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Abstract

Sequence conservation and co-variation of base pairs are hallmarks of structured RNAs. For certain RNAs (e.g. riboswitches),
a single sequence must adopt at least two alternative secondary structures to effectively regulate the message. If alternative
secondary structures are important to the function of an RNA, we expect to observe evolutionary co-variation supporting
multiple conformations. We set out to characterize the evolutionary co-variation supporting alternative conformations in
riboswitches to determine the extent to which alternative secondary structures are conserved. We found strong co-variation
support for the terminator, P1, and anti-terminator stems in the purine riboswitch by extending alignments to include
terminator sequences. When we performed Boltzmann suboptimal sampling on purine riboswitch sequences with
terminators we found that these sequences appear to have evolved to favor specific alternative conformations. We
extended our analysis of co-variation to classic alignments of group I/II introns, tRNA, and other classes of riboswitches. In a
majority of these RNAs, we found evolutionary evidence for alternative conformations that are compatible with the
Boltzmann suboptimal ensemble. Our analyses suggest that alternative conformations are selected for and thus likely play
functional roles in even the most structured of RNAs.
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Introduction

RNA is unique in that it is both a messenger of genetic

information and it can fold to adopt highly specific functional

conformations that carry out catalysis in the cell [1–4]. Large

RNAs have a high propensity to misfold, requiring chaperones

and in many cases protein co-factors to achieve an active

conformation [5–7]. Riboswitches are a class of RNAs that must

adopt at least two conformations to function, since it is ligand

binding induced conformational change that allows them to

regulate transcription and/or translation [8–12]. These molecules

present an interesting evolutionary challenge since the sequence

space should allow both conformations [13–16]. Furthermore,

even small changes in sequence can significantly alter their

structure and favor non-functional conformations [11,17].

Co-variation of RNA bases across species is one of the strongest

signals in biological sequences [18–21] and is observed when

homologous sequences of RNAs are aligned [22–24]. The near

perfect isostericity of the canonical G-C and A-U base-pairs results

in their interchangeability in most RNA stems [25,26]. For an

RNA that adopts a single conformation to carry out its function

(e.g. a group I intron), we expect that the ensemble of co-varying

pairs should point to a single structure. For riboswitches, which

must adopt at least two conformations we hypothesize that co-

variation should be observed in alignments supporting both

conformations.

The purine riboswitch is the simplest system in which we

hypothesize it should be possible to observe co-variation support-

ing alternative conformations [27–29]. The system is schematically

represented in Figure 1A and includes two domains (P1, P2, P3,

which is the aptamer domain) and the terminator stem. We aim to

determine the relative co-variation support for the P1, terminator

and anti-terminator stems of the purine riboswitch to characterize

the evolutionary signal for RNAs known to function through

multiple conformations. Our analysis of this relatively simple

conformational switch provides insight into the strength of the

evolutionary signal that can be expected supporting multiple

conformations. By then applying a similar analysis to other RNA

alignments we aim to determine the likelihood of functionally

important alternative conformations in structured RNA.

Results

Co-variation of the anti-terminator stem in the purine
riboswitch

We begin our investigation into the evolutionary evidence

supporting alternative conformations by considering an RNA that

adopts at least two conformations to carry out its function. The

purine riboswitch changes conformation in the presence of its’

ligand (generally a purine base or derivative) to regulate protein

biosynthesis [30]. Figure 1A represents the secondary structure of
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the ‘‘off’’ conformation for the consensus purine riboswitch as

determined by crystallography [31]. The structure includes the

characteristic P1, P2 and P3 stems of the purine riboswitch as well

as the terminator hairpin, which has not been solved by

crystallography [32,33]. The mechanism of action of this

riboswitch is particularly relevant to our study as it involves a

significant secondary structure rearrangement. In the ‘‘on’’ state,

the P1 stem is not base-paired; instead the anti-terminator is

formed (indicated with red lines in Figure 1A). Given that both the

‘‘on’’ and ‘‘off’’ states of the riboswitch are functionally essential,

one might expect to see co-variation in the anti-terminator base-

pairs across species of purine riboswitches.

Co-variation models (CM) used to identify purine riboswitches

in genomic sequences usually include only the aptamer domain.

This is the case of Rfam family RF00167, which is the starting

point of our analyses for this investigation [34–36]. To determine

the level of co-variation support for the P1, terminator and anti-

terminator stems in the purine riboswitch we aligned the 246

sequences from RFAM family RF00167 in which we could

identify a terminator stem within 100 nucleotides of the aptamer

domain [36,37]. We then computed mutual information (MI) and

inconsistency scores for the columns in the alignment correspond-

ing to the three stems. These two scores evaluate the extent of co-

variation between two columns in the alignment. A high MI score

indicates that a specific base in one column is highly predictive of

the base that is in the second column. A low inconsistency score

indicates that in most cases the co-variation is between canonical

base-pairs (G-C to A-U for example). The MIfold package was

used to compute these scores considering only canonical and G-U

base-pairs, which serves as the metric for co-variation of pairs of

nucleotides in this study [18]. A base-pair with high MI and low

inconsistency is therefore well-supported by evolutionary evidence.

