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Abstract

Despite environmental, social and ecological dependencies, emergence of zoonotic viruses in human populations is clearly
also affected by genetic factors which determine cross-species transmission potential. RNA viruses pose an interesting case
study given their mutation rates are orders of magnitude higher than any other pathogen – as reflected by the recent
emergence of SARS and Influenza for example. Here, we show how feature selection techniques can be used to reliably
classify viral sequences by host species, and to identify the crucial minority of host-specific sites in pathogen genomic data.
The variability in alleles at those sites can be translated into prediction probabilities that a particular pathogen isolate is
adapted to a given host. We illustrate the power of these methods by: 1) identifying the sites explaining SARS coronavirus
differences between human, bat and palm civet samples; 2) showing how cross species jumps of rabies virus among bat
populations can be readily identified; and 3) de novo identification of likely functional influenza host discriminant markers.
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Introduction

Emerging infectious diseases (EIDs) continue to represent a

significant public health threat, as illustrated by the 2009 H1N1

influenza pandemic and the 2003 severe acute respiratory

syndrome (SARS) epidemic. Of particular concern are the 60%+
of EIDs of zoonotic origin [1,2]. In addition to influenza and

SARS [3], notable examples include hantaviruses [4], Nipah and

Hendra viruses [5] and HIV [6].

While predicting the emergence of new pathogens is likely to

remain an unachievable goal for the immediate future, an

emphasis of current research has been to try to identify ecological,

behavioural and biological predictors of cross-species transmission

and consequent disease emergence [2,7,8,9,10]. The wealth of

pathogen sequence data becoming available makes identification

of pathogen genomic markers of emergence one of the more

promising approaches [11], particularly for RNA viruses given

their high mutation rate and resulting high diversity at the

population level [12].

The identification of genetic markers predicting cross-species

disease emergence faces many of the same challenges as genotype-

to-phenotype mapping in other spheres, such as human genome-

wide association studies of risk factors for chronic diseases [13].

Principle among these are relatively small sample sizes coupled

with a very large number of potential explanatory variables (single

nucleotide substitutions and their interactions) [14,15]. However,

the much higher frequency of polymorphisms in RNA viruses and

their fast population-level evolution offers unique challenges and

opportunities.

While most viral variants generated in a specific host are

selectively neutral in that host, upon crossing the species barrier

they are under strong selective pressure. We expect selection to

shape the relative frequencies of viral variants found in donor and

recipient species. Specific hosts impose specific evolutionary

landscapes on viruses which will translate into signature genetic

sequences. We therefore expect comparisons of allele frequencies

between sequences of the same pathogen isolated from different

hosts to reveal a large subset of alleles which are conserved

between host species and a smaller subset of host specific alleles.

This comparison can be performed by statistical techniques able to

discriminate phenotype (host) relevant variables (alleles). Here we

apply feature selection methods which identify a subset of variable

sites which can be used to build a robust phenotype classifier [16].

We focus on one algorithm for classification - the random forest

algorithm (RFA) - that offers excellent performance in classifica-

tion tasks, providing direct measures of variable importance and

classification error [17].

Results

Our goals are two-fold. First, we investigate how well feature-

selection algorithms such as RFA can reliably classify RNA viruses

according to their host species reservoir, thereby giving insight into

pathogen evolution, and the frequency of cross-species transition

events. Identification of functional polymorphisms is not critical in

meeting this goal, though clearly is desirable. Second, we evaluate

how well RFA can identify sets of sites that are functionally

relevant to the phenotype of interest (in this case host species), in

the context of dense RNA virus genomes and their high degree of

linkage.

We first analyse polymerase gene sequences of RNA viruses to

identify the genetic signatures predicting host species. As an
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example, Figure 1a represents the diversity of Flavivirus polymer-

ase amino acid sequences (Table S2). Here we use principal

component analysis (PCA) solely to visualise the variation between

samples, not as a classification tool. Figure 1b illustrates how

feature selection identifies amino acid positions which robustly

classify samples by host species, resulting in clustering of samples

which infect the same reservoir. The clustering of samples seen in

the PCA plot is similar to that seen in the maximum likelihood tree

(Figure 1c), supporting the use of PCA as a useful tool for

generating low-dimensional representations of genetic variation.

