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Abstract

The binding of short disordered peptide stretches to globular protein domains is important for a wide range of cellular
processes, including signal transduction, protein transport, and immune response. The often promiscuous nature of these
interactions and the conformational flexibility of the peptide chain, sometimes even when bound, make the binding
specificity of this type of protein interaction a challenge to understand. Here we develop and test a Monte Carlo-based
procedure for calculating protein-peptide binding thermodynamics for many sequences in a single run. The method
explores both peptide sequence and conformational space simultaneously by simulating a joint probability distribution
which, in particular, makes searching through peptide sequence space computationally efficient. To test our method, we
apply it to 3 different peptide-binding protein domains and test its ability to capture the experimentally determined
specificity profiles. Insight into the molecular underpinnings of the observed specificities is obtained by analyzing the
peptide conformational ensembles of a large number of binding-competent sequences. We also explore the possibility of
using our method to discover new peptide-binding pockets on protein structures.
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Introduction

Protein-peptide interactions are involved in wide range of

cellular processes and are more common than originally thought.

Disordered peptide segments, often found within longer regions of

disorder in proteins, typically undergo a binding-induced folding

transition upon contact with a target molecule such that a specific

structure is assumed [1]. It is not uncommon, however, that

significant conformational diversity persists even after binding [2–

4]. Disordered regions in proteins play pivotal roles in controlling

cellular signaling networks [5], protein subcellular localization

[6,7], protein degradation [8], and post-translational modification

[9,10]. Remarkably, a recent estimate suggests that as much as

around 40% of all links in protein interaction networks are due to

binding of short peptide segments of around 3–10 amino acids in

length to protein domains [11].

An apparently general property of protein-peptide interactions

is their promiscuous nature, i.e., certain peptide positions

contribute very little (or not at all) to the binding affinity, and

thus can accommodate various amino acid types, while other

positions require specific amino acid types for binding [12–14].

Indeed, many domain families recognize sets of peptide sequences

conforming to particular amino acid patterns, or linear motifs. For

example, SH3 domains bind sequences containing P-X-X-P where

X is any amino acid and P is proline [12], and PDZ domains

target short sequence patterns occurring at the extreme C-terminal

end of proteins [15]. More than 100 such different linear motifs

are known [16], however, many remain to be discovered [11].

Putative new linear motifs can be found by mining for

overrepresented sequence patterns in evolutionarily related

proteins [17] or in unrelated proteins sharing a common

functional characteristic [18–20]. These methods are, however,

limited by weak statistical signals, and cannot discover peptide

segments involved in very few interactions or those not conforming

to linear motifs. Subtle variations in specificity among domain

members beyond a simple motif are crucial to their biological

function [21,22]. It is therefore of importance to understand the

detailed molecular underpinnings of protein-peptide recognition.

To this end, simulation methods at the atomic level have recently

been employed, including different variants of docking [23–29],

implicit- and explicit-water molecular dynamics [30–34], and

Monte Carlo-based approaches [35–37].

Because of the promiscuous nature of protein-peptide interac-

tions, determining peptide binding specificity profiles requires

finding the binding free energy for a large number of different

sequences. This can be computationally prohibitively expensive,

especially since peptide chain entropy can contribute significantly

to binding affinity [31]. In this work, we describe and test a

theoretical framework for exploring, in an efficient and represen-

tative way, the combined sequence and conformational space of

peptides interacting with a given peptide-binding pocket. In testing

the method, we focus on 3 different PDZ domains with distinct

peptide-binding specificity profiles. The method developed relies

on the so-called multisequence Monte Carlo (MC) approach

[38,39] in which a joint probability distribution in conformation

and sequence space is simulated. Updates in conformation and

sequence are performed as ordinary MC moves and thereby put

on an equal footing. In particular, this makes search through
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sequence space fast compared to calculating binding free energies

for peptide sequences one after another. In our scheme, a

representative sample of strongly binding peptide sequences can be

obtained because the conditional probability distribution of

sequences given bound peptide conformations becomes biased

according binding free energy weights, as schematically illustrated

in Figure 1. A major advantage of our method is that the

underlying equilibrium conformational ensembles are readily

available, which can provide insight into the interplay between

specificity and the peptide conformational dynamics. We also

explore the possibility of employing our method to the discovery of

peptide-binding pockets, given only a protein structure as input.