We find that the MI and inconsistency metrics are inversely

correlated, as expected and this suggests that our results are mostly

metric agnostic (see Figure S7). These data are often used to

confirm and/or improve RNA secondary structure predictions

[19,21,38]. In Figure 1B, the first AU base-pairs in both the P1

and Terminator Stem (TS) have high MI values, but we also

observe equivalent evolutionary evidence (MI 0.97, inconsistency

0.04) for the anti-terminator (AT) pair. This is consistent with the

RNA adopting multiple conformations when it acts as a ligand-

induced switch. We observe similar trends for the three other P1/

AT/TS pairs reported in Figure 1B. Additional MI and

inconsistency values for the purine riboswitch are reported in

Table S1 and confirm this trend. We therefore observe equivalent

evolutionary support in the purine riboswitch alignment for the

anti-terminator stem relative to the P1 and terminator stems.

Alternative structures are revealed by Boltzmann
suboptimal sampling

A riboswitch changes conformation upon ligand binding,

allowing it to regulate transcription and/or translation [27–29].

To determine whether thermodynamic folding models support

alternative conformations we performed Boltzmann suboptimal

sampling of the Streptococcus pneumoniae purine riboswitch sequence,

including the five single point mutations that most significantly

affect structure as determined by SNPfold [11,39]. Principal

component analysis of 10,000 Boltzmann sampled suboptimal

structures based on binary base-pair vectors reveals three major

clusters of structures [11,39,40], with cluster probabilities of 20%

(red), 56% (blue) and 24% (green). The ‘‘off’’ conformation of the

riboswitch (Figure 2A, green cluster, the terminator stem is

formed) as well as two alternative ‘‘on’’ conformations where the

anti-terminator stem (red and blue clusters) are represented in the

ensemble.

The high co-variation base-pairs identified in Figure 1 are

highlighted in red (anti-terminator) and black (terminator, P1) in

Figure 2A, indicating that the Boltzmann ensemble is consistent

with the evolutionary analysis presented in Figure 1. Suboptimal

sampling reveals that there are two classes of ‘‘on’’ conformations

possible (red and blue clusters), which is not necessarily evident

from the co-variation data alone. In addition, it is possible to

classify each suboptimal structure into five mutually exclusive

categories depending on the structural features present: P1 stem,

terminator stem, P1 & terminator, Anti-terminator stem, and no

P1, terminator or Anti-terminator stems. When we classify each of

the 10,000 suboptimally sampled structures represented in

Figure 2A, we see that a majority (55.6%) fall into the

antiterminator stem category (Figure 2B). We also find that

15.7% of the structures have both P1 and the antiterminator stem

formed (Figure 2B, yellow bar). Interestingly, 20.7% of the

suboptimal structures adopt conformations where none of the

characteristic riboswitch features are present (No P1, terminator or

Anti-terminator).

These data suggest that although the principal component

visualization used in Figure 2A suggests three major classes of

structures, the RNA suboptimal ensemble is even more complex.

This is borne out by the fact that only 37.6% of the variance of the

structural ensemble is captured in the first two principal

components. It is also due to the fact that the PCA space is

determined by overall structural similarity and not the restricted

analysis of the terminator, P1 and antiterminator stems reported in

Figure 2B. In addition, we purposefully explored riboswitch

conformational space by including select point mutants that

increase structural diversity to generate the principal component

space [11,39].

We performed suboptimal sampling on all the purine riboswitch

sequences previously identified from RFAM RF00167 that include

a terminator sequence. We analyzed each ensemble identifying the

P1 and terminator elements in the suboptimal structure and

plotting their relative abundance using the same coloring scheme

as in Figure 2B. We report these data projected onto the

phylogenetic tree from our riboswitch alignment in Figure 2C.

These data reveal a qualitative correlation between structural

partitioning and phylogenetic origin of the riboswitch. Certain

riboswitch sequences have evolved to adopt predominantly one

structure (e.g. the top half of Bacilli riboswitches are predominantly

‘‘off’’ with P1 and terminator stems formed, while the Desulfoto-

maculum sequence is likely on, with predominantly the antitermi-

Author Summary

RNA (Ribonucleic Acid) is a messenger of genetic infor-
mation, master regulator, and catalyst in the cell. To carry
out its function, RNA can fold into complex three-
dimensional structures. Certain classes of RNAs, called
riboswitches, adopt at least two alternative structures to
act as a switch. We set out to detect the evolutionary
signal for alternative structures in riboswitches as we
hypothesize that these RNA sequences must have evolved
to allow both conformations. We find that indeed such
signals exist when we compare the sequences of
riboswitches from multiple species. When we extend this
analysis to other RNA regulators in the cell that are not
thought of as switches, we detect equivalent evolutionary
support for alternative structures. Viewed through the lens
of evolutionary structure conservation RNA sequences
appear to have adapted to adopt multiple conformations.

