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Abstract

Antimicrobial peptides (AMPs) are an abundant and wide class of molecules produced by many tissues and cell types in a
variety of mammals, plant and animal species. Linear alpha-helical antimicrobial peptides are among the most widespread
membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement in innate defense.
Recently, AMPs have received increasing attention as potential therapeutic agents, owing to their broad activity spectrum
and their reduced tendency to induce resistance. The introduction of non-natural amino acids will be a key requisite in order
to contrast host resistance and increase compound’s life. In this work, the possibility to design novel AMP sequences with
non-natural amino acids was achieved through a flexible computational approach, based on chemophysical profiles of
peptide sequences. Quantitative structure-activity relationship (QSAR) descriptors were employed to code each peptide and
train two statistical models in order to account for structural and functional properties of alpha-helical amphipathic AMPs.
These models were then used as fitness functions for a multi-objective evolutional algorithm, together with a set of
constraints for the design of a series of candidate AMPs. Two ab-initio natural peptides were synthesized and experimentally
validated for antimicrobial activity, together with a series of control peptides. Furthermore, a well-known Cecropin-Mellitin
alpha helical antimicrobial hybrid (CM18) was optimized by shortening its amino acid sequence while maintaining its
activity and a peptide with non-natural amino acids was designed and tested, demonstrating the higher activity achievable
with artificial residues.
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Introduction

Antimicrobial peptides (AMPs) are small evolutionally con-

served molecules found among all classes of life, from multicellular

organisms to bacterial cells [1,2]. In higher organisms, AMPs play

a major role in innate immunity as a part of the first defence line

against invading pathogens. In bacteria, AMPs provide a

competitive advantage for the producer in certain ecological

niches as weapons against other bacteria. Alpha-helical AMPs are

among the most abundant and widespread membrane-disruptive

sequences in nature and represent a particularly successful

structural arrangement for innate defense, as it can easily afford

peptide insertion into lipid bilayers [3]. In fact, the amphipathic

structure facilitates electrostatic interactions between the peptide

and the target cell membrane. Completion of the folding process

involves hydrophobic interactions between the non-polar residues

of the peptide and the hydrophobic core of the lipid bilayer [4,5].

AMP membrane perturbation activity can be explained by at least

three major mechanisms, all leading to bacterial membrane’s

collapse and subsequent cell’s death. Two of these models (i.e. the

‘barrel-stave’ and the ‘toroidal-pore’ models) rely on the peptide

ability to form ordered transmembrane channels/pores, while the

so called ‘carpet model’ implies that, at a critical threshold

concentration, the peptides disrupt the bilayer in a detergent-like

manner, eventually leading to the formation of micelles [6]. In

recent years, AMPs are actively researched not only as direct

antimicrobial agents, but also as potential endosomolytic moieties

promoting the release of biomolecules into cells for delivery

purposes [7–9]. On the other hand, the increasing prevalence of

antibiotic resistance necessitates the development of new ways to

combat bacterial infection. Although some AMPs are already in

clinical and commercial use (see Table S1 for a list of AMPs

commercially available and in clinical trial), the future design of

novel AMPs will need to minimize the toxicity against eukaryotic

cells and enhance the resistance to proteolytic degradation, with a

key opportunity being offered by the introduction of non-natural

amino acids (AA) to contrast host resistance and increase

compound’s life.

Thus far, several methods have been proposed for the rational

design of AMP sequences with improved activity. In particular,

computer-aided identification and design of AMPs played a crucial

role in this area [10]. Most of these approaches are based on

sequence alignment and calculation of amino acidic frequencies

(e.g. template-based approaches and some machine-learning

methods) [11–14]. However, several major disadvantages may

limit the potential of these strategies. For instance, there is no

understanding of the physicochemical requirements that play a

crucial role in regulating the peptide activity. Also, peptide design

is limited by the use of natural AAs only. In the effort to overcome

these limitations, quantitative structure-activity relationship
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(QSAR) descriptors have been employed to correlate primary AA

sequence with a given biological activity [15,16]. QSAR descrip-

tors provide a reliable statistical model for prediction of the

activities of new chemical entities. In particular, Hellberg et al.

developed the so called ‘z-scale’ descriptors [17], highly condensed

variables derived from a principal component analysis (PCA) of

several experimental or theoretical physicochemical properties for

the 20 naturally occurring AAs. In detail, these z-scale descriptors

correspond to the first three principal components explaining the

variance in the set: z1, z2, and z3 represent the AA hydrophobicity,

steric properties, and polarity, respectively. QSAR analysis of

peptides using these descriptors has proven effective in predicting

different physiological activities [18–20]. Z-scale descriptors were

also successively expanded to include artificial AAs [21]. The new

z-scales include 87 AAs and two extra variables (z4, z5) describing

the electronic effects of the residues.

All the mentioned descriptors combined with statistical analysis

allow the design of novel AMP and the optimization of already

existing ones in terms of desired characteristics such as improved

activity, decreased toxicity, and easy synthesis. Due to the huge

number of possible amino-acids combinations, stochastic optimi-

zation methods such as Genetic algorithms (GA) may be a

preferred tool to perform directed random searches in large

problem spaces, such as those encountered in drug design [22,23].

