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Abstract

Discrete Markovian models can be used to characterize patterns in sequences of values and have many applications in
biological sequence analysis, including gene prediction, CpG island detection, alignment, and protein profiling. We present
ToPS, a computational framework that can be used to implement different applications in bioinformatics analysis by
combining eight kinds of models: (i) independent and identically distributed process; (ii) variable-length Markov chain; (iii)
inhomogeneous Markov chain; (iv) hidden Markov model; (v) profile hidden Markov model; (vi) pair hidden Markov model;
(vii) generalized hidden Markov model; and (viii) similarity based sequence weighting. The framework includes functionality
for training, simulation and decoding of the models. Additionally, it provides two methods to help parameter setting: Akaike
and Bayesian information criteria (AIC and BIC). The models can be used stand-alone, combined in Bayesian classifiers, or
included in more complex, multi-model, probabilistic architectures using GHMMs. In particular the framework provides a
novel, flexible, implementation of decoding in GHMMs that detects when the architecture can be traversed efficiently.
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Introduction

Markov models of nucleic acids and proteins are widely used in

bioinformatics. Examples of applications include ab initio gene

prediction [1], CpG island detection [2], protein family charac-

terization [3], and sequence alignment [4]. Many times these

models are hard coded in the analysis software, which means well-

known algorithms are implemented over and over again. A system

providing a wide range of these models is important to allow

researchers to quickly select the most appropriate model to analyze

sequences of different problem domains. In some cases, such as

gene prediction, the characterization of the family of sequences

may involve using various probabilistic models integrated in a

single architecture.

One approach to avoid rewriting code is to use a general-

purpose system such as R [5], for which there are packages for

using these models [6,7], but different packages require the use of

different interfaces, which makes them harder to combine.

Another alternative is a general-purpose system that can

implement different models such as gHMM [8], HTK [9],

HMMoC [10] and HMMConverter [11], N-SCAN [12] and

Tigrscan [13] (also known as Genezilla).

HTK and gHMM have the distinctive capability of working

with continuous emission distributions or, in other words, can

accept sequences of arbitrary floating point numbers. HTK was

designed to treat the speech recognition problem, but it can also be

used to model biological sequences. However it implements only

HMMs and does not provide simulations of the models. The

gHMM package is a C library providing implementations for

HMMs, pair-HMMs, inhomogeneous Markov chains and a

mixture of PDFs. The system includes a graphical user interface

and provides Python wrappers for each probabilistic model, but it

does not implement GHMMs.

HMMConverter and HMMoC are systems that contain

skeleton implementations of HMMs, pair-HMMs, and a

generalization of the HMM where states may emit more than

one symbol at a time. As a distinctive characteristic, both

implement memory-efficient versions of the forward, backward,

and Viterbi algorithms. However they do not implement the

general GHMMs traditionally applied in gene-finding systems

[13–16], where states emit words using a duration distribution

and an arbitrary emission sub-model. In addition, they both

require some familiarity with the XML language for the

configuration of the models. HMMoC in particular requires

also some programming language skills since the description of a

model needs to include C code embedded at specific points in

the XML configuration file.
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Finally, N-SCAN and Tigrscan are examples of systems which

implement general, configurable GHMMs that can combine

different probabilistic sub-models in states with a given duration

probability distribution. However, they are targeted specifically for

gene prediction, offering only a restricted set of probabilistic

models in a fixed architecture designed for the gene-finding

problem.

In this paper we present ToPS (Toolkit for Probabilistic

models of Sequences), a framework for the implementation of

discrete probabilistic models for sequence data. ToPS currently

implements eight kinds of models: (i) independent and identi-

cally distributed process (i.i.d); (ii) variable-length Markov chain

[17]; (iii) inhomogeneous Markov chain [18]; (iv) hidden

Markov model [19]; (v) profile hidden Markov model [20]; (vi)