Methods

All-atom computational model
All calculations in this work are performed using the model in

Ref. [36]. It is an implicit-solvent model combining an all-atom

representation of the protein chain with an effective energy

function taking into account the major contributions of protein

interactions, hydrogen bonding, electrostatic attraction, and the

hydrophobic effect [40]. The model was developed and tested

based on the folding of small peptides and proteins and thereafter

adapted particularly for protein-peptide binding [35,36]. The

potential energy function can be decomposed into five terms,

E(�rr)~EevzEloczEhbzEsczEdes , ð1Þ

representing excluded-volume interactions, local backbone inter-

actions, hydrogen bonding, sidechain-sidechain interactions, and a

backbone desolvation effect, respectively [36]. Because of the

effective nature of the energy function, assigning a physical unit to

the energy E is not straightforward. We therefore use dimension-

less units to express E and kBT , where T is the temperature. All

bond lengths and angles are kept fixed at values derived from a

statistical analysis of protein structures in the Protein Data Bank

[41]. In addition, some torsional angles, such as the peptide bond

angle v~1800, are kept fixed at ‘‘ideal’’ values. Therefore, the

degrees of freedom of the model are a set of torsional angles and

overall chain orientations. More precisely, a conformation of one

or more protein chains, �rr, is determined by the backbone torsional

angles, wi, yi, a set of sidechain torsional angles, xi, for each amino

acid i, and the overall rotational and translational orientation of

each chain.

Protein-peptide binding specificity
Consider the interaction between a protein structure and a N-

amino acid peptide with sequence �ss~fs1,:::,sNg where si is the

amino acid type of position i, and denote the chain conformation

of the protein and peptide by �rr. In principle, a complete

description of the peptide-binding specificity of the protein means

finding the binding free energy DF (�ss)~FB(�ss){FU(�ss), where

FB(�ss) and FU(�ss) are the free energies of the bound (B) and

unbound (U) states, respectively, for all possible �ss. This definition

of binding free energy requires classifying conformations �rr as

either B or U which can be done using some geometric criterion,

such as the closeness of the peptide backbone to the peptide-

binding pocket.

Binding free energy calculations are computationally intensive

because they in principle require a full exploration of �rr-space. For

instance, the binding free energy of particular peptide at

temperature T can be calculated using

DF (�ss)~{b{1 ln
P(BD�ss)

P(UD�ss)
ð2Þ

where P(BD�ss) and P(UD�ss) are the probabilities of populating B

and U, respectively, for a given peptide sequence �ss at temperature

Figure 1. Schematic illustration of the computational peptide
screening method. The method is based on simulating a joint
probability distribution, P(�ss,�rr), where �ss and �rr are amino acid sequence
and chain conformation, respectively. Both conformational (�rr?�rr0) and
‘‘mutational’’ (�ss?�ss0) updates are performed as ordinary MC moves,
subject to a Metropolis accept/reject question. Mutational updates are
applied to a set of pre-defined variable amino acid positions on the
peptide (open circles) while all other amino acids remain unchanged
(filled circles). The procedure works in two steps. (A) In the first, iterative
simulations of the unbound state (a free peptide) are performed
creating a reference state where all �sss occur with equal probability, i.e.,
the probability distribution PU(�ss) is flat. (B) In the second step,
simulations of the protein-peptide bound state, B, are performed in
which the distribution of �ss becomes skewed according to the
Boltzmann weights e{bDF (�ss) , thereby favoring sequences with low
binding free energies, DF (�ss). The probability distribution PB(�ss) can be
used to estimate relative DF (�ss)-values among the different sequences
�ss or give a representative view of the peptide-binding specificity of the
protein.
doi:10.1371/journal.pcbi.1003277.g001

Author Summary

The interactions between proteins play a crucial role for
almost every undertaking of a cell. Many of these
interactions are mediated by the binding of relatively
short unstructured polypeptide segments, or peptides, in
one protein to well-folded domains in other proteins. Such
protein-peptide interactions have some interesting and
special properties, e.g., promiscuity, which means many
different peptide sequences are able to bind the same
protein domain. Peptides also often exhibit structural
flexibility even after binding a protein. These special
properties make it desirable, but also challenging, to
simulate protein-peptide binding in atomistic detail for
many different peptide sequences. To this end, we have
developed a computational algorithm that simultaneously
explores the structure of protein-peptide complexes and
the amino acid sequences of the peptide. In particular, our
algorithm allows binding-competent peptide sequences to
be generated in direct relation to their binding strengths.
We also explored the possibility of using our method to
locate new peptide-binding pockets on protein structures.
Computational algorithms such as the one developed here
may pave the way to reveal the full complexity of protein-
protein interaction networks used in cells.

Exploring Protein-Peptide Binding Specificity
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T , b~1=kBT , and kB is Boltzmann’s constant. Therefore,

determining DF (�ss) for many �ss in a sequential manner is time

consuming. As an alternative, we develop here a method that in a

single run generates sequences from the probability distribution

PB(�ss)~Z{1 exp½{bDF (�ss)� , ð3Þ

where Z is a normalization constant. Hence, rather than searching

for a single optimally binding peptide, our method aims to

‘‘screen’’ for peptide sequences with low DF in a controlled

manner thereby providing a representative picture of the peptide-

binding specificity.

