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Abstract

In excess of 12% of human cancer incidents have a viral cofactor. Epidemiological studies of idiopathic human cancers
indicate that additional tumor viruses remain to be discovered. Recent advances in sequencing technology have enabled
systematic screenings of human tumor transcriptomes for viral transcripts. However, technical problems such as low
abundances of viral transcripts in large volumes of sequencing data, viral sequence divergence, and homology between
viral and human factors significantly confound identification of tumor viruses. We have developed a novel computational
approach for detecting viral transcripts in human cancers that takes the aforementioned confounding factors into account
and is applicable to a wide variety of viruses and tumors. We apply the approach to conducting the first systematic search
for viruses in neuroblastoma, the most common cancer in infancy. The diverse clinical progression of this disease as well as
related epidemiological and virological findings are highly suggestive of a pathogenic cofactor. However, a viral etiology of
neuroblastoma is currently contested. We mapped 14 transcriptomes of neuroblastoma as well as positive and negative
controls to the human and all known viral genomes in order to detect both known and unknown viruses. Analysis of
controls, comparisons with related methods, and statistical estimates demonstrate the high sensitivity of our approach.
Detailed investigation of putative viral transcripts within neuroblastoma samples did not provide evidence for the existence
of any known human viruses. Likewise, de-novo assembly and analysis of chimeric transcripts did not result in expression
signatures associated with novel human pathogens. While confounding factors such as sample dilution or viral clearance in
progressed tumors may mask viral cofactors in the data, in principle, this is rendered less likely by the high sensitivity of our
approach and the number of biological replicates analyzed. Therefore, our results suggest that frequent viral cofactors of
metastatic neuroblastoma are unlikely.
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Introduction

To date, pathogenic agents are known to be causally related to

20% of human cancer cases [1] and significantly affect the global

health burden of this disease [2]. The majority of these agents

comprise oncogenic viruses such as human papilloma virus (HPV),

Epstein-Barr virus (EBV), hepatitis B virus (HBV), and hepatitis C

virus (HCV) [3]. Characterizing the oncogenic potential of viral

pathogens has important consequences for prevention, diagnosis,

and treatment of malignant neoplasms [4,5]. Tumor viruses in

particular have received renewed attention in the context of recent

global efforts to characterize the etiology of cancer [6,7].

Consequently, viral cofactors for several idiopathic cancers are

currently investigated [8] and epidemiological indicators suggest

that additional human tumor viruses remain to be discovered [9].

Neuroblastoma is a heterogeneous embryonal tumor [10,11]

that is accountable for 15% of deaths caused by malignant

conditions in children [12]. The disease is associated with an

exceptionally low median age of presentation of 17 months [13]

and is often diagnosed in utero. Metastatic neuroblastoma has two

biologically divergent subtypes. Stage 4S is characterized by an

age of presentation between in utero and 18 months, metastases

confined to liver, skin, lymph nodes and bone marrow, and its

ability to regress spontaneously [14,15]. In contrast, stage 4 tumors

are presented at any age, demonstrate high infiltration rates in

bone marrow and bone, and are most often progressive [10,16].

While genes related to neuronal differentiation have been

described to be upregulated in stage 4S in comparison to stage 4

neuroblastoma, thereby indicating distinct levels of neuronal

differentiation [17], little is currently known about the differences

between molecular etiologies of stage 4 and stage 4S neuroblas-

toma.

The variation of clinical outcomes between neuroblastoma

subtypes indicates distinct genetic and environmental factors

affecting the development of this malignancy. Interestingly, the

early onset of the disease overlaps with periods of high
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susceptibility to viral infections and is reminiscent of acute

lymphoblastic leukemia – another pediatric tumor with uncertain

etiology for which an infective cofactor has long been suspected

[18]. Furthermore, epidemiological studies have associated

reduced neuroblastoma risk with immunologic indicators such as

previous childhood infections, day care attendance, and breast

feeding [19,20] that are suggestive of an infective cofactor [21].

While transforming polyomaviruses such as JCV and BKV were

previously identified within neuroblastoma samples and other

pediatric embryonal tumors [22–24], newer studies seem to render

these associations inconclusive [25]. Therefore, the role of

pathogenic cofactors of neuroblastoma oncogenesis remains

unresolved.

In general, the search for suspected viral cofactors of idiopathic

diseases requires systematic screening of human tissues for viral

biomarkers such as virus-derived nucleotide sequences. Unfortu-

nately, viruses are of polyphyletic origin and thus lack common

universal marker genes as they are frequently exploited in

metagenomics studies targeting cellular microorganisms. Conse-

quently, it is not currently possible to specifically PCR-amplify

viral nucleotide sequences within a given tissue without prior

information about the infective agent being sought [26]. As a

result, several systematic assays for pathogen detection have been

developed that do not rely on targeted PCR-amplification of viral

factors [27] and were employed to identify Kaposi’s sarcoma-

associated herpes virus (KSHV) as a human tumor virus [28].

These systematic approaches were recently supplemented by

sensitive deep sequencing technologies [27]. These technologies

were recently applied to exclude several cancer-virus associations

based on negative evidence [29,30] and aided in the identification

of MCPyV, a human polyomavirus, as a cofactor of Merkel cell

carcinoma [31].

Deep sequencing technologies have enabled detection of both

known and novel viruses with unprecedented sensitivity [32].

However, the large numbers of sequence fragments (‘‘reads’’)

generated by these methods necessitate data reduction approaches

for filtering and condensing the list of putative viral transcripts.

Two such approaches are currently represented in the literature:

digital transcript subtraction that discards human sequence homologs

from the sequence data and considers the remaining transcripts as

potential viral signatures [30,31,33–39], and de-novo sequence

assembly that aims to reconstruct whole viral genomes from

overlapping reads [40–43]. Recently, variants of these of two

approaches have been implemented in several computational

pipelines such as PathSeq [44], RINS [45], and CaPSID [46].

Identification of tumor viruses in particular poses several

important challenges to existing computational pipelines. Con-

founding factors such as loss of viral genetic material from

progressed tumors as well as limited replication competence or

latent replication strategies often result in low or selective

transcription of tumor viruses [5]. In addition, viral oncogenes

homologous to human factors and chimeric transcripts originating

from proviral insertion sites may share significant sequence

similarity with human transcripts [47], thus making unequivocal

identification of viral factors difficult. Last, high rates of viral

sequence divergence from 10{5{10{8 (dsDNA viruses) up to

10{4 (ssRNA viruses) substitutions per site and year [48,49] hinder

recognition of known viruses based on known reference sequences.

We have developed Virana, a novel computational approach

specifically tailored to detecting low-abundance transcripts that

diverge from known viral reference sequences or share significant

sequence homology with human factors. In particular, our method

maps sequence reads to a combined reference database compris-

ing the human genome and all known viral reference sequences.

The approach is configured to allow for high mismatch rates and

mappings to multiple reference sequences (‘multimaps’). By using

this combined and sensitive mapping strategy, our approach is

especially well suited for detecting human-viral chimeric tran-

scripts and viruses diverging from known references. In contrast to

existing subtractive approaches for viral transcript discovery, our

method abstains from discarding reads homologous to the human

genome from further analysis. Instead, Virana exploits multimaps

to assign sequence reads to a homologous context comprising

human reference transcripts and viral reference genomes. These

homologous regions retain the full, unfiltered information

contained in the raw sequence data while also being amenable

to further analyses by multiple sequence alignments, human-viral

phylogenies, and orthogonal taxonomic annotations, thus greatly

aiding in the interpretation of the results.

We applied our novel approach on an overall number of 14
deep sequencing transcriptomes of stage 4 and stage 4S metastatic

neuroblastoma in order to identify putative viral cofactors

associated with this idiopathic disease.