Second, we examine the potential of RFA applied as a

phenotypic classifier to give insight into cross-species disease

emergence. In this case, analysis of sequences of viruses which

have fully adapted to particular host species – as in the Flavivirus

example – is insufficient to distinguish between the subset of

mutations required to allow cross-species emergence and later

non-essential mutations which further increase viral fitness in a

new species. We therefore need to examine data collected from

zoonotic outbreaks. The 2003 SARS epidemic is a good example

of a zoonosis which rapidly developed a high level of transmis-

sibility in humans [3,18,19]. The pathogen was rapidly identified

[3] and the origin of the virus was initially traced back to palm

civets [19], before bats were identified as the natural reservoirs of

SARS-like coronaviruses [20]. We applied the RFA to nucleotide

sequences of the spike protein of SARS-like coronaviruses (Table

S3), recovered from human patients and palm civets from the

2003 and 2004 epidemics and bat sequences available in the

Genbank database. Figure 2a illustrates the extent to which bat

sequences differ from the human and palm civet sequences

recovered in China in 2002–2004, and also highlights the

similarity of palm civet and human sequences [19]. Analysis of

the variation in the selected host-discriminant viral alleles

(highlighted in Figure 3) reveals interesting relationships between

host reservoirs (Figure 2b). Firstly, there is noticeable genetic

variation in the samples from human SARS patients collected in

the early and mid-stages of the 2003 epidemic, compatible with

adaptation of the virus to a new host species. The late 2003

samples were less variable, suggesting selective pressures may by

then have stabilized [21]. Secondly, human patient samples from a

small outbreak in January 2004 are more closely related to palm

civet 2004 samples than to any human sample from the previous

year, indicating that the 2004 outbreak represented an indepen-

dent cross species transition [22]. The palm civet samples from

2003 were collected a few months after the human epidemic ended

so there might have been an accumulation of mutations

responsible for the substantial distance between palm civet 2003

samples and human 2003 samples. However, the close proximity

between the bat samples and the first samples from the human

2003 epidemic suggests that the transition from palm civet to

human occurred quite rapidly after the transition from bat to palm

civet. With respect to our second goal – identifying functional

relevant sites – it is notable that 12 of the 15 positions identified by

feature selection coded for non-synonymous substitutions (Table

S4), most of which are mapped onto the surface of the spike

protein. It should be noted that of the 15 positions identified in the

current study, 13 overlap with those found in [23]. The functional

relevance of the two unique positions (239 and 311) found here

and that of the 13 unique positions identified in [23] is not clear.

When running the RFA for amino acid sequences of the same

viruses, we obtain a subset of 12 significant amino acid positions

that are coded for by the exact same non-synonymous substitu-

tions highlighted by the RFA conducted on the nucleotide

sequences.

High mutation rates in RNA viruses facilitate the overcoming of

host specific barriers [24] particularly in ecological settings where

hosts display high contact rates [8,22]. However, cross-species

transfer seems to be favoured between closely related host species

[9,25,26,27], suggesting that the fitness landscape of host

adaptation is shaped by host phylogeny. Streicker and colleagues

[26] defined lineages of rabies virus associated to particular bat

taxa, identifying 43 cross species transmission events involving 15

bat species. Here we reanalyse the complete nucleoprotein

sequences available for five of those bat species (Table S5). PCA

applied to these sequences (Figure 4a) shows how viruses collected

from 3 of the bats species (L. borealis, L. seminolus, L. cinereus) are

extremely similar, with a substantially divergent lineage infecting

E. fuscus bats and an isolated small cluster of viruses seen in T.

brasiliensis. Applying RFA to predict host species to these sequences

allows discrimination of L. cinereus specific traits (Figure 4b), but

does not significantly separate the L. borealis and L. seminolus

clusters. This suggests that transmission of rabies virus between

these two bat species is much more frequent than between any

other pair of species examined. The advantage of RFA compared

with phylogenetic methods is that it allows a probability of

‘‘belonging’’ to each host bat species to be estimated for each virus

sample. Thus we can examine whether a virus isolated in one

species is in fact native to a different host species. Figure 4b

highlights the 8 outlier sequences (T1–T8) in this dataset – viruses

which are closer to rabies viruses native to a different species from

that in which they were isolated. For these 8 viruses, Figure 4c

gives the RFA classification probabilities of these viruses to the 5

different host species considered. In six cases, the cross-species

transitions thus identified agree with those identified in [26]. Five

of these 8 transitions occurred between L. borealis and L. seminolus.

