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Abstract

T-cells have to recognize peptides presented on MHC molecules to be activated and elicit their effector functions. Several
studies demonstrate that some peptides are more immunogenic than others and therefore more likely to be T-cell epitopes.
We set out to determine which properties cause such differences in immunogenicity. To this end, we collected and analyzed
a large set of data describing the immunogenicity of peptides presented on various MHC-I molecules. Two main conclusions
could be drawn from this analysis: First, in line with previous observations, we showed that positions P4–6 of a presented
peptide are more important for immunogenicity. Second, some amino acids, especially those with large and aromatic side
chains, are associated with immunogenicity. This information was combined into a simple model that was used to
demonstrate that immunogenicity is, to a certain extent, predictable. This model (made available at http://tools.iedb.org/
immunogenicity/) was validated with data from two independent epitope discovery studies. Interestingly, with this model
we could show that T-cells are equipped to better recognize viral than human (self) peptides. After the past successful
elucidation of different steps in the MHC-I presentation pathway, the identification of variables that influence
immunogenicity will be an important next step in the investigation of T-cell epitopes and our understanding of cellular
immune responses.
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Introduction

Peptides presented on MHC class I (MHC-I) molecules at the

cell-surface are screened by CD8+ T-cells to detect aberrancies,

such as an infection. The strength of the interaction between the

peptide-MHC complexes (pMHC) and T-cell receptors (TCRs),

depends both on the MHC-I molecule and the presented peptide.

A specific pMHC will be recognized by an estimated average of

one in 100,000 naive T-cells [1–4], but this precursor frequency

differs for different pMHCs [3,5,6]. In the context of an infection,

recognized pMHCs can stimulate T-cells to proliferate into an

effector T-cell population that finds and kills infected cells

presenting this pMHC. Such a pMHC, that is the target of a

specific T-cell immune response, is called an epitope.

In past years, many efforts have been put in determining which

peptides are presented on MHC-I molecules. For numerous

peptide-MHC combinations the binding affinity has been mea-

sured [7,8], and this data enabled the development of highly

accurate MHC-I binding predictors [7,9–15]. Furthermore, the

processing of precursor proteins into MHC-I ligands by the

proteasome, other proteases and the TAP transporter has been

studied extensively [16–22], and data from these studies were used

to construct successful processing-predictors [23–25]. Thanks to

this progress, for a pathogen such as HIV-1 it is now possible to

predict reliably which peptides will be presented on a certain

MHC-I molecule, and test subsequently if these predicted pMHCs

are epitopes [26].

Despite high accuracy predictions of which pMHCs are formed

upon infection, what distinguishes epitopes from non-epitopes is

still an open question. Several factors have been described that

could explain the difference between epitopes and non-epitopes.

First, the abundance of a pMHC plays a role in immune targeting

[27–29], the abundance can be affected by (1) peptide-MHC

binding affinity [30], pMHC (2) stability [31], (3) the abundance of

the precursor protein [28,29,32], and (4) the efficiency of MHC

ligand processing [28,29,33,34]. Second, a pMHC should be

recognized by T-cells, i.e. it should be immunogenic. Third, the

pMHCs derived from certain proteins that are expressed early in

infection are more likely to evoke a response [35,36]. Fourth, even

if an immunogenic peptide is presented under the right conditions,

a response might be blocked by regulatory processes if a (nonself)

pMHC is too similar to a self pMHC [37–39]. We recently

estimated that about one-third of the nonself pMHCs is too similar

to self [40]. Finally, an immune response might be outcompeted by

other T-cell responses due to limited survival factors, a phenom-

enon called competitive exclusion [41,42]. Thus, a plethora of

effects eventually determines which peptides are epitopes.

The identification of epitopes is key to the study and

understanding of cellular immune responses, and is of great

importance in vaccine development. Therefore, we studied an
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important step that influences whether a pMHC can be an

epitope: immunogenicity. In this paper, we will refer to T-cell

recognized and unrecognized pMHCs as immunogenic and non-

immunogenic pMHCs. Immunogenicity can be measured directly

in peptide-immunization experiments, as other factors like the

right processing of a peptide or the expression of a source protein

are excluded from negatively influencing the T-cell response.

Peptide-immunization experiments have shown that about half of

the pMHCs are immunogenic [43,44]. We collected a set of

immunogenic and non-immunogenic pMHCs, and compared the

amino acid frequencies in both sets. This analysis showed that T-

cells have a preference for certain amino acids, especially aromatic

and large residues. Next, we analyzed the importance of different

positions of the presented peptides with respect to immunogenic-

ity. As expected, the middle part of the presented peptide (P4–P6)

was shown to be most important. These results were validated by

combining them into a simple enrichment model and testing if this

model could estimate the immunogenicity of new pMHCs. Both in

cross-validations, and in two independent data sets could we

validate our observations, by showing that immunogenicity is to

some extent predictable (AUC = 0.65). In addition, we used the

prediction model to examine a possible adaptation of the immune

system to recognize pathogen-derived peptides, and showed that a

preference for these peptides exists.

Results

Classifying immunogenic pMHCs
To investigate the peptide preferences in T-cell recognition, one

needs well defined sets of immunogenic and non-immunogenic

pMHCs. Therefore, strict parameters were set to classify only

those pMHCs for which immunogenicity or the absence thereof

was strongly shown upon infection or vaccination. The classifica-

tion of immunogenic pMHCs from positive immune responses

upon infection or vaccination is relatively straight-forward. In

contrast, the classification of non-immunogenic (i.e. unrecognized

by T-cells) pMHCs upon natural infections is difficult, as many

other factors could cause the lack of an immune response besides

non-immunogenicity (see Introduction). Therefore, for the classi-

fication of non-immunogenic pMHC, we required a peptide-

immunization study in combination with a high predicted peptide-

MHC-I binding affinity, to ensure that MHC-I presentation of the

assayed peptide to T-cells was feasible. However, this strict

definition excluded humans as a host for the identification of non-

immunogenic pMHCs, since peptide-immunization studies have

rarely been conducted in humans. Even though immunogenic

pMHCs could be derived from humans, we decided to initially

collect only data from mice, to avoid any bias caused by disparate

sampling from different hosts. In addition, we compared only

peptides presented on MHC-I molecules from the same species

(H-2 or HLA, where data originate from HLA-transgenic mice), of

the same length (9mers), and a redundancy reduction method was

applied to avoid oversampling effects (see Methods for a detailed

description on the data collection and classification process).