Materials and Methods

Clinical samples and experimental deep sequencing data
Primary neuroblastoma samples from stage 4 (progressive)

patients (n~7) and stage 4S (regressive) patients (n~7) were

obtained prior to treatment from the central neuroblastoma tumor

bank at the University Hospital of Cologne, Germany. None of the

tumors harbored amplification of the MYCN proto-oncogene as

determined by two independent laboratories for each case by

fluorescence in situ hybridisation (FISH) and Southern blot [50].

Only neuroblastoma samples with a tumor cell content of above

60% as assessed by a pathologist were selected for deep

sequencing. Integrity of RNA was evaluated using the Bioanalyzer

2100 (Agilent Technologies) and only samples with an RNA

integrity number of at least 7:5 were considered for further

Author Summary

Many human cancers are caused by infections with tumor
viruses and identification of these pathogens is considered
a critical contribution to cancer prevention. Deep se-
quencing enables us to systematically investigate viral
nucleotide signatures in order to either verify or exclude
the existence of viruses in idiopathic human cancers. We
have developed Virana, a novel computational approach
for identifying tumor viruses in human cancers that is
applicable to a wide variety of tumors and viruses. Virana
firstly addresses several important biological confounding
factors that may hinder successful detection of these
pathogens. We applied our approach in the first systematic
search for cancer-causing viruses in metastatic neuroblas-
toma, the most common form of cancer in infancy.
Although the heterogeneous clinical progression of this
disease as well as epidemiological and virological findings
are suggestive of a pathogenic cofactor, the viral etiology
of neuroblastoma is currently contested. We conducted an
analysis of experimental controls, comparisons with
related approaches, as well as statistical analyses in order
to validate our method. In spite of the high sensitivity of
our approach, analyses of neuroblastoma transcriptomes
did not provide evidence for the existence of any known or
unknown human viruses. Our results therefore suggest
that frequent viral cofactors of metastatic neuroblastoma
are unlikely.

Detection of Viral Transcripts in Human Tumors
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processing. Quality of all neuroblastoma samples and related deep

sequencing data was additionally confirmed by an orthogonal

computational analysis focusing on human gene expression in the

context of differential splicing [51].

All patients were enrolled in the German Neuroblastoma trials

with informed consent. In order to validate our approach we

additionally employed a positive control panel consisting of tumors

with known viral cofactors. An EBV-positive B-cell-lymphoma

(BCL) was received from the Pediatric Oncology and Hematology

Department of the Hannover Medical School. Deep-sequencing

reads obtained from full transcriptome libraries of two HPV18-

positive HeLa samples (HeLa) and a HPV16-positive primary

cervical squamous cell carcinoma (ceSCC) were downloaded from

the Short Read Archive (SRA) and preprocessed as specified in the

original publication [30]. Transcriptome data of a HBV-positive

hepatocellular carcinoma (HCC) HKCI-5a cell line with con-

firmed HBV integration events was downloaded from the SRA

based on information in the original publication [52]. A negative

control panel consisting of a normal brain transcriptome generated

as part of the Illumina BodyMap 2.0 project was obtained from

the SRA at run accession number ERR030882.

Library preparation and sequencing
mRNA libraries of the EBV-positive B-cell lymphoma and 14

neuroblastomas were prepared following the Illumina RNA

Sample Preparation Kit and Guide (Part #1004898 Rev. A).

For each sample, 5 mg high-quality total RNA was processed for

mRNA purification, chemical fragmentation, first strand synthesis,

second strand synthesis, end repair, 39-end adenylation, adapter

ligation, and PCR amplification. Validated libraries underwent gel

size selection and final paired-end sequencing with an effective

read length of 2|36 bp on the Illumina Genome Analyzer IIx

following Illumina standard protocols. Additionally, libraries for

two of the 14 neuroblastoma samples were generated using the

same protocols and sequenced with an effective paired-end read

length of 2|95 bp on a Illumina HiSeq 2000. All libraries had

insert size distributions approximating m~150 bp, s~50 bp as

later confirmed by read mapping. The data were filtered

according to signal purity by the Illumina Realtime Analysis

(RTA) software.

Simulated sequencing data
In this study we employ simulated sequencing data from three

viral genomes that are homologous to human factors. Reads

originating from the ABL1-homologue of the Abelson murine

leukemia virus (A-MuLV, GI:9626953, positions 1326{2605),

from the the gag region of HERVK22I (obtained from Repbase

[53], positions 1{1452), and from Bo17, a GCNT3-homolog of

the bovine herpesvirus 4 (BoHV-4, GI:13095578, positions

107098{108748) were generated in silico by dwgsim, a read

simulator based on wgsim [54]. In addition, we produced

simulated chimeric transcripts by fusing each of the aforemen-

tioned sequence regions to the human TP53 gene, a known proto-

oncogene (UCSC build hg19, GRCh37, chr17, positions

7572926–7579569). These artificial fusion transcripts were gener-

ated using Fusim [55] based on TP53 exon models obtained from

the UCSC refGene database [56]. Fusion transcripts were then

used as templates for generating simulated data sets with dwgsim.

Table 1. Sequencing panel characteristics.

Panel Source Sample ID Read length Sequencing depth (Gbp) Read pairs (million)

POS HeLa 15 2|54 bp 0.076 0.737

POS ceSCC 16 2|54 bp 0.157 1.527

POS ceSCC 17 2|54 bp 0.041 0.400

POS BCL 18 2|36 bp 3.134 43.527

POS HCC 19 2|100 bp 11.22 55.547

NEG Brain 20 2|50 bp 7.351 73.513

NB1 4 1 2|36 bp 1.184 16.439

NB1 4 2 2|36 bp 0.770 10.695

NB1 4 3 2|36 bp 0.881 12.236

NB1 4 4 2|36 bp 0.744 10.345

NB1 4 5 2|36 bp 1.207 16.759

NB1 4 6 2|36 bp 1.050 14.581

NB1 4 7 2|36 bp 0.829 11.527

NB1 4S 8 2|36 bp 1.031 14.317

NB1 4S 9 2|36 bp 1.172 16.282

NB1 4S 10 2|36 bp 0.868 12.065

NB1 4S 11 2|36 bp 0.890 12.368

NB1 4S 12 2|36 bp 0.845 11.737

NB1 4S 13 2|36 bp 1.174 16.300

NB1 4S 14 2|36 bp 0.847 11.772

NB2 4 7 2|95 bp 9.284 48.863

NB2 4S 13 2|95 bp 8.748 46.041

Sequencing characteristics of neuroblastoma (NB), positive control (POS), and negative control (NEG) panels.
doi:10.1371/journal.pcbi.1003228.t001

Detection of Viral Transcripts in Human Tumors
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In all cases, dwgsim was applied using the default empirical error

model. Paired-end read lengths and insert size distributions were

chosen according to the neuroblastoma sequencing data (see

above). Additional simulated sequencing data generated by a

related publication were analyzed as described in Section

‘‘Estimation of read mapping sensitivity’’.

Sample data notation
Sample panels containing neuroblastoma transcriptomes se-

quenced at 2|36 bp and 2|95 bp effective read lengths are

denoted as NB1 and NB2, respectively. While the NB1 panel

contains seven transcriptomes of neuroblastoma stages 4 and 4S

each, the NB2 panel contains one sample of stages 4 and 4S each

(see Table 1). Positive control panels of human cancer transcrip-

tomes with known viral cofactors (BCL, HeLa, ceSCC, and HCC)

are denoted as POS. The negative control panel consisting of a

normal human brain transcriptome is denoted as NEG.

Reference genomes
The current assembly of the human reference genome (UCSC

build hg19, GRCh37) as well as corresponding refGene splice-site

annotations were obtained from UCSC. Splice variant annotations

and cDNA sequences for the human genome were downloaded

from Ensembl [57]. A set of all 4,680 available complete viral

reference genomes and their taxonomic lineages were obtained

from NCBI via the E-utilities web service [58] and the database

query: ‘‘Viruses[Organism] AND srcdb_refseq[PROP] NOT

cellular organisms [ORGN]’’. In addition, we obtained consensus

reference sequences for all human endogenous retroviruses

(HERV-K/HML-2) represented in Repbase (Primate HERV,

HERVK11DI, HERVK11I, HERVK13I, HERVK22I,

HERVK3I, HERVK9I, HERVKC4)) [53]. All reference genomes

were combined into a single human-viral reference database for

Virana. Since RINS and CaPSID cannot use such a combined

database, human and viral reference sequences were collected

within two separate databases for these approaches.

