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Abstract

A recent trend in drug development is to identify drug combinations or multi-target agents that effectively modify multiple
nodes of disease-associated networks. Such polypharmacological effects may reduce the risk of emerging drug resistance
by means of attacking the disease networks through synergistic and synthetic lethal interactions. However, due to the
exponentially increasing number of potential drug and target combinations, systematic approaches are needed for
prioritizing the most potent multi-target alternatives on a global network level. We took a functional systems pharmacology
approach toward the identification of selective target combinations for specific cancer cells by combining large-scale
screening data on drug treatment efficacies and drug-target binding affinities. Our model-based prediction approach,
named TIMMA, takes advantage of the polypharmacological effects of drugs and infers combinatorial drug efficacies
through system-level target inhibition networks. Case studies in MCF-7 and MDA-MB-231 breast cancer and BxPC-3
pancreatic cancer cells demonstrated how the target inhibition modeling allows systematic exploration of functional
interactions between drugs and their targets to maximally inhibit multiple survival pathways in a given cancer type. The
TIMMA prediction results were experimentally validated by means of systematic siRNA-mediated silencing of the selected
targets and their pairwise combinations, showing increased ability to identify not only such druggable kinase targets that
are essential for cancer survival either individually or in combination, but also synergistic interactions indicative of non-
additive drug efficacies. These system-level analyses were enabled by a novel model construction method utilizing
maximization and minimization rules, as well as a model selection algorithm based on sequential forward floating search.
Compared with an existing computational solution, TIMMA showed both enhanced prediction accuracies in cross validation
as well as significant reduction in computation times. Such cost-effective computational-experimental design strategies
have the potential to greatly speed-up the drug testing efforts by prioritizing those interventions and interactions
warranting further study in individual cancer cases.
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Introduction

Over the past decade, there has been a significant increase in

the R&D cost when translating new cancer drug candidates into

effective therapies in the clinic. The two single most important

reasons are (i) lack of efficacy and (ii) clinical safety of the candidate

drug compounds [1]. This decline in productivity of the

pharmaceutical industry has greatly challenged the dominant

paradigm in drug discovery, where such ‘magic bullet’ compounds

are being searched that could produce dramatic treatment

outcomes at a population-level by modulating one specific target

only. The shortcomings of such ‘one-size-fits-all’ treatment

strategies are well reflected in the disappointing outcome of the

current anticancer drug development, where agents directed at an

individual target often show limited efficacy and safety due to

factors such as off-target activities, network robustness, bypass

mechanisms and cross-talk across compensatory escape pathways

[2–4]. Most cancers develop from specific combinations of genetic

alterations accumulated in tumor cells, which are often distinct

between different cancer types and result in different treatment

responses to the same therapy. Moreover, the extensive mutational

heterogeneity results in alterations within multiple molecular

pathways, making most advanced tumors readily resistant to

single-targeted agents. Therefore, rational strategies to develop

multi-targeted therapies for specific cancer types are needed to

attack the resistance problem and to provide more effective and

personalized treatment strategies [5]. Targeted drug combinations

may also overcome the side effects associated with high doses of

single drugs by countering pathway compensation and thereby

increasing cancer cell killing while minimizing overlapping toxicity

and allowing reduced dosage of each compound [6].

Even though it is widely acknowledged that effective cancer

treatments need to go beyond the traditional ‘one disease, one

drug, one target’ paradigm, the major bottleneck hindering the
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development of combinatorial therapies is the lack of such

systematic experimental-computational approaches that could

pinpoint the most effective combinations [7–9]. While efforts

based on next-generation sequencing are very successful at

systematically characterizing the structural basis of cancers, by

identifying the genomic mutations associated with each cancer

type [10], these findings often do not lead to clinically actionable

therapeutic strategies and rarely to rational targeted combinations.

The large number of genetic alterations present in tumor cells

makes the discrimination of the cancer-specific driver mutations

and pathways highly challenging, and even when genetic

aberrations with pathogenetic importance can be identified, these

may not be pharmaceutically actionable. Moreover, genes not

altered at the genomic level may also play essential roles in the

cancer progression, hence providing additional therapeutic

opportunities [11]. In contrast, systematic assessment of genes

for their contribution to tumor addictions can provide functional

insight into the molecular mechanisms and pathways behind

specific cancer types, hence highlighting their vulnerabilities

associated with driver genes, synthetic lethal interactions and

other tumor dependencies [12–14], which are complementary to

the structural information obtained from the cancer mutational

landscape. Advances in high-throughput chemical and RNAi

screening have now made it possible to carry out comprehensive

functional screening in cancer cells, providing novel targets for the

next generation of anticancer therapies for patients sharing a

common genetic background [15–18].

However, despite the emerging possibilities for perturbing gene

functions with a wide spectrum of shRNA/siRNA libraries or

using diverse drug and compound collections, functional interac-

tions between genes and/or drugs have remained extremely

difficult to predict on a global scale [18]. The complex genotype-

phenotype relationships behind such interactions pose modeling

challenges beyond the reach of the classical linear approaches.

Moreover, polypharmacologic compounds elicit their bioactivities

by modulating multiple targets, which leads to a combinatorial

explosion both in the pharmacological and molecular spaces.

Taken together, the exponentially increasing number of possible

RNAi, chemical, target and dose combinations poses great

experimental challenges, and exhaustive experimentation with all

the possible combinations is impossible in practice, making the

pure experimental approach quickly unfeasible [19]. To meet

these computational and experimental challenges, novel modeling

frameworks and efficient computational algorithms are needed to

effectively reduce the search space for determining the most

promising combinations and prioritizing their experimental

evaluation. Ideally, the experimental setup should be both

economical and practical, utilizing such functional measurements

and phenotypic readouts that are readily available in typical drug

screening experiments. Moreover, the experimental and compu-

tational platforms should also be compatible with the eventual

clinical translation in the sense that the measurements and their

analysis can be made in each patient individually, and that the

modeling and algorithmic predictions can be calculated in a

reasonable time.

A number of computational algorithms have been developed for

predicting drug combinations in silico [5,9,20]. Most of the

approaches are based on detailed mathematical modeling, utilizing

a priori knowledge extracted from databases, such as those focusing

on established cancer pathways, metabolic network constructions

or literature-curated models [21–23]. A limitation of such detailed

models is that global kinetic information for many cancer-related

systems are still rarely available, and reduced subsystem models

are often biased toward what is already known about the cancer

processes. For instance, pathway-specific models may miss

important novel features, such as pathway cross-talks or novel

cancer dependencies. Accordingly, although major canonical

pathways involved in different cancer types are increasingly well

established, individual pathway models cannot capture the

complex and context-dependent cellular wiring patterns behind

distinct cancer phenotypes [5]. There are also approaches that

take the cell context into account by means of global gene

expression or targeted phosphoproteomics profiling [24–27].

However, such molecular phenotypes are not routinely profiled

in a typical high-throughput drug testing approaches, especially in

clinical settings. Moreover, downstream changes in the expression

patterns are shown to be suboptimal in distinguishing mechanism

of action between different compounds [28,29]. Perhaps more

importantly, targets identified by means of genomic profiling may

not be pharmaceutically actionable in clinical practice. For

instance, many genes identified through expression profiling or

genomic sequencing are either not druggable at all, or druggable,

but not actionable, as there are no approved drugs available in the

clinic.

In this article, we present an efficient model construction

algorithm, named TIMMA (Target Inhibition inference using

Maximization and Minimization Averaging), which makes the use

of partly overlapping target subsets and supersets of promiscuous

drug-target binding profiles in the estimation of anticancer

efficacies for novel drug target combinations. The model

construction and target combination predictions are based on

functional data on drugs and their targets that are available from

comprehensive target binding assays and from high-throughput

drug sensitivity screens. We implemented a modified sequential

forward floating search algorithm for model selection, which

enables scaling-up to proteome-wide evaluation of the targets in

terms of their relevance to cancer survival. Both simulation studies

and an application to a canine osteosarcoma cell line data showed

that TIMMA achieved improved prediction accuracy, when

Author Summary

Selective inhibition of specific panels of multiple protein
targets provides an unprecedented potential for improv-
ing therapeutic efficacy of anticancer agents. We introduce
a computational systems pharmacology strategy, which
uses the concept of target inhibition networks to predict
effective multi-target combinations for treating specific
cancer types. The strategy is based on integration of two
complementary information sources, drug treatment effi-
cacies and drug-target binding affinities, which are readily
available in drug screening labs. Compared to the cancer
sequencing efforts, which often result in a huge number of
non-targetable genetic alterations, the target combina-
tions from our strategy are druggable, by definition, hence
enabling more straightforward translation toward clinically
actionable treatment strategies. The model predictions
were experimentally validated using siRNA-mediated
target silencing screens in three case studies involving
MDA-MB-231 and MCF-7 breast cancer and BxPC-3
pancreatic cancer cells. In more general terms, the cancer
cell-specific target inhibition networks provided additional
insights into the drugs’ mechanisms of action, for instance,
how the cancer cell survival pathways can be targeted by
synergistic and synthetic lethal interactions through multi–
target perturbations. These results demonstrate that the
principles introduced here offer the possibilities to move
toward more systematic prediction and evaluation of the
most effective drug target combinations.