Four sources of data were used, the Immune Epitope Database

(IEDB) [45], and three immunogenicity studies in mice (see

methods and [43,44]). 600 Immunogenic and 181 non-immuno-

genic non-redundant 9mer pMHCs that fulfilled our strict criteria,

were selected for further characterization (see Figure 1). This

relatively large set of immunogenic and non-immunogenic

pMHCs were further analyzed to determine what properties can

explain the difference in immunogenicity.

Amino acid properties of immunogenic pMHCs
The immunogenic and non-immunogenic pMHCs, classified

above, can be compared to see what properties associate with

immunogenicity. We hypothesize that certain amino acids are

more likely to interact with TCRs, and therefore increase the

immunogenicity of a pMHC. Conversely, some amino acids could

abolish TCR interactions. To test this hypothesis, per amino acid

the association with immunogenicity was tested, and a comparison

with background amino acid frequencies was made. To prevent

any bias that might rise due to the binding motif of MHC-I

molecules, residues at positions with an influence on the binding

affinity were excluded from the analysis (see Methods). In addition,

all peptides in our data set, i.e. immunogenic and non-

immunogenic ones, were required to have a predicted binding

affinity stronger than 500 nM (see Methods). As most classified

peptides were HLA restricted (Figure 1), and because of interest

for the human immune system, we decided to restrict the analysis

to these pMHCs. The positive association with immunogenicity of

the large and aromatic Phenylalanine (permutation test: p,0.01),

and the negative association of the small Serine (permutation test:

p,0.001) were most prominent (Figure 2). In addition, significant

associations with immunogenicity were observed for Isoleucine,

Lysine, Methionine and Tryptophan (permutation test: p,0.05;

False discovery rate (FDR) for multiple testing determined as in

[46]: q,0.05). The same associations were found when pMHCs

were selected based on binding affinity predictions with an

alternative MHC-I binding predictor (Spearman rank test:

c = 0.91; p,0.001, details are given in the Methods), or an

MHC-I ligand predictor that takes into account peptide processing

(Spearman rank test: c = 0.89; p,0.001, details are given in the

Methods), or when pMHCs with matched predicted MHC

binding affinities were selected (Spearman rank test: c = 0.95;

p,0.001, details are given in the Methods).

To test if the observed associations might be the result of an

underlying preference for certain amino acid characteristics, the

enrichment of every amino acid in immunogenic vs non-

immunogenic peptides was determined, and the enrichments were

Author Summary

T-cells have to recognize peptides presented on MHC
molecules to be activated and elicit their effector
functions. Some peptide-MHC-I complexes (pMHCs) are
better recognized by T-cells; we call such pMHCs more
immunogenic. For other pMHCs, no recognizing T-cells
seem to exist; we call such pMHCs non-immunogenic. We
set out to determine which properties of pMHCs cause
such differences in immunogenicity, by carefully collecting
a large set of immunogenic and non-immunogenic
pMHCs, and analysing the difference between these sets.
Two important observations were made: First, in line with
previous observations, we showed that positions P4–6 of a
presented peptide are more important for immunogenic-
ity. Second, some amino acids, especially those with large
and aromatic side chains, seem to be better recognized by
T-cells as they associate with immunogenicity. Next, this
information was combined into a simple model to predict
the immunogenicity of new pMHCs (this model is made
available at http://tools.iedb.org/immunogenicity/). Inter-
estingly, with this model we could show that T-cells are
equipped to strongly recognize viral peptides. After the
past successful elucidation of different steps in the MHC-I
presentation pathway, the identification of variables that
influence immunogenicity will be an important next step
in the investigation of T-cell epitopes and our understand-
ing of cellular immune responses.

Determinants of Immunogenicity
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Figure 1. Data acquisition and handling oversight. Data was collected from four different sources (see Methods). The first panel shows how
many pMHCs were derived from each data set and their respective MHC restrictions and immunogenicity status. Data from all sets was combined, the
number of non-redundant 9mers with respect to the host in which the data was obtained is shown in the second panel.
doi:10.1371/journal.pcbi.1003266.g001

Figure 2. T-cell preferences for different amino acids in HLA class I presented peptides. The fraction of an amino acid in immunogenic
(left bar, filled) and non-immunogenic (right bar, unfilled) peptides presented on HLA class I molecules is shown. Significantly different distributions
are indicated with a star (Permutation test, see Methods: p,0.05; False discovery rate (FDR) for multiple testing determined as in [46]: q,0.05). The
background frequency for each amino acid in the protein sequences that were a source of the immunogenic or non-immunogenic peptides is shown
by a grey line.
doi:10.1371/journal.pcbi.1003266.g002

Determinants of Immunogenicity
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compared to physicochemical and biochemical properties de-

scribed in the AAindex database [47] (see Methods). None of the

amino acid properties described in AAindex (n = 505) were similar

to our enrichments (Supplemental Table S2). Thus, T-cell

preferences do not seem to follow a known amino acid property,

possibly a combination of properties are prefered that contribute

to a better interaction with the T-cell receptors. To try to unravel

this combination, an analysis of amino acids grouped according to

broad characteristics such as size, charge and aromaticity was

performed (see Methods). For groups of amino acids with opposite

characters, e.g. small and large amino acids, the number of

residues in immunogenic versus non-immunogenic peptides were

compared. This analysis showed that large and aromatic residues

were overrepresented in immunogenic peptides presented on HLA

(Fisher’s test: p,0.02; see Table 1). In addition a trend for the

overrepresentation of acidic residues was observed in immuno-

genic peptides (p = 0.06). Unfortunately, it is difficult to unravel if

size and/or aromaticity was most important for immunogenicity,

because amino acids share combinations of such characteristics.

Our results might be biased by the large set of HLA-A*0201

presented peptides. Therefore, we excluded all HLA-A*0201

presented peptides and repeated our analysis. This did not affect

the amino acid profile in immunogenic and non-immunogenic

peptides much, for every amino acid that was significantly

associated with immunogenicity based on all pMHCs (F,I,K,M,S

and W in Figure 2, indicated by stars), the same trend (i.e. over- or

underrepresentation) was observed for the non-HLA-A*0201

presented peptides (Supplemental Figure S1). In addition, an

overrepresentation of large and aromatic residues was observed in

the immunogenic pMHCs. Moreover, the same results were

obtained in an analysis based on only HLA-A*0201 presented

peptides (Supplemental Figure S1). Thus, the observed T-cell

preferences for certain amino acids were robust to either excluding

or selecting the HLA-A*0201 presented peptides.