Quality control, mapping, and assembly
Paired-end reads from the neuroblastoma panels and positive

control panels were quality-controlled with an in-house sequence

analysis framework in order to identify sample contamination,

adapter contamination, and batch effects. After quality control, the

sequence data consisted of 13:494 Gbp (NB1), 18:032 Gbp (NB2),

14:63 Gbp (POS), and 7:351 Gbp (NEG) of sequence reads,

respectively (see Table 1).

All data were mapped against a combined human-viral

reference database with the splicing-aware and gapped read

mapper STAR [59] in paired-end mode. While Virana considers

the read mapper to be a replaceable component, in principle, we

decided to employ STAR due to its mapping speed, high

sensitivity settings, and its consideration of putative chimeric

transcripts. We configured the mapper for high sensitivity by

following recommendations of the author of STAR (personal

communication). In particular, we set the rate of acceptable

mismatches to 0:3 times the length of each read and the

seedSearchStartLmax and winAnchorMultimapNmax parameters to 12
and 50, respectively. The minimum length of chimeric segments

(chimSegmentMin) was reduced to 15 in order to detect fusion

transcripts at short read lengths. Known splice sites from splice

annotations of the human reference genome as well as canonical

splice sites were considered in the mapping. For each read,

multiple mapping locations with alignment score distances of up to

10 ranks relative to the best score were permitted (‘multimaps’).

Read alignments were stored in standardized BAM files. STAR

supports detection of chimeric transcripts by reporting discordant

read pairs whose ends map to different chromosomes. These

discordant read pairs were employed in further analyses as

detailed in the next section.

In order to identify putative new viral transcripts, read pairs

with at least one unmapped read end were extracted from BAM

files by the Samtools suite [54] and assembled into longer contigs

by the de-novo transcriptome assemblers Trinity [60] and Oases

[61] using default parameters. Oases was configured for using

different k-mer values in order to facilitate reconstruction of low-

abundance viral transcripts. Contigs of length less than 300 bp

were considered to be spurious assemblies and excluded from

further processing.

Detection of chimeric transcripts
Virana supports detection of human-viral chimeric transcripts

in two different manners. First, the read mapper employed in our

study is able to partially align reads that contain a human-viral

chimeric breakpoint to multiple reference sequences. Consequent-

ly, these partially aligned reads can be detected by Virana within

the generic analysis of homologous regions (see below). The

second, more sensitive approach to detecting chimeric transcripts

is based on paired-end read information. Since the STAR mapper

assigns reads to a combined reference database comprising both

human and viral reference sequences, ends of paired-end reads

whose inserts span the breakpoint of a chimeric transcript will be

aligned to different reference sequences. These discordant read

pairs are reported by STAR during read mapping (see above) and

can further be filtered by mismatch score or sequence complexity

in order to yield a high-confidence list of chimeric transcripts.

Generation of homologous regions
A distinguishing feature of Virana is its ability to automatically

reconstruct the homologous context of reads that map to both viral

and human reference sequences. This homologous context is

constructed in four steps:

(1) First, reads that map to at least one viral reference are

extracted from the mapping together with their primary

(highest alignment score) and secondary (up to ten ranks of

alignment scores below the highest score) mapping positions

(see Figure 1). Since viruses of the same taxonomic family

often exhibit significant sequence similarity, reads that map to

one family member often also map to related family members

as well as to homologous loci in the human reference. Based

on these primary and secondary mapping locations, Virana

obtains overlapping human reference transcripts, viral

genomic references, and viral taxonomic information pertain-

ing to the location. For each sequence read, information

obtained in this manner is collected in a data structure

denoted as HIT. HITs originating from the same analysis

panel are pooled for further analysis.

(2) Second, pooled HITs originating from the same analysis panel

are assigned to viral taxonomic families based on the viral

genomic references they refer to (see Box 1 Algorithm 1). Sets

of HITs assigned to the same viral taxonomic family are

denoted as the homologous group (HOG) of that family. The

same HIT may, in principle, be assigned to several HOGs.

(3) Third, since reads and references generally share local rather

than global sequence similarity, sequences in HOGs cannot

conveniently be aligned in a multiple sequence alignment.

This circumstance considerably complicates interpretation of

homologous relationships between multiple reads and refer-

ences. Virana therefore applies a three-step greedy clustering

Detection of Viral Transcripts in Human Tumors
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approach to split HOGs into manageable and alignable

clusters denoted as homologous regions (HORs, see Box 2

Algorithm 2):

(3a) The set of all reads within a HOG is re-aligned to the set of

all references (human reference transcripts and viral

reference genomes) within the HOG using a highly sensitive

BLASTN [62] alignment (word size 7). Since all possible

mapping locations are required for further processing,

BLAST is configured for high permissiveness (E-value 10).

(3b) Each HIT is assigned to a singleton cluster. Clusters

containing reads that map to the same reference are merged

if their reference mapping locations (as determined by

BLASTN) are less or equal than L~25 basepairs apart (L-

gaps). Optimal values for L are determined empirically, see

Section ‘‘Estimation of required sequencing coverage for

detection of a homologous region’’ for a robustness analysis.

Merging continues until the number of clusters converges.

Subsequently, all clusters with fewer than an empirically

chosen cutoff of t~5 reads are discarded in order to remove

spurious hits. After filtering, each remaining cluster repre-

sents a candidate HOR. Since cluster membership is defined

by reads mapping to common references, each pair of

references within the candidate HOR shares one or more

regions of high local sequence similarity (e.g., the loci the

read mapped to) connected by L-gaps.

(3c) For each HOR, parts of reference sequences that are neither

covered by a read mapping location nor by an L-gap

between read mapping locations are trimmed.

(4) Last, due to the high mutual similarity of sequences within

trimmed HORs, sequences within each HOR are now

amenable to sequence alignment against the longest reference

sequence within that HOR using LASTZ, the successor of

BLASTZ [63]. The resulting star-shaped multiple sequence

alignment is then used for construction of per-sample (for

reads) and per-gene (for human reference transcripts)

consensus sequences. Aligned consensus sequences retain

information on non-consensus nucleotides due to the usage of

IUPAC ambiguous nucleotide codes. Consensus sequences

can then be manually inspected in order to determine single

nucleotide permutations and indels up to length L that

distinguish sequence reads, viral references, and human

reference transcripts.

Consensus sequences can be further processed by phylogenetic

analyses. For generating phylogenies, Virana employs the software

PhyML [64] following the maximum likelihood approach and

using default parameters recommended by the HIV sequence

database (http://hiv.lanl.gov, GTR model of nucleotide substitu-

tion, transition/transversion ratio: 4, gamma shape parameter: 1,

number of substation rate categories: 4, approximate Likelihood

Ratio Test (aLRT) using SH-like supports where applicable). We

note that the topology of the phylogenetic trees constructed in this

manner is stable with regard to the model choice; while more

complex model parameters may yield better likelihoods in some

instances, these differences do not influence interpretation of our

results.

Taxonomic annotation
In this study, we additionally compare consensus sequences of

aligned HOGs as well as de-novo assembled sequence contigs to

nucleotide (NCBI NT) and protein (NCBI NR) reference archives

Algorithm 1. Construction of homologous groups.

Data: Reads
Result: Homologous groups
Initialise: homologous_groups;
for read in mapping do

obtain all mapped references of read;
if mapped against viral reference then

Initialize: read_hit;
add read to read_hit;
for viral reference the read maps to do

add alignment positions of viral reference to
read_hit;

end
for human cDNA reference the read maps to do

add alignment positions of cDNA to read_hit;
end
for viral reference of a viral taxonomic family thus

added do
add read_hit to the homologous group for that
family;

end
end

end

Algorithm 2. Construction of homologous regions.