Predicting Combinations of Druggable Targets
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compared to a published algorithm [30], at significantly lower

computational cost. Importantly, application case studies in MCF-

7 and MDA-MB-231 breast cancer and BxPC-3 pancreatic cancer

cells confirmed that TIMMA-predicted kinase targets are essential

for tumor survival, either individually or in combination, as

validated by independent single and pairwise target knockdowns

with siRNA screening. Our model predictions, visualized as a

target inhibition network, provide insights into such druggable

cancer cell addictions, the inhibition of which can jointly block the

survival pathways. With the increasing interest in drug combina-

tion screens, our modeling strategy can be readily used as an

efficient prioritization procedure to pinpoint the most potential

drug combinations based merely on their selectivity profiles and

individual responses in given cancer samples.

Materials and Methods

A target inhibition model
Consider a set of N~ 1, . . . ,n½ � drugs where the single-drug

treatment efficacy on a given cancer sample is measured as a

phenotypic response in a high-throughput drug screen. The drug’s

treatment efficacy to kill cancer cells is conventionally scored using

response parameters, such as the drug concentration at which the

cancer cell growth is inhibited by a certain percentage (e.g. half-

maximal inhibitory concentration IC50). A drug with a smaller

inhibitory concentration is usually considered as more potent.

Drug treatment efficacy and potency can be also quantified based

on the area under the dose-response curve, such as the activity

area (AA) [31] or the drug sensitivity score (DSS), which provide

summary information about the complex dose-response relation-

ships. We denote the drug treatment efficacy data by a vector y
with length N and scale it into the interval of [0, 1], with the

minimum and maximum efficacies being 0 and 1, respectively.

To relate a drug’s treatment efficacy with its underlying

mechanism of action, the cellular targets of the drug need to be

mapped into a drug-target inhibition profile. Let the potential target

set be x~fx1,x2, . . . ,xpg, where p refers to the total number of

targets that bind to at least one of the N drugs. A target inhibition

profile of a drug i can be binarized from drug-target binding

affinities as a binary vector dx
i ~(d

(x1)
i , . . . ,d

(xp)
i )[f0,1gp

,

i~1, . . . ,n, where 0 and 1 is a result of classification of low and

high binding affinities, respectively. The target inhibition profile for

all the drugs is abbreviated as dx
N~fd1,:::,dn). An example of such

binarized target annotations can be derived from quantitative

binding assay measurements collected from the ChEMBL database

[32], provided that knowledge of relevant binding affinity cutoffs is

applicable.

Given the single drug efficacy and target inhibition profiles, our

aim is to predict the treatment efficacy for novel drug combina-

tions. We consider the target inhibition profile of a drug

combination as a union of the target inhibition profiles of each

component drug in the cocktail (Figure 1). However, not all the

targets in the profile are essential in explaining the treatment

efficacy. Ideally, an effective drug combination should affect

signaling pathways involved in cell proliferation and growth of the

particular cancer type. In searching for a rational design in

polypharmacology, one needs to first identify a set of targets whose

interactions play critical roles in delivering the anticancer efficacy

[9,33]. Therefore, a fundamental computational problem is to

identify a subset of therapeutic targets whose combinatorial

interaction effects can be predicted in relation to cancer survival

phenotypes. Note that in an individualized experimental setting,

where different cancer types are tested for drug efficacy, the

therapeutic targets should be also cancer-specific.

Let xc denote such a cancer-specific therapeutic target set.

Identification of xc corresponds to a partition S~(xc,xc) of the

potential target set x into two non-empty and non-overlapping

groups. Let the space of distinct partitions for x be denoted by S.

We will learn an optimal partition from S such that the cancer-

specific targets can be separated from the remaining ones in x. We

assume that the drug target inhibition profiles dx
N and the drug

treatment efficacy data y can be used for evaluation of target set

relevance provided that y is a treatment outcome of drug

perturbations on cancer survival pathways by multi-target

inhibition in dx
N . A plausible assumption is that the targets of

more effective drugs are more likely to be involved in cancer

survival pathways than those of less effective drugs. Therefore,

targets that are predictive of drug efficacy are, in general,

functionally important for cancer survival and should be selected

with a higher probability for drug target combinations as well.

More formally, the learning procedure for identifying such a

cancer-specific target set xc is to find a model that gives the best

prediction performance. We are especially modeling multiple

interactions among the target set xc for the prediction of drug

efficacies and therefore capturing the synergistic combination

effects that cannot be revealed by inhibiting any of the targets

individually.

Let EM(ydnew ) denote the model prediction error for a drug or

drug combination dnew in a testing set. In its most basic form, the

prediction error is calculated as the absolute difference between

the predicted and the actual treatment efficacy:

EM(ydnew Ddxc
new,S)~ pM(dnewDdxc

N ,y){ydnew
�� ��, ð1Þ

where pM(dnewDdxc
N ,y) refers to the predicted efficacy for drug dnew

by a model M that takes dxc
N and y as training data. We take here a

formal model-based strategy to estimate pM(dnewDdxc
N ,y) by

formulating a predictive modeling framework for any training

data (dxc
N ,y); the model construction and model selection

algorithms will be proposed in the sequel.

TIMMA model for predicting drug efficacy
In an earlier work by Pal and Berlow [30], two fundamental set

theoretic rules were exploited for predicting the drug efficacy

according to its target profiles:

Rule on successful drugs. If a drug i with target set di is

successful to block cancer survival pathways, then a drug that

inhibits a superset of di is also successful. That is: p(dnew)~1 if

dnew6di and yi~1.

Rule on unsuccessful drugs. If a drug j with target set dj is

unsuccessful to block cancer survival pathways, then a drug that

inhibits a subset of dj is also unsuccessful. That is: p(dnew)~0 if

dnew5dj and yj~0.

The rationale for the two rules is straightforward. First, it is

assumed that a drug inhibits cancer growth by switching off

certain survival signaling pathways via modulation of its targets.

Second, the topology of cancer survival pathways is perceived to

be conserved irrespective of drug perturbations. These assump-

tions generally hold for multi-target inhibitors that are tested for

treatment efficacy in a specific cancer subtype (Supplementary

Figure S3). In contrast to conventional chemotherapeutic or

cytotoxic drugs that lack cellular selectivity, signal transduction

inhibitors more often target cancer-specific processes. The action

of such targeted inhibitors, therefore, makes its therapeutic effect

through blocking one or a few signaling pathways through its

cancer-specific targets. Moreover, specific cancer cells under

specific conditions, such as those in a cancer cell models, consist

Predicting Combinations of Druggable Targets
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of rather homogeneous genetic make-up. The drug response data

is usually profiled in a relatively short time scale, and it is therefore

unlikely that there will be significant drug-induced topological

changes in the cancer survival pathways.

