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Abstract

Vasopressin neurons generate distinctive phasic patterned spike activity in response to elevated extracellular osmotic
pressure. These spikes are generated in the cell body and are conducted down the axon to the axonal terminals where they
trigger Ca2+ entry and subsequent exocytosis of hormone-containing vesicles and secretion of vasopressin. This mechanism
is highly non-linear, subject to both frequency facilitation and fatigue, such that the rate of secretion depends on both the
rate and patterning of the spike activity. Here we used computational modelling to investigate this relationship and how it
shapes the overall response of the neuronal population. We generated a concise single compartment model of the
secretion mechanism, fitted to experimentally observed profiles of facilitation and fatigue, and based on representations of
the hypothesised underlying mechanisms. These mechanisms include spike broadening, Ca2+ channel inactivation, a Ca2+

sensitive K+ current, and releasable and reserve pools of vesicles. We coupled the secretion model to an existing integrate-
and-fire based spiking model in order to study the secretion response to increasing synaptic input, and compared phasic
and non-phasic spiking models to assess the functional value of the phasic spiking pattern. The secretory response of
individual phasic cells is very non-linear, but the response of a heterogeneous population of phasic cells shows a much
more linear response to increasing input, matching the linear response we observe experimentally, though in this respect,
phasic cells have no apparent advantage over non-phasic cells. Another challenge for the cells is maintaining this linear
response during chronic stimulation, and we show that the activity-dependent fatigue mechanism has a potentially useful
function in helping to maintain secretion despite depletion of stores. Without this mechanism, secretion in response to a
steady stimulus declines as the stored content declines.
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Introduction

Models of neuronal networks generally assume that the output

of the neurons is well characterised by their spiking activity.

However, for all neurons, their output is not the spikes themselves,

but the neurotransmitter release that is triggered by those spikes,

most commonly at synapses. Generally, the coupling between

spike activity and transmitter release is nonlinear, subject to both

frequency facilitation of release and to activity-dependent depres-

sion [1], and when, as is often the case, neurons fire spikes in

complex patterns, these non-linearities mean that the spike activity

itself can be a poor approximation of their true output. Detailed

study at presynaptic terminals is difficult however, and the peptide

secreting nerve terminals of the posterior pituitary have served as a

more technically accessible model system [2], displaying similar

complex activity patterning, and for which the characteristics of

stimulus-secretion coupling have been well studied. Here we have

studied the vasopressin neurons that project to the posterior

pituitary, and develop a quantitatively precise model of both their

spike activity and stimulus-secretion coupling, presenting a novel

approach to modelling activity dependent facilitation and depres-

sion, based on abstractions of the underlying mechanisms.

The magnocellular neuroendocrine neurons of the hypothala-

mus synthesise and secrete the hormones oxytocin and vasopres-

sin. These hormones can be readily measured in the bloodstream,

have well-understood physiological roles, and are secreted subject

to well-characterised reflex pathways. The rare ability to measure

the electrical activity of identified neurons in physiological

circumstances together with the resulting activity-dependent

secretion [3] has meant that these neurons have become important

model systems for the study of stimulus-secretion coupling in

peptidergic neurons, and both the mechanisms leading to spike

activity and those leading to secretion have been extensively

studied by a wide range of experimental approaches.

By its actions at the kidney to regulate water loss, vasopressin

has an essential role in the homeostatic regulation of plasma

osmotic pressure. It is synthesised by magnocellular neurons in the

supraoptic and paraventricular nuclei (SON and PVN) of the

hypothalamus; these neurons project axons to the posterior

pituitary gland, from where vasopressin is secreted into the blood

stream following activity-dependent exocytosis of vesicles that are

abundantly stored in axonal swellings and terminals. This

secretion is triggered by spikes that are generated in the neuronal

cell bodies and propagated down the axons. The vasopressin
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neurons are activated by increases in plasma osmotic pressure as a

consequence partly of osmotically induced change in the cell

volume, and partly of increased afferent input arising from other

osmosensitive neurons in the forebrain [4,5]. When activated, they

display a distinctive ‘‘phasic’’ pattern of spike discharge, and it has

been proposed that the adaptive advantage of this patterning is

that it optimises the efficiency of stimulus-secretion coupling.

In the rat brain, there are about 9000 magnocellular vasopressin

neurons, each of which individually generates spikes and

manufactures and secretes hormone. These neurons are asyn-

chronous in their spiking activity, and are quite heterogeneous,

both in their levels of activity and in the membrane properties that

determine specific features of their activity patterns. However, this

individual phenotypic heterogeneity does not imply functional

heterogeneity of the vasopressin cells: the physiologically impor-

tant vasopressin signal is the plasma vasopressin concentration,

which reflects the total secretion from the whole population.

Although individual vasopressin cells generate complex phasic

patterns of electrical activity, the plasma vasopressin concentration

increases remarkably linearly in response to increasing osmotic

pressure above a ‘‘set point’’ [6,7]. We have previously modelled

the distinctive phasic spiking activity [8] in order to understand

how this behaviour affects the coding of information in the

vasopressin cell population. Because the phasic activity of

vasopressin cells is asynchronous, and because of the properties

of the mechanism that generates phasic activity, the average spike

rate of the population increases relatively linearly in response to

increased afferent input despite the short term non-linearity of

individual cell responses.

However, at the nerve terminals, stimulus-secretion coupling is

also highly non-linear, and how much hormone is secreted per

spike depends on multiple features of the spike activity pattern. At

the axonal terminals, vesicle exocytosis is triggered by spike-

generated Ca2+ entry, and, in both vasopressin and oxytocin

neurons, the spikes broaden as spike frequency increases,

increasing the amount of Ca2+ entry [9,10]. This spike broadening

is thought to be partly responsible for an increase in secretion per

spike that occurs with increasing frequencies of stimulation – a

process called frequency facilitation [11]. This facilitation of

vasopressin secretion peaks at about 15Hz, whereas oxytocin

secretion per spike continues to increase up to frequencies of at

least 50 Hz [12]. This difference suggests that in vasopressin

terminals there is a competing, activity-dependent attenuation of

stimulus-secretion coupling, possibly Ca2+-dependent inactivation

of Ca2+ channels [13].

On a longer timescale, an additional mechanism produces

activity-dependent fatigue of stimulus-secretion coupling in vaso-

pressin cells (and to a much lesser extent in oxytocin cells) [14].

When axon terminals are stimulated at 13 Hz, the amount of

vasopressin secreted declines progressively after about 10 s.