In particular, when simultaneous optimization of two or more

characteristics is required, a class of GA called multi-objective

evolutional algorithms (MOEA) can be used to provide an optimal

solution [24][25].

In order to overcome current limitations and develop a flexible

computational approach for AMP design, able to account for non-

natural AAs, here we combine the representation of antimicrobial

peptides in terms of physicochemical features with genetic

algorithms. The novelty of this approach is in the unified

treatment of both natural and non-natural AAs, allowing a

systematic exploration of this enhanced combinatorial space. We

target our approach to alpha-helical AMPs because of their

advantages in terms of biological activity, mechanism of action,

and ease of synthesis and manipulation [3]. Rather than training a

single model on the existing alpha-helix AMPs we separately

addressed the structure and the function characteristics, combin-

ing the two aspects in the design phase. Thereby, starting from two

different sets of existing peptides, two statistical models were

trained in order to account separately for structural and functional

characteristics of alpha-helical AMPs. This approach has the

advantage of considering broader and unbiased datasets, with

respect to an alpha-helix only AMP dataset, enhancing the

performance of the training phase. The first model represents

antimicrobial physicochemical properties and was trained on a set

of AMPs taken from the literature. The second model accounts for

the all-helix conformation of the peptide and is based on a non-

redundant set of all-alpha helix protein fragments. This in silico

approach was used to design a set of five peptides with natural AAs

(GMG_01, GMG_02, GMG_03, GMG_01_SCR, CM12).

GMG_01 and GMG_02 were designed ex-novo and predicted

to be antimicrobic, while GMG_03 and GMG_01_SCR were

designed as negative controls with no predicted bactericidal

activity. CM12 was obtained by the reduction and optimization of

the CM18 (Cecropin (1–7)-Melittin (2–12)) sequence, a well-

characterized antimicrobial peptide. Finally, an AMP sequence

containing non-natural AAs (GMG_05Z) was designed. Antimi-

crobial properties of all these peptides were experimentally

validated in vitro by testing the minimum bactericidal concentra-

tion (MBC) against S. aureus and P. aeruginosa strains, representative

of Gram-positive and Gram-negative bacteria respectively. In

addition, Molecular Dynamic (MD) simulations were performed to

predict and analyze the structural properties of the designed

peptides, in particular to confirm the presence of helical motives.

Results/Discussion

Peptide encoding
Two different sets of peptides were prepared in order to

represent functional and structural characteristics of alpha-helical

AMPs. Dataset A, representing the functional requirements for

AMP activity, was accurately compiled from the literature of

existing and characterized antimicrobials. Dataset B accounts for

the structural characteristics of alpha-helix AMPs and was

assembled from a well-defined non-redundant set of proteins.

Two types of descriptor encoding were utilized in order to present

the training datasets to the learning algorithm (see Table 1):

global descriptors and topological descriptors. Global descriptors

are variables representing the whole molecule, while topological

descriptors are variables representing the interaction of different

residues along the amino acidic sequence. Charge and hydropho-

bicity related characteristics are among the most important

properties for active peptides. [26,27]. Indeed, positively-charged

peptides, rich in basic residues, particularly Lysines, can insert into

the bacterial membrane more easily [5,28]. Hydrophobicity

determines folding, binding to receptors, and interactions of

proteins and peptides with biological membranes. Z-scale averages

moments (Equation 2 in Materials and Methods) are used to

account for hydrophobicity, as well as polarity and steric effects of

each peptide.

Topological description of the peptide sequence was accounted

for by encoding QSAR descriptors into auto- and cross covariance

(ACC) values. Classical ACC transformation was introduced by

Wold et al [29] and results in two kinds of variables: auto

covariance (AC) of the same descriptor and cross covariance (CC)

between two different descriptors. Briefly, for a given protein

sequence, ACC variables describe the average interactions

between residues distributed a certain lag apart throughout the

whole sequence. Besides describing the sequence order, ACC has

Author Summary

In recent years, the increasing and rapid spread of
pathogenic microorganisms resistant to conventional
antibiotics especially in hospital settings spurred research
for the identification of novel molecules endowed with
antimicrobial activities and new mechanisms of action.
Antimicrobial peptides (AMPs) received an increasing
attention as potential therapeutic agents because of their
wide spectrum of activity and low rate in inducing
bacterial resistance. Currently, research is focused on the
design and optimization of novel AMPs to improve their
antimicrobial activity, minimize the cytotoxicity and reduce
the proteolytic degradation, also in biological fluids. To
this end, the introduction of non-natural amino acids will
be a key requisite in order to contrast host resistance and
increase compound’s life. However, the amino acidic
alphabet extension to non-natural elements makes a
systematic approach to AMPs design unfeasible. A rational
in-silico approach can drastically reduce the number of
testing compounds and consequently the production
costs and the time required for evaluation of activity and
toxicity. In this article, AMP in-silico design with non-
natural amino acids was performed and a series of
candidates were tested in order to demonstrate the
potentiality of this approach.

Evolutionary Multiobjective Optimization of AMPs
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the ability to transform each AA sequence of variable length into

uniform equal-length vectors. This feature is very important in

data mining methods, where a fixed-length vector describing each

instance is required. However, averaging along the entire sequence

may cause loss of information about strong and weak correlations.