Evolution of Alternative Conformations in RNA
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nator stem formed). Thus, evolution appears to fine-tune the

partitioning of the Boltzmann ensemble to favor specific confor-

mations.

High-MI alternative base-pairs in ‘‘structured’’ RNAs
The data presented in Figures 1 and 2 agree with our

understanding of riboswitch function and the need for these

RNAs to adopt at least two conformations to carry out their

function. It is not surprising to find evolutionary evidence

supporting alternative secondary structures in riboswitch align-

ments. However, catalytic ribozymes, such as the Tetrahymena

thermophila group I intron must adopt a single structure to precisely

organize the catalytic site and carry out their function [5,41–47].

We might expect to see less evolutionary evidence for alternative

RNA conformations in a ‘‘highly structured’’ family of RNAs like

the group I introns [5,48–50]. To test this hypothesis we

performed an analogous MI analysis on the group I intron

alignment from the Comparative RNA Web (CRW) database

[51].

Base-pairs with MI values above three different thresholds on a

circle diagram representing the T. thermophila group I intron are

illustrated in Figure 3A. The secondary structure derived from the

crystal structure of the intron is represented in dark gray [52],

base-pairs in the accepted structure with MI values greater than

the threshold are indicated in red. Green base-pairs have MI

values above the threshold but are not in the crystal structure [52].

In Figure 3B, the same coloring scheme is used to project high-MI

canonical pairs onto a crystal structure informed model of the

three-dimensional structure of the intron [53]. Visual inspection of

the three-dimensional structure reveals that most of the high-MI

pairs that are not secondary structure are long range, spanning a

significant section of the 3D structural model [25,54].

The green pairs illustrated in Figures 3A and 3B are ‘‘false-

positives’’ in terms of the prediction of the crystal structure pairs.

Extending this logic, red pairs are ‘‘true-positives,’’ and gray pairs

are ‘‘false-negatives.’’ The rates of true, false, positives and

negative vary with MI making it possible to compute sensitivity

and Positive Predictive Value (PPV) as a function of the threshold.

We computed PPV and sensitivity for these data and report the

resulting curves in Figure 3C. The sum of PPV and sensitivity

(green curve, Figure 3C) reveals the reason behind our choice of

three MI values as illustrative thresholds, with an MI value of 0.41

representing the minima in PPV and Specificity, and the value of

0.78 the maximum.

The data plotted in Figure 3A clearly show strong MI evidence

is found in the group I intron alignment for non-crystal base-pairs

at all MI thresholds (green lines). It is important to point out that

above the highest MI threshold (0.78) the sensitivity (gray line,

Figure 3B) is 33%, i.e. a majority of crystal base-pairs are not

supported by MI. The significant number of gray base-pairs in

Figures 3A and 3B at the 0.78 threshold demonstrate that some of

the stems are not supported by even a single co-varying base-pair.

In their seminal determination of the T. thermophila intron

structure, Michel and Westhof did not take into account the

non-accepted (green) base-pairs for their structural model [38].

These are incompatible with a single structure model and have

previously been considered false-positives for structure determi-

nation. In general, the paradigm for RNA structure prediction

based on co-variation analysis has been to identify the structure

that is compatible with the maximum number of co-varying pairs

based on the idea that a specific RNA sequence folds to a single

conformation [18,19,21].

Another explanation for the non-accepted base-pair co-varia-

tion observed in the group I intron alignment is non-canonical

base-pairing and/or tertiary (3D) interactions [25,54,55]. We

expect that if the green pairs in Figure 3A are due to short-range

non-canonical 3D interactions, these nucleotides should be close in

space in the crystal structure of the group I intron [52]. When

these are projected onto the three-dimensional structure of the

intron as in Figure 3B, these pairs are not close in three-

dimensional space. The mean pair distances for all the pairs above

the MI threshold that are not in the accepted structure is plotted in

Figure 3D. As a reference the mean distance for accepted base-

pairs in the structure (18 Å) is indicated as a red line (gray indicates

61 standard deviation), while the mean pairwise distance for all

pairs (48 Å) is indicated as a green line. We can see that at all MI

thresholds, the green pairs are longer range than the expected

18 Å average of a canonical base-pair. It is therefore not likely that

this evolutionary signal arises due to long-range tertiary contacts in

the RNA.