This, and the relatively poor ability of RFA to choose between

these species in classifying viruses (Table S6), suggests that

phylogenetic closeness between host species (Figure S4) facilitates

cross-species transmission.

To address our second goal of investigating the functional

relevance of identified discriminant features, we applied RFA to a

collection of influenza A samples from distinct host species

Author Summary

Moving away from genome scan methods used for human
GWAS (ultimately inappropriate for the short highly
polymorphic genomes of RNA viruses), our work shows
the power and potential of multi-class machine learning
algorithms in inferring the functional genetic changes
associated with phenotypic change (e.g. crossing a species
barrier). We show that even distantly related viruses within
a viral family share highly conserved genetic signatures of
host specificity; reinforce how fitness landscapes of host
adaptation are shaped by host phylogeny; and highlight
the evolutionary trajectories of RNA viruses in rapid
expansion and under great evolutionary pressure. We do
so by (for each dataset) unveiling a set of phenotype
characteristic mutations which are shown to be function-
ally relevant, thus providing new insights into phenotypic
relationships between RNA viruses. These methods also
provide a solid statistical framework with which the degree
of host adaptation can be inferred, thus serving as a
valuable tool for studying host transition events with
particular relevance for emerging infectious diseases.
These methods can then serve as rigorous tools of
emergence potential assessment, specifically in scenarios
where rapid host classification of newly emerging viruses
can be more important than identifying putative function-
al sites.

Host Species’ Genetic Determinants in RNA Viruses
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focusing on two viral segments that have been suggested to be

major determinants of host range and virulence [28]. First, as a

critical validation of the RFA, we analysed H1N1 hemagglutinin

(HA) amino acid sequences collected in human (pre and post 2009

pandemic) and swine hosts, since multiple sources of empirical

evidence for the functional relevance of specific amino acids in that

gene are available [29,30,31]. Second, we analysed the PB2

Influenza A gene, since it is highly conserved across subtypes and

its evolution has been hypothesised to reflect host specific

adaptation [32].

The HA analysis serves not only as an assessment of the

functional relevance of the positions being highlighted as host

specific by RFA, but also as a benchmark of the method by direct

comparison with a recently published study [33] which made use

of an alternative feature-selection algorithm (Adaboost). We

compare algorithm performance on three levels: prediction ability,

percentage of selected amino acids in functionally relevant

positions, and overlap of selected amino acids. We use full HA

segment amino acid sequences and analyse the proportion of

selected amino acids that fall in the Receptor Binding Domain

(RBD), and in known antigenic sites. Table 1 summarises our

findings by comparison with the Adaboost results [33]. There is

substantial overlap with the sets of relevant positions between the

two methods, although RFA seems to consistently identify a larger

Figure 1. Feature selection of host specific genetic signatures within Flaviviridae. The scatterplots display the first two principal
components of the PCA undertaken using allele frequency information from (a) Flaviviruses’ full polymerase sequences and (b) an alignment of the
amino acids selected by the random forest algorithm. The maximum likelihood phylogenetic tree obtained from full polymerase sequences is
presented in (c). Tree branch lengths reflect the number of amino acid differences per sequence.
doi:10.1371/journal.pcbi.1003254.g001

Host Species’ Genetic Determinants in RNA Viruses
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proportion of amino acids in HA’s receptor binding domain

(RBD), particularly those that are also known antigenic sites, with

a greater predictive ability. Even if one were to aggregate the

Adaboost results (Adaboost can only undertake binary classifica-

tion, so two comparisons were needed to explore host-specific

determinants for 3 virus groups), that algorithm identifies 47

significant positions, 20 (42.5%) of which belong to the RBD, 7

(35%) in known antigenic sites. A multi-class RFA is able to

identify a significant larger subset of amino acids in known antigen

sites (12 in the RBD plus 2 others), the functional relevance of

which can be explored in future experimental studies. Table S7

lists all the positions selected as significant, while Figure 5 portrays

allelic diversity across the HA samples analysed and gives clear

intuition into why the identified sites were selected by RFA. We

should note the absence of the 190 and 225 mutations (hallmark

mutations of human-adapted H1N1 HA) from the subset of

significant residues determined by RFA. Although these mutations

confer optimal contact with the sialic acid receptors [29], we find

that 190D is highly conserved throughout our sequences,

contrasting with the 190E amino acid found in avian samples.