However, if stimulation is interrupted by a silent period of 10 s

or longer, the secretory response recovers. It was thus proposed

that the function of phasic spiking is to optimise the secretion

response, by minimising the consequences of fatigue while

maximising those of facilitation [15–17].

However, there is a circularity in this logic. The differences

between oxytocin and vasopressin neurons show that phasic firing

is only efficient in vasopressin neurons because the particular

properties of the vasopressin terminals make it so. We recently

argued that there are other functional advantages to the phasic

discharge pattern, and that the secretion mechanism in vasopressin

cells may thus have evolved to confer efficiency on a spike pattern

that has evolved for other reasons.

Our objective here was to develop a model of stimulus-secretion

coupling in vasopressin cells that concisely reproduces facilitation

and fatigue, and which quantitatively and qualitatively matches

experimentally observed responses to stimulation. The broader

aim is to test how these features relate to the ability of vasopressin

neurons to respond to osmotic pressure. By coupling the secretion

model to our spiking model we can simulate secretion response to

varied input activity. One of the challenges is to understand how

the highly heterogeneous and non-linear vasopressin neurons act

together to produce a highly linear secretion response to increasing

osmotic input. Is cell heterogeneity just unavoidable noise, or does

it have a useful functional role?

Our combined model shows that cell heterogeneity, in the form

of varied input intensity across the population, combined with

phasic patterning, acts to linearise the population response,

achieving a profile of secretion that matches that observed in vivo.

Interestingly, the linearising effect of heterogeneity only works in

combination with phasic spiking, and not on its own. Thus in

vasopressin cells, the non-linear stimulus secretion properties of the

nerve terminals, in conjunction with the pattern generating

characteristics of the vasopressin cells, and in conjunction with

heterogeneity in the vasopressin cell population, all combine to

generate robust linear stimulus-secretion coupling across a wide

dynamic range of input.

Methods

Modelling spike generation
The spike generating mechanism is modelled as described

previously [8], using an integrate-and-fire based spiking model

modified to include a set of activity-dependent effects on

excitability [18] that shape spike patterning and produce emergent

bistability. The modifications include a hyperpolarising afterpo-

tential (HAP), a fast depolarising afterpotential (DAP), a slow

afterhyperpolarisation (AHP), and a slow DAP based on a Ca2+-

inactivated K+ leak current. The positive feedback of the activity-

dependent slow DAP triggers bursting, but it is also opposed by the

slower action of activity-dependent dendritic dynorphin release,

which inactivates the DAP. The opposing effects combined with

the random perturbations of the synaptic input produce a

Author Summary

Vasopressin is a hormone that is secreted from specialised
brain cells into the bloodstream; it acts at the kidneys to
control water excretion, and thereby help to maintain a
stable ‘osmotic pressure’. Specialised cells in the brain
sense osmotic pressure, and generate electrical signals
which the thousands of vasopressin neurons process and
respond to by producing and secreting vasopressin. In
response to these signals, vasopressin neurons generate
complex ‘‘phasic’’ patterns of electrical activity, and this
activity leads to vasopressin secretion in a complex way
that depends on both the rate and pattern of this activity.
We have now built a computational model that describes
both how the vasopressin neurons generate electrical
activity and also how that activity leads to secretion. The
model, which gives a very close fit to experimental data,
allows us to explore the adaptive advantages of particular
features of the vasopressin neurons. This analysis reveals
the importance of heterogeneity in the properties of
vasopressin neurons, and shows how the vasopressin
system is optimally designed to maintain a consistent
hormonal output in conditions where its stores of
releasable hormone are severely depleted.

Vasopressin Secretion: Mechanism and Heterogeneity
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bistability that generates the successive periods of bursting and

silence.

Setting the K+ leak (slow DAP) conductance (spiking model

parameter gL) to zero removes the mechanism that underlies

bistability, producing model cells with very similar interspike

interval distributions to vasopressin neurons but which fire

continuously rather than phasically. We use this here to compare

otherwise identical phasic and non-phasic cells.

Synaptic input is simulated using a Poisson random process to

generate EPSPs and IPSPs, represented by small (2 mV)

exponentially decaying positive and negative perturbations to the

membrane potential. The spike outputs match experimental

observations very closely, and the parameters of the model can

be fit to in vivo recorded data to produce indistinguishably close fits

to multiple statistical measures of spike patterning. Importantly the

model also reproduces the observed in vivo behaviour in response

to an increasing rate of input activity; matching the shift from slow

irregular spiking, to phasic spiking, and eventually to continuous

spiking activity.

Modelling stimulus-secretion coupling
Our aim was to concisely model the mechanisms of stimulus-

secretion coupling in a way that gives a robust qualitative and

quantitative fit to the characteristics of spike driven secretion as

measured experimentally. As a major simplification, we model

secretion from a single cell as from a single compartment, rather

than from thousands of individual terminals. We assume that the

summed effect of the stochastic, discrete, and relatively rare

secretion events at individual terminals can be approximated by a

continuous model. The large number of terminals (,2000) is likely

to make this a safe assumption. It may be interesting to make a

more detailed model including individual terminals, but we do not

have the detailed experimental data against which to fit such a

model.

We fitted the model to experimental data reported in various

studies of stimulus-secretion coupling in vitro in which vasopressin

secretion from the isolated pituitary gland was measured in

response to different patterns of electrical stimulation. These

observations led to the description of stimulus-secretion coupling

as being influenced by frequency facilitation, and by fatigue.

Vesicle exocytosis depends on spike-evoked Ca2+ entry, and the

rate of secretion depends on both the ion channels that propagate

spikes and allow Ca2+ to enter, and the exocytotic apparatus that

turns the Ca2+ signal into secretion. Frequency facilitation is

thought to mainly reflect a modulation of Ca2+ entry in response to

spike activity, using a spike broadening based mechanism detailed

below. Modulation of the exocytotic response we include in the

model by using a depletable vesicle store (see below).

Two hypotheses have been proposed to explain fatigue; that it is

due to depletion of a readily-releasable pool of vesicles, or due to

suppression of the secretion mechanism by a Ca2+-activated K+

conductance. The idea of depletion has previously been used to

model secretion fatigue in oxytocin and vasopressin neurons [19],

and in other types of hormone-secreting cells [20–22]. However,

these models have been used to fit experimental data where cells

have been depleted by large and prolonged depolarisation. In

recent work [23] we used detailed quantitative data to predict the

rate of vesicle release in response to spike stimulation during

physiological conditions, showing that release events at individual

axonal terminals are rare, requiring several hundred spikes to

trigger a single release event. It seems unlikely therefore that

fatigue on the timescale of seconds is due to depletion of vesicle

stores. Thus, we have based our present model on the likely effects

of a Ca2+-activated K+ mechanism analogous to the mechanism

underlying the afterhyperpolarisation observed at vasopressin cell

bodies [24].