Ubiquitous long-range high-MI base-pairs in RNA
alignments

We repeated the analysis performed on group I introns

alignments for six other RNA families and summarize our findings

in Table 1, Figures S1, S2, S3, S4, S5, S6 include analogous PPV

an sensitivity plots for these RNAs. High-MI, low inconsistency

pairs are found in all the RNAs we studied that are incompatible

with the crystal structure in approximately the same proportion as

what we observed with the purine riboswitch and group I intron

alignments. More importantly, it is not possible to discern between

RNAs that are generally thought to adopt a single conformation

(e.g. tRNA) and multiple conformations (e.g. riboswitches).

Effectively, when viewed through the lens of co-variation, all

RNAs are the same in terms of their propensity to evolve

alternative conformations.

Column shuffling yields similar fractions of putative
alternative high-MI pairs

We performed column shuffling on the alignments using the

RNAz ‘‘rnazRandomizeAln’’ algorithm to determine the expected

number of alternative high-MI pairs [56,57]. The RNAz

algorithm is designed to maintain local conservation patterns by

only shuffling columns in the alignment with similar degrees of

conservation [24,57]. One limitation of this approach is that no

crystal structure exists as a standard for identifying long-range

high-MI base-pairs. Furthermore, RNAAlifold predictions based

on the shuffled alignment result in sparsely paired RNAs [18,58].

We therefore generated a reference structure by considering all

base-pairs above a threshold MI so as to have an equivalent

number of pairs in the reference as in the crystal. Using this

reference we computed expected PPV and sensitivity values for

Figure 1. Co-variation analysis of purine riboswitch P1, terminator and antiterminator stems [9,27,28,32]. A) Consensus secondary
structure of the aptamer (P1, P2 and P3) and terminator domains. The anti-terminator base-pairs are indicated with red lines, and binding of the
purine ligand to the aptamer domain alters the equilibrium between terminator and anti-terminator stems. B) Representative portion of RFAM
RF00167 illustrating co-variation of base-pairs in the P1, terminator and antiterminator stems. We computed Mutual Information (MI) and
inconsistency scores for each pair of columns in the alignment, considering only canonical Watson-Crick base pairs and G-U wobbles. We observe
significant MI and inconsistency values for the antiterminator stem, indicating evolutionary evidence for alternative conformations in RNA.
doi:10.1371/journal.pcbi.1003152.g001
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Figure 2. Structural analysis of the Boltzmann suboptimal ensemble of the purine riboswitch [40,83]. A) Principal Component Analysis
(PCA) of 10,000 suboptimal conformations of the Streptococcus pneumoniae purine riboswitch sequence reveals three major conformations, indicated

Evolution of Alternative Conformations in RNA
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each shuffled alignment and report these in Table 1. Our data

indicate similar PPV and sensitivity values to those computed

using non-shuffled alignments in the previous section, albeit with

on average slightly higher sensitivity for lower MI thresholds.

These results suggest that the evolutionary process does not

necessarily select for or against multiple conformations but instead

tolerates these from those that are expected by chance.

Discussion

From a chemical perspective, RNA is one of the simplest

biopolymers in the cell being composed of purine and pyrimidine

bases linked by a phosphodiester backbone [59,60]. It is

remarkable that despite this simple chemistry, RNA can fold into

complex three-dimensional structures that are capable of catalysis

[61–63]. However, the simplicity of the RNA nucleotide

‘‘alphabet’’ is at the heart of the structural diversity of the

suboptimal ensemble of structures [40,43,64]. Indeed, the limited

base-pairing partners for any of the four bases makes it much more

likely to find multiple complementary regions in a given RNA

sequence [65].

To illustrate this concept, we roughly estimate that an RNA

sequence longer than 314 nucleotides can adopt more conforma-

tions than there are atoms in the Universe (see methods). A

consequence of this is the remarkable result observed when a

program like Sfold (which performs Boltzmann sampling) is run

twice in a row. The number of identical structures in the two

suboptimal samplings of 1000 structures for the same RNA is

usually between 2 to 3 for RNAs of moderate lengths [40] and can

often be zero for long RNAs [43,65]. The probability of the

minimum free energy structure in the Boltzman ensemble is in fact

negligible for most large RNAs [40,66]. Our findings of high MI

base-pairs inconsistent with a single secondary structure, but

always found in the suboptimal ensemble, suggest that these

alternative structures are tolerated by evolution. Given the

difficulty of evolving an RNA to adopt a single conformation, it

is likely that regulatory systems involving RNA have adapted to

these alternative conformations and in some cases even selected for

them. Adopting a single conformation is not necessarily a pre-

requisite for biological function as long as a significant fraction of

the RNAs do adopt the active conformation at any given time.