To cope with these limitations, the Maximum of auto- and cross-

covariances (MACC) algorithm was introduced [30], where positive

and negative descriptor values are considered separately and only

the maximum value of each lag is used. In this work we introduce

an ACC descriptor accounting for both weak and strong

correlations, the Minimum and Maximum of auto and cross-

covariances (mMACC) descriptor (Equation 1).

ACmin d~MIN Zk
i � Zkzd

i

� �
;

ACmax d~MAX Zk
i � Zkzd

i

� �
k~1,2,3::L{dð Þ

CCmin d~MIN Zk
i � Zkzd

i

� �
;

CCmax d~MAX Zk
i � Zkzd

i

� �
k~1,2,3::L{dð Þ

Equation 1. Minimum and Maximum of auto and cross-

covariance equations.

Where Zk
i is the i-th descriptor of residue k in the sequence, d is

the lag. As in the MACC algorithm, the maximum value of each

interaction is taken into account. However, in the mMACC each

z-scale descriptor is shifted by the absolute minimal value in order

to have only positive interactions. This reduces the number of

combinations, while maintaining both information of strong and

weak interactions. In the following, the newly introduced ACC

descriptor performances are compared with classical ACC and

MACC descriptors.

Feature selection and model training
In the selection of the descriptors a tradeoff should be found

between the performance of the encoding (i.e. how well the

statistical model based on a particular encoding is able to predict

the peptide alpha-helix structure and/or antimicrobial activity)

and the requirement of minimizing the number of descriptors.

Indeed, on equal terms of performance, a lower number of

features is preferable, since the resulting model is less computa-

tionally expensive and the interpretation of resulting models is

simpler. Figure 1 reports the performance of the three encodings

(ACC, MACC, mMACC) as a function of the number of

descriptors used. Prior to this analysis the descriptors were ordered

by the mRMR (minimum redundancy maximum relevance)

algorithm [31]. The performance is evaluated by the Mathews

correlation coefficient (MCC) (Equation 4 in the Materials and

Methods), which assesses the prediction in terms of true and false

positives and negatives. The maximum MCC value, correspond-

ing to the optimal feature set, was compared for each encoding, as

shown in Table 2. The mMACC algorithm performed better

both in the absolute MCC value, and in the (smaller) number of

features. On the basis of these preliminary tests, the mMACC

algorithm was chosen to encode topological descriptors for both

Dataset A and Dataset B. mMACC plot of Dataset A showed a

peak at 200 descriptors, whereas Dataset B reached its maximum

of accuracy at 215, and these subsets were selected to construct

each training model. Results are summarized in Table 3 and the

complete lists of features are reported in Tables S2 and S3.

Hereafter, the genetic algorithms for peptide sequence prediction

will be based on these final optimal features. The distribution of

the selected descriptors in terms of z-scales interactions and as a

function of the lag between AAs is reported in the SI (Figure S4,
Text S1).

RF has several properties that allow extracting relevant trends

from data with complex variable relations. Proximity values are a

measure of similarity between samples, calculated as the number

of times the two samples end up in the same terminal node of the

tree [32]. In this way, subclasses can be identified by finding

peptides that have similar proximities to other AMPs. A matrix

representing proximity values of each AMP in Dataset A was

obtained from the final model. Cluster analysis resulted in five

different clusters and the distribution of relevant properties was

analyzed, as shown in Figure 2. A dendrogram represents the

subdivision into clusters (Figure 2A), while a radial distribution of

AA frequency is shown in Figure 2B, reflecting the average net

charge at different pH (Figure 2C). A heatmap showing the AA

relative abundance of each cluster is represented in panel D.

Cluster1 and Cluster2 present a high average net charge, with a

different distribution of the charged residues. In particular, Lysine

appears to be more frequent in Cluster 1, as shown in the

heatmap. Clusters 3, 4 and 5 present a lower net charge, due to the

Table 1. List of descriptors.

Type Abbreviation Description N

Global NetCharge@5 Net charge at pH = 5. 1

NetCharge@7 Net charge at pH = 7. 1

NetCharge@9 Net charge at pH = 9. 1

pI Isoelectric point. 1

AA Count Total amino acid count. 1

chPos Sum and average of positive charges in side chain. 2

chNeg Sum and average of negative charges in side chain. 2

Zi Average Z-scale average sum along peptide sequence. 5

mZi Z-scale moment distribution along peptide sequence. 5

Topological AC Min and Max auto covariance values between the same descriptor. 100

CC Min and Max cross covariance values between two descriptors. 400

Two classes of descriptor were used in order to describe a single amino acidic sequence: global descriptors and topological descriptors. Here are listed for each class the
type and number of variables.
doi:10.1371/journal.pcbi.1003212.t001

Evolutionary Multiobjective Optimization of AMPs
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higher abundance of negatively charged residues. This analysis

stresses the role of overall charge and AA composition in

classifying various AMP families.

Peptide ab-initio design
The algorithm can be asked to select sequences optimizing a

particular property, in this case, presence or absence of

antimicrobial activity and secondary structure. Two ab initio AMPs

were chosen from two different trial sessions, hereafter named

GMG_01 and GMG_02. As a control, a session was performed

aiming to the selection of non-antimicrobial, alpha-helical peptides

(GMG_03). A second control was synthesized, GMG_01_SCR, a

scrambled version of GMG_01 obtained by selection of the

sequence with the lowest fitness upon permutation of the original

sequence. This control was chosen in order to assess whether the

algorithm was able to account for sequence order. After synthesis

and purification of the above-mentioned peptides, MBC tests were

performed in triplicate on S.aureus and P.aeruginosa ATCC strains.