pair hidden Markov model [21]; (vii) generalized hidden

Markov model (GHMM) [14]; (viii) similarity based sequence

weighting (SBSW) [16]. To the best of our knowledge, ToPS is

the first framework that at the same time implements this range

of probabilistic models, is not restricted to any specific problem

domain, and does not require from end-users any familiarity

with programming languages or with the hierarchical structure

of XML. Additionally, ToPS provides a novel implementation

of the decoding algorithm that automatically detects GHMM

architectures that can be parsed more efficiently, a characteristic

that is essential for gene finders, since they have to be designed

to parse long sequences. ToPS includes command-line programs

for: training and simulating the models, evaluating input

sequences using a specific model, performing Bayesian classifi-

cation, and decoding sequences. As another novelty, ToPS

includes two model selection criteria to help select the best

parameters for a classification problem: Bayesian Information

Criteria (BIC) [22], and Akaike Information Criteria (AIC) [23].

ToPS uses easy-to-read configuration files that describe prob-

abilistic models in a notation close to the mathematical

definitions. Finally, ToPS has an object-oriented architecture

designed to facilitate extension and inclusion of new probabi-

listic models. Table 1 shows a comparison of the features of

these general-purpose systems.

In this paper we describe the basic characteristics of ToPS and

two examples of how to use it in practical problems: (i) a CpG

island detector; (ii) a simple eukaryotic gene predictor.

The ToPS framework has been in intensive use by our research

group in a wide variety of problems, including experimentation

with null models [24], annotation of full transcripts, small RNA

characterization and building gene predictors.

Design and Implementation

Architecture
ToPS was developed with an object-oriented architecture,

which is important for the integration of the models in a single

framework. The ToPS architecture includes three main class

hierarchies: ProbabilisticModel, to represent model implementations;

ProbabilisticModelCreator, to specify the on-the fly creation of models

based on configuration files; and ProbabilisticModelParameterValue, to

enable the parsing of the configuration files. These three

hierarchies are used by a set of application programs that

implement the framework’s user functionalities (bayes_classifier,

evaluate, posterior_decoding, simulate, train, viterbi_decoding). Implement-

ing new models as a subclass of ProbabilisticModel will ensure

integration with the facilities for training, simulating, decoding,

integration in GHMMs and construction of Bayesian classifiers. A

more detailed description of the architecture can be found in the

ToPS user guide (http://tops.sourceforge.net/tops-doc.pdf).

Model selection criteria
Many training algorithms contain parameters that can control

the dimensionality of the trained model. A typical example is a

Markov chain model in which the user has to choose the value of

the order parameter. Another example is the Variable Length

Markov Chain in which the user has to set a parameter that

controls the pruning of the probabilistic suffix tree. Finding the

best parameters can be a long and tedious task if it is performed by

manually testing possible parameters. To aid the user with finding

a good set of parameters, ToPS contains two model selection

criteria that the user can specify with the training procedure:

N Bayesian Information Criteria (BIC) [22], that selects the

parameters for which the corresponding model has the smallest

value for the formula:

log(maximum likelihood)

{
1

2
(number of independently adjusted parameters)

|log(sample size)

N Akaike Information Criteria (AIC) [23], that selects the

parameters for which the corresponding model has the smallest

value for the formula:

({2)log(maximum likelihood)

z2(number of independently adjusted parameters)

To the best of our knowledge, ToPS is currently the only

framework for implementing Markovian models that provides

this feature.

Efficient decoding of GHMMs
GHMMs are very flexible probabilistic models that can be

integrated with other models to describe a complex architecture.

A wide majority of successful gene predictors use GHMMs as a

base to recognize particular gene structures [13–16,25–27].

However, for an unrestricted GHMM architecture that contains

DQD states and a sequence with length L, the complexity of the

decoding algorithm is O(DQD2|L3) [15,28]. This is too

inefficient when we are decoding large genomic sequences in

systems with many states, which is typical with gene prediction.

To circumvent this problem, gene predictors impose restrictions

on the GHMM’s architecture in order to provide a more

efficient implementation. Decoding algorithms used in gene

predictors require that GHMMs satisfy three important

properties (adapted from [29]):

N Limited connectivity: The number of transitions from a

given state is less than a constant C. This property limits the

number of previous states searched by the Viterbi algorithm,

resulting in an algorithm that is in O(DQD|C|L3).