Like with any modeling study, the prediction of novel drug

combination efficacies based on the above assumptions simplifies

the complex interactions between drug compounds and cancer

phenotypes. For instance, some targets may interact with both

successful and unsuccessful drugs due to protein promiscuity in

ligand binding. To cope with such uncertainties that arise from

experimental data, Pal and Berlow [30] adopted a stochastic

extension to the two basic rules by taking an average of

quantitative drug efficacy values, referred to as the Probabilistic

Kinase Inhibition Map (PKIM) rule:

Figure 1. TIMMA model construction and prediction pipeline, with an illustrative toy example case. (A) The input data consist of the
drug-target interaction profiles and the single-drug treatment efficacies. The targets that are inhibited by at least one drug in the given data matrix
are considered as potential targets relevant for the survival of the particular cancer cell type. TIMMA first applies a model selection procedure to
identify a panel of such targets that in combination explain the observed drug efficacies. (B) The identified subset of targets and the drug efficacy
patterns in the given cancer type. In the next step, a model construction algorithm is applied on the reduced data matrix to predict the combinatorial
efficacies of multiple target inhibitions. (C) The predicted efficacy matrix for the cancer cell-specific target set. (D) Based on the predicted efficacies,
synergy scores are calculated for pairs of targets and the corresponding drug pairs. NA entries indicate those drug pairs that are non-identifiable by
the model. (E) A visualization of the target inhibition network.
doi:10.1371/journal.pcbi.1003226.g001
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pPKIM(dnew)~

P
i[N

I(dnew6di)yi

P
i,j[N

I(dnew6di)yizI(dnew5dj)(1{yj)
, ð2Þ

Here I(:) is an indicator function equal to one when the

argument is true, and zero otherwise. The estimate Eq. 2 can be

treated as the degree of treatment efficacy accumulated from the

subsets of dnew, relative to the loss of efficacy in its supersets. Use

of the indicator functions requires that both of the subsets and

supersets of dnew must be present in the data; otherwise PKIM

will become non-determinable, as pPKIM(dnew) takes 0 or 1

irrespective of the actual profile of dnew. This non-identifiability

problem due to data sparsity is a limiting factor of PKIM in

many practical applications when scaling it up to the proteome-

wide level, as the coverage and overlap between drug target

profiles is often minimal under the high-throughput drug screen

settings.

To address these limitations, we propose a TIMMA (Target

Inhibition inference using Maximization and Minimization

Averaging) model, which make the full use of the information

content in the screening data to predict p(dnewDdxc ,y). We consider

sources of evidence that are determined from identical sets, subsets

and supersets in xc separately. Formally, the TIMMA model starts

by taking the average of the efficacy values of those drugs whose

target profiles are equal to dnew:

pTIMMA(dnew)~

P
i[N

I(dnew~di)yi

P
i[N

I(dnew~di)
, ð3Þ

where dnew~di denotes that dnew is identical to di. If no such an

identical set exists, then TIMMA considers the following two

prediction rules that are applied to the subsets and supersets

separately.

Maximization prediction rule. For the subsets of dnew that

can be found in dxc , let the index for the drug that has the

highest efficacy value be h, i.e.h~ arg max
i[N

(I(dnew6di)yi). We

initialize

pTIMMA(dnew)~yh ð4Þ

If other drugs whose target profiles are subsets of dnew are also

supersets of dh, but their efficacy values are lower than that of

dh, then Eq. 4 will be updated by taking the average:

pTIMMA(dnew)~

yhz
P

j[N,j=h

I(dnew6dj\dj6dh\yjvyh)yj

1z
P

j[N,j=h

I(dnew6dj\dj6dh\yjvyh)
ð5Þ

Minimization prediction rule. For the supersets of dnew, let

the index for the drug that has the smallest efficacy value be l, i.e.

l~ arg min
j[N

(I(dnew5dj)yj). We initialize

pTIMMA(dnew)~yl ð6Þ

If other drugs whose target profiles are supersets of dnew are also

subsets of dl , but their efficacy values are higher than that of dl ,

then Eq. 6 will be updated by taking the average:

pTIMMA(dnew)~

ylz
P

j[N,j=l

I(dnew5dj\dj5dl\yjwyl)yj

1z
P

j[N,j=l

I(dnew5dj\dj5dl\yjwyl)
ð7Þ

The estimates in Eq. 5 and Eq. 7 can be interpreted as the lower

bound and upper bound for pTIMMA(dnew). If both of these

estimates can be learned from the data, then the average of them is

taken as the maximum likelihood estimate for the predicted

efficacy. The algorithm flow chart for TIMMA model construction

is given in Supplementary Figure S1.

Selection of cancer-specific targets using floating search
Construction of a TIMMA model for predicting drug efficacy

requires a selection of cancer-specific target set xc as the model

parameter. Usually xc is a priori unknown and need to be inferred

from the potential target set x. In our model-based learning

framework, the likelihood of a proposed target set xc being

composed of cancer-specific targets can be evaluated using the

prediction accuracy of the corresponding TIMMA model that

takes xc as its parameter. More formally, we consider an objective

function for model selection as the average leave-one-out (LOO)

TIMMA prediction error:

JTIMMA(xc)~
1

N

X

i[N

E(yi Ddxc
{i), ð8Þ

where the leave-one-out prediction error E(yi Ddxc
{i,S) for drug di is

given by Eq. 1 and Eq. 3–7. Given that the combinatorial space

for x is huge for even a modest number of targets, it is not possible

to calculate the objective function for all the possible target subsets

xc5x using exhaustive enumeration. We consider a Sequential

forward floating search (SFFS) algorithm modified from [34] for

minimizing Eq. 8 in a computationally efficient manner. The

modified SFFS algorithm learns the optimal cancer-specific target

set by aggregating and subtracting targets in xc at different steps,

as defined in the following, with the aim of minimizing the

prediction error q(k), where k is the cardinality of set

xc,i.e.k~ xcj j:
Initialization. Evaluate the objective function Eq. 8 for

single targets in x. Determine the minimal prediction error q(k)
for k~1 and select the corresponding target as the initial set of xc.

Inclusion. For the current target set xc with xcj j~k, include

a new target xkz1 from the remaining set xc of x, selected as the

target the inclusion of which decreases the prediction error most. If

no such a target exists in xc, stop and exit the algorithm; otherwise

update xc~xc|xkz1 and q(kz1) ; go to the Conditional

exclusion step.

Conditional exclusion. After inclusion of xkz1, find in xc

the target xr the removal of which leads to the minimal increase in

the model prediction error. If xr~xkz1 then keep xkz1 and go to

the Inclusion step to include more targets; otherwise form a

temporary set xt
c by excluding xr from xc. If xt

c

�� ��~1, then update

xc~xt
c and go to the Inclusion step; otherwise go to the

Continuation of conditional exclusion step.

Continuation of conditional exclusion. In the temporary

set xt
c, find the target xs the removal of which leads to the minimal

increase in the model prediction error. If the model prediction

error for the reduced set xt
c{xs is smaller than the minimal error

achieved in the previous iterations for the same size as xt
c{xs

�� ��,
update xc~xt

c and then go to the Inclusion step; otherwise update

xt
c~xt

c{xs and repeat the Continuation of conditional exclusion

Predicting Combinations of Druggable Targets
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step until no improvement can be made. If xt
c

�� ��~1 then update

xc~xt
c and go to the Inclusion step.

The sequential search strategy allows a dynamic change of the

target set dimensionality and thus can overcome the limitations of

many monotonic search algorithms, such as the greedy search in

the PKIM algorithm [30], which have high tendency to get

trapped to local optimal and may therefore fail to identify

important target combinations. Importantly, the floating search

algorithm does not require any a priori determined upper bound of

k~ xcj j and it also enables a flexible exploration of target sets with

high dimensions. The algorithm flow chart for TIMMA model

selection is given in Supplementary Figure S2.

Implementation issues to speed up computation
We have further improved the scalability of the TIMMA

algorithm to large and complex data in MATLAB by exploiting its

matrix computation architecture. Briefly, the TIMMA model was

represented as a 3- dimensional array, where each drug’s

contribution to the estimate of pTIMMA(dnew) is calculated

independently of each other. This multi-dimensional data

structure has enhanced the computation efficiency significantly

as most of the iteration loops can be avoided. Meanwhile,

independent computing enables parallel distribution of the model

prediction on separate processors, e.g. one processor for one drug,

which will further decrease the computation time. For the SFFS

target selection, the multi-dimensional data structure also facili-

tates the aggregation and comparison of prediction error q(kz1)
at the Inclusion step when the target xkz1 is added to xc, as

q(kz1) can be incrementally derived based on q(k) that has been

obtained in the previous iterations. The TIMMA implementation

code is freely available at http://timma.googlecode.com/.

Scoring of synergistic drug pairs
For the optimal target set xc selected by the SFFS algorithm, the

result of the TIMMA model prediction is summarized in the

predicted efficacy matrix, which enumerates the treatment efficacy

for each of the combinatorial target inhibition in xc (Figure 1C).