T-cell recognition of peptide positions
The data set of immunogenic and non-immunogenic pMHCs

enabled us to investigate another aspect of immunogenicity: the

importance of different positions in the presented peptide.

Structural studies, as well as immunogenicity studies of specific

T-cell clones with altered peptide ligands, suggest that some

positions in a presented peptide, especially positions 4–6, are in

close contact with the TCR [40,48,49] and important for specific

T-cell responses [38,50–54]. If a certain position has a large effect

on T-cell recognition, the amino acid profile at that position is

expected to be different for immunogenic (i.e. T-cell recognized)

compared to non-immunogenic (i.e. T-cell unrecognized) pMHCs.

This difference was determined per position, using only non-

anchor positions to avoid any effect of HLA binding (see Methods),

i.e. by excluding positions P1, P2 and P9 for most HLA molecules,

but e.g. P2, P5 and P9 for HLA-B*0801. The difference between

the amino acid profiles of immunogenic and non-immunogenic

pMHCs was measured using Kullback-Leibler’s measure of

divergence. This measure allows to estimate how well one profile

can be described using the other profile, the divergence is larger if

the profiles are more different from each other. The largest

difference between immunogenic and non-immunogenic pMHCs

was observed at positions 4, 5 and 6 (Fisher’s test: p,0.01;

Table 2), and a smaller, less significant difference was observed at

position 7 (Fisher’s test: p = 0.06; Table 2). These results are in line

with previous studies on TCR-pMHC-interactions, and confirms

that our data sets of immunogenic and non-immunogenic peptides

carry known signatures of T-cell recognition.

Predicting immunogenicity
Next, we tested whether the observed associations of certain

amino acids with immunogenicity and the importance of different

positions, were valid in other data sets. Therefore, the results

presented so far were combined into a model to predict the

immunogenicity of new pMHCs. In this model, the enrichment of

an amino acid in immunogenic peptides, weighted by the

importance of the position at which it was found, was used to

score HLA class I presented peptides (see methods and Supporting

Table S1). In a 3-fold cross-validation experiment, i.e. where two-

thirds of the data were used for building the model and one-third

for testing, could this model distinguish immunogenic from non-

immunogenic peptides on HLA class I molecules with a significant

accuracy: on average 66% of the immunogenic pMHCs got a

positive score, compared to 44% of the non-immunogenic pMHCs

(Wilcoxon rank-sum test: p,0.001; AUC = 0.65; Figure 3).

Comparable prediction performances were obtained in a 10-fold

cross-validation using immunogenic and non-immunogenic

Table 1. Amino acid characteristics of immunogenic peptides presented on HLA class I molecules.

Total AA count
Enrichment in
recognized peptides

p-value
(Fisher’s exact test)

immunogenic non-immunogenic

large AA’s 384 132 1.28 0.014

small AA’s 653 304 0.94

aromatic AA’s 326 111 1.29 0.012

non-aromatic AA’s 1522 699 0.95

acidic AA’s 185 67 1.21 0.06

basic AA’s 147 78 0.83

charged AA’s 332 145 1.00 1.00

non-charged AA’s 1516 665 1.00

Sets of amino acids were counted in immunogenic and non-immunogenic peptides based on size, aromaticity, acidity and charge, and enrichments were determined
(see Methods). The association of these characteristics (e.g. size) with immunogenicity was tested by comparing the distributions in one extreme of a characteristic with
the distribution in the other extreme of that characteristic (e.g. large versus small) using Fisher’s exact test. This way, one test is performed per characteristic.
doi:10.1371/journal.pcbi.1003266.t001

Determinants of Immunogenicity
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pMHC sets that were selected to had matched MHC binding

affinities (Wilcoxon rank-sum test: p,0.05; AUC = 0.61, details

are given in the Methods) or MHC binding plus processing

affinities (Wilcoxon rank-sum test: p,0.05; AUC = 0.63, details

are given in the Methods). Thus, the amino acid enrichments and

position importances were general enough to predict, to some

degree, the immunogenicity of a pMHC.

Recently, Weiskopf et al. analyzed the immune targeting of a

large number of Dengue-derived peptides presented on various

HLA molecules, upon infection of HLA-transgenic mice with

Dengue virus [55]. 22 non-redundant 9mer epitopes and 110 non-

redundant 9mer non-epitopes with a high predicted binding

affinity (,500 nM) were reported in this study [55]. This novel

data set presented an opportunity to test if our observations could

be extended to an independent data set. While epitopes are

expected to be immunogenic, some non-epitopes may well be

immunogenic in immunization experiments, but lack immune

targeting in the experiments from Weiskopf et al. due to other

factors such as a lack of processing or expression of the peptide

during infection. Despite this problem and surpassing our

expectations, the immunogenicity model scored the epitopes

much higher than the non-epitopes (Wilcoxon rank-sum test:

p,0.01; AUC = 0.69; see Figure 4A). Thus, this analysis further

supports that certain amino acids associate with immunogenicity.

In addition, this analysis demonstrates how one could apply

immunogenicity predictions to enrich for epitopes in epitope

discovery projects by exluding non-immunogenic pMHCs. If 38%

of the Dengue-derived peptides (epitopes plus non-epitopes) would

not be tested because the immunogenicity model gave them a

negative score, still 86% of the epitopes would be identified, as

these have a positive score. In a large study where many peptides

have to be tested this means a significant fraction of the work and/

or resources can be saved when using the immunogenicity model

to enrich for pMHCs that are better recognized by T-cells.

Immunogenicity: Extrapolation from mice to humans
As mentioned before, few peptide immunization studies are

performed in humans, and only a single pMHC could be classified

as non-immunogenic in humans, disallowing a direct comparison

of amino acid enrichments and position importance scores.

However, human immunogenic pMHCs could be identified

(Figure 1), and the amino acid profile of these pMHCs was

compared to the amino acid profile of murine immunogenic and

non-immunogenic pMHCs (Figure 1). The human immunogenic

pMHCs were more similar to the immunogenic pMHCs in HLA-

transgenic mice (Kullback-Leibler divergence = 0.024), than to the

non-immunogenic pMHCs in HLA-transgenic mice (Kullback-

Leibler divergence = 0.069). Thus, it seems that immunogenic

pMHCs have a similar amino acid profile in mice and men.

To further test if the immunogenicity properties that were

identified in the mouse system could be extended to humans, we

made use of a large epitope discovery study that was recently

conducted in Dengue seropositive donors by Weiskopf et al. [56].