Multisequence Monte Carlo method for protein-peptide
binding

The approach in this work for generating sequences according

to the distribution in Equation 3 is based on the multisequence

Monte Carlo method [38,39], meaning it relies on simulations of

the joint probability distribution

P(�rr,�ss)~Z{1e{bE(�rr,�ss)zg(�ss),

Z~
X

�ss

ð
�rr

d�rre{bE(�rr,�ss)zg(�ss),
ð4Þ

where E(�rr,�ss) is the potential energy of a conformation �rr with

sequence �ss, and the sum and integral are taken over all �ss and �rr,

respectively. Practically, this means designating a set of amino acid

positions on the peptide as variable, for which the amino acid type is

allowed to change dynamically through MC updates (see below for

details). The parameters g(�ss) are important as they control the

marginal distribution

P(�ss)~Z{1

ð
�rr

d�rre{bE(�rr,�ss)zg(�ss)~Z{1Z(�ss)eg(�ss) , ð5Þ

where Z(�ss) is the canonical partition function for sequence �ss at

temperature T . We now make use of the division of �rr-space into B

and U states, such that Z(�ss)~ZB(�ss)zZU(�ss)~e{bFB(�ss)z

e{bFU(�ss). This allows us to construct the probability distribution

P(s,�ss)~
Z{1

Ð
�rr[B

d�rre{bE(�rr,�ss)zg(�ss)~Z{1e{bFB(�ss)zg(�ss) if s~B

Z{1

Ð
�rr[U

d�rre{bE(�rr,�ss)zg(�ss)~Z{1e{bFU(�ss)zg(�ss) if s~U ,

8><
>: ð6Þ

which can be used to construct a ratio,

P(B,�ss)

P(U,�ss)
~e{bDF (�ss), ð7Þ

determined by DF (�ss) and hence independent of the parameters

g(�ss). Equation 7 shows that it is in principle possible to replace the

sequential calculation of binding free energies DF (�ss) for many �ss,

by a single multisequence simulation of the distribution in Equation

4 and measuring the probabilities P(B,�ss) and P(U,�ss). Such an

approach is possible but it also has practical limitations. The

number of P(B,�ss) and P(U,�ss) quantities to be estimated grows

exponentially (20M ) with the number of variable positions, M,

meaning the approach is limited to very small M. The approach

does in principle not depend on the parameters g(�ss) but in

practice they would need to be carefully chosen to achieve

sufficient sampling of sequence space, even for small M.

Computational peptide screening method
We do not pursue free energy calculations based directly on

Equation 7 in this work. However, we take it as a starting point for

developing our peptide screening method. First, we restate the

probabilities in Equation 7 using Bayes’ theorem,

P(B,�ss)~P(�ssDB)P(B) ,

P(U,�ss)~P(�ssDU)P(U),
ð8Þ

where P(B) and P(U) are the total probabilities of occupying B

and U (regardless of �ss), respectively, and P(�ssDB) and P(�ssDU) are

conditional probabilities. Second, we make the choice

g(�ss)~bFU(�ss). This means that the distribution P(U,�ss), and

hence P(�ssDU), becomes flat (cf. Equations 6 and 8). We then

obtain

P(�ssDB)!e{bDF (�ss) , ð9Þ

and we can make the identification PB(�ss):P(�ssDB) (see Equation

3). To simplify our notation, we also put PU(�ss):P(�ssDU).

It is important to note that the conditional probabilities PB(�ss)
and PU(�ss) are computationally convenient quantities because they

do not depend on states �rr outside B and U, respectively. They can

be obtained from separate multisequence simulations where �rr is

restricted to B and U. We can now summarize our peptide

screening method as a two-step strategy, illustrated in Figure 1:

1. Unbound state simulation. Determine g(�ss) parameter values such

that all sequences �ss occur with equal probability in a

multisequence simulation of U, i.e., such that PU(�ss) becomes

flat.

2. Bound state simulation. Using the obtained g(�ss), perform a

multisequence simulation of B. The generated sequences �ss will

become distributed according to the Boltzmann weights

e{bDF (�ss).

Unbound state approximation
To further simplify our implementation of the above strategy we

make the approximation that U consists of a free protein and a

free peptide, without any interaction. There are then two

contributions to the unbound state free energy FU(�ss), a �ss-

independent contribution from the protein, F
prot
free , and a �ss-

dependent contribution from the free peptide, F
pep
free(�ss). We can

ignore the quantity F
prot
free , putting FU(�ss)~F

pep
free(�ss), because F

prot
free

does not impact the distribution

P(�ssDU)!e
{bF

prot
free

{bF
pep
free

(�ss)zg(�ss)!
ð

�rrpep[peptide

d�rrpepe{bE(�rrpep,�ss)zg(�ss):ð10Þ

Hence, in calculations of the unbound state, we can rely on

multisequence simulations of a free peptide chain ignoring the

protein.