Figure 1. IFS plot. Graph showing the change of the MCC values versus the feature numbers in each trained model for each encoding. For RF
training, nine different combinations of variable were tested: M = 10, 100 or 150 is the number of trees in the RF and T = d, 15 or 30 is the number of
features assigned to each tree (d is the default value of logM+1). In each model, the mMACC algorithm performed better both in the absolute MCC
value, and in the (smaller) number of features. A) In the AMP model, the MCC value reached the peak with M = 150, T = 30 when the number of
features = 200. B) In the all-alpha model, the MCC value reached the peak with M = 150, T = 30 when the number of features = 215. For both models,
the features thus obtained were used to form the optimal feature set for the training phase.
doi:10.1371/journal.pcbi.1003212.g001

Table 2. ACC descriptors performance.

Descriptor
Max Features Number
(topological+global) Dataset A Dataset B

MCC # Features MCC # Features

ACC 250+19 0.75 (std: 0.04) 270 0.60 (std: 0.04) 269

MACC 1000+19 0.75 (std: 0.05) 1020 0.69 (std: 0.05) 1019

mMACC 500+19 0.77 (std: 0.04) 200 0.69 (std: 0.04) 215

The maximum MCC value, corresponding to the optimal feature set, was compared for each encoding.
doi:10.1371/journal.pcbi.1003212.t002

Evolutionary Multiobjective Optimization of AMPs
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Peptides sequences, prediction scores and MBC values are

summarized in Table 4. GMG_01 and GMG_02 yielded an

antimicrobial activity comparable to the most effective antimicro-

bial peptides described in literature. As expected, GMG_01_SCR

yielded an antimicrobial activity approximately 16 times lower

than the parental one, demonstrating that the AMP prediction

model accounts for peptide’s AA sequence. The residual

antimicrobial activity was probably due to the reduced size of

the peptide and the overall cationic nature of GMG_01_SCR.

In fact, a short sequence with repeated AAs is not likely to

present significant differences in its primary structure; conse-

quently, its chemophysical profile results similar to the original

sequence. Notably, GMG_01_SCR shows a peculiar sequence

with all the charged residues concentrated on one terminus,

demonstrating that the charge ‘spatial’ distribution is an

important feature of functional alpha-helical AMPs. As expect-

ed, no antimicrobial activity was observed for the GMG_03

peptide, despite its alpha-helical secondary structure. This is

likely related to the negative net charge of the peptide at

Table 3. Final datasets statistics.

Dataset Accuracy Sensitivity Precision MCC

Dataset A 0.898 0.776 0.912 0.77 (std: 0.04)

Dataset B 0.871 0.726 0.84 0.69 (std: 0.04)

Each dataset was trained with its optimal features set and performance was
measured. Dataset A represents AMPs, while Dataset B represents all-alpha
helical peptides.
doi:10.1371/journal.pcbi.1003212.t003

Figure 2. RF proximity cluster analysis. A) Dendrogram representing the cluster subdivision of AMPs dataset, based on RF proximity values. B)
Radar distribution of cluster AA composition (i.e. count of each AA normalized by the total number of AA in the cluster). C) Average net peptide
charge of each cluster at different pH conditions. D) Heat map representing relative abundance of each AA, calculated as Log2 of AA composition in
the cluster normalized by AA composition of the entire AMP set.
doi:10.1371/journal.pcbi.1003212.g002

Evolutionary Multiobjective Optimization of AMPs
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physiological pH, which may not favour its adhesion to the

bacterial cell surface.

AMP optimization and inclusion of non-natural AA
Optimization of an existing antimicrobial peptide (CM18) was

performed, in order to obtain an improved system at shorter

length, thus with easier synthesis requirements. To this aim, a size

constraint was added to preferentially select peptides with

sequences shorter than 14 residues. Furthermore, a third objective

was added to avoid an excessive difference from the original

peptide, the Smith-Waterman normalized score (Equation 5 in

the Materials and Methods). This score measures the similarity

between two amino acidic sequences, normalized by the sequence

size and requires a measure of the similarity between two AAs.

Instead of the commonly used BLOSUM or PAM, a score matrix

obtained by the Euclidean distance between each amino-acid z-

scale values was used (Figure S2). Interestingly, residues with

similar physicochemical characteristics grouped together. This

facilitates single-AA substitutions, particularly regarding non-

natural residues. The sequence of CM18 was intentionally

removed from the AMP dataset in order to avoid improper

influence on the optimization process. A sequence of 12 AAs was

selected (CM12), as reported in Table 4. When tested for its MBC,

CM12 retained full activity, notwithstanding a nearly 30%

decrease in chain length.

Finally, starting from the non-active ab-initio peptide -

GMG_03 – the sequence was optimized for antimicrobial activity

and all-alpha structure. In the optimization process, the amino-

acid alphabet was extended to non-natural elements, including all

the 87 AAs listed by the z-scale descriptors. The process was

terminated after 300 generations, as described in SI (Text S1).