N Limited duration: The states have duration distributions

limited by a constant M. This property restricts the number of

emission lengths that need to be analyzed by the Viterbi

algorithm and, combined with the first restriction, results in an

algorithm that is in O(DQD|C|L2|M).

N Constant time lookup of the emission probabilities:
The likelihood of a subsequence can be calculated in constant

The ToPS Framework
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time after a linear time preprocessing of the sequence,

resulting, when combined with the two previous optimizations,

in a decoding algorithm that is in O(DQD|C|L|1|

MzL)(O(DQD|L).

To implement an efficient decoding algorithm, many gene-

finding systems use fixed GHMM architectures hard-coded in the

program and embed restrictions of the model in order to allow

efficient processing. This enables efficient decoding, but limits the

architectures that can be described using GHMMs and, therefore,

potentially limits their applicability.

ToPS was designed for general applicability, accepting any

arbitrary GHMM configurations. To do so, we introduced a

methodology to automatically use efficient decoding when the

architecture allows it. This is achieved by the use of an adjacency

graph to represent the transitions with probability greater than

zero, and by taking advantage of the object-oriented architecture

of the system:

N ToPS uses a sparse graph implementation to benefit from the

limited connectivity.

N The automatic detection of the constant M is achieved by the

use of the classes representing i.i.d models which contain a list

of possible durations.

N The constant time lookup of the emission probabilities is

achieved by the use of the object-oriented architecture: any

probabilistic model implemented as a subclass of FactorableMo-

del or InhomogeneousFactorable represents models for which the

likelihood of a sequence is factored as a product of terms, one

term per sequence position. This property allows the

implementation of a technique, called Prefix Sum Array [13]

(PSA), that calculates the likelihood of a subsequence in

constant time, after a linear time preprocessing of the

sequence.

In addition, we have developed another optimization technique

for the case when some observation sub-model has probability

zero to emit specific words, a situation that is very common in

gene-finding systems. In this case ToPS maintains an auxiliary

linked list for each line of the Viterbi matrix (corresponding to the

values of a given state for each position of the sequence), indicating

the positions that have non-zero probability. When we have

Table 1. Comparison of ToPS with other Markov model toolkits.

Program Input Format Probabilistic Models Simulation
Distinguishing
Characteristics

HMMConverter XML HMM NO memory efficient Viterbi,
forward, backward

pair-HMM

generalized HMM*

HMMoC XML HMM YES memory efficient Viterbi,
forward, backward

C language pair-HMM, triple-HMM, quad-HMM

generalized HMM*

gHMM XML HMM YES continuous emission

inhomogeneous Markov chain graphical user interface

pair-HMM

mixture of probability density functions

HTK XML HMM NO continuous emission

Tigrscan own language GHMM+ NO Does not provide Baum-
Welsh training

N-SCAN XML GHMM+ NO Does not provide Baum-
Welsh training

ToPS own language HMM YES model selection criteria
(AIC and BIC)

pair-HMM build profile-HMM from
alignment

GHMM efficient and general
GHMMs

variable-length Markov chain

inhomogeneous Markov chains

discrete i.i.d models

SBSW

*The generalized version of HMMs in HMMoC and HMMConverter is different from the GHMMs as defined by Kulp [14].
Specifically, they only allow the emission of whole words within a state, and neither allows sub models or the characterization of duration with a non-geometric
distribution;
+Tigrscan and N-SCAN implement GHMMs containing as sub-models weight arrays, maximum dependence decomposition, smoothed histograms, three-periodic
Markov chains, and interpolated Markov models.
However, these models can not be used individually, as the state architecture of the GHMM is hard coded in these systems.
doi:10.1371/journal.pcbi.1003234.t001

The ToPS Framework
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factorable models, the entries of the Viterbi matrix that generate a

path with probability zero do not need to be examined. Typically,

most positions have zero probability, therefore using the lists

substantially reduce the running time.