Spike conduction and secretion mechanisms
Spikes generated in the cell body are conducted down the axon

to invade the secretory terminals – though whether a spike will

invade a given terminal depends on the excitability of that

terminal at the time of arrival of the spike. Like spikes at the cell

body, spikes at the secretory terminals involve voltage-activated

Na+ and Ca2+ channels, and terminal excitability (membrane

potential) is modulated by various K+ conductances. Spike

broadening is thought to be due to the voltage sensitive

suppression of a K+ conductance, as demonstrated by experiments

using the K+ channel blocker tetra-ethyl ammonia [2,25].

The other effects on terminal excitability appear to depend on

Ca2+ entry. Ca2+ acts at the secretory terminals on at least two

different timescales. Vesicle exocytosis depends more on the rate of

Ca2+ entry than on intracellular Ca2+ concentration, and it is likely

that exocytosis occurs at sites that are close to clusters of voltage-

gated Ca2+ channels. These submembrane sites experience high

Ca2+ concentrations in response to spike activity, but only

transiently, as the Ca2+ swiftly diffuses into the cytosol. This is

represented in the model (Figure 1) by making the rate of secretion

proportional to a ‘fast’ Ca2+ variable e that represents the sub-

membrane Ca2+ concentration; spike broadening affects secretion

by producing a larger rise in e. However, as mentioned above, the

extent of facilitation of stimulus-secretion coupling in vasopressin

terminals is limited by a competing, activity-dependent attenua-

tion of stimulus-secretion coupling; we model this (Figure 2) as

arising from Ca2+-dependent inactivation of Ca2+ channels [13].

Prolonged pulse stimulation of terminals results in an eventual

increase in the rate of failure of spike propagation at the terminal

[26,27], and this is thought to be due to intracellular (cytosolic)

Ca2+ accumulation [10] and the activation of a highly [Ca2+]i

sensitive, slow activating Ca2+-activated K+ conductance [28].

Thus in the model, a slow Ca2+ component c (reflecting cytosolic

Ca2+ concentration) acts to reduce the terminal spike response. Its

slow rate of accumulation and decay reproduces the slow

development of fatigue, and the recovery during silent periods.

Vesicle storage and the releasable pool
The model also includes a finite vesicle store so that we can

assess the useful function of these mechanisms in maintaining long-

term response. The store has two compartments: a large reserve

store (r), and a smaller releasable pool (p) representing those

vesicles in the axonal terminals that are relatively available for

release.

Model equations
The secretion model consists of a set of differential equations

which take as input the spike events generated by the spiking

model, or defined by a stimulation protocol.

The variables representing spike broadening (b), cytosolic Ca2+

concentration (c) and submembrane Ca2+ concentration (e) are all

incremented with each spike. Broadening (b) is incremented by a

fixed step kb, and decays exponentially with half-life lb, converted

to time constant tb:

db

dt
~{

b

tb

zkbs ð1Þ

where s = 1 if a spike is fired at time t, and s = 0 otherwise. All half-

life parameters are converted to time constants using the formula

Vasopressin Secretion: Mechanism and Heterogeneity
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in [8]. The Ca2+ variables, c and e, are incremented at a rate

governed by Ca2+ entry (Caent), with similar exponential decay:

dc

dt
~{

c

tc

zkcCaents ð2Þ

de

dt
~{

e

te

zkeCaents ð3Þ

Ca2+ entry depends on spike broadening (b), and is subject to

submembrane and cytosolic Ca2+-dependent inactivation:

Caent~einhibcinhib(bzbbase) ð4Þ

where parameter bbase gives a basal level for b. Entry is inhibited by

c and e using two inverted Hill equations [29] with threshold and

coefficient parameters, ch, eh, cn and en:

cinhib~1{
ccn

ccnzch
cn

ð5Þ

einhib~1{
een

eenzeh
en

ð6Þ

The releasable vesicle pool (p) is depleted with secretion, x, and

refilled at a rate proportional to the reserve store (r), unless already

full (p = pmax). The refill rate is scaled by parameter b:

dp

dt
~{xzb

r

rmax
where pvpmax,, -x otherwise ð7Þ

The reserve store (r) is depleted exponentially as it refills p, with its

maximum (and initial) value defined by parameter rmax:

dr

dt
~{b

r

rmax
where pvpmax, 0 otherwise ð8Þ

The rate of secretion (vesicle exocytosis, x), is the product of the

cube of the fast Ca2+ variable (e) and the releasable pool (p):

x~e3 a p ð9Þ

We use a cube of e because Ca2+ activation of exocytosis is thought

to be cooperative, and proportional to at least the square of the

Ca2+ concentration close to the binding sites [30]; we found that

using the cube gives a better fit to the in vitro data. Parameter a
scales secretion to units that can be compared with experimental

data. The final output of the model, vasopressin plasma

concentration (v), increases with secretion (x) and decays with

half-life lv:

dv

dt
~{

v

tv

zx ð10Þ

spike
model

reserve store
r

terminal
spike

broadening
b

releasable pool
p

vasopressin
secretion
v

trans

+

Ca
 entry

slow Ca
c

fast Ca
e

+

+

+

+

+

-

-
+

+

exocytosis
x

Figure 1. The vasopressin secretion model. Schematic illustrating the structure of the differential equation based single neuron secretion
model. The model takes as input either a regular spike protocol or the output from the integrate-and-fire based spiking model. For a single
vasopressin cell, secretion occurs from about 2,000 terminals and swellings; in the model secretion is represented as coming from a single
compartment; thus secretion is treated as a single continuous variable rather than many discrete stochastic variables. In the model, Ca2+ entry is
modulated by both fast (e) and slow (c) Ca2+ variables through their modulation of axonal terminal excitability, and is also a function of spike
broadening (b). The secretion rate (vesicle exocytosis) is the product of the releasable pool (p) and the fast Ca2+ variable (e). When depleted, pool p is
refilled from a reserve store (r) at a rate dependent on the store content.
doi:10.1371/journal.pcbi.1003187.g001
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Figure 2. The secretion model’s Ca2+ entry and vesicle release mechanisms. Here we simulate stimulation by two 40-s bursts of 13 Hz
spikes at a regular 13 Hz, separated by 20 s. Each spike triggers a step increment of the exponentially decaying variables b (spike broadening), c and
e. The step size for c and e depends on terminal excitability, which is modulated by two Hill equation functions of c and e, producing fast and slow
negative feedback. Ca2+ entry per spike is a function of all three variables. The rate of exocytosis (secretion, x) is the scaled cube of e. Variable v
accumulates x with a half-life of 2 min representing the resulting plasma vasopressin concentration. The competing effects of facilitation and the fast
negative feedback combine to match the spike frequency secretion response. The slow negative feedback reproduces fatigue of stimulus-secretion
coupling during prolonged stimulation. x shows an initial rise (facilitation) followed by a decline (fatigue) which recovers during the silent period as c
decays restoring terminal excitability. The black lines show the data smoothed using a 1-s window.
doi:10.1371/journal.pcbi.1003187.g002
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The parameter values for the figures in this paper are given in