In this study, T-cell responses were measured in Dengue

seropositive donors, to predicted MHC ligands on the HLA

molecules of those donors. In total, 42 non-redundant 9mer

epitopes and 477 non-redundant 9mer non-epitopes were derived

from this study (see Methods for selection and redundancy

reduction criteria). Similar to our result based on murine data

(Figure 4A), the human epitopes had a much higher score in the

immunogenicity model than the non-epitopes (Wilcoxon rank-sum

test: p = 0.014; see Figure 4B). This finding confirms that studies in

HLA-transgenic mice provide usefull data to understand T-cell

recognition in humans, in agreement with other studies that

compared the immune responses in HLA-transgenic mice and

men [57].

Immunogenicity of viral and self pMHCs
The observed T-cell preferences could be the result of neutral

evolution, where random mutations have led to certain V-D-J-

segments that encode for T-cell receptors with a certain

preference. Alternatively, T-cells with a TCR that better

recognize pathogen-derived peptides might have been selected

in the thymus, by negative selection of T-cells that strongly

prefer self pMHCs, or V-D-J-segments might have been selected

through evolution that encode for TCRs with a preference

for pathogen-derived peptides, similar to what is observed for

Figure 3. Cross-validation of the immunogenicity model. Two-
thirds of the data were used for making the immunogenicity model (see
methods) and one-third for cross-validation. The average ROC (thick
grey line) of 25 of such cross-validations (thin lines) are plotted. The
average AUC was 0.65.
doi:10.1371/journal.pcbi.1003266.g003

Table 2. Position dependent differences between
immunogenic and non-immunogenic peptides.

Position Kullback-Leibler divergence

1 NA{

2 NA (anchor)

3 0.10

4 0.31 **

5 0.30 **

6 0.29 **

7 0.26 *

8 0.18

9 NA (anchor)

For peptides presented on HLA class I molecules in HLA transgenic mice that
were either known to be immunogenic or non-immunogenic (see Methods),
amino acids were counted per position. The 20 counts for immunogenic and
non-immunogenic pMHCs were compared per position using the Kullback-
Leibler divergence. A Fisher’s test (Methods) was done to determine if the distri-
butions were significantly different (* p,0.05; **p,0.01).
{Position 1 is not an anchor in every HLA molecule, nonetheless it is an anchor
in most pMHCs wherefore the divergence cannot be estimated at this position.
doi:10.1371/journal.pcbi.1003266.t002

Determinants of Immunogenicity
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HLA-A molecules [58]. The immunogenicity model (Supple-

mental Table S1) enabled us to investigate these scenarios. For 13

HLA-A and 15 HLA-B molecules, binding ligands were predicted

using MHC binding and precursor protein processing predictors,

for a large set of viruses and the human proteome (data selection

and ligand predictions were previously described in [40]). Next,

for each HLA molecule, the predicted viral and human ligands

were compared. The fraction of positive scores was higher for

viral ligands than for human ligands in 27 of the 28 HLA

molecules (sign-test: p,0.001, see Figure 5). The enriched

immunogenicity of viral ligands was largest for HLA-A*3001,

HLA-B*0702 and HLA-B*4501, where the fraction of positive

scores was 11% higher for viral versus human ligands. Only for

HLA-A*2301 was the fraction of positive scores slightly higher in

Figure 4. Predicting Dengue-derived CTL epitopes with the immunogenicity model. Immunogenicity scores were determined for non-
redundant epitopes (n = 22) and non-epitopes (n = 110) identified in mice by Weiskopf et al. [55] (A), and for non-redundant epitopes (n = 42) and
non-epitopes (n = 477) identified by Weiskopf et al. in humans [56] (B). Average and variation of the average are shown as thick lines with error bars,
individual scores are shown as dots. Both in mice and in men, the epitopes had a significantly higher immunogenicity score than the non-epitopes
(Murine data (A): p,0.01 (Wilcoxon rank-sum test); AUC = 0.69. Human data (B): p = 0.014 (Wilcoxon rank-sum test); AUC = 0.61).
doi:10.1371/journal.pcbi.1003266.g004

Determinants of Immunogenicity
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human ligands. Thus, regardless of the presenting HLA molecule,

viral ligands were predicted to be more immunogenic than

human ligands, suggesting that T-cell preferences have been

selected, either during thymic selection or through evolution, to

favour the recognition of foreign peptides.

Discussion

Immunogenicity (i.e. T-cell recognition) is an important factor

that determines if a pMHC can be targeted in an immune

response. We showed that pMHCs are more likely to be

immunogenic if they contain certain amino acid residues. More

precisely, the presence of large and aromatic residues seemed to be

associated with immunogenicity. In addition, positions 4–6 of the

presented peptide were shown to have a large effect on

immunogenicity. We combined these findings into a simple model

and demonstrated that these observations can be extended to

other data sets in both humans and mice, and used to predict the

immunogenicity of new pMHCs.

Previously, other groups have studied the importance of

different positions in an MHC-I presented peptide using two

distinct approaches. First, specific T-cell clones have been

assessed for the recognition of variant peptides [38,50–54,59],

and most T-cell clones in such studies lost the recognition of

peptides that were substituted at positions between the anchors

(P3–8). In well-studied systems, such as the T4 T-cell clone

recognizing the SLFNTVATL peptide on HLA-A2, recognition

of position P5 was most specific, followed by a high specificity at

the flanking positions P4 and P6 [38,51]. Second, the study of

TCR-pMHC structures contributed to the understanding of

immunogenicity. In such structures, the number of interactions

between the TCR and different positions of the MHC-I

presented peptide have been evaluated [40,48,49], and more

interactions were observed with the positions P4–P8. The results

from both approaches seem to agree: that positions P4–8, and of

those especially positions P4–6, are most important for immuno-

genicity. Here, we find that the amino acids at different positions

of the MHC-I presented peptide in immunogenic and non-

immunogenic pMHCs differ most at positions P4–P6, and less so

but significantly at P7. Thus, our findings are in agreement with

the previous observations, and present a third line of evidence

that positions P4–P6 are most important in the TCR-pMHC-

interaction.

The effect of P1, P2 and P9 on T-cell recognition could not be

analyzed as these positions determine peptide binding in most

HLA molecules. Similarly, TAP transport and proteasome

cleavage might bias our conclusions on the importance of different

positions for immunogenicity. TAP has been shown to have

specificity at the C-terminus of a peptide (P9) and at the three N-

terminal positions (P1, P2 and P3 of the MHC-I presented peptide

if aminopeptidase activity is ignored) [24]. For proteasome

cleavage activity, specificity is strongest at positions next to the

cleavage site, i.e. corresponding to position P9 and to a much

smaller extend P8, of the MHC-I presented peptide [25]. Thus,

neither TAP transport nor proteasome cleavage preferences are

expected to significantly affect positions P3–8, therefore we think

that an effect of these processes on our position importance

analysis can be ruled out. If any, an effect might be present at P3

(for TAP) or P8 (for the proteasome), but the measured importance

of these positions was smallest (Table 2).