The functional role of alternative conformations in riboswitches

is well established [9,28]. The data we present in Figure 1 is

consistent with at least two structures. Interestingly, Boltzmann

sampling of the suboptimal ensemble of the purine riboswitch

(Figure 2A) reveals three major conformations (blue, green and

red). However, even this classification is somewhat of an

oversimplification given that the first two principal components

only capture a little more than a third of the structural complexity

of the suboptimal ensemble. As such, evolving an RNA to adopt a

single conformation represents a daunting task, even for an

evolutionary process spanning billions of generations. Our data

suggest that RNAs are evolved to adopt multiple conformations,

even catalytic ribozymes.

The data presented in Figure 2C is particularly intriguing from

an evolutionary perspective. Indeed, we find that highly related

riboswitches seem to preserve ensemble partitioning. This is not a

priori surprising, since ensemble partitioning is likely important to

function in the cell. We and others have recently shown, however,

that there are specific mutations in all RNAs that are highly

disruptive to structure (in many cases these are disease-associated)

and that these single point mutations affect ensemble partitioning

[39,67,68]. The high degree of similarity in the different clades of

riboswitches in terms of their ensemble partitioning (Figure 2C)

suggests that evolution avoids these disruptive mutations. This is

consistent with the importance of not only preserving the ability to

adopt multiple conformations, but also avoiding deleterious

mutations that disrupt it.

An important consideration in interpreting our data is the role

of RNA co-transcription and kinetic traps in folding to an active

conformation [69]. The binding of exogenous molecules (including

RNA chaperones) can significantly impact folding outcome [7,70].

Furthermore, post-transcriptional modifications of RNA will

necessarily change the folding landscape [71,72]. The sequence

ultimately selected by the evolutionary process is therefore under

many different forms of selective pressure. Our analysis suggests

that alternative conformations are neither selected for or against,

but these may just be a consequence of selecting for a sequence

that has phenotypically advantageous co-transcriptional folding

pathways. Our analysis is also based on a comparison of

homologous sequences in a family of RNAs with the assumption

that they all have similar functional roles. Some of the alternative

conformations consistent with high-MI base-pairs may also be a

result of conserved RNA scaffolds adopting alternative function.

The ability to adopt specific alternative conformations may

confer significant evolutionary advantages to RNAs. Near

isoenergetic conformations are ideal for ligand induced switching,

since binding of a specific ligand can easily shift the ensemble

partitioning. Catalytic ribozymes, on the other hand must adopt a

single and specific conformation to carry out catalysis. However, a

majority of ribozymes readily misfold and this suggests these

molecules may also act as switches in the cell [6,49,73]. Indeed,

RNA chaperones help resolve these misfolds in an ATP dependent

manner, suggesting a possible bi-molecular regulatory switch [70].

The ability of RNA to adopt multiple alternative conformations

may in fact confer a significant evolutionary advantage in terms of

adaptability and ability to control regulatory networks. As such, it

is not surprising to find RNA playing such a key role in the central

dogma of biology.

Methods

Purine riboswitch analysis
The purine riboswitch alignment was obtained from the RFAM

[34–37] database (http://rfam.sanger.ac.uk/family/RF00167).

The alignment in only included nucleotide positions correspond-

ing to the P1, P2 and P3 stems. Each sequence was therefore

extended by 100 nucleotides in the 39 direction in order to allow

for the ability to search for terminator stems. The RNIE software

package was used to scan each of the sequences for Rho-

independent terminators [74]. Sequences without a predicted

terminator were removed from the analysis. The 39 alignment of

the P1 stem was then folded with the 59 region of the predicted

terminators in RNAfold to search for potential anti-terminator

in red, green and blue. The green structures predominantly include the canonical ‘‘off’’ structure of the riboswitch with formation of the terminator,
P1, P2 and P3 stems. The red and green clusters predominantly include the ‘‘on’’ conformation with the antiterminator stem formed. B) Analysis of
the relative abundance of the five possible conformations of the P1, terminator and antiterminator stem. This analysis reveals that the suboptimal
ensemble is structurally diverse. C) Analysis of possible P1, terminator and antiterminator abundances for all purine riboswitch sequences organized
according to their alignment tree. We observe that different classes of riboswitches partition differently, suggesting evolutionary adaptation of the
multiple conformations of the riboswitch.
doi:10.1371/journal.pcbi.1003152.g002