Linear model of the unbound state
A remaining question in implementing the strategy outlined

above is how to determine the parameters g(�ss), such that they

approximate well bFU(�ss). We find that a simple linear form,

g(�ss)~h(s1)z:::zh(sN ) , ð11Þ

where h(si) depends on amino acid type, is sufficient to achieve a

(6)

(10)

Exploring Protein-Peptide Binding Specificity
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good approximation. The 20 h-parameters can be interpreted as

the contributions made to bFU(�ss) by the various amino acid types.

This can be seen by considering the case in which the sis are

independent variables. In such a case, the unbound state free

energy can be decomposed into position-independent contribu-

tions fU(si), i.e., FU(�ss)~
PN

i~1 fU(si), and the conditional

probability distribution of �ss given the unbound state can be

written PU(�ss)~PN
i~1 pU(si), where

pU(si)!e{bfU(si)zh(si) : ð12Þ

Hence, the choice g(�ss)~bFU(�ss) amounts to setting

h(si)~bfU(si). A good set of h-parameters can be found by

iterative multisequence simulations of U (a free peptide) in which a

flat distribution in sequence space, pU(si)~constant, is eventually

obtained. As seen from Equation 12, by measuring the probabil-

ities pU(si) in simulations with an initial h(si) set, an improved set

of values can be obtained by setting hnew(si)~h(si){ln pU(si).

Using this procedure, we have determined h(si) parameters for

3 short peptides which provides approximately flat PU(�ss)
distributions (see Figure S2 in Supporting Information). In

particular, this shows that, despite the simplification, a linear

approximation is sufficient to achieve g(�ss)&bFU(�ss) to a

reasonably good approximation. This is important for the peptide

screening method because it underlies the accuracy of Equation 9

which assumes g(�ss)~bFU(�ss). Errors in the approximation to the

unbound state free energy will directly affect the conditional

distribution, PB(�ss). More precisely, if g(�ss)~bFU(�ss)zd(�ss), then

PB(�ss)!e{bDF (�ss)zd(�ss) : ð13Þ

The approximation errors d(�ss) are generally not possible to

determine individually due to the size of the sequence space. An

indication of the size of the errors can, however, be obtained from

Figure S2. It shows that for the probability distributions of

different amino acid types taken over all variable positions, the

deviations are at most around 10%. Similar deviations from the

desired Boltzmann distribution (see Figure 1B) for PB(�ss) should be

expected. We also note that more elaborate approximations to

FU(�ss) could easily be implemented, e.g., a position-dependent

linear approximation with 20|M free parameters rather than the

20 parameters in Equation 11.

Errors introduced by the linear approximation on U would not

impact free energy calculations performed using Equation 7,

because this ratio is independent of the choice of g(�ss). Choosing

g(�ss)&bFU(�ss) would nonetheless be a suitable choice for this

method too, as a way to achieve good sequence space sampling.

Monte Carlo updates
The distribution in Equation 4 is realized through multi-

sequence MC simulations. In these simulations, two different types

of MC updates are included. Updates of the first type are

conventional conformational updates (�rr?�rr’) and include pivot

moves, xi-angle rotamer turns, and rigid body rotation and

translations, as described in previous work [35,36]. The second

type of updates produces changes to the amino acid sequence of

the peptide (�ss?�ss0). These ‘‘mutational moves’’ are subject to an

ordinary Metropolis accept/reject question, i.e., the new sequence

is accepted with probability Pacc~min½1,e{DH�, where

DH~b(E(�rr,�ss0){E(�rr,�ss)){g(�ss0)zg(�ss). Proposed sequences �ss0

are obtained by randomly picking a variable peptide position i

and a new amino acid type, si
0. Thereafter, the peptide chain is re-

built using the current �rr, i.e., the set of wi-, yi-, and xi-angles, and

the new energy E(�rr,�ss0) calculated. A complication is that the

number of actual degrees of freedom for different amino acid types

differ. This can be handled by formally including two backbone

angles, wi and yi, and 5 side-chain angles, xi, as degrees of

freedom for every variable amino acid position (7 is the maximum

number of internal degrees of freedom for a residue in our model,

occurring for lysine). For example, the geometry of an alanine

residue is determined by two wi, yi angles and a xi angle. This

means that the potential energy E(�rr) is independent of the

remaining 4 xi angles, which will therefore quickly tend towards a

uniform distribution. In a proposed mutation to an amino acid

with additional (actual) degrees of freedom at position i, such as

serine, the new amino acid will inherit the two wi, yi angles and all

5 xi angles, which will determine its geometry. That detailed

balance is indeed maintained by this scheme can be explicitly seen

by comparing multisequence and a set of separate ordinary

simulations of short peptides (see Figure S3 in Supporting

Information).