We focused in this paper on MHC-I presented peptides and

showed a preference for certain amino acids, especially those with

large, aromatic residues. This fits with a previous study by

Alexander et al. who tested the immunogenicity of so-called

PADRE peptides, that are presented on most MHC class II

molecules but that differ in T-cell recognition sites [60].

Interestingly, they showed that PADRE peptides with large

residues are very immunogenic. Thus, T-cell preferences for

peptides presented either on MHC class I or II molecules seem to

be similar. We have also performed an analysis of amino acid

preferences for H-2 restricted pMHC complexes on a limited

dataset, and found a different pattern of enrichment scores for the

amino acids that does not correlate with the enrichment scores we

obtained while using HLA restricted pMHC complexes (Spear-

man rank test: c = 20.06; p = 0.80). However, an association with

immunogenicity of both aromatic and large amino acids was also

found for H-2 restricted pMHC complexes (Fisher’s exact test:

p,0.05, both). The difference might be expected given the altered

peptide binding preferences of H-2 molecules, that present short

8mer peptides and use more and different auxiliary anchor

positions than HLA class I molecules [61]. Currently, the limited

number of non-immunogenic H-2 restricted pMHCs (n = 46,

Figure 1) prohibits us to draw conclusions on the difference

between H-2 and HLA restricted pMHCs. Therefore, more

experimental data and further studies are necessary to analyze if

the differences are significant, and if so, if they are due to

structural, evolutionary, or other differences between the immu-

nogenicity of peptides that are presented on HLA class I or H-2

molecules. Similarly, the immunogenicity of peptides might be

different when they are presented on different HLA molecules,

though to a lesser degree as different HLA molecules are more

comparable to each other than to H-2 [61]. When more data

would be available, the influence of MHC-I restriction on

immunogenicity could be investigated.

Based on the comparison of immunogenic and non-

immunogenic pMHCs we derived a simple model to predict

Figure 5. Viral pMHCs are better recognized by T-cells. For
common HLA molecules (13 HLA-A and 15 HLA-B), viral and human
ligands were predicted using MHC binding and precursor protein
processing predictors (as in [40]). The fraction of viral pMHCs (y-axis)
and human pMHCs (x-axis) with a positive score in our immunogenicity
model is shown. The diagonal denotes the line y = x, HLA molecules
with a larger fraction of positively scoring viral pMHCs fall above this
line, which was the case for 27 of the 28 HLA molecules (sign-test:
p,0.001). Three HLA molecules where the difference between the
(predicted) viral and human ligands was largest (B*0702, A*3001,
B*4501), and one HLA molecule where the difference between viral and
human ligands was smallest (A*2301), and HLA-A*0201 are indicated in
the figure.
doi:10.1371/journal.pcbi.1003266.g005
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immunogenicity. We call our immunogenicity model simple

because it does not account for non-linear influences on

immunogenicity, or position-specific amino acid enrichment

scores. Position-specific scores (i.e. 20 enrichment scores per

position) seem to present an opportunity for further improvement,

as different preferences seem to occur at different positions, e.g. a

preference at position 6 for non-charged residues (Fisher’s exact

test: p,0.05; not shown). However, the current data sets are too

small to investigate the preferences at each position separately, or

to incorporate position specific preferences into the immunoge-

nicity model without running the risk of overfitting. Especially data

from non-immunogenic pMHCs is lacking as a result of the

preferential reporting of positive results. We believe our simple

model provides a proof-of-principle that immunogenicity is

predictable, and that more complex and possibly more accurate

predictors can be made if more data, especially non-immunogenic

pMHCs, is available.

We benchmarked our immunogenicity prediction model on

epitope and non-epitope data sets that were derived from mice and

men. As expected, most epitopes obtained high scores in our

model. Conversely, some non-epitopes do not elicit an immune

response because they are non-immunogenic, indeed some of the

non-epitopes scored very low in our immunogenicity prediction

model. However, non-immunogenicity is only one of several

reasons that can explain why a peptide is not immune targeted (i.e.

is a non-epitope). For instance, a lack of expression or processing

of the precursor protein, or regulation by Tregs might cause

certain peptides to be non-epitopes. An understanding of all these

processes and how to combine them will be necessary for

improved epitope/non-epitope predictions. Nevertheless, the

prediction of non-immunogenic peptides will be usefull in future

large-scale epitope discovery studies, as it shortens the list of

potential peptides that have to be tested without finding less

epitopes. In both data sets that were used to test the immunoge-

nicity prediction model, we showed that ,40% of the candidate

peptides can be discarded, while losing only 15–30% of the

epitopes. Even though this might seem like a small improvement,

the effect can be large in studies where patient-derived samples or

other resources are limited.

The group of Ho et al. have pioneered the field of immuno-

genicity predictors, and recently published a method for

immunogenicity prediction called POPISK [62]. POPISK aims

to predict the immunogenicity of HLA-A*0201 presented

peptides and reports a high accuracy in cross-validation

(AUC = 0.74, see [62]). POPISK is different from our predictor

in three important ways. First, it is trained on all peptide positions

of HLA-A*0201 presented peptides, whereas we exclude positions

that influence the binding affinity such as the anchor positions P2

and P9. Second, non-immunogenic pMHCs in the IMMA2 data

set that was used to train and test POPISK were not defined

based on negative results in a peptide-immunization experiment,

therefore other explanations for the absence of an immune

response besides non-immunogenicity cannot be excluded. Third,

POPISK is a rather complex model using support vector

machines and string kernels. A complex model runs the risk to

be overtrained, especially on a limited data set, which will not be

noticed in cross-validation if redundant peptides are not excluded

from the data sets, as is the case for the IMMA2 data set that was

used to build POPISK [62]. Possibly due to such differences,

POPISK is not able to score the Dengue-derived epitopes that

were recently published by Weiskopf et al. [55] higher than the

non-epitopes, neither based on all pMHCs (1-sided t-test:

p = 0.28; Supplemental Figure S2), nor on the HLA-A*0201

presented pMHCs (1-sided t-test: p = 0.39; Supplemental Figure

S2). A model like POPISK might perform better if it is trained on

more high quality data. For now, we think that the available data

only permits the construction of simple proof-of-principle

immunogenicity predictors, and the study of basic features of

immunogenicity.