From the candidate list, a sequence with two non-natural

substitutions was chosen from a list of feasible solutions and

synthesized. The selected peptide contains two norleucine (Nle)

residues, one substituting the original leucine residue and the other

one in the proximity of the C-terminus. MBC assays demonstrate

an enhanced antimicrobial activity, significantly higher than the

original one. It is worth noting that the overall net charge

increased due to the elimination of two negatively charged and the

insertion of two positively charged residues. This may facilitate the

initial attachment of the peptide to the membrane. The new

residue distribution confers a high amphipathicity to the resulting

peptide sequence (Figure 3). Interestingly, Nle is an artificial AA

frequently used in antimicrobial peptide design for research

purpose [3] as well as in clinical studies [10]. Analysis of the AA z-

scores heatmap (Figure S2) revealed a clusterization of Nle with

its natural precursor leucine, justifying the substitution choice.

Molecular dynamics simulations
MD simulations were performed on a selected subset of peptides

(GMG_01, GMG_03, GMG_01_SCR and GMG_05Z) to assess

the accuracy of the proposed algorithm in terms of structural

prediction. Different solvent conditions were simulated, either

water or TFE/water mixture. The latter condition is known to

stabilize secondary-structure elements and to partially account for

the hydrophobic environment inside the lipid bilayer. The

percentage of alpha-helix structure vs. other secondary-structure

motives was monitored during 700 ns of molecular dynamics after

suitable equilibration. The MD simulations fully support the

structural predictions of the algorithm (Figure 4). In particular,

both GMG_01 in TFE/water and GMG_03 in pure water assume

rather stable helical conformations. GMG_01_SCR in TFE/

water, by contrast, displays negligible alpha-helix propensity again

confirming the algorithm prediction. GMG_01 was simulated

both in pure water (Figure S3) and in TFE/water mixture.

Remarkably, the simulations predict a high percentage of helical

structure only in the latter condition, as is the general behavior of

linear alpha AMPs [3]. Finally, the TFE/water MD simulations of

the NLE-containing peptide (GMG_05Z) show the formation of a

very stable helical portion, but limited to residues 6 to 9 in the

sequence, while the N-terminal portion results completely

unstructured. Though MD simulations in the ms range should

generally be sufficient for adequate exploration of the conforma-

tional landscape in the short peptides examined, it is not possible

to rule out slower folding time for some sequences. In particular, in

the GMG_05Z case, the simulated time was extended to 2 ms

showing an unfolding of the helix followed by folding into an

enlarged alpha-helix, also comprising residues 4 and 5 in the

sequence. These results are shown in Figure S5, also reporting

the time series of secondary structure motives for GMG_01,

GMG_01_SCR and GMG_03.

Confocal imaging analysis
In order to analyze the mechanism of action of GMG_05Z

compared with the original peptide GMG_03, it was of significant

interest to determine their localization in bacteria following

treatment. GMG_05Z and GMG_03 analogues with a C-terminal

cysteine-atto633 insertion were synthesized and purified. Fluores-

Table 4. Tested peptides in this article.

Prediction Fitness MBC

Name Sequence Size MW AMP All-Alpha P.aeruginosa S.aureus

GMG_01 VKSWIRKLVHR 11 1421.74 0.80 0.91 1 mM 1 mM

GMG_02 WLKGLIKFIR 10 1273.62 0.72 0.79 2 mM 2 mM

GMG_01_SCR KRRKWHSVVLI 11 1421.74 0.45 0.55 16 mM 16 mM

GMG_03 EHMDRILAQLL 11 1338.6 0.20 0.87 .50 mM. .50 mM

CM181 KWKLFKKIGAVLKVLTTG 18 2030.55 0.93 0.53 2 mM 0.5 mM

CM12 WKLFLKAVKKLL 12 1486.93 0.99 0.92 2 mM 0.5 mM

GMG_05Z HZMRILAQLZKR 12 1527.93 0.93 0.94 0.25 mM 0.125 mM

A series of peptides where synthesized and tested in order to asset AMP activity.
1peptide from [8].
Z: Norleucine.
doi:10.1371/journal.pcbi.1003212.t004

Evolutionary Multiobjective Optimization of AMPs
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cence and confocal microscopy were performed after treatment of

an ATCC S.aureus strain (ATCC33591) with both peptides

separately. To determine the influence on the antimicrobial

activity of the C-terminus cysteine-atto633 insertion, MBC test

were repeated. No significant variations were detected for

GMG_03, while GMG_05Z MBC was twofold greater

(0.25 mM), indicating that the addition of cysteine-atto633 had a

minimal effect on the antimicrobial activity. MBC results are

summarized in Table S4 of the supporting information. As a

further control on the structural influence of the N-terminal

cysteine residue, GMG_01 and GMG_03 MD simulations were

repeated adding this AA to the sequence. The results (Figure S3)

confirm that the effect of this addition is very limited. Confocal

images of S.aureus exposed to GMG_05Z revealed its ability to

make contact with the membrane (Figure 5A). As expected, the

inactive peptide (GMG_03) was instead unable to interact with

bacteria, as shown in Figure 5B. Further studies are required in

order to understand whether GMG_05Z acts by forming a

transient pore or via metabolic mechanisms.