Protein domains
The 3 peptide-binding proteins considered in this work are the

3rd PDZ domain of PSD-95, the 6th PDZ domain of GRIP1, and

the PDZ domain of PICK1, which we refer to throughout the text

as PSD95, GRIP1, and PICK1, respectively. Structures of

peptide-bound complexes have been determined with X-ray

crystallography for PSD95 (PDB id 1BE9) [42] and GRIP1

(1N7F) [43], and with NMR for PICK1 (2PKU) [44,45] (see

Figure S1 in Supporting Information), with peptides sequences

KQTSV, ATVRTYSC, and ESVKI, respectively.

Monte Carlo simulations
In order to test our peptide screening procedure (Figure 1), we

perform also ‘‘fixed-sequence’’ simulations for comparison,

following our earlier protocol [35,36]. This procedure explores

the interaction between a given protein structure and a given

peptide sequence in a straightforward way. The protein is kept

close to an experimentally determined native structure through

constraints on the Ca-atoms, leaving some backbone flexibility and

complete sidechain flexibility. The peptide chain, by contrast, is

left without constraints such that it can explore the entire protein

surface. The protein and peptide chains are contained within a

cubic box (side L = 50 Å) with periodic boundary conditions,

corresponding to an effective concentration of &10 mM. To

achieve an equilibrium picture of the interaction, the (dimension-

less) simulation temperature is set such that both binding and

unbinding events occur. In the present study, 10 independent

fixed-sequence simulations of at least 7|108 MC steps were

performed at kBT~0:45 for each of the 9 PSD95-peptide pairs

taken from Ref. [46].

Our peptide screening simulations (Figure 1B) differ from these

fixed-sequence simulations in two ways. First, the peptide chain is

restricted to the peptide-binding pocket of the protein using a

constraint on the Ca-atom of the peptide C-terminal residue. This

constraint is loose enough to still allow binding and ‘‘unbinding’’ of

the peptide such that conformations in the bound state can be fully

explored (for details, see section Peptide-binding pocket con-

straint). Second, in addition to the conformational MC updates for

the protein and peptide chains, mutational updates are applied to

the variable positions of the peptide (see above).

For PSD95, peptide screening simulations were performed with

the peptides KKETE-x and KKE-xxx, where x indicates a

variable amino acid position (derived from the sequence

KKETEV which has been identified as a high affinity binder for

PSD95 [46]). For GRIP1 and PICK1, simulations were performed

Exploring Protein-Peptide Binding Specificity
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for ATVRT-xxx and ES-xxx, respectively. For each system with

3 variable positions we performed 20 independent runs, and for

KKETE-x 3 independent runs were performed. All trajectories

were at least 8|108 MC steps in length. The simulations were

performed at kBT~0:45, 0.55, and 0.51, for PSD95, GRIP1, and

PICK1, respectively. These values were determined previously as

midpoint temperatures for the different PDZ domains with their

respective peptide ligands [36]. Simulations of the unbound state

(step 1, Figure 1A) were performed for free peptide chains at the

same respective temperatures. All multisequence simulations were

initiated with x~alanine at the variable positions.

Peptide bound state
To monitor binding of the peptides in our simulations, we use a

root-mean-square distance between the native and model peptide

coordinates, rnat and r, i.e.,

RMSD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i

(rnat
i {ri)

2

vuut , ð14Þ

where the sum goes over the N Ca-atoms of the peptide. The

native peptide coordinates are taken from an experimentally

determined structure (see Protein domains above). The peptide

bound state (B) is defined as RMSD,6 Å, following Refs. [35,36].

Peptide-binding pocket constraint
To spatially constrain the peptide chain close to the peptide-

binding pocket we use a simple constraint energy term,

E
pep
constr~kconstrf (dC), where dC~Drnat

C {rCD is the deviation of

the peptide C-terminal Ca-atom position, rC, from its position in

the experimentally determined structure, rnat
C . The function f is

piecewise linear such that f (x)~max(0,x{10). This means that if

the peptide C-terminal end moves more than 10 Å from its

position in the native structure, there will be an energetic penalty.

The constraint term was chosen in order to enhance sampling of

the peptide bound state, without forbidding important bound state

structures. The strength of the term is set to kconstr~10.