The TCR repertoire can be influenced by the hosts genetics,

e.g. the HLA-background of a host and thymic selection [63–65],

or the likelyhood of certain VDJ-recombinations [65–68]. Even

though the T-cell pool might vary in every individual as a result

of such influences, we found that T-cells have a preference for

certain amino acids (see Supplemental Table S1, the immuno-

genicity model). That preferences are similar among hosts agrees

with the observation from Alanio et al. that T-cell precursor

frequencies for the same pMHC are similar in different hosts,

whereas precursor frequencies for different pMHCs vary

substantially [6]. Furthermore, we showed that these preferences

resulted in a better recognition of pathogen-derived pMHCs

(Figure 5). The observed preferences might be the result of

natural selection for the increased immunogenicity of pathogen-

derived pMHCs, additional to the widely suggested selection for

TCR-genes that interact with conserved MHC-I motifs [49,69–

71]. Alternatively, T-cells might be selected in the thymus to have

a preference for nonself pMHCs. In this scenario, strong thymic

selection would take out self-recognizing T-cells, that might share

a preference for amino acids that are more abundant in the

human proteins. It would be very interesting to measure if the T-

cell preferences that are described here, are present before or

only after thymic selection.

Thus far, we described the immunogenicity of a pMHCs as an

inherent feature, caused only by pMHC specific factors such as the

interactions with the TCR repertoire. However, factors outside the

TCR repertoire and the specific pMHC might also play a role. For

instance, when different pMHCs interact with the same part of the

TCR repertoire they could compete with each other. Some

peptides might face a stronger competition, e.g. if they are

composed of more general amino acids. For that reason, a possibly

high precursor frequency that would have been measured for a

single pMHC, should not per definition translate in a high

immunogenicity when this pMHC is presented in the context of an

infection among other pMHCs.

The identification of all pMHCs that are epitopes would be

prerequisite to a complete understanding of the cellular

immune responses. That understanding would help the study

of host-pathogen interactions, for instance how pathogens try to

escape from immune recognition by mutating the epitopes

that are under pressure of the immune system [72,73]. In

addition, the identification of epitopes will help the develop-

ment of better vaccines, that effectively elicit protective immune

responses. In past years, investigations of the MHC-I presen-

tation pathway led to the development of highly accurate

predictors that can predict which pMHCs are formed upon

infection. However, we know very little on which presented

pMHCs are used by the immune system to mount a T-cell

response. Previously, we and others showed that self-similarity

plays an important role in excluding some pMHCs as potential

epitopes [37,38,40], and we estimated that at least one-third of

the foreign pMHCs would be ignored to prevent otherwise

autoimmune responses [40]. Now, we add another piece to the

epitope-puzzle, and show that immunogenicity is to some

degree predictable. A combination model that integrates

predictions from the MHC-I presentation pathway, self-overlaps

and immunogenicity might help to more accurately predict

epitopes in the future, and to assist large-scale epitope discovery

projects.
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Methods

Ethics statement
Ethics approval was granted for the dengue virus large scale

epitope discovery study from the LIAI IRB and the Ethical Review

Committee at Medical Faculty, University of Colombo, Sri Lanka.

Generation of data sets
The aim of this study is to compare immunogenic and non-

immunogenic peptides on MHC class I molecules. These peptides

were obtained from data sets from Assarsson et al [43], Kotturi et

al. [44] and an unpublished data set on Coxiella Burnetti-derived

peptides as well as from the IEDB [45]. Only 8–10mer peptides

were selected, for which reliable MHC-I binding predictions are

possible. Peptide MHC-I binding affinities were predicted using

NetMHC-3.2 [10], the best performing predictor according to a

large benchmark study [8]. Only pMHCs with a high predicted

binding affinity were included (,500 nM). Two other MHC-I

binding predictors were used, NetMHCpan-2.4 [13,14] and

NetCTL-1.2a [10], to make MHC-I binding predictions, classify

pMHCs, and to redo the enrichment analysis. In each case, near-

identical enrichment scores were observed. In the analysis with

NetCTL-1.2a, MHC-I ligands were predicted based on a

combination of prediction scores for proteasome cleavage, TAP

transport and MHC-I binding. Standard settings of NetCTL-1.2a

were used to combine the scores and to discriminate ligands from

non-ligands [10].

The data set by Assarsson et al of vaccinia-derived peptides

presented in an HLA-A*02 transgenic mouse model, has been

classified by the authors into ‘‘dominant’’, ‘‘subdominant’’,

‘‘cryptic’’ and ‘‘negatives’’ [43]. We classified peptides as

immunogenic if they induced a positive response in the peptide-

immunization experiments (categories ‘‘dominant’’, ‘‘subdomi-

nant’’ or ‘‘cryptic’’; n = 63; see Figure 1), while a peptide with a

negative response was classified as non-immunogenic (category

‘‘negative’’; n = 33; see Figure 1).

Data described by Kotturi et al. was kindly provided by the

authors. Kotturi et al. studied the immunogenicity of peptides

presented on HLA-A*1101 that are derived from Arenaviruses

[44]. In HLA-transgenic mice, T-cell recognition upon peptide-

immunization was measured. If a significantly high T-cell response

was elicited (t-test: p,0.05; SFC.20 per million; stimulation

index.2.0) in at least two independent measurements (detailed in

[44]), we classified a peptide as immunogenic (n = 116, see

Figure 1). All other peptides were classified as non-immunogenic

(n = 159, see Figure 1).

A previously unpublished set of peptides derived from Coxiella

burnetti proteins was tested for immunogenicity in wild type Bl/6

mice. The immunization protocol and criteria for positivity were

the same as for the Kotturi data set [44]. 11 Immunogenic and 16

non-immunogenic pMHCs were derived from this experiment.

A large data set was derived from the IEDB, where all T-cell

response experiments (i.e. peptide-immunizations, vaccination and

infection experiments) with MHC class I presented peptides in

mice and humans were downloaded (www.iedb.org [45]). All

entries from HLA-A*1101-transgenic mice were excluded, to rule

out any bias resulting from the incompatibility of the HLA-A*1101

binding motif and the preferences of murine TAP [74]. This

requirement was alleviated for the data from the Kotturi study as

we know that in this peptide-immunization study there was no

need for peptides to be TAP transported. If the restricting MHC-I

molecule was not reported, it was estimated from the reported

mouse strain MHC-I background; if multiple MHC class I

molecules were possible the molecule with highest predicted

binding affinity was selected as the restricting MHC-I molecule.