Data:Homologous groups
Result: Homologous regions
Initialise: homologous_regions;
for homologous_group in homologous_groups do

Initialize: homologous_regions;
for read_hit in homologous_group do

for homologous_region in homologous_regions do
if read_hit and homologous_region share a reference

then
if alignment positions of shared reference are

within l basepairs then
merge read_hit into homologous_region;
extend all reference aligment positions within
homologous_region;

end
end

end
end
if read_hit not merged then

Initialize: homologous_region;
merge read_hit into homologous_region;
add homologous_region to homologous_regions;

end
end
while mergeable_pair_of_homologous_regions exists do

for pair_of_homologous_regions in homologous_regions
do

if pair_of_homologous_regions shares a reference
then

if alignment positions of shared reference are within l
basepairs then
merge pair_of_homologous_regions;
extend all reference aligment positions within
new homologous_region;

end
end

end
end

Detection of Viral Transcripts in Human Tumors
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in order to assign transcripts to a taxonomic origin. To this end,

we employ several BLAST [58] search strategies (BLASTN,

BLASTX, and TBLASTX) with sensitive word sizes (4, 3, and 3,

respectively). TBLASTX bypasses synonymous mutations during

similarity search and is particularly suited for detecting function-

ally conserved homologs. This approach is therefore recom-

mended for discovering remote similarities [65] and is widely used

in environmental metagenomics [66]. A permissive E-value

threshold of 0:1 is used for all comparisons in order to reduce

the possibility of missing true viral hits. For each query transcript

and search strategy, the three highest-scoring reference sequences

are extracted from the BLAST results. Subsequently, descriptions,

taxonomic information, and available gene annotations for high-

scoring reference hits are pooled and query transcripts are

assigned a putative viral, human, or ambiguous origin based on

the pooled information. In order to limit the search space of the

computationally intensive TBLASTX procedure, we constrain the

allowed taxonomic origin of reference sequences to only viral

(NCBI taxon ID 10239) or human (NCBI taxon ID 9606) hits

while excluding artificial sequences (NCBI taxon ID 81077) using

the NCBI database query ‘‘(((txid10239 [ORGN]) OR (txid9606

[ORGN]) OR (human [ORGN])) NOT (txid81077 [ORGN]))’’.

Estimation of read mapping sensitivity
We quantify the ability of our novel method Virana and the

related methods RINS [45] and CaPSID [46] at detecting

diverged viral transcripts among human sequence data by

employing a recently published validation data set [46]. This

data set consists of a negative control background set of reads

simulated from the human reference genome that is spiked with

four sets of 10,000 reads simulated from 10 viral reference

genomes. Nucleotide positions within reads of each of the four

viral spike-in data sets are mutated randomly independently and

uniformly with a set-specific probability h [ f0, 0:05, 0:1, 0:25g
before being merged with the background data set. The set of

viral reference sequences represents 10 different viral families that

infect plants (Cherry green ring mottle virus, Cestrum yellow leaf

curling virus, Elm mottle virus, East African cassava mosaic

virus), birds (Gallid herpesvirus 1), insects (Cotesia congregata

bracovirus), bacteria (Guinea pig Chlamydia phage), amphibians

(Frog adenovirus 1), and mammals (Rat coronavirus Parker,

Banna virus).

All five data sets (non-spiked human negative control and four

human-viral spike-in sets) are analyzed by Virana, RINS, and

CaPSID using identical reference sequences as described in

Section ‘‘Reference genomes’’. Sensitivity (fraction of correctly

identified viral reads among all viral reads) and specificity (1{
fraction of falsely identified human reads among all human

reads) of viral read detection are determined for each method

and data set. Analyses are performed with either default

parameters (Virana), parameters published in the original

validation data set (CaPSID), or settings adapted by us in order

to maximize sensitivity (RINS: minimal contig length decreased

to 100, read lengths and insert size distributions according to

input data).

Since all methods map to the same complete viral reference set,

reads from a particular viral genome of the validation data set may

be distributed across several closely related reference genomes, all

of which may be considered valid mappings. For this reason, we

added post-processing steps to CaPSID and RINS and performed

this validation on the level of viral taxonomic families rather than

on the level of single viral species. We note, however, that results of

all tested methods including Virana retain information on single

viral species throughout the analysis. In particular, sensitivity and

specificity of the methods change only minimally if data is

analyzed on the single species level.

Analysis of human-viral homologous and chimeric
transcripts

Analysis of the human-viral homologous regions and chimeric

transcripts based on simulated read data (see Section ‘‘Simulated

sequencing data’’) was conducted by configuring CaPSID, RINS,

and Virana analogous to the previous section. For the validation of

fusion transcript detection, the number of true positives is set to the

number of all reads originating from the human-viral fusion

Figure 1. Virana’s approach to identifying viral transcripts in
human tumors. a) Transcriptome sequence samples are first mapped
to a combined set of human and viral reference sequences in a splicing-
aware fashion. b) Unmapped or discordantly mapped read pairs are
further processed by assembly methods to detect novel viruses or
transcript chimeras that may indicate proviral integration events. c)
Reads mapping to one or more viral genomes (HITs) are analyzed in an
integrated fashion by considering human homologous mapping
locations and viral taxonomies. This process results in a number of
homologous regions (HOR) for each viral family. HORs are represented
as multiple sequence alignments incorporating a wealth of sequence
information. Alignments are further enriched by taxonomic annotations
and phylogenetic analyses.
doi:10.1371/journal.pcbi.1003228.g001
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transcript. Since all detection methods in this validation are

configured to only report reads mapping to the viral part of the

fusion transcript, sensitivity estimates are scaled down equally for

all methods in this particular validation. Analysis of discordant

read ends in order to detect the origins of chimeric transcripts was

performed as described before (see Section ‘‘Detection of chimeric

transcripts’’).

Estimation of required sequencing depth
Expanding on related work [34,35], we quantify the

theoretical sensitivity of Virana by estimating the number of

viral transcripts per cell that are required for achieving a certain

minimal sequencing coverage at a probability of at least 95%.

Based on human genome annotations obtained from UCSC, we

determined an average length of human coding sequences (CDS)

of l~1,634 bp. By conservatively assuming that an idealized cell

contains 200,000 mRNAs [34] of average length l fragmented at

f ~500 bp as a result of library preparation, an expected

number of m~653,600 cDNA fragments are generated per cell.

For a given viral transcript of length r and a viral transcript

abundance x per cell, we expect a number of v~x r=f viral

transcript fragments. Assuming a theoretical, unbiased sequenc-

ing process, the probability of sequencing a viral transcript

fragment among the overall m transcript fragments is

pviral~v=m. Given a single-end read length of j, a number

k~rc=(2j) reads are required to achieve a sequence coverage c

of that viral transcript. The probability pk
viral of observing at least

k reads during sequencing with a sequencing depth n is specified

by the cumulative binomial distribution function with parame-

ters k, n and pviral . Due to numerical instabilities of computing

the cumulative binomial distribution for large values n, we

exploit the Central Limit Theorem and estimate pviral by the

Camp-Paulson normal approximation to the binomial distribu-

tion. This approach has a negligible approximation error of

v0:007=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n pviral q
p

, where q~1{pviral [67]. Our approach

further depends on successfully reconstructed homologous

regions, each requiring an empirically determined minimum

number of t~5 transcripts separated by no more than L~25
base pairs.

Although the probability pregion of a homologous region being

successfully constructed from viral transcripts at a given sequence

coverage can be derived analytically for a special case [68], this

solution neither considers edge effects occurring for small

transcripts nor takes into account the distribution of insert sizes

of paired-end reads. We therefore approach the problem

empirically by in silico simulation of paired-end reads that are

assigned randomly independently and uniformly to transcripts of

different lengths and at varying coverages. This simulation process

addresses the aforementioned confounding factors by considering

transcript boundaries and sampling insert sizes from a normal

distribution parametrized according to neuroblastoma sequence

data employed in this study (see Section ‘‘Library preparation and

sequencing’’). An mean estimator for pregion and its standard error

SEpregion
were derived by averaging the success rates of homologous

region constructions across 1,000 simulations for each transcript

length, read length, region linkage, and read coverage.

