below most of the NIM solutions. While

fitting the stimulus filters in the full stimulus space provides

slightly different (though qualitatively very similar) results,

limiting the NIM to the subspace provides a tractable way to

fully explore the nonlinear structure of computation, and can

then serve as an initial guess for a more computationally-

intensive search in the full stimulus space. F–G) Two example

NIM fits from those depicted in (E). A NIM with four excitatory

and four suppressive subunits (F) is compared to a NIM with six

excitatory and six suppressive subunits (G), the latter providing

only a slight improvement relative to the former. Both models

provide a qualitatively similar depiction of the neuron’s stimulus

processing, identifying largely similar sets of excitatory and

suppressive inputs.

(EPS)

Figure S6 Selection of regularization parameters. To

illustrate how the performance of our models depends on selection

of the regularization hyperparameters, we fit a series of models to

the example V1 neuron from Fig. 8. For this example neuron

regularization of the stimulus filters is particularly important, given

the large number (3200) of parameters associated with each filter.

As described in the Methods section, we use both smoothness (L2

penalty on the spatial Laplacian) and sparseness regularization on

the filters, each of which is governed by a hyperparameter. While

in principle we could independently optimize these regularization

parameters for each filter, we consider here only the case where all

filters are subject to the same regularization penalties. Further, we

consider optimizing the smoothness and sparseness penalties

independently, which will not in general identify the optimal set

of hyperparameters. A) We first set the sparseness regularization

penalty to zero, and systematically vary the strength of the

smoothness penalty. The cross-validated log-likelihood is plotted

for the NIM (blue trace) and GQM (red trace), showing that the

NIM outperforms the GQM over a range of smoothness

regularization strengths. B–D) Representative filters are shown

from model fits at several regularization strengths, as indicated by

the black circles in (A). The filters are depicted as the ‘best-time

slice’ (BTS) and the ‘space-time projection’ (STP), as in Fig. 8. E)

Similar to (A), we next consider varying the strength of sparseness

regularization given fixed values for the smoothness regularization

(set to the value indicated by the vertical dashed line in A). Note

that the performance of the NIM again remains significantly better

than the GQM across a range of regularization strengths. F–H)

Representative filters at several sparseness regularization strengths,

as indicated in (E). Note that (F) is identical to (C), reproduced for

ease of comparison.

(EPS)
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