Tables 1 and 2. The secretion model variables were initialised to 0,

except c = 0.03, p = pmax, and r = rmax.

Implementation
The differential equations were integrated using the first order

Euler method. We can do this safely since the step size (1 ms)

inherited from the spiking model is much smaller than any of the

time constants in the secretion model. Using the same fixed time

step makes it simple to couple the secretion model to the integrate-

and-fire based spike model.

The modelling software was developed in C++, using the open

source wxWidgets graphical interface library. A typical run of the

full model, simulating 2000s of activity for a population of 100

neurons takes ,20s on an Intel i7-2600K quad core processor.

Population heterogeneity
To generate a heterogeneous model cell population, we applied

random variation to the rates of synaptic input received by each

cell using the formula:

Ire~IpopIsyn ð11Þ

where Ire is the spiking model’s input rate parameter, Ipop is the

population input rate, and Isyn is a randomly generated value using

a lognormal distribution (see Results) with mean = 0 and standard

deviation = 0.5, representing the synaptic connection density at a

single neuron.

Results

The model’s Ca2+ entry and exocytosis mechanism was first

tested by simulating stimulation with bursts of regularly spaced

spikes and fixed lengths of bursts and silences. These protocols

mimic the experimental protocols that were used in studies of

vasopressin secretion from the isolated pituitary gland, the results

of which were used to fit the model parameters [12,14,15,31]. The

most commonly used experimental protocol involved regular

stimulation at 13 Hz for varying durations.

Spike broadening and facilitation
When the vasopressin nerve terminals of the posterior pituitary

are stimulated electrically with brief pulses that trigger spikes in the

axons, the amount of vasopressin secretion depends on the

stimulation frequency: the secretion per stimulus pulse (or per

spike) increases to a maximum at ,15 Hz, beyond which it gently

declines again. Our hypothesis is that this rise and fall is due to two

competing activity-dependent mechanisms.

At the beginning of a train of spikes, successive spikes broaden,

and Ca2+ entry per spike increases. We fitted the spike broadening

parameters, kb, bbase, and lb using the experimental data on spike

broadening in [9] and [2]. A relatively slow decay is used, based on

[31] which suggests that facilitation continues to increase over

several seconds. The experimental data show a broadening of up

to ,100%, but this includes the Na+ current proportion of the

spike, and so assuming that the broadening involves only the Ca2+

current (as Ca2+ removal suggests), the proportional increase in the

Ca2+ proportion of the spike, which we model, is larger. Thus the

parameters bbase and kb are fitted to give a value for the Ca2+

component (b + bbase) ranging from 0.5 to ,2.5, illustrated in the b

trace of Figure 2.

The competing inhibitory component (modelled as Ca2+-

dependent inactivation of Ca2+ entry) uses both the fast and slow

Ca2+ variables (e and c) to reduce Ca2+ entry per spike. The

parameters for e and its inhibitory Hill equation were fitted to

match the experimental data from [12] shown in Figure 3A. This

frequency profile shows the sum of the effects of spike broadening

and the competing inhibition, closely matched by the model in

Table 1. Spiking model parameters.

Name Description Value Units

Ire excitatory input rate 600 Hz

Iratio inhibitory input ratio 1 -

eh EPSP amplitude 2 mV

ih IPSP amplitude 22 mV

lsyn PSP half-life 7.5 ms

kHAP HAP amplitude per spike 60 mV

lHAP HAP half-life 9 ms

kDAP fast DAP amplitude per spike 0.5 mV

lDAP fast DAP half-life 150 ms

kAHP AHP activation factor 0.00012 mV/nM

lAHP AHP half-life 10000 ms

CAHP minimum [Ca]i to activate AHP 200 nM

Crest rest [Ca]i 113 nM

kC [Ca]i increase per spike 11 nM

lC [Ca]i half-life 2500 ms

kD dynorphin activation per spike 2.693 a.u.

lD dynorphin half-life 7500 ms

kL K+ leak (slow DAP) Ca2+ sensitivity 36 nM

gL K+ leak maximum voltage 8.5 mV

Vrest resting potential 256 mV

Vthresh spike threshold potential 250 mV

doi:10.1371/journal.pcbi.1003187.t001

Table 2. Secretion model parameters.

Name Description Value (Units)

kb broadening per spike 0.05

lb broadening half-life 2000 (ms)

bbase basal spike broadening 0.5

kc max cytosolic Ca2+ per spike 0.0003

lc cytosolic Ca2+ half-life 20000 (ms)

ke max submembrane Ca2+ per spike 1.5

le submembrane Ca2+ half-life 100 (ms)

ch threshold, terminal inhibition by c 0.07

cn gradient, terminal inhibition by c 5

eh threshold, terminal inhibition by e 2.8

en gradient, terminal inhibition by e 5

b pool refill rate scaling factor 50

rmax reserve store maximum 1000000 (pg)

pmax releasable pool maximum 5000 (pg)

a secretion scaling factor 0.0005 (pg/unit)

lv plasma vasopressin half-life 120 (s)

doi:10.1371/journal.pcbi.1003187.t002

Vasopressin Secretion: Mechanism and Heterogeneity
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Figure 3B. These data were also used to adjust parameter a to

scale the model’s secretion units.

Spike response and fatigue
Fatigue of the secretion response occurs over a timescale of tens

of seconds, and recovery occurs on a similar timescale after

stimulation is ended. The cytosolic Ca2+ concentration changes on

a similar timescale, rising during stimulation, and decaying with a

half-life of ,20s [2]; our hypothesis for the model is that fatigue is

due to the accumulation of cytosolic Ca2+, which activates a Ca2+-

dependent K+ current that hyperpolarises the terminals, leading to

an increased rate of spike failure and reduced Ca2+ entry.