These techniques achieve similar performance to the ad-hoc

optimizations that reduce the generality of the GHMMs that can

be analyzed.

Results

ToPS is a framework that helps describing and using discrete

probabilistic models. Figure 1 illustrates the various ways to use

ToPS: (i) train models given an initial specification and a set of

training sequences, (ii) evaluate input sequences given a model, (iii)

simulate a model, (iv) decode a sequence given a decodable model

and (v) create a Bayesian classifier for sequences based on a set of

pre-defined models. In this section we present two applications

developed using the framework, in order to illustrate its

applicability. We have chosen two well known problems in

genomics: CpG island characterization and gene prediction. In

both experiments we were able to improve the performance on

solving the problem when comparing the ToPS implementation

against published, well known alternatives.

All models, scripts, configuration files and sequence data to

reproduce the experiments are available through the ToPS

homepage.

Characterizing CpG Islands with a GHMM
CpG islands (CGI) are genomic regions of great interest due to

their relation with gene regulation. These regions are commonly

present in the promoter region of genes. The CGI sequences

typically have high G+C content with a significant high frequency

of Cs followed by Gs. CGIs are also related to the DNA

methylation that occurs typically at the C nucleotides. The

presence of methylated DNA regions can inhibit the binding of

transcription factors and therefore inhibit gene expression. Large

scale experiments to detect differentially methylated regions use a

CGI list as a reference, stating the importance of producing high

quality CGI lists [2].

The use of Hidden Markov Model to define CGIs was described

in [21] and a more accurate model in [2]. However, hidden

Markov models assume that the length of each region is

geometrically distributed and the observed symbols are condition-

ally independently distributed. With a generalized hidden Markov

model we can use different models to represent CGI and non-CGI

regions, and also characterize the length of CGI regions either

geometrically with a self transition, or with a distribution based on

known data. In this section we show how we can use these ideas in

ToPS to implement CGI characterization.

Our GHMM has only two states, shown in Figure 2: CPG and

NONCPG. We modeled NONCPG and CPG as states with a

geometric run-length distribution represented by a self transition.

To characterize both CPG and NONCPG we used Interpolated

Figure 1. A diagram of examples of ToPS usage. Square boxes represent data files, rounded boxes represent programs or manual processes.
Each model may be described manually by editing a text file (1), or the train program can be used to estimate the parameters and automatically
generate such file from a training set (2). The files that contain the model parameters (in our example model1.txt, model2.txt and model3.txt) are
used by the programs evaluate (3), simulate (4), bayes_classifier(5) and viterbi_decoding (6). The evaluate program calculates the likelihood of a set of
input sequences given a model, the simulate program samples new sequences, the viterbi_decoding program decodes input sequences using the
Viterbi algorithm, and the bayes_classifier classifies input sequences given a set of probabilistic models.
doi:10.1371/journal.pcbi.1003234.g001
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Markov Models (IMMs) [18]. IMMs have the ability of

representing dependencies of arbitrary length, and we hypothesize

that this model can improve CPG detection.

Building and training the models. To implement this

system in ToPS we initially trained the two IMMs that constitute

the states of the GHMM. We stored the description of these two

models in the files cpg_imm.txt and not_cpg_imm.txt.

Once we had all the trained models, we specified a GHMM

with the configuration file described in the Figure 2. We

assumed a mean length of 800nt to compute the geometric

duration of the CPG state. This parameter was estimated from

the training data. We evaluated a set of different values of

NONCPG exit probability to produce the sensitivity analysis,

shown in Figure 3.

In a different experiment we evaluated another GHMM with a

non-geometric duration for the CPG state (data not shown).

Because the Viterbi decoding must verify the best length for the

CPG state, the decoding was significantly slower than with the

geometric duration GHMM (12 hours vs. 1 minute). Further-

more, we did not observe an improvement in the quality of the

prediction when modeling the duration of the CPG state explicitly.

Evaluating the results. To characterize CpG islands and

their lengths we used 1000 randomly chosen sequences from the

CGI list of the UCSC Genome Browser [30]. The validation set

was composed of 44 unmasked sequences corresponding to the

ENCODE pilot project regions of the hg18 assembly [31].