Availability
All sequence data generated in this study are publicly available

in the European Nucleotide Archive (ENA) at study accession

number PRJEB4441. Software implementations of our method

and all validation procedures are available at http://mpi-

inf.mpg.de/,sven/virana.

Results

This study presents a novel approach to detecting viral

transcripts in human tumor transcriptomes. In contrast to related

approaches such as RINS and CaPSID that rely on subtracting

reads homologous to human transcripts from the analysis, our

novel method Virana assigns sequence reads to a combined

human-viral reference database without discarding homology

information (see Figure 1). By employing a particularly fast and

sensitive read mapper, Virana gains sensitivity at discovering

highly divergent and chimeric viral transcripts. In addition, this

configuration allows for exploitation of multimaps (e.g., sequence

reads mapping to several reference genomes with varying

mismatch rates) to discover the homologous context of sequence

reads with regard to viral and human reference sequences. Last,

Virana employs chimeric alignments as well as de-novo assembly of

unmapped sequence reads followed by taxonomic annotation in

order to discover proviral integration events and novel viruses,

respectively.

Detection of divergent viruses
In order to compare Virana and the two subtractive approaches

CaPSID and RINS in a controlled environment we rely on a

previously published simulated data set consisting of a negative

control data set free of viral reads, here denoted as background set.

The background set is used to construct four additional validation

data sets spiked with viral reads at increasing rates of sequence

divergence (0%, 5%, 10%, 25%, see Materials and Methods).

Performance is quantified in terms of sensitivity and specificity (see

Materials and Methods). Applying all three viral detection

methods on the validation data sets reveals comparatively high

rates of correctly detected viral reads for CaPSID and RINS at low

sequence divergences between 0% and 5%. Specifically, the two

subtractive methods achieve 0:99{1:13 fold higher sensitivities

compared to Virana (sensitivities of 0:835{1:0 versus

0:844{0:882 for subtractive approaches and Virana, respectively,

see Figure 2). In contrast, Virana substantially surpasses subtrac-

tive approaches at higher rates of viral sequence divergence (10–

25%), offering comparatively stable sensitivities between 7-fold

and 182-fold higher than Capsid and RINS, respectively

(sensitivities of 0:0008{0:6578 versus 0:1456{0:7880 for sub-

tractive approaches and Virana, respectively, see Figure 2, left

panel). Notably, while subtractive approaches fail to identify 20–

90% of viruses in settings of high sequence divergence, Virana is

the only approach able to reliably detect the full set of viruses in all

validation scenarios (see Figure 2, right panel). As a result of

Virana’s ability to detect human-viral transcript homologs, reads

originating from several human endogenous retroviruses (HERVs)

that are part of the human reference genome but technically also

belong to the viral family Retroviridae are detected in validation data

at all levels of sequence divergence. Since the detected HERV

reads originate from the human rather than from the viral part of

the validation data, these reads classified as false positive (FP) hits

for the purpose of this validation. As a result of this artifact, Virana

exhibits a slightly lowered specificity compared to subtractive

approaches (0.99985 versus 1.0 for Virana and CaPSID/RINS,

respectively). However, we note that HERV reads are correctly

classified by Virana during homologous region construction and

by optional BLAST-based taxonomic annotation. These reads can

therefore be safely and automatically ignored in subsequent

analyses if HERV expression is of no interest to the researcher.

In spite of the involved construction process of homologous

regions, Virana is fastest among the three viral detection

approaches, requiring only about half an hour per sample
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Figure 2. Detection of divergent viruses. Performance comparison of Virana, CaPSID, and RINS at detecting viral reads at different rates of
simulated sequence divergence among a background set comprising human genomic reads. The background set without any spike-ins of viral reads
serves as negative control. Left panel: stacked bars represent absolute numbers of detected reads grouped by sequence divergence, correctness of
classification (TP: true positive, FP: false positive), and detection method. Falsely classified reads not assigned to any of the viral families present in the
validation are labeled as false positives (FP). Colored segments indicate to which viral families the reads were assigned. Each condition allowed for the
correct detection of up to 10,000 reads. Right panel: color coded markers for each condition and detection method indicating which viral families
were identified. A maximum number of 10 viral families could be correctly identified in each condition.
doi:10.1371/journal.pcbi.1003228.g002

Figure 3. Time required for data analysis. Cumulative time in minutes required for analysis of the divergence validation set. Times are reported
for the negative control without viral spike-ins as well as for four mixed data sets consisting of negative control background set with viral spike-ins at
different divergence rates. Segments within bar plots represent different analysis processes employed by the three viral detection methods Virana,
CaPSID, and RINS. All measurements are based on a single CPU Intel(R) Xeon(R) E5-4640 clocked at 2.40 GHz.
doi:10.1371/journal.pcbi.1003228.g003
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analyzed. In contrast, RINS and CaPSID require two to 17 times

longer per sample, respectively (see Figure 3). Interestingly, the

majority of time spend by CaPSID is lost on subtraction,

indicating that this step is a limiting factor of subtractive

approaches. We note than reported times are based on analyses

using a single compute core. Since all evaluated methods benefit

from multithreading, dedicating additional compute cores to the

analysis allows for further reduction in processing time.

Detection of low-coverage, homologous, and chimeric
viral transcripts

Having established Virana’s ability to detect reads sampled at

comparatively high coverage from viral genomes with low or no

human-viral sequence similarity, we next test the sensitivity of the

viral detection methods in a more challenging scenario involving

gene regions of animal viruses that have close human homologs

and are sampled at low sequencing coverages. Three such human-

viral homologs are used in the analysis: V-ABL of the acutely

transforming retrovirus A-MuLV, Bo17 of herpesvirus BoHV-4 (a

model virus for oncogenic gammaherpesviruses such as EBV and

KSHV and implied in several animal cancers [69]) and gag of

HERV-K(HML2)22I, a class of human endogenous retroviruses

associated with some forms of breast cancer [70]). Validation is

based on simulated sequencing data and split into two scenarios

(see Materials and Methods for details). Within the first scenario,

simulated sequencing reads are sampled directly from human-viral

homologs while in the second scenario reads are generated from

artificial fusion transcripts that each involve one of the three

homologs fused to the human TP53 proto-oncogene. The resulting

human-viral fusion transcripts mimic transcriptional signals

indicating retroviral integration or homologous recombination of

viral DNA next to a human gene which may result in activation of

the latter by insertional mutagenesis.

We apply the viral detection methods Virana, CaPSID, and

RINS on these two validation data sets in order to evaluate

sensitivity at detecting viral genes that are similar to human factors

either due to natural sequence homology or due to gene fusions.

Performance is quantified by detection sensitivity, specificity, as

well as by the absolute number of reads correctly detected. While

all methods performed at a perfect specificity of 1:0, only Virana

detects viral transcripts at all coverages and with two to three-fold

higher sensitivities compared to competing methods (Figure 4). In

particular, sequence reads originating from endogenous retrovi-

ruses were almost always subtracted from the analysis by RINS

and CaPSID. In addition, RINS seemed to be confounded by low

sequencing coverage, a fact most probably resulting from its heavy

reliance on de-novo transcript assembly. Subsequent analysis of

discordantly mapped read pairs by Virana (see Materials and

Figure 4. Detection of low-coverage, homologous, and chimeric viral transcripts. Displayed are performances of Virana, CaPSID, and RINS
at detecting the three human-viral homologous gene regions Bo17, gag, and vABL. Performance is quantified in terms of sensitivity (right panel) and
absolute number of reads correctly identified (left panel) at differing sequencing coverages (2{60 fold). Methods are validated at detecting both
isolated gene regions (upper part) as well as at detecting human-viral fusion transcripts involving each of the three gene regions fused to the human
TP53 proto-oncogene (lower part). Specificity of detection is 1.0 (100%) for all detection methods (not displayed).
doi:10.1371/journal.pcbi.1003228.g004
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Methods) correctly identified the TP53 gene as fusion partner of

both V-ABL and Bo17, indicating that detection of human-viral

chimeras is reliable even at low twofold coverage. Due to the

repeat nature of the HERV-K sequence in the human genome

and the resulting re-occurrence of HERV-K homologs at multiple

loci in the human reference it was not possible to unambiguously

identify the fusion partner of the HERV-K gag gene.