The model parameters were fitted using the experimental data

in [14]. We analysed the model secretion data by summing the

secretion rate (x) values over each of four 18-s steps, to give a

measure analogous to the cumulative secretion that was

measured experimentally. We set lc , the half-life for the

cytosolic Ca2+ variable c, to 20s, and manually fit parameters

kc, hc and cn to match the fatigue profile in [14], as measured in

response to stimulation with regular 13 Hz spikes (Figure 3c).

The weakest fit of the model is to the 54–72 s period. This data

point comes from a much lower n value than the others and so is

less precisely determined, although margins of error are not

provided because of the complex analytical approach that was

used [14]. We thus consider that, as far as we can judge, the

model is consistent with all available data, given the likely

margins of error in those data. The detailed secretion rate profile

is shown in Figure 3D.
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Secretion response – regular vs phasic stimulation
The core experimental result is that phasic stimulation produces

more vasopressin secretion for a given mean spike rate than

regular stimulation [15–17]. In these experiments, isolated

pituitary glands were stimulated phasically using stimulus patterns

generated using recordings taken from vasopressin neurons in vivo.

Comparing a single phasic burst and regular stimulation at the

same mean frequency [17] shows a more rapid decline in the rate

of secretion using the burst pattern, tested here using spike model

generated data (Figure 4). The faster spiking at the head of the

burst causes an increased initial rate of secretion, followed by a

steep decline, due mostly to the variation in spike rate and

facilitation effect, rather than increased fatigue.

In [15] the secretion response to regular and burst stimulation

was further tested using a range of mean frequencies, and

producing the equivalent data with the model shows a close match

to the in vitro results. In particular, for both experimental data

(Figure 5A) and model data (Figure 5B), secretion is maximal in

response to phasic stimulation at a mean frequency of ,6 Hz.

Similar levels of secretion can be achieved with regular stimula-

tion, but only with much higher frequencies. In response to

stimulation frequencies within the physiological range of mean

firing rates for vasopressin neurons (up to ,8 Hz), phasic

stimulation always releases more vasopressin than regular stimu-

lation. We also used the model to compare non-phasic spike

patterning (by setting gL = 0 in the spiking model), simulating a
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continuously spiking neuron. The non-phasic pattern is more

efficient than regular stimulation, but still much less efficient than

the phasic pattern, as observed experimentally [16].

Single cell model response to increasing synaptic input
In the spiking model, we studied the effects of increasing

synaptic input rate, and showed that, compared to otherwise

identical non-phasic model cells, phasic cells respond to increases

in input with a much more linear increase in mean spike rate. To

extend this analysis to incorporate the secretory response, we

coupled the spiking model to the secretion model. As previously, to

investigate the adaptive consequences of the phasic firing pattern,

we compared a representative phasic model cell (Figure 6A) with a

cell that was identical except in lacking the mechanisms that allow

the generation of phasic firing, by setting spiking model parameter

gL = 0.

We simulated the plasma vasopressin concentration resulting

from stimulation of the model phasic cell for 3000s at a range of

fixed mean input frequencies (using 25-Hz steps from 50 Hz to

1000 Hz) by assuming a half-life of 2 min for the evoked

vasopressin secretion [23]. This is a much higher rate than

observed for these neurons in vitro, but the in vitro preparations are

largely deafferented making this comparison unreliable; in vivo

intracellular recordings from vasopressin neurons show a much
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higher rate of input than in vitro recordings (and a lower specific

impedance) [32], but the input rates in vivo have not been

quantified. The density of GABA synapses in the supraoptic

nucleus is between 14 and 276106/mm3 of tissue, comprising

about half of all synapses [33]. The total number of synapses per

supraoptic neuron has been estimated to be ,600 [34]; this is

likely to be an underestimate, as the dendrites of magnocellular

neurons extend well beyond the boundaries of the nucleus, and

because it was based on an estimated neuronal population of the

supraoptic nucleus that is much higher than subsequent

estimates. For 600 synapses/neuron, a mean input rate of

1000 Hz represents an average input rate at each synapse of

,1.5 Hz.

The resulting frequency-response profiles for the phasic and

non-phasic cell models (parameters in Table 1) are shown in

Figure 6B–E. The non-phasic model cell respond to increasing

input with a non-linear increase in spike output (Figure 6B left)

which is roughly mirrored by secretion (Figure 6C left). In the

phasic model however, the secretion output (Figure 6C right) is

much more non-linear than the spike response (Figure 6B right).

Thus any possible benefits of the phasic firing pattern in linearising

the cell response appear to be dissipated, and the faster firing of

non-phasic cells compensates for the less efficient secretion

response. Indeed, the non-phasic model appears to have a better

secretion output, on the basis of dynamic range (quartiles in

Figure 6C), although examining secretion against mean spike rate

does show a much more linear response with phasic cells in the 0–

4 Hz range (Figure 6D). The phasic cell response at faster spike

rates becomes less linear, as bursts lengthen and secretion per spike

becomes less efficient (Figure 6E).

Population heterogeneity and response to increasing
synaptic input

One of the distinctive features of the vasopressin cell

population is that it is highly heterogeneous in its spiking activity

[35,36]. During osmotic challenge, the proportion of phasically

firing cells increases, but some cells still fire slowly and irregularly,

while others fire more quickly in a non-phasic continuous firing

pattern. Previously with the spiking model, we simulated a

heterogeneous population of vasopressin cells by varying a subset

of the parameters related to the phasic firing mechanism [8].

However, these variations are insufficient to reproduce the

observed range of firing behaviours, and here we tested a simpler

and more powerful method. Instead of varying the intrinsic

properties of cells, we varied the density of synaptic input

received by each cell to generate a heterogeneous population of

100 model cells, using lognormal randomly generated values.

This produces a distribution of firing rates and patterns that

matches closely the heterogeneity observed experimentally

amongst vasopressin neurons recorded in vivo ([36], Figure 7A).

A survey [36] of 83 recorded phasic cells showed a mean spike

rate of 4.2 Hz (range 0.9 Hz to 10.7 Hz) with standard deviation

1.8. For Ipop = 460 Hz, 79 of the model population of 100 cells

were fully phasic (defined as having an activity quotient [37]

between 0.1 to 0.9). These phasic cells had a mean spike rate of

4.2 Hz (range 1.1 Hz to 10.4 Hz) with standard deviation 2.0,

very close to the population described from in vivo experiments

(Figure 7).