We compared our results with two independent CGI lists: (i) the

CGI list computed by an HMM developed by Wu and colleagues

[2], that is stored as ‘‘Custom Annotation Tracks’’ in the UCSC

Genome Browser; (ii) The official CGI list provided by the UCSC

Genome Browser [30]. We used the comparison criteria proposed

by Glass and collaborators [32], where the success of CGI

prediction is measured by the rate of TSS regions covered by the

CGI predictions. The TSSs were downloaded from the confirmed

set of the DBTSS database [33].

As can be seen from Table 2, the GHMM results were better

than those of the HMM: the ToPS GHMM (with p~2:0|10{3)

predicts 12% fewer nucleotides than the HMM CGI regions of

Wu and collaborators (600,122nt vs. 685,514nt), but both covered

208 confirmed TSSs (63:41% sensitivity). In a comparison against

the UCSC annotation results, the GHMM (with p~2:0|10{7)

covered the same number of TSSs (192), using fewer regions

(472vs:507). However, the GHMM predicted more nucleotides

than the CGI list (471,816nt vs. 397,229nt), indicating that the

GHMM predicted, on average, larger regions than UCSC CGI

list.

The results obtained with different values of p were used to

generate a sensitivity analysis, as suggested by Wu and collabo-

rators [2], shown in Figure 3. In particular, we tested the value

p~1:0|10{5 for the exit probability of the NONCPG state,

which embodies the hypothesis of a CpG region for each

100,000nt, or approximately 30,000 CpG regions in the human

genome. This GHMM predicted 513,913nt as CGI and covered

200 TSSs (60:97% sensitivity).

Building a protein-coding gene finder using GHMM
Predicting the location and the structure of protein-coding genes

in eukaryotic genomes is a difficult but very important task [1]. To

build a competitive gene finding system one is required to know a

large number of non-intuitive details such as the order of each

Markov model, the length of the models representing biological

signals, the training set for estimating each sub-model, and the

architecture of the GHMM. The majority of successful gene-

finding systems uses GHMMs [13–16,27], but important details

are sometimes hard-coded in the the program, making it difficult

to customize the GHMMs.

Next we illustrate the implementation in TopS of a gene-finding

system using a GHMM with 56 states.

Building and training the models. The GHMM we built is

shown in Figure 4. This GHMM architecture was adapted from

similar GHMMs used by different gene finders and contains 56
states which model genes from both DNA strands. The main

differences when compared to GENSCAN [15] are the lack of

states for poly-A signal and promoters in our model, and the fact

that we use only one GHMM model, whereas GENSCAN uses

different GHMMs for each G+C composition intervals of the

target sequence.

To define a GHMM, we have to specify an emission sub-model

for each state. Below is a list of the forward strand models we used:

Figure 2. The implemented GHMM for the CpG island detector. In this GHMM we used IMMs as emission sub-models and we tested different
values for the exit probability of the NONCPG state, p, to generate the sensitivity analysis. The mean length of the CPG state emission was estimated
using the training data.
doi:10.1371/journal.pcbi.1003234.g002

The ToPS Framework
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N start codon initial motif: A Weight Array Model (WAM) -

implemented as an inhomogeneous Markov chain - that emits

a pattern of length 20nt representing the sequences that appear

before the start codon (ATG). We used a WAM with order

estimated using BIC.

N start codon model: A manually edited WAM that emits the

sequence ‘‘ATG’’ with probability 1.

N initial pattern model: A WAM that emits a pattern of

length 4 representing sequences that appear after the start

codon. We used a WAM of order 3.

N stop codon model: A WAM that emits the sequences TAA,

TAG, or TGA with the same frequency distribution that

appears in the training set.

N acceptor splice site model: A WAM that emits a pattern

of length 6nt (3nt before the canonical AG, followed by the

dinucleotide AG, followed by 1nt after the AG).

N branch point model: Windowed WAM [15] (with order 3
and vicinity length of 3nt) that emits a pattern of length 32nt
for sequences that appear before the acceptor splice site.