Residue 225 is picked as one of the 100 most informative sites for

host discrimination by the RFA. All the virus groups examined

contain samples with the 225D allele, while the 225G allele (the

consensus in avian viruses) is present in some seasonal human and

swine samples. Had we included avian samples in the analysis, the

225 positions would certainly be classified as highly host

discriminant. Here, we identify other mutations which have

empirically been found to influence contact with the a2–6 glycans,

either by providing additional anchoring sites for the sialic acid

(position 145); by forming a network interacting with Asp190 (186,

187 and 189); or by modulating the stability of those contacts (219

and 227) [34,35]. Identified positions 155 and 131 are also thought

to play a relevant role in binding to sialic acid receptors [34,36].

Figure 2. SARS coronavirus species transitions and evolution. The first two principal components of the PCA undertaken using (a) SARS
coronavirus complete spike protein nucleotide sequences, and (b) nucleotides selected by the RFA. Viral groups, defined by host species and season,
are represented by ellipses of different colours: Human patient samples from 2002/2003 collected in early, mid and late epidemic phase are HP03E
(green), HP03M (purple) and HP03L (yellow); 2004 Human samples are labelled HP04 (black); palm civets samples collected in 2003 and 2004 are
labelled PC03 (blue) and PC04 (red); bat samples are labelled BT (magenta).
doi:10.1371/journal.pcbi.1003254.g002

Figure 3. Allele importance for host reservoir classification of
SARS-like coronaviruses. The alleles which were identified as
significant for classification by the feature selection algorithm are
represented by red points.
doi:10.1371/journal.pcbi.1003254.g003

Host Species’ Genetic Determinants in RNA Viruses
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Feature selection performed on the PB2 segment highlights

subtype transcending functionally relevant amino acids from

sequences of 7 influenza subtypes (H1N1, H1N2, H2N2, H3N2,

H5N1, H3N8, H7N7), collected in 5 different hosts (humans,

birds, pigs, dogs, and horses), as detailed in Table S8. Overall, we

identified a subset of 23 host discriminant positions (Table S9), out

of which only 7 fall outside known functional domains [37,38].

Our results are substantially congruent (overlap of 7 identified

positions out of 12) with those of a phylogenetic study aimed at

identifying amino acid sites with strong support for different

selection constraints in human and avian viruses [39], even though

our analysis is not limited to differences between these two hosts. A

closer look at the identified sites in the most extensively studied

functional domains (the 627 and NLS domains) reveals that all lie

on the surface of the protein (Figure 6), with mutations at positions

588, 591,627, and 702 being responsible for the most drastic

conformational changes. Analysis of the physiochemical properties

of the selected amino acids reveals side chain charge reversals in

positions 591 and 627 (Table S9). The insertion of a lysine in an

otherwise avian adapted H5N1 virus (which is unable to infect

humans) has been shown to promote host adaptation [40,41] and

increase virulence [42,43]. Conversely, mutation in amino acid

591 can reduce the selective pressure for mutations at amino acid

627, serving as an alternate human adaptive strategy [44]. This

possible interaction is emphasised by the juxtaposition of residues

591 and 627, as observed in Figure 6. Of the remaining selected

Figure 4. Cross-species transition events of rabies viruses in bats. The first two principal components of the PCA undertaken using (a)
complete Rabies virus nucleoprotein sequences, and (b) an alignment of nucleotides selected by the RFA. The ellipses of different colours represent
the bat species in which virus samples were collected. Eight putative cross-species transmission events are highlighted in yellow with the respective
predicted bat species of origin shown in (c).
doi:10.1371/journal.pcbi.1003254.g004

Host Species’ Genetic Determinants in RNA Viruses
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amino acids, some refer to mutations that can alter domain

structure, three of which are human discriminating (661, 674, and

702). Interestingly, only one of the selected sites (292) differentiates

canine viruses from equine viruses. The paired mean distance

between groups (measured in terms of the number of differences

observed in the full gene sequences) is smallest for the canine and

equine viruses (Table S10). These host species turn out to be the

ones with the most recent common ancestor [45,46], lending

additional support to the hypothesis that host phylogeny shapes

evolution of viruses by affecting cross-species mutational barriers.