The secretion output from these 100 cells was summed and

scaled to match a full size cell population, for comparison with in

vivo data. We compared secretion from four model populations:

homogeneous and heterogeneous non-phasic cells, and homoge-

neous and heterogeneous phasic cells (Figure 8). The homoge-

neous populations comprised 100 identical cell models each with

the same synaptic input density, differing only in their Poisson

randomly timed synaptic input events.

Both the homogeneous and heterogeneous non-phasic popu-

lations show a similar non-linear mean spiking and summed

secretion response (Figure 8A and C)) to a single non-phasic

neuron (Figure 6B and C left). Similarly, the homogeneous phasic

population shows just a smoothed version of the single phasic cell

response (Figure 6B,C right), with a mostly linear increase in

spike rate (Figure 8B) and a much more non-linear secretion

response (Figure 8D). However, the input rate variation of the

heterogeneous population has a strong effect on the spiking

response to increased input, but only for the phasic cells. For

phasic cells, heterogeneity produces a further linearization of the

already more linear spike response (Figure 8B). The secretion

response from non-phasic cells is modestly linearised by

introducing heterogeneity – but the secretory response from

phasic cells is markedly linearised and the dynamic range

considerably increased.

Thus, population input heterogeneity has a strong linearising

effect, but only when combined with phasic firing. Comparing

the heterogeneous populations of phasic and non-phasic neurons,

there is little difference in the linearity of the relationships

between synaptic input and secretion (Figure 8E and F).

Comparing the overall model output to the experimental data

of [6] shows that the model, over the physiological range of

secretion, matches the linearity of secretion in response to

increased stimulation (Figure 9).

Secretion response with long term depletion of
vasopressin stores

The other challenge for the vasopressin neurons is to sustain

their response during prolonged osmotic challenge, over hours and

days. They must balance immediate response to osmotic challenge

with preserving vasopressin stores for as long as possible, to

maintain life. Depleted vasopressin stores combined with lack of

access to water rapidly lead to fatal dehydration.

Figure 6. Single cell spike rate and secretion response to increasing synaptic stimulation. The spiking model (parameters in Table 1) is
coupled to the fitted secretion model (Table 2). Non-phasic spiking is generated by setting gL = 0. (A) Examples of the four different modes of spike
patterning generated by the same phasic spiking model with varied input rates. (B) The non-phasic model (left) shows a non-linear increase in spike
rate with increased input. The phasic spiking model (right), after very little response at low input rates, shows a more linear increase in spike rates. The
rate of increase is initially steep as the patterning transitions from irregular firing to full phasic spiking, but this is followed by a wide range of very
linear increase as bursts lengthen and intraburst firing rate increases. (C) The non-phasic model (left) shows a similarly non-linear secretion response
to increasing spike rate, showing a slow increase in secretion at low frequencies, followed by a facilitation driven rapid increase, which then slows
along with the reduced spike rate response. The phasic secretion profile (right) shows an initial steep increase which slows as the intra-burst spike
rate reaches the optimal response frequency, and longer bursts allow less recovery from fatigue. (D) Examining secretion against spike rate the non-
phasic model shows a progressive increase in secretion with increasing frequency. By contrast the phasic model shows a very linear response up to
,4 Hz, after which secretion becomes relatively independent of mean spike rate. (E) Secretion per spike shows that secretion from phasic cells is
achieved with much greater efficiency at synaptic input rates exceeding 200 Hz with optimal efficiency at about 400–600 Hz, corresponding to mean
firing rates of 2–4 spikes/s (comprising relatively short sparse bursts). The non-phasic cells show a less variable, but also less efficient response.
doi:10.1371/journal.pcbi.1003187.g006
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Vesicle stores are represented in the model as a reserve store (r)

and a releasable pool (p). The normal vasopressin content of the

rat pituitary is approximately 1 mg [23]. However, to study the

effects of depletion in the model on a timescale where we can still

observe the response to individual spike bursts, we set the initial

content to a very low value (rmax = 100000, equivalent to a

content of 0.1 mg) and simulated stimulation in 72-s bursts

separated by 30-s silences, with regular intraburst activity at

13 Hz (Figure 10). The content of p (pmax = 5000), which is much

smaller than the reserve store, was set large enough to support

secretion during a typical burst with only partial depletion

(Figure 10) but also small enough to be fully replenished during a

30-s silence. We compared the model with and without fatigue,

removing the effect of c by setting cinhib = 1. In the model, p is

replenished at a rate proportional to r. While this rate is greater

than x (the rate of secretion) p is maintained near its maximum,

and the relation between spike rate and secretion is maintained.

Only when r is sufficiently depleted (,50%) does the secretion

response decline. Thus, it seems that fatigue helps to maintain a

consistent response to stimulation in the face of progressive store

depletion.

We then tested this with a simulation setting smax = 1000000

(1 mg) and using spike model generated activity instead of regular

stimulation. The spike model input rate was set at 600 Hz,

producing a mean spike rate of 4.7 Hz (at the high end of the

physiological range). Figure 11 shows the model output, with and

without fatigue, for 24 h of simulated stimulation. With fatigue,

secretion is maintained at a fairly constant mean level for about

6 h, before declining progressively. Without fatigue, secretion

declines from the beginning. Thus, in the model, the presence of

a fatigue mechanism enables a consistent response to stimulation

to be maintained until the stores have reached about 50%

depletion.

Secretion response during long term depletion in a
heterogeneous population

In a heterogeneous population, individual cells will become

depleted at different times. To study this, we used the same

heterogeneous population as used in Figures 8 and 9, and

simulated stimulation for 24 h with a population input rate of

400 Hz (Figure 12A). The slowest cells maintain their response

for the whole 24 h, but most active cells become depleted, and

their responses become proportional to their respective reserve

store levels well within 24 h (Figure 12B). However, although the

decline in the overall secretion of the population (Figure 12C)

begins at a time determined by the most active cells,

heterogeneity in the input rates results in heterogeneity in

depletion rates, which reduces the rate of the decline in the

population signal. We know from experimental data [38] that,

when tested over up to 4 days of stimulation, vasopressin

secretion declines in proportion to pituitary content, but there is

currently not enough data to make a more detailed quantitative

comparison with the model.