Immunogenic pMHCs were selected based on a reported positive

T-cell response, and the absence of restimulation in vitro. Non-

immunogenic peptides were selected based on a reported negative

T-cell response and the absence of any reported positive T-cell

response. In addition, as with the other data sets, non-

immunogenic pMHCs were required to be identified in a

peptide-immunization experiment. Therefore, the following crite-

ria were applied: the antigen-epitope relation had to be ‘‘epitope’’,

meaning that only the epitope was used for stimulation and not for

instance the complete pathogen, and the first in vivo immunogen

had to be ‘‘peptide from protein’’, meaning a peptide immuniza-

tion study was performed. This resulted in the identification of

2029 immunogenic and 152 non-immunogenic pMHCs (see

Figure 1). As only peptides of the same length were studied here,

9mers were selected, for which most pMHCs were available. All

selected pMHCs are listed in Dataset S1.

Generation of non-redundant data sets
The data in databases such as the IEDB is biased towards

pMHCs that are well-studied. For instance, for the SIINFEKL

peptide we find 358 entries in the IEDB, and 22 entries of single

amino acid mutants. To eliminate such cases in our dataset, a

redundancy reduction based on source protein mapping was

applied. First, for all peptides in our datasets that were identified as

immunogenic or non-immunogenic following the above require-

ments (see Figure 1), source proteins were downloaded via the

sequence information provided in the IEDB. In addition, for the

Vaccinia-, Coxiella- and Arenavirus-derived pMHCs, the pro-

teomes of these viruses were downloaded via EBI/EMBL in July

2011. Next, all peptides were mapped to all source proteins using

BLASTP 2.2.18 [75], and a mapping was considdered successful if

more than 75% of the residues matched. Two peptides were

defined as redundant if more than half of their residues map to the

same positions in any of the source proteins. In addition, all

peptides that could not be mapped to a source protein were

discarded. Redundant peptides were filtered out, wherein we

prioritized the selection of pMHCs with more entries in the IEDB.

If redundant pMHCs with equal priority remained, the selection

of one of them was based on chance; this was the case for only

5.7% of the non-immunogenic pMHCs and 4.4% of the

immunogenic pMHCs. This procedure generates pMHC sets that

can vary slightly. A single non-redundant pMHC set was selected

and used for the presented analysis, but every result was tested and

repeated in ten (of ten) non-redundancy selections.

Selecting Dengue-derived epitopes in mice and men
In mice, Weiskopf et al. analyzed the immune targeting of a

large number of Dengue-derived peptides presented on HLA-

A*0101, HLA-A*0201, HLA-A*1101 and HLA-B*0702, upon

infection of HLA-transgenic mice with Dengue virus [55]. pMHCs

with a 9mer and a high predicted binding affinity (,500 nM) were

selected from this study [55]. When selecting non-redundant

peptides, the selection of epitopes with a high T-cell response and

non-epitopes with a strong binding affinity was prioritized.

Selected epitopes (n = 22, Dataset S2) and non-epitopes (n = 110,

Dataset S2) did not differ significantly in their predicted binding

affinities.

In humans, Weiskopf et al. tested the immune responses to

Dengue-derived peptides in Dengue seropositive donors [56]. For

every donor, the HLA background was determined, and peptides

predicted to be presented on these HLA molecules were tested.

We defined pMHCs with a positive immune response in any of the

donors as epitopes; a pMHC that never evoked an immune
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response and that was not redundant with an epitope was defined

as a non-epitope. Only non-redundant 9mer peptides from the

epitope and non-epitope sets were selected. In addition, as 5 of the

229 donors contributed to 50% of all detected immune responses,

we selected per donor 5 epitopes with highest immune responses,

to prevent a bias that might have been caused due to the very

broad T-cell response in these donors. Selected epitopes (n = 42,

Dataset S2) and non-epitopes (n = 477, Dataset S2) did not differ

significantly in their predicted binding affinities.

The immunogenicity model
The immunogenicity model is build based on the enrichment of

amino acids in immunogenic versus non-immunogenic peptides

and the importance scores of different positions of the MHC-I

presented peptide (Table 2). For each MHC-I molecule, the

impact on binding affinity was determined per position of the

presented peptides (as explained in [40]). The six positions with

least impact on the binding affinity were defined as non-anchor

positions, these six positions can differ for different MHC-I

molecules that use different anchor positions. Only non-anchor

positions were used to study differences in immunogenicity, as

anchor positions might reflect a difference in binding affinity

rather than a difference in immunogenicity. Per amino acid, the

enrichment is calculated as the ratio between the fraction of that

amino acid in the immunogenic versus non-immunogenic data

sets. For instance, Tyr occurs with a frequency of 2.5% in

immunogenic and 1.5% in non-immunogenic peptides, the

enrichment in immunogenic peptides is 1.7-fold, and the natural

logarithm of this enrichment is 0.54. We call this enrichment the

log enrichment score. To predict the immunogenicity of a new

pMHC, per non-anchor residue of the presented peptide the log

enrichment score was found and weighted according to the

importance of that position (measured as the Kullback-Leibler

divergence; see Table 2). The weighted log enrichment scores of

all (non-anchor) residues were summed, the resulting score was

termed the immunogenicity score. The larger the immunoge-

nicity score, the more the pMHC is like the immunogenic

peptides and therefore expected to be immunogenic. The log

enrichment scores of amino acids at anchor residues are masked,

i.e. not used to derive the immunogenicity score. These

assumptions resulted in the following formula to calculate the

immunogenicity score, S, of a peptide ligand, L, presented on an

HLA molecule, H:

S(H,L)~
X9

p~1

EA(L,p)|Ip|M(H, p) ð1Þ

Where for every position p in the ligand L, the log enrichment

score E for the amino acid at that position A(L,p) weighted by

the importance of that position Ip is summed. The eventual

masking of anchor positions on that HLA is obtained by setting

M(H,p) to 0.

The immunogenicity score model was tested in a 3-fold cross-

validation experiment, where a random two-thirds of the data was

used to calculate the log enrichment scores. These log enrichment

scores, together with the position importance weights (Table 2)

were then used to construct the immunogenicity score model as

described above, and the other one-third of the data was used to

test its performance. 25 Cross-validations were performed. Our

final immunogenicity score model, that is used throughout this

paper, is based on all non-redundant HLA class I presented

peptides found in HLA-transgenic mice. As the selected non-

redundant set of peptides varies slightly (explained above), the final

model was constructed by repeating the non-redundancy selection

and model building 100 times, and taking average log enrichment

scores per amino acid from these 100 models. The final log

enrichment scores, position importance weights and explanations

on constructing the immunogenicity score model are given in

Supplemental Table S1.