Here, we considered the predictions for the single and pairwise

target inhibitions only, and derived a synergy score for the target

pair (A, B) based on the multiplicative null model:

eA,B~yA,B{yAyB, ð9Þ

where yA,B,yA and yB denote the predicted efficacies for the target

pair and its individual targets, respectively. The multiplicative

model is widely being used in the gene knock-out studies in model

organisms to score quantitative genetic interactions between gene

deletions [35,36]. It has also been recently applied to investigate

genetic interactions in human cancer cells using combinatorial

RNAi screening [37], as well as to characterize drug synergy

effects according to the Bliss independence model [38,39].

Using the model predictions, we can calculate the synergy score

also for those drug pairs (d1, d2) whose targets are included in xc. If

one or both of the drugs are inhibiting multiple targets, e.g.

(A1,A2)[d1 and (B1,B2)[d2, then we assign a drug synergy score

for the drug pair using the mean of its corresponding target pair

synergy scores defined by the multiplicative model (Eq. 9), i.e.

ed1,d2~
1

n

X

A[d1,B[d2

eA,B: ð10Þ

In the given example, ed1,d2
~(eA1,B1

zeA1,B2
zeA2,B1

zeA2,B2
)=4:

A deviation of e from zero provides evidence for a non-additive

interaction between the two drugs, where ew0 indicates synergy

and ev0 indicates antagonism.

Scoring of synthetic lethal target pairs
When the target set size is fixed at two, the TIMMA model

construction algorithm evaluates the pairwise target inhibitions

without considering any higher-order interactions. This enables

the TIMMA modeling strategy to systematically predict target

pairs with synthetic lethality effect. By definition, synthetic lethality

among a target pair states that: (i) inhibition of either of the single

targets will result in incomplete cancer killing; and (ii) inhibition of

both of the targets simultaneously will block the complete cancer

survival sub-network. Therefore, the target inhibition network for

the synthetic lethal target pair can ideally be represented as two

nodes in parallel, similar to the topology of (xi,xj) or (xk,xt)

shown in Figure 1E. In comparison, there are two competing

models: one with no links connecting the target nodes (referred to

as a singleton model), and the other with two nodes linked in a

sequence (referred to as a series model). Under the series model,

no synthetic lethality effect is expected since the inhibition of a

single target is already sufficient to block the cancer survival

pathway. Therefore, from the model fitness perspective, we are

expecting higher prediction accuracy for a synthetic lethal target

pair under the parallel model, compared to both the series model

as well as the singleton model. To evaluate the likelihood of a

parallel model against the competing models for a given target pair

(A, B), we defined a synthetic lethality score as the ratio of the

fitness function of these two models, given by the total sum of

squares (TSS) of the predictions:

sA,B~min(
TSSseries

TSSparallel

,
TSSsin gle

TSSparallel

): ð11Þ

The synthetic lethality score is conceptually different from the

multiplicative synergy score as they are addressing different

questions. The synthetic lethality score evaluates the pairwise

target interactions by comparing the likelihood of three competing

model structures, whereas the synergy score is derived based on

the model averaging by combining all the possible models.

Synthetic lethality corresponds to a special case of synergy, which

requires minimal individual effects that are not considered

explicitly in the multiplicative synergy score. Further, the higher-

order target interactions, which are evaluated during the

sequential forward search for the TIMMA model, are not

considered when calculating the pairwise synthetic lethality score.

Data sets
Simulated data. To initially benchmark the model perfor-

mance, we generated simulated drug target data containing 100

drugs and 10 targets. The binding affinity values for the drug-

target pairs were uniformly distributed in [0, 1], reflecting the most

challenging case where the uncertainty about the drug-target

interactions is maximal. The current implementation of TIMMA

assumes binary drug target profiles so that the maximization and

minimization rules can be directly applied on their subsets and

supersets. For the simulated data, we evaluated the model

performance on the full scale of binarized drug-target binding

sets, generated by gradually increasing the binding affinity

threshold with a step of 0.01 from 0 to 1. The drug treatment

efficacy data y were uniformly sampled from [0, 1], where a high

value implies a strong treatment effect on inhibiting cancer cell

survival. We compared the performance of TIMMA and PKIM
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algorithms using the LOO prediction error in (8) on the binarized

drug target data at varying thresholds. The computation times for

TIMMA and PKIM were compared on the same dataset, keeping

the number of targets fixed.

The CanOS1224 cell line data. We next applied TIMMA to

the real drug sensitivity data used for evaluation of the PKIM

algorithm [30]. Treatment efficacies were measured for 36 kinase

inhibitors in a canine osteosarcoma cell line CanOS1224 by

means of scaled IC50 values (positive values indicate increased

efficacies for 12 compounds, while zero value means no efficacy).

The kinase targets for these 36 targeted drugs were obtained from

a comprehensive competition binding assay [40], where the

binding affinities between these drugs and a selection of 317

kinases were measured by quantitative dissociation constant (kd )

values (Dataset S1). The kd values were inversely scaled as

(10000{kd )=10000 with the maximal concentration of

10000 nM, so that a high scaled kd value implies a high binding

affinity. A threshold of kd~0:9 was considered in [30] to binarize

the drug target data. However, as many of the weaker drug-target

interactions cannot be ignored when defining the drug actions on

cancer-specific targets [9], we assessed the models performance on

the drug-target data obtained at lower cut-off thresholds as well.

The MCF-7 and BxPC-3 cell line data. To further

demonstrate the model performance, we applied the TIMMA

model to more challenging case studies in MCF-7 breast cancer

and BxPC-3 pancreatic cancer cell lines. We utilized the recently

published Cancer Cell Line Encyclopedia (CCLE) collection [31],

which includes treatment responses in 479 human cancer cell lines

to 24 anticancer drugs. In the CCLE data, the drug treatment

efficacy was measured as the activity area (AA) under the dose-

response curve to capture simultaneously the efficacy and potency

of a drug. The AA scores were scaled to the interval [0, 1] for each

of the cancer cell lines selected for analysis (Dataset S3). We found

quantitative target specificity data (kd values) for 12 of the 24 drugs

from a recent large-scale binding affinity mapping [41], where 72

kinase inhibitors were tested with 442 kinases covering the

majority of the human catalytic protein kinome. Among the 442

kinases, we focused on catalytically active human protein kinases

and thus removed kinases from human pathogens, as well as

mutant kinases and noncatalytic kinases, resulting in a total of 384

kinases. From the 384 kinases, we excluded those targets that are

inhibited by less than 2 of the 15 drugs, as these targets are lacking

of drug efficacy information for estimation of their interactions. To

obtain binary drug-target profiles, a drug-specific threshold (50-

fold of the minimal kd value for the particular drug) was applied.

Similar drug-specific threshold was also used in [42] to define

target binding classes. Further, we used binary target databases,

such as TTD [43] and PubChem [44], to obtain target

information for 3 additional kinase inhibitors (PD 0332991,

saracatinib and PD-0325901). The remaining 9 drugs are not

targeted kinase inhibitors and therefore were discarded in the

following analysis (Dataset S4).

MDA-MB-231 cell line data. We considered 41 kinase

inhibitors for MDA-MB-231 cancer cell line, which belongs to

the triple-negative breast cancer subtype (TNBC). The drug-target

interaction data was again retrieved from the kinome-wide binding

affinity assay as reported in [41], where the same set of 384 kinases

was selected for the TIMMA model predictions. The drug efficacy

was quantified using so-called drug sensitivity score (DSS).

Similarly to the activity area (AA) score utilized in the CCLE

study [31], DSS summarizes the area under the dose-response

function calculated by analytic integration over the concentration

range. To favor on-target responses over toxic off-target responses,

the integrated response was further normalized by the logarithm of

the bottom asymptote (Dataset S7). We note that an optimal target

set identified by TIMMA model may include targets that are

already individually important for cancer survival, such as those

that are involved in cell cycle arresting and apoptosis. Combina-

tion of these targets with others is expected to achieve a higher

efficacy but provides a limited predictive power for the validation

purpose. Therefore, we applied in this case study a more stringent

validation procedure to test whether TIMMA can identify the

synergistic effects among individually non-essential targets.

Namely, we chose to exclude thee already known individually

important targets, and experimentally validated only the ‘unex-

pected’ target combinations that are predicted by TIMMA. For

this purpose, we carried out single and pairwise siRNA screens to

knock-down targets and to compare their individual and

combinatorial effects on inhibition of cancer cell viability.

Single and pairwise siRNA screens. siRNA against the

selected genes and the positive and negative controls were

purchased from Qiagen. Three different siRNAs combined against

each gene were used. The final concentration of total siRNA was

6 nM for single gene knock-down. For double gene knock-down,

the concentration of siRNA against each gene was 3 nM. The

siRNAs were transferred on clear bottom 384-well plates (Corning

#3712) using an Echo 550 acoustic dispenser (Labcyte).