Results/Discussion

In order to realize the computational peptide screening method

imagined in Figure 1, a prerequisite is that relative binding free

energies for different peptide sequences can be reasonably well

estimated. We therefore start by testing our all-atom computa-

tional model for protein-peptide binding for predicting binding

free energies on one of our 3 test domains. Second, we test the

soundness of the developed screening method by comparing with

the same binding free energy data. Third, we test the ability of the

method to reproduce more generally the binding specificity

profiles of the 3 domains and link them to conformational

preferences of the peptide chain in the bound state. Lastly, we

attempt ‘‘unrestricted’’ peptide screening in which the peptide is

allowed to search freely the protein surface. Such an approach

could potentially be used to locate new peptide-binding sites on

protein structures.

All-atom computational model for protein-peptide
binding

Previously, we have developed a MC-based approach for

protein-peptide binding [35,36]. In this approach, the peptide is

left free to explore the protein surface and relatively long simu-

lations are performed such that a representative conformational

ensemble can be obtained, including both bound and unbound

states. The underlying all-atom model is taken from folding studies

of proteins and was tested on a larger set of PDZ domains and

peptides, particularly by comparing minimum-energy conforma-

tions with experimental structures of the protein-peptide com-

plexes. In 8 out of 11 cases, the minimum-energy structures were

within a root-mean-square distance RMSD (see Methods) of 6 Å

from the experimental structures [35]. The method has also been

used to study details of the peptide binding process by exploring

the binding free energy landscapes for PDZ domains of different

specificity classes [36].

We turn now to the ability of our model to quantitatively

reproduce experimental binding affinity data. To this end, we use

a study by Spaller et al. [46] in which isothermal titration

calorimetry was used to determine binding affinities for the

domain PSD95 and a number of peptide sequences under

identical conditions. Of the peptides in Ref. [46], we focus on

the 6-amino acid peptide KKETEV, a known high-affinity

binder for PSD95, and 8 variants with modifications in either P0

or P{2; for PDZ peptide ligands, the C terminal position is

denoted P0 and the positions immediately upstream are P{1,

P{2, P{3, etc. Using our procedure [35,36], (see also Methods)

we performed simulations of the interaction of each of these 9

peptides and PSD95. Binding free energies can be calculated in

a straightforward way using Equation 2. To this end, we define

the bound state, B, as peptide conformations with RMSD,6 Å,

again following Refs. [35,36]. The experimentally measured

dissociation constants, Kd, differ by approximately two orders of

magnitude for the 9 peptides sequences, from 1.9 to 105 mM
[46].

In Figure 2, experimental and calculated binding free energies

are compared. There is a reasonably good agreement between the

two sets of data, with the exception of one of the P{2 -variants

which is predicted to bind too strongly. Excluding this outlier, the

correlation is r~0:86. It should be noted that the comparison in

Figure 2 involves relative binding free energies. Absolute binding

free energies obtained from Equation 2 are generally different

from those measured by Spaller et al. [46]. The reason is that our

simulations are performed at a computationally convenient

temperature where equilibrium can be reached, i.e., where both

binding and unbinding are observed multiple times in a trajectory.

The binding affinities obtained are relatively low (Kd*mM)

meaning that the simulation conditions used, kBT~0:45,

correspond to a higher temperature than the 298 K used in the

experiments [46]. For the same reason, although the correlation

between experimental and calculated binding free energies is

good, the ranges observed are slightly different (approximately

4kBT and 7kBT , respectively). The disagreement for the outlier

sequence KKECEV, however, cannot be explained by temper-

ature differences but rather indicates a limitation of our model in

capturing all relevant energetics of the binding process. For class I

PDZ domains, which includes PSD95, interactions at P{2

involve rather subtle intermolecular sidechain-sidechain hydro-

gen bonding (between the serine or threonine at P{2 and a

histidine on the aB-helix of the PDZ domain [15]) that might not

be captured entirely by our model. Overall, the result indicate

that our model captures well variations in binding free energies

among P0 -variants while there are some limitations for P{2 -

variants.

Testing the computational peptide screening method
We now turn to our computational peptide screening method.

As illustrated by Figure 1, the method works by performing

multisequence MC simulations in two steps. In these simulations,

Exploring Protein-Peptide Binding Specificity
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interlaced updates in conformational space and peptide sequence

space (for variable peptide positions) are performed as ordinary

MC updates. The first step involves iterative simulations of the

unbound state (a free peptide chain) such that a reference state is

created where all peptide sequences occur with roughly equal

probabilities. In the second step, simulations of the peptide-

bound state are performed where, by contrast, peptide sequences

�ss will be generated in a biased way according to the weights

e{bDF (�ss). The theoretical background is described in detail in

Methods.