Conclusions
In this work, a rapid and intuitive method for virtual screening

of antimicrobial candidates was introduced. The method can be

successfully applied to ab-initio prediction as well as peptide

optimization with natural and non-natural AAs. Three different

types of topological descriptors were applied for model construc-

tion of antimicrobial peptides and all-alpha peptides. The novel

mMACC algorithm retained the best performance (as assessed by

its highest MCC values), thus lowering the number of needed

descriptors. Furthermore, the identification of the optimal

complexity of auto and cross covariance descriptors was achieved

automatically by IFS, eliminating the tedious process of manual

feature selection. The use of physicochemical descriptors allows

the analysis and prediction of non-natural AAs insertions,

extending the flexibility in peptide design. The ab-initio peptide

prediction demonstrated the high degree of flexibility of the multi-

objective evolutional algorithms (MOEA) approach, in which

constraints and objectives can be added depending on the needs.

The potential of this approach was demonstrated by transforming

a non-antimicrobial peptide into a highly active AMP, using non-

natural AAs. Finally, virtual screening was combined with MD

simulations to gain insight into the structural properties of the

predicted AMPs, and thus provide the molecular basis for

understanding peptide-membrane interaction mechanisms. In

conclusion, the combination of chemophysical descriptors and

MOEA confers an elevated flexibility to antimicrobial peptide

design, permitting to select highly active molecules.

Materials and Methods

Datasets
Two different datasets, Dataset A and B, were constructed for

model training and validation. Dataset A consists of antimicrobial

peptides with a sequence length ranging from 11 to 40 residues

extracted from YADAMP and CAMP databases [13,27]. After

removal of peptides with disulfide bridges and non-standard

residues sequences, 1884 peptides were left. The negative dataset

was populated with non-secretory sequences randomly extracted

from UniProt database, without ‘antimicrobic’ annotation and with

a length ranging from 11 to 40 AAs. Dataset B represents all-alpha

helical peptides. The CB513 dataset, a non-redundant set of 513

well-defined proteins [33] was used in a first step for extraction of

all-alpha, all-beta and all-coil domains. Then a number of random

sequences were extracted from the same database in order to

account for mixed secondary structure states. The final dataset was

then built using the simplest partition of the space into alpha and

non-alpha peptides. For both datasets, a homology cutoff was

Figure 3. Helical wheel projections of GMG_03 and GMG_05Z.
The polar section is indicated by a dotted line, while the hydrophobic
face by gray shading. On top of each helical projection a hydropho-
bicity profile calculated with the CSS scale [53] is schematized. A)
GMG_03 peptide. B) GMG_05Z peptide, with non-natural AAs.
doi:10.1371/journal.pcbi.1003212.g003
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imposed to exclude similar peptides in order to avoid redundant

data that could influence the prediction performance. Peptides

showing equal to or greater than 70% sequence identity to any other

in the dataset were identified and removed by the CD-HIT

program [34]. Final datasets composition is summarized in Table 5.

Data encoding
Global and topological descriptors were utilized in order to

encode peptide sequences. Peptide charge at different pH

conditions, isoelectric point and the number of positive and

negative charges were used to describe charge-related character-

istics. The z-scale moment (mZi), an extension of Eisenberg’s

hydrophobic moment equation [35], is introduced to represent z-

scales distribution along peptide sequences.

mZi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

k~1

Zk
i sin(dk)

 !2

z
XL

k~1

Zk
i cos(dk)

 !2
vuut

Equation 2. Z-scale moment.

In Equation 2, d is the angular frequency of the AA residues

forming the structure (100u for alpha helix); k is the number of the

particular residue examined, L is the length of the sequence and Zi
k

is the zi-scale value of the kth AA. In particular, mZ1 represents

a measure of the hydrophobicity distribution along peptide

sequence. Average sum of z-scale descriptors has been

successfully used in QSAR analysis of bioactive peptides [36],

as it gives a general description of peptides physicochemical

main features [37]. The aim of the study was to develop an

alignment-independent method, therefore position specific score

matrix (PSSM) as well as amino acidic and pseudo-amino acidic

sequence descriptors were avoided. Both in the global and

topological descriptors, Z-scale values were mean-centered and

scaled prior to their use, as described by the following equation:

Zi~

zi{
1
N

PN
k~1

zk
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
j~1

z
j
i{

1
N

PN
k~1

zk
i

� �2
s

Equation 3. Z-scale descriptor normalization.

Figure 4. Secondary structure content by MD. In order to assess secondary structure prediction, MD simulations were performed on some
peptides. A) GMG_01 in TFE/water. B) GMG_03 in water. C) GMG_01_SCR in TFE/water. D) GMG_05Z in TFE/water.
doi:10.1371/journal.pcbi.1003212.g004
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Where Zi is the ith descriptor of z-scales variables, zi is the

original z-scale value (from [21]) and N is the number of AAs in

the z-scales descriptors table. The final list of descriptors is

summarized in Table 1.

Feature selection and model generation
In this study, the Random Forest algorithm (RF), implemented

in the software suite WEKA [38], was adopted as prediction

engine. During the evaluation procedure, nine different variables

combinations were tested for model building. In particular, the

number of trees in the forest (M) and the number of random

variables used for each tree (T). Each model performance was

measured with a 10-fold cross-validation analysis, where each

dataset was divided into 10 parts - 9 parts for model learning

(training) and the remaining part for validation (testing). Four

performance measures were used: true positive rate for sensitivity,

false positive rate for selectivity, predictive accuracy and MCC, as

defined below.