Lipofectamine RNAiMAX Transfection Reagent (Life Technol-

ogies) diluted according to manufacturers’ instructions. In

OptiMEM (Life Technologies) was added using a Multidrop

Combi nl dispenser (Thermo Scientific). The plate was incubated

for 1 h at room temperature in a shaker after which MDA-MB-

231 cells (ATCC, cultured according to the provider’s instructions)

were added using a Multidrop Combi dispenser (Thermo

Scientific). After 96 h incubation at 37uC, in 5% CO2 in a

humidified incubator, cell viability was recorded by adding the

Cell Titer Blue (Promega) reagent according to manufacturers’

instructions and reading fluorescence at 595 nm using Pherastar

FS (BMG) plate reader. The data was analysed using Dotmatics

software (Dotmatics Ltd). Each plate was normalized against the

positive and negative controls and the Z9-factors calculated were

used to control the quality of each data set. Percent inhibition was

then calculated for each siRNA combination, normalized against

the positive and negative controls.

Quality control of the siRNA screen was done first by checking

the Robust Z9-factor [45] for the raw intensities. The Robust Z9

factor was 0.71, passing the quality assessment threshold (0.5) with

a sufficient difference between background noise and true signal

[46]. Reliability of the cell inhibition percentages was further

assessed by the correlation between two technical replicates. The

overall rank correlation is 0.896 (p,10215), indicating a consistent

readout for the same double gene knock-downs. Therefore, the

inhibition percentages were averaged for each double gene knock-

down, except for those where the two replicated cell inhibition

percentages differ more than 15%, in which case the replicate that

is located at the edge of the plate was excluded. Ten replicates (3%

of the total data) were removed due to such edge effects. To make

the single and double gene knock-down results more comparable,

the single gene knockdown effects were normalized by taking the

average of the inhibition values of single gene knock-down and

those double gene knock-down that include this gene with lower

inhibition values (Dataset S8). The multiplicative synergy scores

for the siRNA target knock-downs were calculated the same way

as for the TIMMA predictions, with yA,B,yA,yB indicating the

measured inhibition percentages of the cell viability for pairwise

and single siRNAs, respectively, using Eq. 9. The synergy score for

the drug pairs was derived similarly as for the TIMMA predicted

drug efficacies using Eq. 10.
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Results

To evaluate the relative efficiency and accuracy of TIMMA, we

initially compared the TIMMA and PKIM algorithms on the

simulated data and on the CanOS1224 canine osteosarcoma cell

line. In the more practical case studies, we then applied the

optimized TIMMA model to infer effective drug targets in the

context of MCF7 breast cancer and BxPC3 pancreatic cancer cell

lines, where kinome-wide siRNA knockdown data are publicly

available for experimental validation. Finally, we evaluated the

synergistic effects of the predicted drug target combinations in the

MDA-MB-231 breast cancer cells by carrying out pairwise siRNA

silencing screens for the TIMMA-selected kinase targets.

Model performance on the simulated data
We started by evaluating the relative performance of TIMMA

and PKIM in terms of their accuracy in predicting the treatment

efficacies for new drugs on the simulated dataset. It was found out

that TIMMA systematically improved the average leave-one-out

(LOO) prediction accuracy, compared to PKIM, at each

predefined drug-target threshold (Figure 2A, paired t-test,

p = 5.0024610210). Since TIMMA combines the information

from a drug’s subsets and supersets simultaneously, its predictions

are more robust to data noise and other technical factors that are

inconsistent with the model assumptions, compared to PKIM,

which does not consider model averaging. In particular, TIMMA

gains on average 22.4% increase in the prediction accuracy

especially for affinity thresholds lower than 0.8, which correspond

to the promiscuous cases with, on average, more than two targets

per drug (Figure 2B). These results demonstrate the importance of

the improvements provided by the TIMMA algorithm, which

make it applicable also to more challenging and practical cases,

where target promiscuity is common and knowledge about all the

cellular targets of drugs is rarely available.

Another important consideration in the large-scale drug screens

is the computational complexity of the prediction algorithms. The

computation times for TIMMA and PKIM model construction

algorithms, SFFS and greedy search, respectively, were compared

on a standard 2.6 GHz desktop computer. In contrast to the

exponentially increasing time that is needed for the PKIM model

construction, TIMMA takes approximately linear increase in time

with the number of targets (Figure 3A). Even though the SFFS is

computationally more demanding than greedy search in model

selection, TIMMA achieved marked speed-up due to the

optimization techniques using multi-dimensional matrix compu-

tations (Figure 3B). Notably, with 20 targets and 10 drugs, for

example, the greedy search will take 10 days, while the TIMMA

takes on average 30 minutes to complete, and thus saves up 99%

of the computation time. The enhancement in the computation

speed facilitates the analyses of larger and more complex datasets

with increasing number of drugs and their target information.

Model performance on the CanOS1224 cell line data
We next tested whether TIMMA can lead to improvements in

the real dataset used in the PKIM work [25], first by fixing the kd

threshold at 0.9. From the set of 317 kinases, the PKIM model

identified 8 kinases with a mean LOO error of 0.1314, while

TIMMA identified a different set of 8 kinases with a decreased

LOO error of 0.0574 (Dataset S2). When varying the kd threshold,

the average LOO prediction accuracy of TIMMA was signifi-

cantly better than that of PKIM (Figure 4A, paired t-test,

p = 1.391061025). Similarly as in simulated dataset (Figure 2A),

the improvement in the prediction accuracy varied with the

selected cut-off threshold (Figure 4A). As expected, when the

threshold is close to 1, the two models performed equally well, as

Figure 2. Prediction accuracy and drug promiscuity as a
function of binding affinity threshold on simulated datasets.
(A) The relative improvement of the LOO prediction accuracy when
comparing the TIMMA and PKIM models. The 95% confidence interval
for the average percentage improvement relative to PKIM was derived
empirically by repeating the data simulation 100 times. (B) The average
number of targets per drug and its standard deviation interval when
applying different cut-off kd thresholds to binarize the simulated
binding affinity data.
doi:10.1371/journal.pcbi.1003226.g002

Figure 3. Computation times on simulated datasets with a
varying number of targets. (A) Running time of PKIM and TIMMA
model construction algorithms given a target set that contains k
targets, k~2,::,9. (B) Running time of the greedy search and the
sequential forward floating search (SFFS) algorithms when reaching an
optimal cancer-specific target set of size k.
doi:10.1371/journal.pcbi.1003226.g003
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the drug-target information is too few to make any reliable

predictions; while TIMMA again systematically outperformed

PKIM at the smaller thresholds.

As revealed in many kinome-wide drug binding assays, most

drugs, albeit considered previously specific to single or double

targets, have shown a relatively wide range of binding affinities to

multiple off-target kinases [47]. Our model can also make use of

such promiscuous drug-target interactions that are informative for

predicting drug cancer killing efficacies. This was further

investigated in a receiver operating characteristics (ROC) analysis

of the prediction performance, where the problem was to

distinguish the 12 most sensitive drugs with positive efficacy values

(Figure 4B). In this analysis, the area under the ROC curve (AUC)

for TIMMA was 0.9679 and for PKIM 0.7144, further

demonstrating the improved predictive power of the TIMMA

model.

To test whether the SFFS model selection algorithm can find

solutions close to the global optimal target sets, we performed an

exact analysis for maximally 12 kinases, where exhaustive search

can be performed at a reasonable running time. More specifically,

k kinases from the full set of 317 kinases were randomly selected,

where k~1,:::,12, and an exhaustive search was run to determine

the optimal subsets of the k kinases. We applied here a fixed cut-

off threshold of kd~0:224, which equals to the average of all the

kd values over the drug-target pairs. The optimal sets determined

by the SFFS algorithm in TIMMA and by the greedy search

algorithm in PKIM were compared with the global optimum in

terms of prediction accuracy. The SFFS algorithm gave signifi-

cantly better results than the greedy search for kw3 (Figure 5,

paired t-test, p = 3.339761026). This demonstrates that the

computationally efficient SFFS algorithm can find solutions that

are not too far from the globally optimal solution.

MCF-7 breast cancer cell application
After confirming the appropriate performance of the TIMMA

model, we applied it to two practical case studies. In the first one,

we systematically evaluated the predictions of the TIMMA MCF-7

model against the experimental results from an independent

kinome-wide siRNA study in the MCF-7 breast cancer cells [48].