Discussion

The core aim of this study was to understand how the properties

of the secretion mechanism in vasopressin neurons relate to their

signal processing abilities and function. We developed a differen-

tial equation based model of the secretion mechanism, based on

concise representations of the underlying mechanisms, and this

model reproduces the non-linear facilitation and fatigue effects

observed experimentally. By coupling this secretion model to an

integrate-and-fire based spiking model, we created a full cell model

which we used to investigate the relationship between synaptic

input activity and secretion response, for both single cells and a

neuronal population.
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We are aware of only one previous published model of the

secretion response in vasopressin neurons [39]. This used an ad hoc

representation, based simply on a piecewise linear fit to

experimental data [12], and it does not produce a response which

is sensitive to spike patterning (differentiating phasic from regular

stimulation), which is one of the key features of vasopressin cells.
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Ca2+ based model mechanisms
The present secretion model implements mechanistic elements

derived from previous experimental studies. The rate of vesicle

exocytosis depends on Ca2+ entry, and the model relates Ca2+

entry at the axonal terminals to spike activity. Facilitation of

stimulus-secretion coupling arises as a consequence of the spike

broadening that has been observed in recordings from

the terminals. We assumed that most of the increase in spike

duration reflects a high voltage-gated Ca2+ conductance, since the

effect is blocked when Ca2+ is removed [9]. This results in a

frequency-dependent increase in Ca2+ entry per spike. In

vasopressin cells facilitation of stimulus-secretion coupling peaks

at ,15 Hz. By contrast, oxytocin cells continue to show increasing

facilitation at spike rates as high as 50 Hz, and this suggests that

vasopressin cells have some other competing inhibitory mecha-

nism. To fit the measured frequency-response profile [12], we

added a Ca2+-dependent inactivation of Ca2+ entry.

We modelled fatigue of stimulus-secretion coupling as the effect

of a Ca2+-activated K+ current that reduces the probability that

axonal spikes invade the terminals. The close match between

intracellular Ca2+ time course and the development and recovery

from fatigue [14,17], the existence of suitable Ca2+ activated K+

channels, and activity-dependent spike failure [27], all make this

mechanism plausible, and we chose model parameters to match

experimental data quantitatively. The data of [17] suggests a

more rapid development of fatigue than [14]. The model is

capable of fitting both, but for the results here we use parameters

that fit our own data [14]. In both cases, the time resolution is

limited, and ideally we would repeat the experiments, using

spiking model generated data. We also experimented with an

extended mechanism incorporating ATP- and adenosine-based

mechanisms [40], that are thought to modulate the Ca2+

activated K+ channel and an N-type Ca2+ channel respectively,

but the improvement in fit was not sufficient to justify the

increased complexity.

Vesicle stores and depletion
Although the model doesn’t use a releasable store to simulate

fatigue, it does use a store mechanism to simulate the depletion

that occurs on longer timescales, with the model tested for

durations up to 24 h. The secretion of vesicles from the posterior

pituitary has been studied quantitatively at the ultrastructural level

[41]; these studies led to the conclusion that exocytosis can occur

from all parts of the axons of magnocellular neurons – from nerve
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terminals, from the large axonal swellings that are a conspicuous

feature of the gland and which contain most of the vesicles, and

even from undilated axons. However in each of these compart-

ments, and under different physiological conditions including

different states of depletion, the number of vesicles that is released

by a given stimulus appears to depend only on the number of

vesicles that are close to the plasma membrane [41]. This implies

that in any secretory compartment, exocytosis is a stochastic

process, and that the probability of release from a compartment

depends on the content of a releasable pool in that compartment.

On long timescales (tested over 4 days) the rate of secretion is

proportional to the total gland content [38], suggesting that

replenishment of the releasable pool (close to the plasma

membrane) from a deeper store is also activity-dependent and

probabilistic.

In normal conditions the system functions to maintain body

fluid homeostasis, and secretion is linearly proportional to osmotic

pressure. We assume that it is also important to maintain a

consistent response, and therefore an advantage to make secretion

independent of the store content. However, in conditions of

prolonged challenge it will be more important to preserve

vasopressin stores, so that osmotic pressure can be maintained at

a life preserving level for as long as possible, and so it would be of

use to gradually reduce the secretion rate, as rationing becomes

more urgent.

In modelling the store and the releasable pool, we assumed that

secretion is proportional to the releasable pool, and that it is

refilled at a rate proportional to the store content. We did not

include any synthesis in the model, as the long axons mean that

there is a long delay (24 h) between an increase in demand and an
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increase in the arrival rate of newly synthesised vesicles at the

terminals [42]. In the present model, the releasable pool represents

the summed total of all the terminals of a single cell. It was set

large enough that a single burst would release only a small

proportion of the content, with a refill rate parameter fast enough

to refill the pool between bursts while the store content is at

maximum. Under these conditions, we get a model cell that, in

response to a large and sustained increase in activity (comparable

to that which accompanies systemic dehydration) can maintain a

stable secretion rate for a long period (hours). However, once the

store reaches a critical level of depletion, the releasable pool also

becomes depleted, and thereafter the secretion rate becomes

proportional to store content.

These simulations give a strong indication of the likely adaptive

value of fatigue. From experimental data we know that fatigue of

stimulus-secretion coupling is a marked characteristic of vaso-

pressin secretion but not of oxytocin secretion – so it is not an

inevitable feature of stimulus-secretion coupling in neuroendo-

crine neurons. The present model results suggest that in

conditions of chronically maintained stimulation, fatigue is

important for maintaining a constant level of output despite

declining stores. This may be important physiologically for

vasopressin secretion, where the absolute level of vasopressin

determines the degree of antidiuresis, but less important for

oxytocin in its primary role as a hormone that mediates milk let-

down – a reflex governed not by the mean sustained level of

oxytocin secretion but by the frequency at which transient pulses

of secretion occur [43].

Single cell secretion response
Combining the new secretion model with our previously

published spiking model allows us to examine the relationships

between synaptic input, spiking activity, and secretion. As we

showed previously, because the phasic activity of vasopressin cells

is asynchronous, and because of the properties of the mechanism

that generates phasic activity, the average spike rate of the

population increases relatively linearly in response to increased

afferent input despite the short term non-linearity of individual cell

responses. However, as we show here, the combined effects of

fatigue and facilitation make the secretory response to increasing

input one that is highly non-linear. This is an obvious consequence

of facilitation, which increases secretion per spike as spike rate

increases. However, fatigue also makes the response less linear, by

capping the secretion rate for a proportion of the spike activity - a

proportion that increases as burst durations increase. The effect of

this overall nonlinearity is to reduce the dynamic range of the

secretory response compared to that of the spiking response.