However, influenza H1N1 viruses found in human hosts are more

similar (on average) to avian viruses than to viruses found in other

mammalian hosts. Bird viruses are also the least divergent

comparison group from swine viruses, perhaps reflecting the avian

origin of all influenza viruses, and that, for influenza, transmission

between birds and some mammalian hosts (human and swine in

this case) is more frequent than expected by their phylogenetic

relationships, probably due to persistent exposure in domestic

settings.

Discussion

In recent years, genome-wide association studies (GWAS) have

become an increasingly popular tool to identify genetic determi-

nants of non-infectious human diseases [47]. However, statistically

rigorous genotype-to-phenotype mapping for pathogens has been

Figure 5. Allele diversity across samples of influenza A H1N1 HA sequences collected from human (pre and post 2009 pandemic)
and swine hosts. Each vertical stripe represents allelic variance for a specific amino acid residue in three blocks of 40 sequences (taken at random)
per host/virus type. The block of amino acids marked by an asterisk refers to the 100 residues to which the RFA has attributed the highest significance
in explaining the allelic differences observed between groups. The ordering of other amino acids follow that of the HA gene. For each position
(column) the allele present in the first human (seasonal) virus is colored blue. Moving from bottom to top, different alleles at the same position are
then sequentially colored green, red, cyan, yellow and purple. Non polymorphic sites are not shown.
doi:10.1371/journal.pcbi.1003254.g005

Table 1. RFA selected set of putative functionally relevant host discriminating amino acids in H1N1 influenza HA compared with
those found with the Adaboost algorithm.

Viruses
In Receptor
binding domain1

In known
antigenic sites2 Selected known antigenic sites Prediction error

ADABOOST3 (2 way analysis)

Human+Pandemic Human 9/18 (50%) 4/9 (44.4%) 145,206,171,225 0.02

Pandemic Human+Swine 15/34 (44%) 5/15 (33.3%) 225,171,188,206,189 0.1

RFA (2 way analysis)

Human+Pandemic Human 22/39 (56%) 12/22 (54.5%) 81, 145, 156, 158, 159, 163, 169, 171, 187, 189, 196, 198, 208 0.0078

Pandemic Human+Swine 17/30 (56%) 7/17 (41.2%) 80, 132, 140, 145, 149, 171, 188, 208 0.0024

RFA (3 way analysis)

Human+Pandemic human+Swine 26/49 (53%) 12/26 (46.2%) 80, 81, 145,156, 158, 159, 169, 171,187, 188, 189, 196, 198, 208 0.016

1The receptor binding domain refers to positions 114 through 268 of the HA segment.
2The antigenic sites considered here are those defined as such in [60].
3The Adaboost algorithm as implemented in [33].
doi:10.1371/journal.pcbi.1003254.t001

Host Species’ Genetic Determinants in RNA Viruses
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much less common. The methods used for human GWAS are

particularly ill-suited to feature selection in RNA viruses, due to

the short genome length, very high substitution rate and diversity,

and the high degree of genetic linkage [48,49]. Human GWAS

tend to concentrate on common variants to explain the observed

phenotypes [15,49,50] by looking at individual SNPs, thus having

severe limitations in the presence of epistasis [15,48,50,51]; our

work demonstrates that non-parametric machine-learning based

Figure 6. Computationally predicted structure of the 531–738 subset of amino acids in the PB2 subunit of the polymerase protein
of influenza A viruses. For structural prediction we used the consensus sequence for the subset of viruses’ samples collected from each host
species. These sequences contain two functional domains: the 627 (in cyan) and the NLS binding (in grey) domains. Highlighted in yellow are the
amino acids which were identified by the RFA as discriminating host species.
doi:10.1371/journal.pcbi.1003254.g006

Host Species’ Genetic Determinants in RNA Viruses

PLOS Computational Biology | www.ploscompbiol.org 7 October 2013 | Volume 9 | Issue 10 | e1003254



methods – such as RFA – are more appropriate in the context of

RNA viruses, by identifying sets of substitutions associated with a

particular phenotypic class, rather than solely evaluating the

significance of individual polymorphisms [48,51]. The incorpora-

tion of interactions among predictor variables in RFA makes it

possible to identify possible epistatic effects, as highlighted in

Figure 3, with substitutions being determinant for host discrim-

ination when found together with other substitutions at other sites,

but being fairly unimportant by themselves. While RFA and other

related discriminative methods arise from a different theoretical

paradigm from likelihood-based statistical models, their predictive

performance can be readily assessed via bootstrapping and other

resampling methods.