Sensitivity~
TP

TPzFN

Precision~
TP

TPzFP

Accuracy~
TPzTN

TPzTNzFPzFN

MCC~
(TP � TN){(FN � FP)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN) � (TNzFP) � (TPzFP) � (TNzFN)
p

Equation 4. Performance evaluation equations

Where TP, TN, FP and FN are the number of true positive, true

negative, false positive and false negative, respectively, resulting

from the model. MCC is an important index used to evaluate the

performance of the predictor when the dataset is not balanced

[39]. In order to obtain a non-redundant set of descriptors, the

Maximum Relevance, Minimum Redundancy (mRMR) method

[31] was employed to sort features in descending order of

importance. Incremental Feature Selection (IFS) [40] was applied

to the sorted descriptors list by incrementing consecutively the

number of descriptor by 5. Each descriptor set thus obtained was

evaluated by tenfold cross-validation and the IFS curve was

plotted to unveil the relation between the performance of the

model and the feature subset. The optimal feature subset is defined

as that showing the highest MCC value (Figure 1); the selected

model was used for peptides classification. The hierarchical list of

the final descriptors for Dataset A and Dataset B is shown in

Table S2 and Table S3, respectively.

Sequence similarity
For peptide optimization, a supplemental objective representing

sequence similarity was added. Sequence similarity is defined by

Figure 5. Confocal pictures of bacteria treated with ATTO633-
labeled peptides. A) Bacteria treated with GMG_05Z-ATTO633
peptide. B) Bacteria treated with GMG_03-ATTO633 peptide.
doi:10.1371/journal.pcbi.1003212.g005

Table 5. Final dataset composition.

Dataset Positive dataset Negative dataset

Dataset A 892 antimicrobial peptides extracted from YADAMP database. 1800 non-secretory random sequences extracted from
UniProt database without ‘antimicrobic’ tag.

Dataset B 972 all-alpha peptide fragments. 2126 peptide fragments in all-coil, all-sheet and mixed
conformation.

Positive and negative composition of each training set.
doi:10.1371/journal.pcbi.1003212.t005
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the Smith-Waterman score between the respective peptide

sequences [41]. Since the Smith-Waterman score is dependent

on input sequences length, the final score was normalized between

0 and 1 by dividing by the maximum score of the two self-

alignments, as shown in Equation 5 [42].

NSA,B~
SA,B

max SA,A,SB,Bð Þ

Equation 5. Smith-Waterman normalized score

Here, SA,B is the similarity score between sequence A and B,

SA,A and SB,B are the self-alignment score of sequence A and

sequence B, respectively. In order to consider not only the identity

between two amino acidic positions, a score matrix was defined by

calculating the Euclidean distance between the five auto-scaled z-

scale values of each AA pairs. The score was then normalized

between 0 and 1, where 1 is the identity. For visualization purpose,

the resulting matrix was analyzed with R [43] and a heat map was

produced, calculated as Log2 of the inverse AA distance

normalized by AA median value (Figure S2).

Peptide synthesis, purification and labeling
All peptides were prepared by solid-phase synthesis using Fmoc

chemistry on an automatic peptide synthesizer and the crude

peptides were purified by RP-HPLC, as previously described [8].

The cysteine residue added to the C-terminus of some peptides

provided a sulfhydryl group for further ligation to the atto-633-

maleimide fluorophore. The labelling of purified peptides was

performed by incubating for 3 h with a 3-fold molar excess of atto-

633-maleimide (ATTO-TEC GmbH, Germany), 150 mM PBS

buffer, TCEP, at pH 7.4. Finally, atto-633-labeled peptides were

purified by HPLC and then lyophilized overnight. The correct

purified product was confirmed by electrospray mass spectroscopy

with an API3200QTRAP a Hybrid Triple Quadrupole/Linear

Ion Trap (ABSciex, Foster City, California, USA). Peptides were

stored at 280 C.

Bactericidal assay
Antibacterial activity of designed peptides was evaluated by a

liquid microdilution assay in 10 mM sodium phosphate buffer

(SPB), pH 7.4, as described previously [44]. Briefly, S. aureus

ATCC33591 and P. aeruginosa ATCC27853 were grown in

tryptone soy broth (TSB; Oxoid). Exponentially growing bacteria

were resuspended in SPB to obtain a density of 1‘106 colony

forming units (CFU)/ml and exposed to different concentrations

of peptide, ranging from 64 mM to 0.25 mM. After incubation of

peptides for 1.5 h at 37uC, 0.2 ml of 10-fold serial dilutions of

each samples were plated onto tryptone soy agar. As a control,

bacteria were also incubated in the absence of peptides. After

24 h incubation at 37uC the number of CFU was assessed.

Bactericidal activity was evaluated as minimal bactericidal

concentration (MBC) defined as the lowest peptide concentration

at which a reduction in the CFU/ml numbers of . = 3 logs was

observed after 1.5 h of incubation in three independent

experiments.