As an initial test, we consider again PSD95 and screen the PDZ

peptide-binding pocket using the peptide sequence KKETE-x,

where x indicates a variable amino acid position. An example of a

trajectory of the bound state B is shown in Figure 3B. Because the

distribution of generated sequences is known (! e{bDF (�ss)), the

frequency of occurrence of different amino acid types at position x
can be used to estimate the relative binding free energies for the 20

different sequences (i.e., KKETEG, KKETEA, KKETEV, etc.).

These screening results can be directly compared with our results

above, obtained for full protein-peptide simulations performed

separately for different sequences. Our screening-derived binding

free energies, DDFscreen, correlates well (r~0:95) with our

previously obtained DDFcalc values, as shown in Figure 3A. There

are two approximations inherent to the peptide screening method.

First, it is assumed that the unbound state consists of a free protein

and a free peptide, without any interaction. Second, a linear

approximation of the unbound state free energy is applied (see

Methods for details). The agreement between the two different sets

of results for PSD95 shown in Figure 3A means, in particular, that

the approximations underlying the screening method do not

strongly impact the results.

Exploring peptide binding specificities
We now employ our screening method with the aim of more

generally characterizing the peptide-binding specificity of a given

protein domain. To this end, we apply the screening approach as

in the previous section but now allow additional variable amino

acid positions such that the main specificity-determining region of

the peptide is covered. We focus on three different domains,

Figure 2. Comparing experimental and calculated relative
binding free energies. As a quantitative test of the all-atom model
[36] used in this work, we calculate binding free energies, DFcalc, for the
protein PSD95 and 9 different peptide sequences. The DFcalc values
were obtained from protein-peptide binding simulations performed
separately for each PSD95-peptide pair according to our previous
protocol [35,36] (see also Methods) and using Equation 2. The peptide
sequences considered are derived from KKETEV (black diamond) and
are either P0 -variants, KKETE-[I/L/M/F/A/T], (black diamonds) or P{2 -
variants, KKE[S/C]EV (red circles). All simulations were performed at
kBT~0:45 and standard errors were estimated from 10 independent
runs. Experimental binding free energies, DFexp, are taken from Ref. [46].
Both DFcalc and DFexp values are shown relative to the weakest binding
peptide. The solid line represents the best linear fit, exluding KKECEV,
and the correlation coefficient is r~0:86.
doi:10.1371/journal.pcbi.1003277.g002

Figure 3. Relative binding free energies from computational
peptide screening. We applied the peptide screening method to the
protein PSD95 with the peptide KKETE-x, where x denotes a variable
amino acid position. Relative binding free energies, DFscreen(�ss), for the
different possible peptide sequences �ss, were estimated from the
distribution PB(�ss) obtained in the second step of the screening
p r o c e d u r e ( s e e F i g u r e 1 ) a n d u s i n g t h e r e l a t i o n
DFscreen(�ss)=kBT!{ ln PB(�ss). (A) Comparison between DFcalc and
DFscreen values for the P0-variants in Figure 2. The correlation coefficient
is r~0:95. Standard errors for DFscreen are estimated from 3
independent screening runs. As in Figure 2, the binding free energies
are shown relative to the weakest binding peptide. (B) Example of a
peptide screening run of PSD95 showing the evolution of RMSD, which
measures the structural similarity of the peptide chain to the
experimental structure, as a function of the number of elementary
MC steps. The definition of bound state, RMSD,6 Å, is indicated by a
horizontal line.
doi:10.1371/journal.pcbi.1003277.g003
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PSD95, GRIP1, and PICK1, each having a different specificity

profile. PSD95 and GRIP1 are representative members of class I

and II PDZ domains binding peptides with the sequence pattern

½T=S�{X{WCOOH and W{X{WCOOH, respectively, where X is

any residue, W is a hydrophobic residue, and COOH represents

the peptide C terminus [15,47]. PICK1 is a domain with dual

specificity, meaning that it binds peptides exhibiting either class I

or II sequence patterns. We perform simulations in which 3

peptide positions are treated as variable, P0, P{1, and P{2.

To identify possible binding motifs for a particular domain, we

use weblogos [48] to represent the obtained conditional distribu-

tion of sequences, PB(�ss). It is clear from Figure 4 that our result

for GRIP1 is consistent with a class II domain, as expected from

experimental data. The situations is less straightforward for

PSD95. The position P0 is occupied mainly by hydrophobic

residues, particularly I, V, and L, and P{1 samples amino acid

types almost uniformly. This in line with experimental results

which have identified ½T=S�{X{½V=I=L�COOH as the linear

motif for PSD95 [46]. For P{2, our simulations give only a weak

signal for T/S which is likely due to the limitation of our model in

capturing fully the binding energetics for this position for class I

domains, as discussed above. It is interesting, however, that T7

phage display experiments [49] produced instances of hydropho-

bic residues at P{2, particularly I and M, giving some support to

our result in Figure 4A. This is also in line with the notion that the

classification of PDZ domains is not strict and cross-interactions

with other ligands are possible [22]. For PICK1, we find a

specificity profile more closely related to class II rather than class I

(see Figure 4C). This unexpected result suggests that PICK1 might

be class II dominant despite its dual specificity nature. Further

experiments will be needed to explore this possibility. It is at least

partially supported by the study of Madsen et al. [50] where, using

an assay based on fluorescence polarization, it was found that

PICK1 showed a higher affinity for a class II than class I peptide.