Amino acid properties
Different groups of amino acids were assembled based on

shared characteristics. These groups were used to test if certain

characteristics associate with immunogenic or non-immunogenic

peptides. Small amino acids were defined as having a size of less

than 120 Da (A,G,P,S,T,V), large amino acids as having a size of

more than 150 Da (F,H,R,W,Y). Definitions of the other groups

were based on conventional views: Aromatic amino acids

(F,H,W,Y), non-aromatic amino acids (all amino acids that are

not aromatic), charged amino acids (D,E,H,K,R), non-charged

amino acids (all amino acids that are not charged), acidic amino

acids (D,E) and basic amino acids (H,K,R). For opposite

characteristics, e.g. large versus small, the enrichment of amino

acids with a certain characteristic, e.g. large, was determined by

comparing the ratio of large amino acids in immunogenic versus

non-immunogenic peptides with the ratio of all amino acids in

immunogenic versus non-immunogenic peptides.

From the AAindex database [47], all (n = 505) amino acid

properties were downloaded in March 2012. In this database,

similar properties are defined by their strong correlation (Spear-

man-rank test: absolute correlation coefficient .0.8).

Creating sets of binding affinity matched pMHCs
Two sets of pMHCs with matching predicted binding affinity

scores were created by making bins of scores, and selecting the

maximum number of pMHCs from each set such that the

distibutions over the bins in each set was the same. The first bin

encompassed all pMHC with a binding affinity lower than 1 nM.

The other bins were separated by five values that were chosen on a

logarithmic scale from 1 nM to 500 nM, i.e. 1 nM, 4.7 nM,

22.4 nM, 106 nM and 500 nM. Two sets of pMHCs with

matched processing probabilities and matched MHC binding

affinities were created in a similar way using NetCTL prediction

scores (encompassing MHC binding and peptide processing

propensity scores). Hereby, to evaluate all scores on a logarithmic

scale, the scores were increased with 1.1625 such that the

minimum score was higher than 1.0. The bins were separated

by five values that were chosen on a logarithmic scale from 1 to 5.

In all cases, the difference in affinity scores between the selected

matched sets was tested, and shown to be not significantly different

(Wilcoxon rank-sum test: p.0.05).

Statistics
Statistical tests were performed using the stats-package from the

scipy-module in Python. To assess the significance of the

association of a certain amino acid with immunogenicity, a

permutation test was performed. For each amino acid, first the

frequency in non-anchor positions of immunogenic and non-

immunogenic peptides, and the background frequency in source

proteins was determined (data used for Figure 2). Next, based on

the background frequency and the total number of amino acids, a

random sample of immunogenic and non-immunogenic amino

acids was drawn. The frequency of the amino acid in the

immunogenic and non-immunogenic drawings was determined,

and the difference between these frequencies was compared with

the difference in the real peptides. 10000 of these permutations

were performed, and the fraction of permutations in which the
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(permutated) difference was larger or equal than the real difference

determined the probability of finding our result by chance, i.e. the

p-value. Q-values, to estimate the False Discovery Rate (see [46]),

were determined using the QVALUE software that is developed

by Storey et al. [46]. The Fisher’s test to determine if amino acid

distributions were significantly different was performed in R [76].

Hereby, the Fisher’s test was done with asymptotic chi-squared

probabilities if the ‘‘Cochran conditions’’ (no cell has count zero,

at least 80% of the cells have 5 or more counts) were satisfied

[76,77].

Supporting Information

Dataset S1 A table with all immunogenic and non-
immunogenic pMHCs that were found in the IEDB,
Vaccinia, Arena and Coxiella data sets (Methods). On

each row, the peptide sequence (column A), the presenting MHC

molecule (column B), the host (column C) and the immunogenicity

(column D) are described.

(XLS)

Dataset S2 A table with all non-redundant murine and
human Dengue epitopes and non-epitopes (Methods).
On each row, the peptide sequence (column A), the presenting

MHC molecule (column B), the epitope/non-epitope classification

(column C) and the host (column D) are described.

(XLS)

Figure S1 T-cell preferences for different amino acids
in HLA-A*0201 presented peptides (left panel) or
peptides presented on other HLA molecules (right
panel). The fraction of an amino acid in immunogenic (left

bar, filled) and non-immunogenic (right bar, unfilled) peptides is

shown. The background frequency for each amino acid in the

protein sequences that were sources of the immunogenic or non-

immunogenic peptides is shown by a grey line.

(TIF)

Figure S2 Predicting Dengue-derived CTL epitopes
with the POPISK model [62]. POPISK scores were deter-

mined for non-redundant epitopes (n = 22) and non-epitopes

(n = 110) identified in mice by Weiskopf et al. [55] (left panel), and

for the epitopes (n = 7) and non-epitopes (n = 31) in this set that

were HLA-A*02:01 restricted (right panel). Average and variation

of the average are shown as thick lines with error bars, individual

scores are shown as dots. In both sets, the epitopes and non-

epitopes had similar POPISK scores (All (left panel): p = 0.28 (1-

sided t-test); AUC = 0.52. HLA-A*02:01 restricted (right panel):

p = 0.39 (1-sided t-test); AUC = 0.49).

(TIF)

Table S1 The immunogenicity model. The immunogenic-

ity score, S, is derived by summing the log enrichment scores of

amino acids that are found at non-masked positions, weighted by

the importance of that position (see formula and Methods). The

final log enrichment scores for all amino acids are given in the left

table, importance scores for the different positions are shown in

the right table (also shown in table 2). An example to calculate the

score for HLA-A*0201:SLFNTVATL is given.

(TIF)

Table S2 Amino acid characteristics that correlate with
our enrichment values (Supplemental Table S1). For all

amino acid indices that are described in the AAindex-database

[47], the Spearman Rank correlation with enrichment scores in

immunogenic pMHCs was determined. All significant (p,0.05)

correlations are reported. Q-values, reported in the fifth column,

give the estimated False Discovery Rate (see [46]) which was very

high in all cases .0.4 due to the large number of tests performed

(n = 505). The ‘‘hydrophobicity coefficient in RP-HPLC’’-index

showed the best correlation, but is not the only measure of

hydrophobicity. All other indices with the term ‘‘hydrophobic’’ or

‘‘hydrophobicity’’ in their description (n = 35) were not signifi-

cantly correlated with our enrichment scores (p.0.1, not shown).

(TIF)
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