Our work demonstrates that machine-learning based feature

selection methods are a powerful tool for de novo discovery of likely

functional host discriminating markers, whilst providing a measure

of the relative importance of those markers to host specificity.

More generally, we highlight the potential of RFA for gaining

important biological insights on cross-species transitions of RNA

viruses.. First, we find that even relatively distantly related viruses

within viral families – that might be geographically isolated and

transmitted by different routes – share highly conserved genetic

signatures of host specificity. Second, we see that the fitness

landscapes of host adaptation are shaped by host phylogeny, with

evolutionary barriers generally being lower between closely related

host species, though not always (influenza A viruses transfer

between birds and some mammalian hosts being a counter-

example). Third, our analysis of influenza A often selects sites with

empirically proven functional relevance [34,36,41,44] to host

specificity – in the case of HA, playing critical roles in cell receptor

binding; for PB2, being exposed on the protein surface (Figure 6)

and thus potentially interacting with host importin molecules to

gain access to the nucleus [52] or with the nucleoprotein in the

ribonucleoprotein complex [53,54].

Overall, genotype to phenotype mapping using host reservoir as

the discriminant phenotype can reveal evolutionary trajectories of

RNA viruses in rapid expansion and under great evolutionary

pressure (capturing the effects of diversification and expansion in a

new host, as well as the contraction of diversity following host

adaptation), while establishing the genetic signatures imposed by

specific hosts which permit cross-species transmission events to be

identified. Although discriminant analysis approaches are typically

marred by biases related to sampling efforts and founder effects

[55], RFA enables the circumvention of some of these biases

through cross-validation, sampling with replacement and attribu-

tion of weights to unequally sampled groups (see Text S1 for more

details). Even though some residual sources of bias are impossible

to eliminate, these rigorous methods (which are computationally

efficient and thus applicable to large numbers of sequences) are

potentially useful for assessing the risk of viral emergence, and

represent a powerful additional tool alongside phylogenetic

analysis for analysing the phenotypic evolution of RNA viruses.

Methods

Feature selection algorithm
Feature selection methods try to find the subset of relevant

features for building robust learning models that can accurately

inform a classification algorithm [16]. We focussed on the random

forest algorithm (RFA), since it offers excellent performance in

classification tasks [17], and provides direct measures of variable

importance and classification error. Each tree in a random forest is

trained on a bootstrap sample of the data, and at each split a

random subset of the variables is chosen from all the available

variables (in this case, a subset of positions in the sequence for each

split). Final classification of each sample results from aggregating

the votes of all trees in the forest. The importance measure of each

variable is obtained as the loss of accuracy of classification caused

by the random permutation of attribute values for that variable.

RFA identifies which variables give the most discriminating

information regarding the independent categorical variable of

interest (host reservoir in this case). We used the varSelRF package

in R to run the random forest algorithm [56].

Data preparation
The information within a given sequence alignment was

numerically recoded into an allele frequency matrix, using the

adegenet R package [57] (see Text S1 for more details). Starting

from a multiple sequence alignment, all conserved sites are

discarded, and a presence/absence matrix of all other alleles is

assembled. Since we are dealing with RNA viruses, this matrix is

actually equivalent to a presence/absence matrix of amino acid/

nucleotide types in polymorphic sites (Table S1).

Visualising the results
Outside of phylogenetic analysis, direct comparison of genetic

sequences is challenging, due to the high dimensionality of the

datasets, typically consisting of dozens of sequences containing

thousands of nucleotides. However, the relationship between a set

of viral sequences can be represented through dimensional

reduction techniques such as principal component analysis

(PCA) [58]. Here we use PCA simply as a tool to graphically

represent the variance in our datasets and to highlight the

relationships between the viral samples collected in different host

species, similar to past studies [59]. Selecting the two dominant

principal components (which in our study always explained more

than 40% of the variance) allows for a straightforward interpre-

tation of differences between any set of sequences through a two

dimensional plot, with the scores for the two principal components

serving as the coordinates. We can then assess how well feature

selection clusters RNA viruses by phenotype class (here host

reservoir) by applying PCA to both the original dataset and to the

dataset consisting exclusively of sites selected by feature selection.