Molecular dynamics simulations
Molecular dynamics simulations of selected peptide sequences

(GMG_01, GMG_03, GMG_01_SCR and GMG_05Z) were

performed with GROMACS 4.5.5 [45]. The force field used was

Amber ff99SB-ILDN-NMR [46]. Random configurations of the

peptides were solvated either with a box of TIP3P water molecules,

or with a mixture of TFE (trifluoroethanol) and TIP3P water

molecules (4 water molecules each TFE molecule, in order to obtain

a ,50% vol/vol solution). TFE force field parameters were taken

from ref [47]. RESP HF/6-31G* charges of TFE and NLE

(Norleucine) were taken from ref [47] and [48] respectively, while

the other force field terms were taken from the already existing

parameters. Either Cl2 or Na+ ions were added to neutralize the

system. The truncated octahedron solvation box dimension was

chosen in order to keep a distance of at least 8 Å between the peptide

and the box faces, and periodic boundary conditions were applied.

For each examined peptide, simulations were performed under

constant temperature (300 K) and pressure (1 atm) conditions,

using the Nose-Hoover ensemble [49] for temperature coupling

(t= 0.5 ps) and the Parrinello-Rahman ensemble [50] for pressure

coupling (t= 5 ps). The timestep was set at 2 fs, and the bonds

involving hydrogen atoms were constrained using LINCS [51].

After an equilibration phase of 300–500 ns, the production runs

lasted for 700 ns, and peptide snapshots were recorded each 10 ps.

These 700 ns production runs were used for secondary structure

analysis, performed using DSSP [52].

Confocal imaging
As previously described, S. aureus ATCC33591 strain was grown

in tryptone soy broth and exponentially growing bacteria were

resuspended in SPB to obtain a density of 1‘108 CFU/ml and

exposed to 2.5 mM concentration of peptide labeled with

ATTO633 (Table S2). After incubation for 15 min at 37uC,

5 mL of the solution were spotted onto a slice of 1% water agarose

gel and placed on a glass bottom petri dish. Images were acquired

using a Leica TCS SP5 SMD inverted confocal microscope (Leica

Microsystems AG) interfaced with a HeNe laser for excitation at

633 nm and the sample was viewed with a 6361.2 NA water

immersion objective (Leica Microsystems). The pinhole aperture

was set to 0.5 Airy. All data collected were analyzed by ImageJ

software version 1.44o.

Supporting Information

Figure S1 MOEA scheme. A) Machine learning model

construction. The initial dataset is encoded with global and

topological descriptors. A sorted list of descriptors is composed

and the IFS method is applied to construct the final model. B)

Each solution is represented by a chromosome and treated as an

individual. Starting from an initial random population, objec-

tives are evaluated for each individual. Afterwards, parents are

picked from the population in order to generate new child with

crossover and mutation operations. Objectives are calculated for

the new child and the new population is selected. The main loop

is repeated for a fixed number of generations or until

convergence is reached. C) NSGA-II Solution ranking. The

parent population Pt and offspring population Qt are combined

to form an intermediate population Rt of size 2N. Non-

dominated individuals are inserted in the best ranking fronts

(dark gray), the remaining ones are sorted by the crowding

distance. The new parent population Pt+1 is created by

choosing individuals of best ranked fronts first followed by the

next-best and so on, till we obtain N individuals.

(TIF)

Figure S2 Clustered heat map of AAs z scores. For each

AA pairs, the Euclidean distance between the five auto-scaled z

scores was calculated. For visualization purpose, the resulting

matrix was plotted as a heatmap, calculated as Log2 of the inverse

AA distance normalized by AA median value.

(TIF)
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Figure S3 Secondary structure content by MD. In order

to asset secondary structure prediction, additional MD simulations

were performed on some tested peptides with an additional

cysteine residue or on different conditions. A) GMG_01 in water.

B) GMG_03 in water with an additional cysteine residue

GMG_01_SCR in TFE/water. C) CM12 in water/TFE.

(TIF)

Figure S4 Feature analysis of Dataset A and B descrip-
tors. A) Z-scale distribution of AMPs descriptors (dataset A). B) Z-

scale distribution of alpha-helix descriptors (dataset B). C) Z-scale

descriptor distribution for each lag in dataset A. D) Z-scale

descriptor distribution for each lag in dataset B.

(TIF)

Figure S5 Time series of secondary structure motives
from the MD simulations. A) GMG_01 in TFE/water

mixture, B) GMG_01 in water, C) GMG_01_SCR in TFE/water

D) GMG_03 in water, E) GMG_05Z in TFE/water.

(TIF)

Table S1 List of commercially available and clinical
trial AMPs. *: Fox JL (2013) Antimicrobial peptides stage a

comeback. Nature biotechnology 31: 379–382.

(DOC)

Table S2 Hierarchical list of descriptors for Dataset A.
Final list of selected descriptors used for AMP model training.

(DOC)

Table S3 Hierarchical list of selected descriptors for
Dataset B. Final list of selected descriptors used for all-alpha

model training.

(DOC)

Table S4 Labelled peptides MBC. In order to analyze the

mechanism of action, two peptides with a C-terminus cysteine-

ATTO633 insertion were synthesized and purified. MCB tests

were repeated to determine the influence on the antimicrobial

activity, indicating a minimal effect.

(DOC)

Text S1 Description of multi-objective evolutional algo-
rithm and descriptor distribution analysis.
(DOC)
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