Evolution of Alternative Conformations in RNA
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Figure 3. MI analysis of Watson-Crick base-pairing for the group I intron alignment from the Comparative RNA Website (CRW,
[19,51]). A) Circle diagrams of the L-21 T. thermophila group I intron structure, the secondary structure is derived from the crystal structure (PDB ID
1X8W) and is indicated in gray [52]. Base-pairs having MI support above the specified thresholds (MI = 0.41, 0.60 and 0.78) are colored red and those for
which there is MI support above the threshold but that are not in the crystal structure are shown in green. B) Full length three-dimensional structural
model of the T. thermophila group I intron derived from the crystal structure (helices missing in the crystal were modeled using the Nucleic Acid
Simulation Tool (NAST) previously [53]. Base-pairs are projected onto the model using the same coloring scheme as in A). C) Sensitivity and PPV as a
function of MI for the group I intron alignment. In this case sensitivity is computed as the number of ‘‘red’’ pairs divided by the total number in the
accepted structure (gray pairs). PPV is computed as the number of True Positives (TP, in this case red pairs) divided by the sum of the TP and False Positives
(FP, green pairs). We see that the sensitivity declines steadily with increasing, and that the data are maximally predictive at an MI value of 0.78, where the
sum of PPV and sensitivity are maximal. Nonetheless, even in this case a significant number of co-varying canonical base-pairs (green) persist. D) Mean
crystallographic distance in Å of non-accepted (green) base-pairs at the three MI thresholds. We see that at all three thresholds the means are above those
of canonical base-pairs (shown as a red line at 18 Å), indicating that the co-variation is not likely the result of stabilizing an RNA tertiary contact.
doi:10.1371/journal.pcbi.1003152.g003
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pairs [58,75]. Sequences without any predicted pairs were further

removed from the analysis. This resulted in a final set of 246

sequences that were used for the co-variation analysis presented in

Figure 1. All alignments used for the analysis in this paper are

provided in the supplement in Stockholm file format [76,77].

A simple sequence alignment strategy was not sufficient to

correctly align the terminator stems in the purine riboswitch

alignment. Alignments were thus adjusted to reflect the predicted

terminator stems identified using by RNAfold minimum free

energy predictions of each individual sequence [58]. There are 8

possible pairing positions in the P1 stem. The nucleotides within

the 59 predicted terminator were aligned according so as to

correspond with the predicted base-pairs on the 39 end of the P1

stem. The corresponding 39 terminator nucleotides were then

retrieved and aligned according to the original predicted

terminator pairs. This results in the consensus terminator stem

formed by 4 base-pairs shown in Figure 1.

Additional alignments
Additional alignments used in this manuscript were retrieved

either from the comparative RNA website hosted by the Gutell

Lab at the University of Texas at Austin or the RFAM database

[51]. The alignments were refined to the most mutationally diverse

and gap limited sequences according to the reference sequence

and structure. The final analysis included 1332 16S, 2204 23S,

246 purine riboswitch, 289 group I intron, 1642 Glycine

(RF00504) and 601 GMP (RF01051) riboswitch sequences.

Mutual information and consistency analysis
Mutual Information scores were calculated using the MIfold

MATLAB package [18,78]. The ‘M’ algorithm specified in the

package was used to calculate the mutual information scores. This

formula computes the score as the information content describing

the degree to which the two positions in the alignment can or

cannot form a base pair. Canonical and wobble base pairs are

specified as the only pairs allowed in the algorithm. The

inconsistency parameter specified is the percentage of non-

allowable pairs for the indicated positions.

Respective ROC curves were generated by incrementally

thresholding the mutual information scores for pairs in the

accepted structure. True positives were established as base pairs in

the accepted structure with an MI value above the threshold. False

positives were base pairs not in the accepted structure that had an

MI value above the threshold. False negatives were set as base

pairs in the accepted structure with an MI value below the

threshold. True negatives were base pairs not in the accepted

Table 1. Summary statistics for structural analysis of high-MI base-pairs.

Length/PDBID/RFAM/CRW PPV Sens. PPV Shuff. Sens. Shuff. Mean Distance - Å

Group I Intron 421 13.77 (2.21)

0.41 1GRZ (1X8W) 0.128 0.636 0.199 1 42.03 (16.82)

0.595 IC1 0.464 0.522 0.872 1 36.11 (15.79)

0.78 0.906 0.364 0.962 0.392 36.24 (11.67)

Purine RS 111 13.63 (.60)

0.50 1Y26 0.154 0.300 0.483 1 27.21 (13.72)

0.705 RF00167 0.467 0.233 0.882 0.536 45.07 (-)

0.91 0.833 0.167 0.75 0.214 -

Phe-tRNA 76 13.50 (.55)

0.03 1EHZ 0.048 0.520 0.077 1 31.01 (13.02)

0.23 (F) [Type 1] 0.317 0.520 0.5 1 24.47 (9.67)

0.43 0.917 0.440 0.846 0.524 27.95 (-)

16s 1487 13.57 (.60)

0.40 1FJG 0.056 0.219 0.252 1 82.54 (40.85)

0.635 Bacterial rRNA 0.230 0.150 0.994 0.663 74.79 (37.62)

0.87 0.921 0.075 0.95 0.083 77.73 (103.90)

Group II Intron 173 13.50 (.48)

0.09 3G78 0.033 0.814 0.041 1 42.08 (18.35)