Population response and heterogeneity
However, to properly understanding the relationship between

the underlying mechanisms and the function of the cells, we need

to look not at individual cells, but at how they behave as a

population. To do this we used populations of 100 model cells to

look at the relation between synaptic input (assumed to be

representative of osmotic pressure) and summed population

secretion, scaled to compare against full size cell populations

(,9000 cells).
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Testing a homogeneous population of 100 identical model cells

has the expected smoothing effect of an averaged population

signal, but otherwise matches the features of the single cell

response. However, vasopressin neurons are a highly heteroge-

neous population, varying both in their firing rates, and spike

patterning. Previously, with the spiking model, we simulated

heterogeneity by adding random variation to a subset of the

parameters which had been used to fit varied recorded cells. This

is sufficient to produce a range of phasic firing patterns, but not the

highly varied activity that is observed in vivo, and this is likely to

underestimate population heterogeneity since identified cells are

biased towards the more distinctive phasic pattern.

To produce more varied spike rates we used a simpler method,

applying random variation to the rates of synaptic input received

by each model cell, using a log normal distribution (Figure 8A).

Tests using a heterogeneous population using the subset method

showed only minor variation from the homogeneous response

profile (not shown). However, tests with input based heterogeneity

show a marked linearisation of the population response, along with

a large increase in the dynamic range, producing a profile which is

much closer to the highly linear secretion response observed in vivo

(Figure 9). The effect only works using the phasic cell model, with

non-phasic cells showing very little difference between homoge-

neous and heterogeneous populations.

The adaptive value of heterogeneity
The vasopressin neurons of the supraoptic nucleus are probably as

homogeneous a population of neurons as any that exists within the

CNS: there are about 2000 of these in each nucleus, and each has

just a single axon that projects to the posterior pituitary gland with

few if any collateral branches that terminate in the CNS. Thus they

share a strictly common function in that the role of each is to

contribute to the pooled output of vasopressin that enters the

systemic circulation. While these neurons have many features in

common, there is also considerable variability in their intrinsic

properties, and their spontaneous firing rates and patterns vary

substantially from cell to cell – even between immediately adjacent

cells recorded simultaneously. The most parsimonious explanation

of this variability is that it is not ‘‘designed in’’, but is the consequence

of intrinsic variability in the developmental determination of gene

expression and neuronal wiring patterns. But however this variability

arose, the question arises of whether it has any adaptive significance:

does this variability affect information coding, and does it do so in a

way that yields any apparent advantages?

This question has been addressed previously for several other

neuronal systems, leading to the conclusion that there can indeed

be various advantages of neural heterogeneity in information

coding [44–46]. However, these previous studies all drew their

conclusions from models that assumed that information is coded in

the spike activity of neurons. However the information that is

transmitted from neuron to neuron is mediated not by spike

activity itself, but by the secretion that is evoked by that activity –

and in all neurons the coupling between activity and neurosecre-

tion is complex and highly nonlinear. Here we show that in the

case of vasopressin cells at least, taking account of stimulus-

secretion coupling radically changes our perception of the

importance of heterogeneity.

Here, we have modelled closely the particular properties of

stimulus-secretion coupling in vasopressin cells. These properties

vary in different neuronal types, but it seems that frequency

facilitation is a common if not universal feature of neurotransmit-

ter secretion from synapses, and that activity-dependent depletion

and other mechanisms functionally equivalent to fatigue are also

common if not universal. We have shown here that the functional

properties of a network critically depend upon these properties.

The output of a neuron is not its spike activity, but what it secretes

in response to that activity, and representing this accurately in

network models may be critical to properly understanding how

they process information.
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35. Brown CH, Ludwig M, Leng G (1998) kappa-opioid regulation of neuronal

activity in the rat supraoptic nucleus in vivo. J Neurosci Off J Soc Neurosci 18:

9480–9488.

36. Sabatier N, Brown CH, Ludwig M, Leng G (2004) Phasic spike patterning in rat

supraoptic neurones in vivo and in vitro. J Physiol 558: 161–180. doi:10.1113/

jphysiol.2004.063982.

37. Wakerley JB, Poulain DA, Dyball RE, Cross BA (1975) Activity of phasic

neurosecretory cells during haemorrhage. Nature 258: 82–84.

38. Higuchi T, Bicknell RJ, Leng G (1991) Reduced Oxytocin Release from the

Neural Lobe of Lactating Rats is Associated with Reduced Pituitary Content and

does not Reflect Reduced Excitability of Oxytocin Neurons. J Neuroendocrinol

3: 297–302. doi:10.1111/j.1365-2826.1991.tb00278.x.

39. Nadeau L, Mouginot D (2012) Quantitative prediction of vasopressin secretion

using a computational population model of rat magnocellular neurons. J Comput

Neurosci 33: 533–45. Available: http://www.ncbi.nlm.nih.gov/pubmed/

22688885. Accessed 26 July 2012.

40. Lemos JR, Ortiz-Miranda SI, Cuadra AE, Velázquez-Marrero C, Custer EE, et

al. (2012) Modulation/physiology of calcium channel sub-types in neurosecre-

tory terminals. Cell Calcium 51: 284–292. doi:10.1016/j.ceca.2012.01.008.

41. Morris JF, Pow DV (1988) Capturing and quantifying the exocytotic event. J Exp

Biol 139: 81–103.

42. Fitzsimmons MD, Roberts MM, Robinson AG (1994) Control of posterior

pituitary vasopressin content: implications for the regulation of the vasopressin

gene. Endocrinology 134: 1874–1878.

43. Leng G, Brown D (1997) The origins and significance of pulsatility in hormone

secretion from the pituitary. J Neuroendocrinol 9: 493–513.

44. Hospedales TM, van Rossum MCW, Graham BP, Dutia MB (2008)

Implications of noise and neural heterogeneity for vestibulo-ocular reflex

fidelity. Neural Comput 20: 756–778. doi:10.1162/neco.2007.09-06-339.

45. Padmanabhan K, Urban NN (2010) Intrinsic biophysical diversity decorrelates

neuronal firing while increasing information content. Nat Neurosci 13: 1276–

1282. doi:10.1038/nn.2630.

46. Chelaru MI, Dragoi V (2008) Efficient coding in heterogeneous neuronal

populations. Proc Natl Acad Sci U S A 105: 16344–16349. doi:10.1073/

pnas.0807744105.

Vasopressin Secretion: Mechanism and Heterogeneity

PLOS Computational Biology | www.ploscompbiol.org 18 August 2013 | Volume 9 | Issue 8 | e1003187