The knock-down data were generated using a Methylene blue

assays to assess cancer cell density in order to evaluate the quality

of their siRNA screen (Figure S2 and Table S2 in [48]). The

siRNA screen was designed to target 712 kinases in the human

kinome, with three distinct siRNAs per kinase. The data was

analyzed using the R package cellHTS2 [49], where a mean Z-

score scaled by the per-plate median of the intensities of the

negative controls was calculated for each kinase. A large positive

Z-score indicates a strong inhibition effect and thus indicates high

essentiality of the kinase for the cancer cell survival.

Here, we tested the essentiality of the kinases in the cancer-

specific target set predicted by TIMMA using the 15 drugs

targeting a total of 384 kinases. In other words, we asked the

question: are the kinases selected by TIMMA as the most

predictive of anticancer efficacy also highly essential individually

for the cancer cell viability? The optimal target set found by

TIMMA included 12 kinases {ZAK, CSF1R, GAK, MEK5,

ABL2/EPHA8, ALK/LTK/PLK4/ROS1 and MEK1/MEK2},

with a mean LOO prediction error of 0.1392 (Dataset S5). The/

symbol stands for the targets that are inhibited by the same set of

drugs in the data and thus are indistinguishable by the model. The

mean Z-score for these 12 kinases was 0.926, which is significantly

higher than the average Z-score for random sets of 9 kinases

selected from the 712 kinases (Figure 6A, permutation test,

p = 0.0015). This shows that TIMMA tends to choose, in general,

such kinases that are also individually more effective in blocking

cancer cell growth. Among these kinases, ALK had the highest

Figure 4. Prediction accuracy of TIMMA and PKIM on the
CanOS1224 data. (A) Relative increase of average LOO prediction
accuracy for TIMMA compared to PKIM. The drug-target data was
binarized at various binding affinity thresholds, ranging from 0 to 1,
with a step of 0.01. For each of the binarized drug-target data, the
optimal cancer-cell specific target sets identified by TIMMA and PKIM
were compared in terms of prediction accuracy. The 95% confidence
interval for the relative increase was derived empirically using 50
random starting points in the model selection algorithms. (B) The
receiver operating characteristic (ROC) curves for classifying sensitive
drugs. Model predictions given the binarized drug-target data were
pooled together for evaluation of the classification performance on the
set of 36 drugs, where drugs with positive scaled IC50 efficacies are
labeled as sensitive.
doi:10.1371/journal.pcbi.1003226.g004

Figure 5. Optimality of the model search algorithms as
compared to the global optima on the CanOS1224 data. The
optimality of a search algorithm was evaluated by the relative distance
in average LOO prediction error between the algorithm solution and
the global optimum determined by an exhaustive search. The 95%
confidence intervals were derived based on a 100 times sampling of k
kinases from the 317 kinases, k = 2,…,12.
doi:10.1371/journal.pcbi.1003226.g005
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predicted single-kinase efficacy. ALK was also identified in the

independent siRNA screen as the top essential kinase. However,

our model does not assume that all the kinases in the optimal

target set are essential individually. For instance, GAK and ROS1

had a relatively low Z-score, but still these were considered to have

an important role in the cancer survival and/or proliferation

process when combined with the other selected kinases (Figure 6B).

On the basis of the predicted efficacy matrix based on the

selected kinase targets (Dataset S5), we derived the multiplicative

synergy score (Eq. 9) for the drug pairs that are pairwise inhibiting

the selected targets (Supplementary Table S1). We found that the

top synergistic drug pairs are mainly GAK and ALK/LTK/

PLK4/ROS1 inhibitors, some of which have been reported in the

recent literature. For example, crizotinib combined with erlotinib

has recently been shown to cause a complete and genotype-specific

inhibition of tumor growth in non-small cell lung cancer (NSCLC)

adenocarcinoma patient-derived pre-clinical treatment models in

vivo [50]. Crizotinib-erlotinib combination was also ranked as the

top one among the 12 drugs that are available in the MCF-7

model analysis, indicating that such a combination might also be

effective for the treatment of specific resistive subtypes of breast

cancer. Similarly, TAE-684, a potent ALK inhibitor has been

found to provide selective activity against those mutations that

conferred crizotinib resistance in cancer patients [51], suggesting a

mechanistic insights into the crizotinib-TAE-684 combination,

which was ranked as the second most synergistic pair by our model

predictions. In general, the top-predicted synergistic drug pairs are

not necessarily the individually most sensitive drugs, as their

individual efficacies do not correlate with the multiplicative

synergy score (Supplementary Table S1).

To visualize the combinatorial effect of the selected kinase

targets, a target inhibition network was constructed by applying a

threshold of 0.318 to binarize the predicted efficacy (Figure 7,

Dataset S5). The threshold 0.318 was the scaled drug efficacy for

crizotinib that inhibits ALK, which is the most essential kinase

according to the siRNA screen and thus considered as effective in

treating MCF7 cancer cells. The target inhibition network

suggested that two parallel MEK1/2-dependent pathways as most

important for the MCF-7 cancer cell survival. For example,

simultaneous targeting of CSF1R and ALK/LTK/PLK4/ROS1

was predicted to enable blocking the two redundant pathways and

result in a complete inhibition of the MEK1/2-dependent cell

proliferation. Notably, CSF1R has been shown to act upstream of

MEK1 and to induce Cyclin D2 expression via the Ras/Raf/

MAPK pathway [52]. Similarly, ALK has been suggested to

directly activate MEK1/2, independent of c-Raf [53]. Also, LTK

has been implicated in cell growth via MAPK signaling [54]. Taken

together, these findings support the idea that inhibition of both

CSF1R and ALK/LTK/PLK4/ROS1 should have a synergistic

effect on the cell survival. Indeed, the combination of sorafenib and

crizotinib, inhibitors of CSF1R and ALK/LTK, respectively, has

been considered for a clinical trial for treating advanced solid

tumors (Pfizer, ClinicalTrials.gov, Identifier: NCT01441388).

BxPC-3 pancreatic cancer cell application
To further show the applicability of TIMMA to such cases

where combinatorial effects of kinase inhibition are considered, we

utilized the results from a kinome-wide drug sensitization screen,

in which the kinase siRNA-silencing was combined with the

treatment of Aurora kinase inhibitors in BxPC-3 pancreatic cancer

cell line [55]. Aurora kinases (Aurora A, Aurora B, and Aurora C)

are serine/threonine kinases that are frequently overexpressed in

many tumors. Accordingly, Aurora kinase inhibition has been

proposed as potential cancer therapy to disrupt cancer cell

division. The purpose of the study was to identify those kinases

that when silenced would sensitize pancreatic cancer cells to the

Aurora kinase inhibitor treatments. The RNAi screen was done

using the Human Validated Kinase Set (HVKS) siRNA library

from Qiagen, with two siRNAs per kinase. A total of 17 kinases

were identified and confirmed in a validation screen to have at

least 2 out of 4 siRNA sequences showing greater than 1.5-fold

decreases in EC50 or EC30 values of the Aurora kinase inhibitor

AKI-1 in dose-response curves [55].

We wanted to evaluate here the TIMMA model performance in

predicting the experimental results in [56], especially the kinases

that would sensitize the pancreatic cancer cells to the AKI-1

treatment. This question can be addressed in TIMMA by

determining the synthetic lethality score for such kinases paired

with the targets of AKI-1. The synthetic lethality score (Eq. 11)

was calculated for the kinase pairs using the data of 15 drugs and

384 kinases and the drug efficacy in BxPC-3 cells [31]. The higher

the score, the stronger the synthetic lethality effect for the kinase

pair. Of these 15 drugs, 3 drugs (CHIR-265/RAF-265, nilotinib

Figure 6. Kinases selected by TIMMA on the MCF7 cancer cell
line. (A) Histogram of average siRNA Z-scores for a set of 12 kinases
selected randomly, as compared to the average Z-score (0.926) for the
TIMMA-selected optimal target set (marked on the right tail with its
empirical p-value). (B) Scatter plot between the predicted treatment
efficacy and the siRNA Z-score for the selected 12 kinases. The average
Z-score (0.349) for the kinome-wide siRNA data is plotted as the dotted
horizontal line.
doi:10.1371/journal.pcbi.1003226.g006

Predicting Combinations of Druggable Targets

PLOS Computational Biology | www.ploscompbiol.org 10 September 2013 | Volume 9 | Issue 9 | e1003226



and PD0332991) were not tested for BxPC-3 and thus were

removed (Dataset S3). Since none of the 12 compounds effectively

targeted the two Aurora kinases, Aurora A and Aurora C, we

considered here the Aurora B kinase as the only effective target of

AKI-1. The TIMMA model was therefore tested on all those kinase

pairs which contain Aurora B, and those kinase pairs whose

synthetic lethality scores were higher than that of {Aurora B, Aurora

B} pair were considered as synthetic lethal partners of Aurora B.