0.30 RF02001 0.395 0.698 0.56 1 33.01 (15.32)

0.51 0.913 0.488 0.917 0.524 22.28 (12.17)

Glycine RS 88 13.60 (.34)

0.11 3OX0 0.106 0.630 0.175 1 34.35 (13.90)

0.315 RF00504 0.667 0.481 0.903 0.686 37.39 (18.71)

0.52 0.900 0.333 0.818 0.333 44.90 (-)

CID-GMP RS 99 12.97 (1.61)

0.22 3IRW 0.110 0.346 0.329 1 26.19 (11.32)

0.395 RF01051 0.514 0.327 0.892 0.635 22.47 (12.42)

0.57 0.636 0.269 0.833 0.385 14.27 (-)

doi:10.1371/journal.pcbi.1003152.t001
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structure that had an MI value below the threshold. The TPR,

FPR and PPV were calculated as:

TPR~
TP

TPzFN
ð1Þ

FPR~
FP

FPzTN
ð2Þ

PPV~
TP

TPzFP
ð3Þ

The RNAfold TPR and PPV values were generated by

sampling pairs at varying MI cutoffs. All pairs with an MI value

above the cutoff were sampled and a constraint file was created

based on the pairs. The constraint file was used in a secondary

structure prediction generated by RNAfold. For any one mutual

information score, 100 constraints/predictions were made. The

respective accepted structures were also used as constraints.

Random pairs in the accepted structure were removed and the

remaining pairs were used as a constraint for the RNAfold

prediction. The predicted structures were then compared to the

accepted structure.

Figures and diagrams
Structure diagrams were made using both VARNA and the

Circle Compare algorithm found in the RNAstructure software

package [79–81]. Sequence identity displays are a subset of the full

set of sequences used for the analysis and were made using Jalview.

Principle component analysis of the suboptimal ensemble was

carried out as previously described [39]. All calculations and

graphs were done using R version 2.1.12 and Python 2.7.2.

Size of the suboptimal ensemble estimation
We assumed that the number of possible RNA secondary

structures can be estimated as increasing with 1.8N (where N is the

sequence length) and that there are approximately 1080 observable

atoms in the universe [66,82]. Thus, solving for N we estimate that

an RNA molecule longer than 314 nucleotides (e.g. the T.

thermophila group I intron) is able to adopt more conformations

than there are atoms in the universe.

Supporting Information

Dataset S1 Alignments in Stockholm (.sto) format for all RNAs

analyzed in the manuscript compressed as a .zip archive.

(ZIP)

Figure S1 MI analysis of Watson-Crick base-pairing for the

Purine Riboswitch alignment from RFAM, RF00167 (A) Circle

diagram of the Adenine Riboswitch structure. The crystal

structure is based on PDB ID 1Y26, base-pairs having MI support

in the crystal structure above the specified threshold are colored

red, while those in grey are below the threshold. Base-pairs for

which there is MI support above the threshold but that are not in

the accepted structure are shown in green. B) Sensitivity and PPV

as a function of MI for the Purine Riboswitch alignment. In this

case Sensitivity is computed as the number of ‘‘red’’ pairs divided

by the total number in the accepted structure (gray pairs). PPV is

computed as the number of True Positives (TP, in this case red

pairs) divided by the sum of the TP and False Positives (FP, green

pairs). C) Mean crystallographic distance in Å of non-accepted

(green) base-pairs at the three MI thresholds. We see that at all

three thresholds the means are above the mean of canonical base-

pairs (shown as a red line at 13.6 Å), indicating that the co-

variation is not likely the result of stabilizing an RNA tertiary

contact.

(TIFF)

Figure S2 MI analysis of Watson-Crick base-pairing for the

phenylalanine tRNA alignment from the Comparative RNA

Website (A) Circle diagram of the phenylalanine tRNA structure.

The crystal structure is based on PDB ID 1EHZ, base-pairs having

MI support in the crystal structure above the specified threshold

are colored red, while those in grey are below the threshold. Base-

pairs for which there is MI support above the threshold but that

are not in the accepted structure are shown in green. B) Sensitivity

and PPV as a function of MI for the phenylalanine tRNA

alignment. In this case Sensitivity is computed as the number of

‘‘red’’ pairs divided by the total number in the accepted structure

(gray pairs). PPV is computed as the number of True Positives (TP,

in this case red pairs) divided by the sum of the TP and False

Positives (FP, green pairs). C) Mean crystallographic distance in Å
of non-accepted (green) base-pairs at the three MI thresholds. We

see that at all three thresholds the means are above the mean of

canonical base-pairs (shown as a red line at 13.5 Å), indicating that

the co-variation is not likely the result of stabilizing an RNA

tertiary contact.