Performance evaluation and solution stability
RFA prediction errors and variable importance are estimated

from the samples which are left out of the training set at each split

of the tree –the ‘out-of-bag’ samples. This makes RFA highly

robust to over-fitting. Although RFA is unlikely to over-fit, we

carried out cross-validation of the algorithm by performing

multiple bootstrap runs of the feature selection procedure. Each

bootstrap run is a new realisation of the complete feature selection

procedure, thus removing selection bias concerns on the impor-

tance of the most significant variables.

More details on the methods employed throughout can be

found in Text S1.

Supporting Information

Figure S1 RFA error rates as a function of the number of

variables in the forest (panels on the left) and solution stability

(panels on the right) for 4 viral taxa. Points in the panels on the

right reflect the proportion of trees in which the variable of the

rank given on the x-axis from the original random forest are

included among the top ranked X variables (X = 10 for blue points

and X = 30 for red points) in the 100 bootstrap samples.

(TIF)

Host Species’ Genetic Determinants in RNA Viruses
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Figure S2 RFA error rates as a function of the number of variables

in the forest (panels on the left) and solution stability (panels on the

right) for 4 viral taxa. Points in the panels on the right reflect the

proportion of trees in which the variable of the rank given on the x-

axis from the original random forest are included among the top

ranked X variables (X = 10 for blue and X = 30 for red points in the

Rabies and SARS RFA runs; X = 25 for blue and X = 100 for red

points in the influenza runs) in the 100 bootstrap samples.

(TIF)

Figure S3 Feature selection impact on host reservoir clustering,

training set (TS) and out-of-bag samples (OOB) error rates for the

viruses of 3 taxa (excluding Flaviviruses) discriminated in Table

S1. We display the relationship between viral sequences according

to the scores of the first two principal components of the PCA

analysis of both the original sequences and the sequences

containing only those amino acids which were selected by feature

selection. Colour coding of host reservoir is as follows: gold –

primates/humans; purple – birds; green – other mammals/

artiodactyls; red – bats/carnivores; blue – rodents/lagomorphs.

(TIF)

Figure S4 Bat species phylogeny according to the 12S ribosomal

RNA gene (Genbank reference for sequences - AF263219, AF326092,

AY495480, AY495484, and AY495482). The maximum likelihood

tree is shown, displaying the percentage of trees in which the associated

taxa clustered together next to the branches. The tree is drawn to scale,

with branch lengths measured in number of substitutions per site. All

positions containing gaps and missing data were eliminated. There

were a total of 1014 positions in the final dataset.

(TIF)

Figure S5 Variable importance scores obtained from the RFA

when using only viruses from the Human and Swine groups and all the

samples (Human, Swine and pandemic Human groups). The different

colors discriminate the 4 groups defined by k-means clustering.

(TIF)

Table S1 Representation of the genetic data matrixes used to

run the RFA. From a starting multiple sequence alignment (A) we

discard all non-polymorphic sites (marked by asterisks), and build a

presence/absence matrix of all other alleles as in Table S1B.

(DOCX)

Table S2 Polymerase gene sequences used to analyse RNA

viruses of several taxa. Sources are provided for the natural host

reservoir classification.

(DOCX)

Table S3 SARS coronavirus sequences used.

(DOCX)

Table S4 SARS-like virus nucleotide variants present in the

feature selected alleles and corresponding amino acid residues.

Putative residue positions in the 3D conformation of the spike

protein were suggested by [22]. Synonymous substitutions are

shown in italic.

(DOCX)

Table S5 Rabies virus nucleoprotein sequences analysed.

(DOCX)

Table S6 Random forest host reservoir prediction probabilities

for rabies viruses, excluding the putative species transition samples.

(DOCX)

Table S7 Positions selected as host-specific in the influenza A

HA analysis. The positions are ordered according to their

predicted RFA importance for classification.

(DOCX)

Table S8 Sequences used for the analysis of the influenza A PB2

segment by subtype and host reservoir.

(DOCX)

Table S9 Influenza virus host reservoir relevant amino acids and

their respective level of conservation across all viral subtypes (dh,

da, ds, dc, and de).

(DOCX)

Table S10 Mean pairwise distance (measured in terms of amino

acid differences) between and within host reservoir groups for the

influenza viruses used in the PB2 analysis.

(DOCX)

Table S11 Summary of the classification type random forest

algorithms performed and overall prediction error.

(DOCX)

Text S1 Includes a more detailed description of the methods

used throughout, as well as Figures S1, S2, S3, S4, S5 and Tables

S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11.

(DOCX)
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