N acceptor initial pattern model: A WAM that emits a

pattern of length 4 corresponding to the sequences that appear

after the acceptor splice site.

N donor splice site model: A similarity based sequence

weighting [16] representing patterns of length 9 (a pattern of

length 3nt, followed by the dinucleotide GT, followed by a

pattern of length 4nt).

Figure 3. Sensitivity associated with the combined length of the predicted CGIs. In this experiment the points in the curve correspond to
different values for the exit probability of the NONCPG state of the GHMM. For comparison, the results with the CGI list from UCSC Genome Browser
and with the CGI list obtained using HMM [2] are shown as a blue square and green triangle, respectively.
doi:10.1371/journal.pcbi.1003234.g003

The ToPS Framework
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Table 2. Comparison between CGI lists.

CGI List Total number of CGI regions

Percentage of confirmed
TSSs contained in the CGI
predictions (‘‘sensitivity’’)

Total of nucleotides in CGI list
(‘‘specificity’’)

UCSC Genome Browser 507 58:53%(192) 397229

GHMM p~2:0|10{7 472 58:53%(192) 471816

HMM [2] 1124 63:41%(208) 685514

GHMM p~2:0|10{3 784 63:41%(208) 600122

This table shows a comparison between four distinct CGI lists: the UCSC Genome Browser list, the list produced by the HMM designed by Wu and collaborators [2], and
the lists produced by our GHMM approach using two distinct exit probabilities for the NONCPG state. The probabilities of the GHMM selected were those that produced
lists with the same sensitivity as the ones from the UCSC Genome Browser (p~2:0|10{7), and from the HMM by Wu and collaborators (p~2:0|10{3).
doi:10.1371/journal.pcbi.1003234.t002

Figure 4. GHMM architecture for eukaryotic protein-coding gene prediction. EIk is a state for representing an initial exon that ends at
phase k. Ekj is a state for representing an internal exon that begins at phase k and ends at phase j. ETk is a state for representing a terminal exon
that begins at phase k. Ik is a state for representing an intron at phase k. N is a state for representing intergenic regions. start is a state for
representing the start codon signal. stop is a state for representing the stop codon signal. acck is a state for representing acceptor splice site signal at
phase k. donk is a state for representing the donor splice site signal at phase k. To model the reverse strand, we used the states that begin with the
prefix ‘r-’. Squares with a self-transition represent states with geometric duration distribution. Squares without a self-transition represent states with a
non-geometric duration distribution. Ellipses represent states with fixed-length durations.
doi:10.1371/journal.pcbi.1003234.g004

The ToPS Framework
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N donor initial pattern model: A WAM of order 3 that

emits a pattern of length 4nt that appears before the donor

splice site model emissions.

N protein-coding model: A three-periodic Interpolated

Markov Model, with order estimated using BIC, trained with

the annotated protein-coding sequences from the training set.

N non-coding model: An Interpolated Markov Model, with

order automatically estimated using BIC, trained with the

annotated 3’UTR and 5’UTR sequences.

A summarized description of each state can be found in Table 3.

The states representing the reverse strand were trained with

sequences corresponding to the reverse complement of those used

to train the states representing the forward strand.

The run-length distribution of the states representing exons was

trained using the same methodology described in [34] where

smoothed histograms were estimated using a variation of the

kernel density estimation algorithm. Because the coding segments

must produce consistent gene structures, the run-length of the

exon states must not allow emissions that are incompatible with

their input phase and output phase. The average length of the

intron sequences was estimated using the training set. Finally, the

mean length of the intergenic region was estimated as 10,000nt.
Evaluating the results. To compare our results with a well

established program, we applied GENSCAN [15] using the

original ‘‘HumanIso.smat’’ parameters. As a validation set we used

2500 randomly selected Refseq genes from the hg18 genome

obtained from the UCSC Genome Browser. We used a 5-fold

cross validation experiment with our system using the ‘‘viterbi_-

decoding’’ program to decode the test sequences from each

individual cross-validation run. We also applied GENSCAN to

each of the five validation sets. We then used Eval [35] to calculate

a set of comparative statistics, including the traditional accuracy

measures for gene-finding systems. The results, shown in Table 4,

indicate that ToPS achieved better performance (considering the

F-score as criteria) in two measures: nucleotides (77:3 vs 69:9) and

complete gene structure (15:4 vs 12:9). In this particular example

the GHMM’s performance could be probably be improved by

including better models for representing short introns, and by

implementing strategies to treat the C+G content variability of the

genomes.