Estimation of optimal sequencing depth
Due to a variety of factors (see Discussion) human tumor viruses

often replicate at very low levels within the infected cell.

Determining the required sequencing depth for detecting viral

transcripts present at specific cellular abundances is therefore crucial

for planning transcriptome experiments designed to identify tumor

viruses. Based on statistical arguments and average mRNA sizes (see

Materials and Methods), we inferred the minimal abundances of

viral transcripts required in an average cell required for detection

depending (1) on the length of the transcript being sought and (2) on

the sequencing depth employed in the experiment. Here we report

results for an average viral cDNA-transcript (795 bp), an average

viral transcript region analyzed in the validation of human-viral

homologs (Bo17 and vABL, 1,465 bp, see previous section), an

average length human CDS (1,634 bp), and the genome size of a

small tumor virus (A-MuLV, 5,896 bp). Based on these estimates

and given an average sequencing depth as employed in the NB1

analysis panel, Virana requires a minimum twofold sequence

coverage of an average viral cDNA transcript in order to detect the

transcript within a homologous region with 99:9% probability

(Figure 5, upper left quadrant, dashed blue vertical line). This

sequence coverage is produced with 95% probability if at least one

viral transcript is present per cell, on average (Figure 6, upper left

quadrant, dashed blue vertical line). The number of viral transcripts

per cell required for detection is inversely related to transcript length

and sequencing depth, in principle: at a transcript length

corresponding to a small viral genome (5,896 bp) and a per-sample

sequencing depth of 1% of the sequencing depth generated in the

NB1 panel, a transcript coverage of 0:6 and at least 55 viral

transcripts per cell are required for reliable detection (Figure 6,

upper right panel, dotted black vertical line).

Analysis of positive and negative experimental controls
In order to evaluate Virana on experimental data we conducted

an analysis of several positive and negative control samples with a

cumulative size of 21:982 Gbp. The negative control sequencing

data originates from a normal brain transcriptome that is suitable

as a control for neuroblastoma data. Positive controls span a range

of cancer transcriptomes that are associated with several viral

cofactors such as a hepatocellular carcinoma (HCC) cell line with

proviral integration of Hepatitis B virus, a cervical squamous cell

carcinoma (ceSCC) and two HeLa cell line samples with

associated human papillomavirus (HPV), and a Ebstein-Barr virus

(EBV) positive B-cell lymphoma (BCL).

As displayed in Figure 7 (upper part), analysis of the brain

negative control sample demonstrates that viral transcription is

ubiquitous even in normal (non-cancerous) samples. Specifically,

several bacteriophages of the taxonomic families Microvirodae,

Figure 5. Estimation of required sequencing coverage for detection of a homologous region. Probability of successful region
construction by Virana depending on the lengths of the transcripts being sought, the region linkage parameter L, as well as characteristics of the
sequencing platform employed. Colored areas represent overlapping standard error bands of the mean, denoting the uncertainties of the
estimations. The probability of Virana to detect a homologous region depends on the length of the viral transcript being sought, the linkage
parameter L of the homologous region, as well as the transcript coverage and read length of the sequencing platform employed. Given
characteristics of the sequencing process applied for NB1 sample panel, an average viral cDNA of length 795 bp requires a minimal transcript
coverage of 2 in order to be reliably detected using a linkage parameter of L~25 as employed in this study (upper left quadrant, dashed blue vertical
line). Technologies affording longer read length as used for the NB2 panel typically also afford higher sequencing depths. However, at a fixed
coverage these technologies generate a more highly fragmented region linkage due to a smaller number of longer reads, resulting in lower
probability of generating contiguous homologous regions (lower left quadrant). Lower transcript coverage is sufficient for longer transcripts
transcribed from a complete A-MuLV genome (upper right panel, dotted black vertical line) or smaller values of the region linkage parameter L.
doi:10.1371/journal.pcbi.1003228.g005
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Myoviridae, Podoviridae, and Siphovoridae indicate sample contamina-

tion with bacteria as well as technical spike-ins (http://res.illumina.

com/documents/products/technotes/technote_phixcontrolv3.pdf).

Remarkably, the Coliphage phi-X174 genome of the family

Microvirodae could be fully assembled by Virana’s homologous region

construction, yielding a single fragment of 99% sequence identity and

100% coverage compared to the phi-x174 reference genome. In

addition, several retroviral and flaviviral hits at low abundances of

1{28 reads per million reads mapped (RPMM) highlight human

factors such as HERV-Ks (endogenous retroviruses) as well as human

proto-oncogenes SRC/ABL and DNAJC14/RP11 that have close

homologs in the viral families Retroviridae and Flaviviridae, respectively.

The taxonomic ambiguity of these regions is automatically identified

during Virana’s homologous region construction and confirmed by

optional BLAST-based annotation compared to NCBI nt and nr

databases (as indicated by thinner bars in Figure 7).

Figure 6. Estimation of required cellular transcript abundances for achieving a given transcript coverage. Sequencing coverage of viral
transcripts is depending on the average number of transcript copies per cell in the sequenced sample, on the length of the viral transcript being
sought, and on characteristics of the sequencing process. In order to better visualize the optimal sequencing depth required for detection of viral
factors, we estimated the required number of transcript copies per cell for different sequencing depths. These sequencing depths are expressed as
factors relative to the depths employed for the NB1/NB2 panel generated in this study (which are here reported as a relative sequencing depth of 1).
doi:10.1371/journal.pcbi.1003228.g006

Figure 7. Overview of identified homologous regions in positive and negative experimental controls. Left panel: cumulative numbers
of reads assigned to viral taxonomic families (log-scale). Each bar represents a homologous group (HOG) colored according to viral taxonomic family.
Bars comprise several segments, each representing a homologous region (HOR). Heights of segments indicate the putative origin of reads assigned
to this region (human, viral, or ambiguous). Viral families of bacteriophages are marked accordingly. Right panel: Analogous to left panel, but the
lengths of bars represent relative rather than absolute abundances quantified in cumulative reads per million reads mapped (RPMM).
doi:10.1371/journal.pcbi.1003228.g007
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Analysis of positive control samples resulted in 41 homologous

regions (HORs)spanning five viral families (see Figure 7, lower

part). Viral cofactors associated with each of the cancer samples

are correctly recovered at a high dynamic range of read

abundances between 3 RPMM (HCC with integrated HBV

provirus) and 1,628 RPMM (HeLa cell line associated with

HPV18). In addition, several viral fragments were successfully

reconstructed within HORs of the positive control samples, such

as a 9,550 bp long EBV segment containing latency-associated

factors EBNA 3b, 3c, and 4a (80% sequence identity with the wild

type genome) as well as a 1,693 bp long HBV fragment containing

the oncogenic HBV-X gene (98% sequence identity compared

with Hepatitis B virus isolate HK1476). Similar to results on the

negative control brain sample, several HORs with lower

abundances assigned to the taxonomic families Retroviridae and

Flaviviridae represent human-viral sequence homologies that are

automatically flagged to be of ambiguous taxonomic status by

Virana.