(TIFF)

Figure S3 MI analysis of Watson-Crick base-pairing for the 16s

ribosomal alignment from the Comparative RNA Website (A)

Circle diagram of the 16s ribosomal structure. The crystal

structure is based on PDB ID 1FJG, base-pairs having MI support

in the crystal structure above the specified threshold are colored

red, while those in grey are below the threshold. Base-pairs for

which there is MI support above the threshold but that are not in

the accepted structure are shown in green. B) Sensitivity and PPV

as a function of MI for the 16s ribosomal alignment. In this case

Sensitivity is computed as the number of ‘‘red’’ pairs divided by

the total number in the accepted structure (gray pairs). PPV is

computed as the number of True Positives (TP, in this case red

pairs) divided by the sum of the TP and False Positives (FP, green

pairs). C) Mean crystallographic distance in Å of non-accepted

(green) base-pairs at the three MI thresholds. We see that at all

three thresholds the means are above the mean of canonical base-

pairs (shown as a red line at 13.6 Å), indicating that the co-

variation is not likely the result of stabilizing an RNA tertiary

contact.

(TIFF)

Figure S4 MI analysis of Watson-Crick base-pairing for the

Group II Intron alignment from RFAM, RF02001 (A) Circle

diagram of the Group II Intron structure. The crystal structure is

based on PDB ID 3G78, base-pairs having MI support in the

crystal structure above the specified threshold are colored red,

while those in grey are below the threshold. Base-pairs for which

there is MI support above the threshold but that are not in the

accepted structure are shown in green. B) Sensitivity and PPV as a

function of MI for the group II intron alignment. In this case

Sensitivity is computed as the number of ‘‘red’’ pairs divided by

the total number in the accepted structure (gray pairs). PPV is

computed as the number of True Positives (TP, in this case red

pairs) divided by the sum of the TP and False Positives (FP, green

pairs). C) Mean crystallographic distance in Å of non-accepted

(green) base-pairs at the three MI thresholds. We see that at all

three thresholds the means are above the mean of canonical base-
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pairs (shown as a red line at 13.5 Å), indicating that the co-

variation is not likely the result of stabilizing an RNA tertiary

contact.

(TIFF)

Figure S5 MI analysis of Watson-Crick base-pairing for the

Glycine Riboswitch alignment from RFAM, RF00504 (A) Circle

diagram of the Glycine Riboswitch structure. The crystal structure

is based on PDB ID 3OX0, base-pairs having MI support in the

crystal structure above the specified threshold are colored red, while

those in grey are below the threshold. Base-pairs for which there is

MI support above the threshold but that are not in the accepted

structure are shown in green. B) Sensitivity and PPV as a function of

MI for the glycine riboswitch alignment. In this case Sensitivity is

computed as the number of ‘‘red’’ pairs divided by the total number

in the accepted structure (gray pairs). PPV is computed as the

number of True Positives (TP, in this case red pairs) divided by the

sum of the TP and False Positives (FP, green pairs). C) Mean

crystallographic distance in Å of non-accepted (green) base-pairs at

the three MI thresholds. We see that at all three thresholds the

means are above the mean of canonical base-pairs (shown as a red

line at 13.6 Å), indicating that the co-variation is not likely the result

of stabilizing an RNA tertiary contact.

(TIFF)

Figure S6 MI analysis of Watson-Crick base-pairing for the

Cyclid-diGMP Riboswitch alignment from RFAM, RF01051 (A)

Circle diagram of the Cyclid-diGMP Riboswitch structure. The

crystal structure is based on PDB ID 3IRW, base-pairs having MI

support in the crystal structure above the specified threshold are

colored red, while those in grey are below the threshold. Base-pairs

for which there is MI support above the threshold but that are not

in the accepted structure are shown in green. B) Sensitivity and

PPV as a function of MI for the Cyclid-diGMP Riboswitch

alignment. In this case Sensitivity is computed as the number of

‘‘red’’ pairs divided by the total number in the accepted structure

(gray pairs). PPV is computed as the number of True Positives (TP,

in this case red pairs) divided by the sum of the TP and False

Positives (FP, green pairs). C) Mean crystallographic distance in Å
of non-accepted (green) base-pairs at the three MI thresholds. We

see that at all three thresholds the means are above the mean of

canonical base-pairs (shown as a red line at 13 Å), indicating that

the co-variation is not likely the result of stabilizing an RNA

tertiary contact.

(TIFF)

Figure S7 Scatter plot of MI and Inconsistency values for all

pairs in the Group I intron alignment. We only considered pairs

with MI values .0.05 for this analysis. We find that the MI and

Inconsistency values are negatively correlated such that our

analyses are generally co-variation metric agnostic. i.e. we still find

multiple low inconsistency base-pairs that are not compatible with

a single RNA structure.

(TIFF)

Table S1 MI and inconsistency scores for all pairs (in excel

spreadsheet format) for Riboswitch illustrated in Figure 1.

(XLS)
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