Conclusion
We presented ToPS, an open-source object-oriented framework

for analyzing probabilistic models of sequence data. It implements

seven well-established probabilistic models that have applications

in many distinct disciplines. ToPS includes programs for

simulating, decoding, classifying and evaluating discrete sequenc-

es. The implemented models can be used individually, combined

in heterogeneous models using GHMMs, or integrated in Bayesian

classifiers. In contrast to systems with similar goals, end users do

not need any previous knowledge of programming languages,

since the probabilistic models are specified using a notation close

to the mathematical one. There are specific auxiliary programs for

training, simulating and decoding. In addition, ToPS includes two

algorithms for model selection, BIC and AIC, that can be used to

find the best classification parameters for given training and

validation sets. Also, in contrast to other systems, ToPS includes a

GHMM implementation that is at the same time general enough

to describe any GHMM architecture and efficient when the model

characteristics allow for a faster version of the Viterbi algorithm.

This is important to enable the use of ToPS in gene finding.

The two examples presented above, a CpG island classifier and

a gene predictor, illustrate that ToPS can be used to build complex

model architectures to be applied to real-world problems. In both

cases we achieve competitive performance against well established

results with minimal implementation work. Both results could even

be improved further through experimentation with the model.

Table 3. States of the GHMM for the gene prediction problem.

State Name Description Emission Model Duration Model

start start codon start codon initial motif (20 nt) fixed-length (27 nt)

start codon model (3 nt)

initial pattern model (4 nt)

stop stop codon stop codon model (3 nt) fixed-length (3 nt)

ES single exon protein-coding model Smoothed Histogram

EIk initial exons protein-coding model Smoothed Histogram

ETk terminal exons protein-coding model Smoothed Histogram

Ekj internal exon protein-coding model Smoothed Histogram

Ik intron non-coding model geometric distributed

donk donor splice site donor initial pattern (4 nt) fixed-length (13 nt)

donor splice site model (9 nt)

acck acceptor splice site branch point model (32 nt) fixed-length (42 nt)

acceptor splice site model (6 nt)

acceptor initial pattern model (4 nt)

N intergenic state non-coding model geometric distributed

F final state non-coding model self-transition probability is one

This table shows a summary of the configuration we used in each state of the GHMM for the gene-prediction problem. The states start, acceptor, and donor are
composed of two or more individual sub-models. The reverse strand states are symmetric and were omitted from this table.
doi:10.1371/journal.pcbi.1003234.t003
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Availability and Future Directions

ToPS was tested under GNU/Linux, and MacOSX and can be

obtained from http://tops.sourceforge.net/. ToPS is distributed

with a manual containing a set of examples to illustrate its use. The

datasets and configuration files for the two experiments can be

obtained from http://dx.doi.org/10.6084/m9.figshare.765452.

Supporting information includes the source code, the manual,

and a tutorial of the system (Software S1).

We are currently using ToPS to develop different probabilistic

models for biological sequence analysis. In particular ToPS was useful

to produce results described in [24], where we studied the problem of

choosing different null-models that can reduce the number of false

positives in Bayesian sequence classification. We are now developing

other models for characterizing protein-coding sequences both in

genomic sequences and in mRNAs, non-coding RNA characteriza-

tion, and sequence aligners. In the near future, ToPS will be extended

to include Maximum Dependence Decomposition models [15],

Covariance Models [21] and Conditional Random Fields [36].

Supporting Information

Software S1 Source code for ToPS. A compressed file

containing the source code for ToPS.
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