The TIMMA analysis based on Eq. 11 identified 19 kinases

(multiple kinases are ranked the same as they are targeted by the

same drug set), which showed stronger synthetic lethality

interactions with Aurora B than with itself (Figure 8). Two

(MET, PDGFRA) out of the three targets (MET, PDGFRA and

PYK2) were experimentally validated as sensitizing targets of AKI-

1 in the pancreatic cancer, representing a highly significant

enrichment (hypergeometric test, p = 0.0046) (Figure S4 in [55]).

In addition, the model predicted that PDGFRB might also be a

potential sensitizer of AKI-1 treatment. Similar to the result in the

MCF-7 cells, ZAK (ranked 3rd), MEK5 (ranked 7th) and GAK

(ranked 9 th) were again found in the cancer-specific target set for

BxPC-3 cells, suggesting that the synergy patterns of these kinases

is common across these cancer types. In contrast, the model

predicted that the combination of MEK1/MEK2 and AURKB

inhibitors has least synthetic lethal capacity (Dataset S6), because

individual essentiality of these two factors favors the series

connection model rather than the parallel model in the synthetic

lethality score [56,57].

MDA-MB-231 breast carcinoma application
The final application case study was the human triple-negative

breast carcinoma, where we experimentally validated the TIMMA

target combination predictions using single and pairwise siRNA

Figure 7. The MCF-7 breast cancer target inhibition network annotated with drugs inhibiting its target nodes. The target inhibition
network was derived from the predicted efficacy matrix for the 12 kinase targets selected by TIMMA. Target pairs with predicted efficacy higher than
0.31 were considered as effective. Potential drug combinations can be inferred from the network by checking whether their targets are blocking the
two parallel cancer survival pathways. Blue circle, target node; red square, available drugs that inhibit the target node; ‘‘/’’, those targets that are
inhibited by the same set of drugs and thus are indistinguishable by the model. The predicted efficacy matrix is provided in Dataset S5.
doi:10.1371/journal.pcbi.1003226.g007

Figure 8. Kinase targets indicative of sensitizing BxPC-3
pancreatic cancer cells to Aurora kinase inhibitors. The TIMMA
model identified 19 kinases that, when combined with AURKB, showed
higher synthetic lethality scores than using AURKB alone. Among these
targets, PDGFRA and MET (marked with red arrows) were experimen-
tally validated in the original work [56]. Dashed line: the baseline
synthetic lethality score when AURKB is combined with itself.
doi:10.1371/journal.pcbi.1003226.g008
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knock-downs on the MDA-MB-231 cells. The TIMMA model

selected 20 optimal kinase targets {PLK1, AURKB, CDKL2, ZAK,

ERBB4, TEK, TXT/BMX/CSK/EPHA5/EPHB1/EPHB4,

CAMKK1/MAK/VRK2/TNNI3K/CDC2L6/DYRK1B/DYRK1A/

TYK2} with an average LOO error of 0.11 (Dataset S7). These

kinases and their functional interactions were mapped to the target

inhibition network, which contained a total of 8 target nodes

(Figure 9). The kinases belonging to the same node are inhibited by

a common set of drugs, and therefore these drug targets are

indistinguishable in terms of drug inhibition and their predicted

efficacy values. Two of the selected kinase targets, PLK1 and

AURKB, are known to be essential for cell growth, therefore serving

here as positive controls for the model target predictions. However,

due to their known role in cell growth, we excluded these two

kinases from the experimental evaluation, and focused on the

synergistic combinations between the remaining 18 kinases targets

among the 6 target nodes.

In general, there were significant differences between the

TIMMA-selected kinase targets, when these were silenced either

individually or in combination in the siRNA screens, especially

after their ranking according to the predicted efficacy (Figure 10A,

Kruskall-Wallis rank sum test, p,10215). Even after excluding

the two essential kinases (PLK1 and AURKB), the 18

TIMMA-selected kinases showed higher cancer cell growth

inhibition power in the single knock-down experiments (22%

increase in cell inhibition), compared to the inhibition observed in

the kinome-wide single-siRNA screen (Wilcoxon rank sum test,

p = 0.28, Supplementary Table S2). Importantly, the 153

TIMMA-selected kinase pairs resulted in highly significant cancer

cell killing improvement in the pairwise knock-down experiments

(38% increase), compared to their single kinase inhibition efficacy

(p = 0.0089, Bonferroni adjustment), indicating that TIMMA

could select such kinase targets that, in general, are important

for cancer cell survival, and especially when combined. Notably,

when categorizing the selected target pairs as High and Low

efficacy groups, according to their predicted treatment efficacies

above or below the average of 0.6, there was a significant increase

in the cancer cell growth inhibition percentages (23%, 48% and

80%), when comparing the High efficacy group to either the Low

efficacy group, the single selected kinases or the kinome-wide

background (p = 0.031, p = 0.013, p,10215, Bonferroni adjust-

ment, Supplementary Table S2). Taken together, these results

indicate that the TIMMA model can effectively select and

prioritize among the massive number of possible combinations

those target combinations that are most potential for experimental

testing or eventual clinical translation.

To investigate whether the model can select also such drug

target combinations that individually show relatively low drugs

efficacies, but will lead to increased drug synergy when combined,

we focused on the set of 15 kinase pairs among the 6 target nodes

({CDKL2, ZAK, ERBB4, TEK, TXT/BMX/CSK/EPHA5/

EPHB1/EPHB4, CAMKK1/MAK/VRK2/TNNI3K/CDC2L6/

DYRK1B/DYRK1A/TYK2}, Figure 9) that are unique in terms

of their drug profiles and thus distinguishable based on their

TIMMA-predicted efficacy. We took an average of the synergy

scores for those kinas pairs that are represented by the same target

node pair. The synergy score calculated on the basis of the

TIMMA-predictions correlated significantly with the synergy

calculated on the basis of the single and pairwise siRNA

measurements (Kendall correlation 0.39, p = 0.0463). When

Figure 9. The MDA-MB-231 breast cancer target inhibition network annotated with inhibiting drugs. Blue circles represent kinase target
nodes. A target node may contain multiple kinases that are inhibited by the same set of drugs; in such cases, the kinase with the minimal binding
affinity kd is shown inside the node, while the other equivalent kinase targets are shown beside the meta-target node. Red squares list available drugs
that inhibit the corresponding target nodes. Data and detailed results are provided in Dataset S7.
doi:10.1371/journal.pcbi.1003226.g009
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mapping the selected kinase target pairs to the available kinase

inhibitor pairs, i.e. using Eq. 10, the correlation between the

predicted and measured synergies improved further (Figure 10B,

p = 0.0002). In particular, when using a cut-off predicted synergy of

0.36 (the dotted vertical line), the likelihood of obtaining a high

measured synergy increased significantly (Wilcoxon rank sum test,

p,5.927, Bonferroni adjustment). Among these top-20 most

synergistic drug combinations for the MDA-MB-231 cells, there

were a number of examples, such as the two top pairs, where the

efficacy of one of the drugs in the combination was relatively low, or

even zero, yet the predicted and measured synergy for the drug

combination was high (Table 1). This demonstrates that our model

is able to predict not only those pairs that are essential either

individually or in combination, but also a number of synergistic

combinations, where the predicted efficacy cannot be explained by

the efficacy of the two single compounds when used alone

(Supplementary Figure S4).