Figure 8. Overview of identified homologous regions in neuroblastoma samples. Left panel: cumulative numbers of reads assigned to viral
taxonomic families (log-scale). Each bar represents a homologous group (HOG) colored according to viral taxonomic family. Bars comprise several
segments, each representing a homologous region (HOR). Heights of segments indicate the putative origin of reads assigned to this region (human,
viral, or ambiguous). Viral families of bacteriophages are marked accordingly. Right panel: Analogous to left panel, but the lengths of bars represent
relative rather than absolute abundances quantified in cumulative reads per million mapped (RPMM).
doi:10.1371/journal.pcbi.1003228.g008

Table 2. Mapping rates.

Panel Source Sample ID Pairs mapped Both ends mapped Uniquely mapped Depth (Gbp)

POS HeLa 15 94.900% 94.900% 68.422% 0.127

POS ceSCC 16 90.803% 90.803% 69.561% 0.264

POS ceSCC 17 96.629% 96.629% 73.921% 0.075

POS BCL 18 91.612% 91.612% 63.528% 6.424

POS HCC 19 94.693% 94.693% 73.500% 14.924

NEG Brain 20 95.481% 95.481% 72.515% 11.234

NB1 4 1 95.878% 95.878% 69.422% 2.275

NB1 4 2 96.062% 96.062% 74.342% 1.43

NB1 4 3 96.385% 96.385% 75.938% 1.641

NB1 4 4 95.749% 95.749% 71.012% 1.503

NB1 4 5 95.057% 95.057% 69.203% 2.652

NB1 4 6 94.819% 94.819% 69.856% 2.39

NB1 4 7 96.597% 96.597% 72.107% 1.635

NB1 4S 8 95.952% 95.952% 70.681% 2.093

NB1 4S 9 95.242% 95.242% 74.009% 2.223

NB1 4S 10 96.854% 96.854% 74.756% 1.651

NB1 4S 11 96.819% 96.819% 75.256% 1.668

NB1 4S 12 96.710% 96.710% 74.899% 1.539

NB1 4S 13 95.344% 95.344% 72.326% 2.35

NB1 4S 14 97.110% 97.110% 74.829% 1.65

NB2 4 7 86.225% 86.225% 69.552% 12.243

NB2 4S 13 86.280% 86.280% 72.538% 11.517

Mapping ratios and depths of neuroblastoma (NB), positive control (POS), and negative control (NEG) panels. Mapped reads are relative to the number of sequenced
read pairs that have passed quality control. Depths include reads with multiple mapping locations (‘multimaps’).
doi:10.1371/journal.pcbi.1003228.t002
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Interestingly, the HCC sample was also investigated in recent

work focusing on detecting viral integration events [52]. In this

recent study, the authors confirmed one integration event by

Sanger sequencing while alluding to two additional events still

awaiting experimental validation. By analyzing discordantly

mapped read ends, Virana could correctly identify all three

HBV fusion events involving human genes TRRAP (11 read

pairs), ZNF48 (11 read pairs), and PLB1 (6 read pairs) as part of

the primary mapping procedure.

Analysis of neuroblastoma samples
Deep-sequencing of 14 neuroblastoma samples on two sequenc-

ing platforms yielded 26:700 Gbp (NB1) and 23:760 Gbp (NB2) of

mapped read pairs (including multimaps), respectively (see

Table 2). While samples were sequenced independently and

marked with unique identifiers to allow for sample tracking at each

step of the analysis, reads from each sample panel and each tumor

stage (4 or 4S) were pooled for analysis. Processing the pooled

sample panels with Virana resulted in 46 homologous regions

representing four viral families (see Figure 8). All HORs were

associated with low relative read abundances of 1{67 RPMM

compared to confirmed viral signatures of experimental positive

controls (3{1,628 RPMM, see Figure 7). Several homologous

regions assigned to bacteriophage viral families Baculoviridae and

Myoviridae are attributable to sample contamination.

Reads assigned to viral families Retroviridae and Flaviviridae were

determined to originate from either endogenous elements

(HERVs) or from human proto-oncogenes that have close

homologs in pestiviruses and acutely transforming retroviruses.

HORs associated with these viral families were automatically

assigned human or ambiguous taxonomic origin by Virana, as

indicated by narrower bars in Figure 8. We undertook manual

investigation of homologous relationships within each ambiguous

HOR by analyzing multiple sequence alignments and phyloge-

netic trees of the respective regions. These analyses revealed

unambiguous clusterings of neuroblastoma sequence reads near

human or endogenous factors in all cases (see Figure 9 for an

example phylogeny).

No significant differences in viral expression signatures between

neuroblastoma 4 and 4S stages could be detected except for

HERV-K endogenous retroviruses which display 36{86% higher

abundances in stage 4S (NB1: 56 RPMM, NB2: 28 RPMM) than

in stage 4 (NB1: 41 RPMM, NB2: 15 RPMM) neuroblastomas. All

reads assigned to homologous regions were further analyzed for

Figure 9. Human-viral phylogeny based on a HOR. Phylogenetic tree of HOR #16 of the NB1 stage 4 panel. Viral reference sequences are
indicated with red branches and associated tip labels (‘Virus’) while human factors are labeled with green branches. Blue branches represent
consensus sequences of neuroblastoma reads (‘Sample’). The tree was generated by the maximum likelihood approach PhyML using the multiple
sequence alignment of the HOR as input (see Materials and Methods). Distances between nodes are quantified as substitutions per site. As can be
derived from the tree, neuroblastoma consensus sequences are tightly clustered in close proximity to the endogenous retrovirus HERVK9I and two
human factors, thereby unambiguously indicating the human origin of these neuroblastoma reads. Clusters of other sequences represent well known
sequence homologies, as for example between human ABL1/SRC genes and acutely transforming retroviruses.
doi:10.1371/journal.pcbi.1003228.g009
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evidence of chimeric transcription (see Materials and Methods).

While several read pairs with putative chimeric mappings could be

identified, all viral chimeric read ends were clustered within low-

complexity regions of the viral genomes. Analyses revealed that

these putative chimeric mappings represent sequencing errors and

low-complexity templates that non-specifically attracted reads of

similarly low sequence complexity. No cluster of chimeric reads

located at a specifically viral genome location and representing a

human-viral breakpoint could be identified.

Reconstruction of novel transcripts by de-novo assembly
In order to identify transcripts of novel viruses that do not

map to known references, we generated de-novo transcriptome

assemblies of all unmapped reads. We applied the two de Bruijn

graph based assembly methods Oases[61] and Trinity[60] that

demonstrated best-in-class performance in recent evaluations

[71] on sequencing data of the NB2 panel. This sequencing data

is especially amenable to assembly due to its long read length

(see Table 1). Assembly resulted in 14,077 and 21,510
reconstructed neuroblastoma 4S contigs for Oases, and Trinity,

respectively (see Figure 10). Assembly of the neuroblastoma 4

sample yielded 11,828 and 12,341 contigs from the same

methods. Results of Oases and Trinity assemblies are compa-

rable in terms of contig length. All contigs were subjected to

taxonomic annotation using high-sensitivity TBLASTX annota-

tion based on human and viral content of the NCBI nt and nr

databases (see Materials and Methods). Overall, 72 contigs

(0:1{0:16% of contigs of any specific assembly) were identified

to be of putative viral origin. 26 contigs were assigned to

bacteriophage references and excluded from further analysis.

Based on searches against the full NCBI nr and nt databases

followed by manual inspection, all remaining 46 contigs were

determined to display higher similarities to bacterial or human

sequences than to any viral reference.

Figure 10. Reconstruction of novel transcripts by de-novo assembly. Histograms display lengths of reconstructed sequence contigs
assembled from unmapped reads of NB2 stage 4 and stage 4S samples (y-axis in log-space). Two independent assembly methods, Trinity and Oases,
were used in the reconstruction. The grand total number of contigs reconstructed within each assembly is displayed in the rightmost column.
Reconstructed contigs are annotated with their putative taxonomic origin as inferred by comparison with NCBI nucleotide (nt) and protein (nr)
archives using TBLASTX database searches.
doi:10.1371/journal.pcbi.1003228.g010
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Discussion

Neuroblastoma is a pediatric tumor of the sympathetic nervous

system that represents the most common form of cancer in

infancy. It is characterized by a striking diversity in biology and

clinical behaviour of its subtypes. This heterogeneity as well as

supporting epidemiological findings are highly suggestive of

infectious cofactors involved in genesis and maintenance of the

disease [19,20]. While several studies utilizing technologies with

lower sensitivity compared to our approach have identified human

polyomaviruses in neuroblastoma and pediatric embryonal tumors

[22–24], newer investigations seem to render these associations

inconclusive [25]. However, viral commensals of the families

polyomaviridae and adenoviridae are indeed suspected to acquire rare

transforming properties as a consequence of viral latency or

defective replication [72] and to encode oncogenes [73,74] whose

carcinogenic potential in human is currently investigated [8,75].

We undertook the first systematic search for known and unknown

viruses in transcriptomes of metastatic neuroblastoma by analyzing

deep sequencing RNA-Seq data of 14 metastatic neuroblastomas

from two tumor stages as well as positive and negative

experimental controls.

Several high-throughput methods for detecting viral sequence

reads among human RNA-Seq data have been developed. Among

these methods, PathSeq, CaPSID and RINS are most prominent

due to their design as reusable computational pipelines. In this

study we selected CaPSID and RINS due to their high

performance and public availability and compared their detection

performance with that of our novel method Virana. Both CaPSID

and RINS follow a subtractive approach, e.g. they separately map

input data to viral and human reference sequences and subtract

viral read mappings that are similar to the human genome from

the analysis. While CaPSID is conceptualised as a generalised

framework that supports the subtraction process by means of a

database and a web server, RINS features an integrated pipeline

that splits input reads into shorter fragments in order to increase

mapping sensitivity, followed by transcriptome assembly of

putative viral reads into full length transcripts.

Both RNA and DNA viruses may share considerable sequence

homology to human factors due to reasons such as lateral gene

transfer, oncogene capture, ancestral endogenization, or insertional

mutagenesis leading to chimeric transcripts [47]. Such homologous

transcripts may display human-viral sequence similarities of 86%

(Bovine Herpes virus) and up to 92% (acutely transforming

retroviruses). Subtractive approaches silently discard these tran-

script from the analysis due to their similarity to the human

reference genome. In contrast, our novel method Virana follows a

radically different approach. Instead of separate mapping to viral

and human reference database followed by digital subtraction,

Virana undertakes a particularly sensitive read mapping to a

combined set of human and viral references. By allowing for

multimaps, this mapping strategy facilitates discovery of viral

transcripts regardless of their similarity to human factors. Apart

from being conceptually simpler by relying on only one mapping

step and discarding the subtraction procedure that is both possibly

erroneous and computationally costly, this approach empowers the

mapper to make informed decisions about relative alignment quality

by weighing different human and viral reference positions against

each other. As a direct consequence of this increased mapping

quality, paired-end reads can be mapped across human and viral

references, allowing for detection of human-viral chimeric tran-

scription and proviral integration events.

We quantitatively validated Virana’s approach both in settings

involving simulated reads as well as in real-world scenarios

involving experimental positive and negative controls. In these

validations, Virana displays significantly higher detection sensitiv-

ities than competing approaches especially at high rates of viral

sequence divergence exceeding 5% that are common for tumor

viruses [76–78]. As a consequence, Virana was the only method

able to detect all viral families independent of sequence divergence

in the validation data set. In spite of the additional processing

undertaken by our method, Virana features between and two and

three times faster execution speeds compared to related methods.

Interestingly, viral reads analyzed in the sequence divergence

validation originate from a broad array of viral species, only two of

which infect mammalian hosts and none of which display

significant human-viral sequence homology. As a consequence,

this validation favors subtractive approaches by reducing the

danger of erroneous subtraction of viral reads that are similar to

the human genome. In addition, the sequence divergence

validation contained reads sampled at high coverage. However,

transcripts of tumor viruses are often expressed at only low cellular

abundances and are thus expected to have low sequence coverage.

We therefore next validated the ability of viral detection

approaches to detect viral transcripts homologous to human

factors at varying levels of sequence coverage. Virana, by virtue of

not relying on digital subtraction, demonstrated superior sensitivity

at this validation both in settings of natural sequence homology as

well as in cases of human-viral chimeric transcription. Specifically,

Virana was the only method able to detect evidence for all viruses

even at low twofold coverages. We observed that both RINS and

CaPSID discarded a substantial amount of human-viral homol-

ogous transcripts due to their high similarity to the human

reference genome, a fact that explains the lower performance of

these methods in this validation scenario.

Analysis of positive and negative experimental controls further

reveals that Virana is able to detect viral transcripts associated with

four types of cancer at a high dynamic range of relative

abundances. While Virana displays a slightly reduced specificity

in simulated and experimental evaluations, these false positive hits

are limited to only two viral families (Flaviviridae and Retroviridae)

that display high sequence similarity to human factors. These hits

are additionally annotated with an ambiguous taxonomic origin by

Virana. In addition, Virana provides extensive support for

investigating such ambiguous viral hits by analyzing the homol-

ogous context of putative viral reads in a context of multiple

sequence alignments and phylogenies.

In principle, several biological confounding factors may hinder

detection of viral transcripts by any sequence-based method. Low

concentration and extratumoral location of viral producer cells [8]

or selection of growth-autonomous cells in progressed tumors [79]

can significantly dilute the number of viral transcripts in a sample.

Additionally, known tumor viruses such as high-risk HPV strains,

EBV, and MCPyV selectively transcribe their genome during viral

latency (HPV: E6/7 [80,81], EBV: EBNA1/2 [82–84], MCPyV:

large T antigen [31,85]), thus generating only low abundances of

tens (MCPyV [31]) to hundreds (KSHV [86], EBV [87]) of

transcripts per cell. Last, transcription of human oncogenic factors

modulated by viral [88] or endogenous [89,90] retroviral

promoters as well as ‘hit-and-run’ mechanisms of viral oncogenesis

that imply loss of viral material [91,92] may predispose cells to

transformation without requiring maintenance of viral transcripts.

Our approach aims to counteract these confounding factors by

two strategies: first by sequencing neuroblastoma transcriptomes at

comparatively high depth in order to detect rare transcripts and

second by using several biological replicates at different tumor

stages, thus reducing the probability of total loss of viral material

from all analyzed samples. Based on statistical estimations
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concerning Virana’s homologous region construction process and

the sequencing depth of our experimental data, we can conclude

that our approach requires minimal abundances of only two

average-length viral transcripts per cell even under adverse

conditions such as high viral divergence or extensive human-viral

sequence homology. While representing a theoretical sensitivity

that may be altered by sequencing biases [93], these copy numbers

compare very favorably with related estimates reporting minimal

abundances of one to several complete viral genomes per cell

[27,34,35].

After applying Virana to several positive control panels of

human cancers with known viral cofactors and accurately

reconstructing large fragments of viruses that are causally related

to the respective tumors, we analyzed neuroblastoma transcrip-

tomes at high sequencing depth and using two different

sequencing platforms. Analyses of neuroblastoma transcriptomes

resulted in the detection of putative viral transcripts with high local

sequence similarity to several viral families. However, automatic

taxonomic annotation as well as detailed manual inspection of

homologous regions pertaining to these families revealed the

human or bacteriophage origin of all transcripts. While we could

find differences in the abundance of HERV-K transcripts between

neuroblastoma stages 4 and 4S, the causative role of HERV

transcription with regard to oncogenesis is currently unclear [94]

and, as to our knowledge, only tentative associations with specific

cancers have been made as to date [70]. Apart from these tentative

differences in HERV-K abundances, no quantitative difference

between neuroblastoma stages 4 and 4S could be identified with

regard to viral transcription.

In conclusion, our observations provide negative evidence

regarding the contested question of putative viral cofactors of

metastatic neuroblastoma by suggesting that viruses are unlikely to

be frequent cofactors in the maintenance of metastatic neuroblas-

toma.
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