Discussion

In this study, we utilized the principles of polypharmacological

target inhibition modeling as a generic framework for pinpointing

cancer-specific targets and predicting the effect of putative drug

combinations. The main contribution of the present work was to

introduce a novel model construction model, called TIMMA, and

to demonstrate its feasibility in systematic investigation of the

model predictions using kinome-wide single and pairwise siRNA

knock-down experiments. We also showed that our enhanced

model construction algorithm resulted in significantly better

predictive accuracy and computational efficiency, compared with

an existing algorithmic solution. With such improvements, the

number of targets that can be included in the minimal set can go

up to 20, which corresponds to maximally 20 drugs in a

combination. In the three case studies, where we combined

large-scale drug sensitivity screening and comprehensive drug-

target data, we were able to identify a number of potential drug

combinations for breast and pancreatic cancers. In more general

terms, the optimized experimental-computational approach,

empowered by the target inhibition network, allowed us to

systematically explore how the kinase inhibitors and their cellular

targets interact to modulate cancer growth phenotype on a global

network-level, with the aim to identify molecular pathways behind

drug action, as well as to suggest combinatorial treatment

strategies that can block the cancer escape pathways and therefore

tackle the resistance problem of the many current treatments

approaches.

Network-based strategies, such as the one developed in the

current work, provide a principled approach to systematically

identify the key set of druggable vulnerabilities of cancer networks.

Such efforts create a solid foundation towards implementing the

emerging paradigm in drug discovery, the so-called ‘network

pharmacology’ [3], which provides a more global understanding of

the mechanism behind drug action and resistance by considering

drugs and targets in their context of cellular networks and

pathways. The current work also support the detection of synthetic

lethal interactions, which is another conceptual framework

Figure 10. Experimental validation of the model predictions on the MDA-MB-231 cell line. (A) Distributions of cell growth inhibition
percentages in single and pairwise siRNA screens targeting different groups of kinase targets. TIMMA identified eight target nodes, with a total of 20
kinase targets, the essentiality of which was evaluated both individually (n = 18) as well as in combination (n = 153) in the siRNA screens. Kinase target
pairs with the predicted efficacy values higher or lower than the average (0.594) were further classified as high or low sensitivity groups, respectively.
The kinome-wide single siRNA screen included a total of 704 kinases as a background reference distribution. (B) Scatterplot of synergy scores derived
from the TIMMA model prediction versus synergy scores derived from the pairwise siRNA screen for a total of 68 drug pairs. A jitter function was
applied for distinguishing the different drug pairs having the same synergy scores. The red dashed line indicates an empirical cut-off of predicted
synergy score of 0.36 for the classification of highly synergistic drug pairs, for which the corresponding siRNA-measured synergy scores are higher
than 37% (green dashed line). The blue curve is the logistic growth function fit f (x)~a=(1zexp((b{x)=c)), where a = 41, b = 0.23, c = 0.02.
doi:10.1371/journal.pcbi.1003226.g010
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recently proposed toward developing more effective therapeutic

strategies [12,13,15–19]. More specifically, targeted perturbation

or inhibition of a gene that has a synthetic lethal relationship with

a driving cancer mutation holds great promise for being a highly

specific and selective means to kill cancer cells without severe side-

effects to normal cells. Compared to the conventional cytotoxic

drugs, that affect both normal and cancerous cells, synthetic

lethality can therefore address the fundamental challenges of

anticancer therapy by optimally targeting differential features in

each cancer type while sparing normal cells. However, despite the

advances in siRNA and compound screening, synthetic lethal

interactions between genes and/or drugs have remained extremely

difficult to predict on a global scale [13,18]. Network-based

methods provide a convenient platform to finding functional

interactions in disease networks, toward enabling identification of

such effective drug targets and their combinations that tailored for

more effective and personalized cancer medicine.

We focused here on the kinase targets because of their

importance in many multi-target cancer treatment developments.

This is also why we experimentally validated the model predictions

using kinome-wide single siRNA and TIMMA-predicted pairwise

siRNA screens, where the selected kinase targets were knocked

down individually or in pairs in the given cell type to

experimentally evaluate their essentiality either alone or in

combination for the cancer cell survival. However, the same

modeling principles could be applied also to other target families,

such as enzymes or G protein coupled receptor (GPCR) targets,

provided there will be enough target and drug promiscuity to

allow for construction of the target inhibition networks. Moreover,

while the siRNA silencing screens are convenient for the drug

target investigation, the perturbation effects from the siRNAs

cannot fully mimic the phenotypic effects of drug treatments.

RNAi has also potential limitations due to potential off-target

silencing effects and variable reagent efficacy, which may also

partly explain the observed discrepancies between the drug

treatment-based model predictions and their siRNA-based exper-

imental validations. Therefore, one of our future aims is to apply

the TIMMA model predictions to designing potential drug

combination treatments, initially in various cancer cell models in

vitro, and later also in primary samples from cancer patients ex-vivo.

The drug treatments are also closer to the eventual translation of

the model predictions in a clinical setup, at least until the RNAi-

mediated target silencing has become safe and efficacious enough

for clinical applications.

In an effective combinatorial setting, one needs to modulate a

set of targets to achieve maximal efficacy, while avoiding others to

reduce the risk of side effects. The current TIMMA algorithm

addressed the first challenge: the optimal efficacy by multi-target

modulation. The different model parameters and thresholds lead

to a multiple candidate target inhibition networks for combina-

torial treatments. From those candidate models, clinician could

then ideally choose the combination that is most feasible and

results in less known adverse effects, based on prior knowledge.

Although there are information sources on drug side effects

scattered around in databases, such as SIDER [58], ChEMBL

[32], and PROMISCUOUS [59], we chose not to try to

incorporate the side effect information in the current model

building, because such information is still missing for many

Table 1. The top most synergistic drug pairs based on the TIMMA model predictions in MDA-MB-231 breast cancer cells.

Individual efficacies TIMMA prediction siRNA knock-down

Drug pair DSS1 DSS2 Predicted efficacy Synergy score Inhibition percentage Synergy score

Dasatinib Doramapimod 9.05 0 0.723 0.723 63.399 41.588

Dasatinib Foretinib 9.05 0 0.723 0.723 63.399 41.588

Afatinib Dasatinib 9.05 1.73 0.723 0.569 54.822 38.607

Canertinib Dasatinib 9.05 1.93 0.723 0.569 54.822 38.607

Dasatinib Lapatinib 9.05 4.34 0.723 0.569 54.822 38.607

Dasatinib Motesanib 9.05 7.75 0.723 0.496 42.47 39.622

Dasatinib Nilotinib 9.05 4.22 0.723 0.496 42.47 39.622

Dasatinib RAF265 9.05 3.76 0.723 0.496 42.47 39.622

Dasatinib Vemurafenib 9.05 0 0.723 0.496 42.47 39.622

Dasatinib Sorafenib 9.05 7.03 0.723 0.388 50.299 39.022

Motesanib SNS-032 7.68 7.75 0.562 0.369 40.276 37.683

Motesanib Sorafenib 7.03 7.75 0.562 0.369 40.276 37.683

Nilotinib SNS-032 7.68 4.22 0.562 0.369 40.276 37.683

Nilotinib Sorafenib 7.03 4.22 0.562 0.369 40.276 37.683

RAF265 SNS-032 7.68 3.76 0.562 0.369 40.276 37.683

RAF265 Sorafenib 7.03 3.76 0.562 0.369 40.276 37.683

SNS-032 Sorafenib 7.68 7.03 0.562 0.369 40.276 37.683

SNS-032 Vemurafenib 7.68 0 0.562 0.369 40.276 37.683

Sorafenib Vemurafenib 7.03 0 0.562 0.369 40.276 37.683

DSS1/2, measured treatment efficacy (drug sensitivity score) when using either of the suggested drugs alone; Inhibition percentage, averaged inhibition of cell growth in
the pairwise siRNA screen; Predicted efficacy, predicted treatment efficacy by the TIMMA model; Synergy score, synergistic effect of the drug pair as either measured by
the siRNA experiment (Eq. 9) or predicted by the TIMMA model (Eq. 10). The table lists the drug pairs with synergy scores higher than the selected cut-off threshold
(0.36, red dotted line in Figure 10B).
doi:10.1371/journal.pcbi.1003226.t001
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targeted drugs and the initial aim was to find effective target

combinations. However, incorporating known side effect or

toxicity information of drugs and their targets will be an important

topic of future research. Possible approaches for such modifica-

tions include, for instance, usage of metabolic networks and

pathways that are targeted by drugs [60], or combining multiple

databases that contain a collection of drug features, such as

medical indications, molecular targets, toxicity profiles or

anatomical therapeutic and chemical classifications [61]. Further,

rather than using a single response readout for drug efficacy, such

as IC50, AA or DSS, the gene expression or metabolomic changes

after a treatment could also be included as part of the drug

response profiles, perhaps leading to be more comprehensive drug-

disease networks in the future.
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