We also note that our screening method predominantly produce F

residues at P0 which is contrary to Ref. [50,51] where a preference

for smaller hydrophobic residues was seen.

The profiles in Figure 4 indicate that overall sequence variations

are tolerated to different extents in the 3 different peptide

positions. This is quantified in Figure 5, showing the sequence

entropy, Si, for the different amino acid positions. What is the

reason for these differences? We note that Si, which measures the

degree of sequence randomness, is smallest for P0 and largest for

P{1 for all 3 domains. This is consistent with the general property

of PDZ domains allowing only hydrophobic amino acids at P0

while accommodating (mostly) any amino acid type at P{1.

Figure 5A shows that PSD95 exhibits a relatively high Si also for

P{2. This is likely due to a limitation of our model to fully capture

the T/S preference at this position, as discussed above. The slight

preference for hydrophobic amino acids at P{2 is nonetheless

interesting given the experimental support [49] for this observa-

tion. How can such atypical hydrophobic amino acids at P{2, in

some cases, be accommodated by a class I domain for which the

recognized linear motif typically follows ½T=S�{X{WCOOH? In

Figure 5D–F, we illustrate representative ensembles of bound

peptide conformations for all three domains (regardless of peptide

sequence, �ss) obtained from our screening simulations. PSD95

differ from the other two domains in that it displays a greater

structural diversity of the peptide ligand. Such relatively major

conformational flexibility is not uncommon for small ligands in

complexes [52] and has been observed by our group previously for

this PDZ domain [36]. In a somewhat simplified picture of PDZ-

peptide binding, the bound state can be seen as a combination of

two binding modes, where the peptide binds the domain either in

a tight way, involving both P0 and P{2, or in a looser way,

involving only P0 (see Figure 5 and Figure S4 in the Supporting

Information). This observation is in line with recently determined

X-ray structures of class I PDZ domain-peptide complexes in

which the peptides bind their respective domains mainly through

P0 and directed roughly perpendicular to the domain surface [53].

It is possible therefore that hydrophobic amino acids might be

allowed at P{2, in particular cases where the bound state include

such ‘‘perpendicular’’ peptide conformations. Nonspecific hydro-

phobic contacts between P{2 sidechains and the domain surface

might contribute to the stability of the complex. Such a picture

would indeed explain the occurrence of some hydrophobic amino

acids at P{2 both in our results and in phage-display experiments

performed on PSD95 [49].

Discovery of peptide binding sites?
We have shown above that our peptide screening method can

describe the gross features of the peptide binding specificities for a

set of protein domains. The second step in our strategy (Figure 1B)

involves multisequence simulations in which the peptide chain is

artificially kept close to the peptide-binding pocket using a spatial

constraint, in order to enhance the sampling of the bound state, B.

Can the spatial constraint on the peptide be relaxed? The question

is of interest because, if it turns out to be feasible, it opens up for

using our screening method as a way to discover peptide-binding

pockets on proteins, based on a 3-dimensional structure alone. To

investigate the possibility for using our screening method for such

structure-based binding-site discovery, we perform simulations of

PSD95 following essentially the strategy in Figure 1, but with the

difference that the peptide is left entirely unrestricted in the second

step, i.e., it is free to diffuse in the simulation box and thus allowed

to bind anywhere on the protein surface. Moreover, we make the 5

most C-terminal positions, P0 to P{4, variable. This approach is

therefore truly unbiased in the sense that no prior knowledge is

built in of either (1) the peptide-binding pocket on the protein or

(2) which peptide sequences are binding competent.

Figure 4. Peptide-binding specificity profiles from computa-
tional peptide screening. We applied our peptide screening method
to the proteins (A) PSD95, (B) GRIP1, and (C) PICK1 with the peptides
KKE-xxx, ATVRT-xxx and ES-xxx, respectively, where x indicates a
variable amino acid position. As illustrated in Figure 1, the obtained
probability distributions PB(�ss) represent the peptide-binding specific-
ities of the proteins. Shown are ‘‘one-dimensional’’ specificity profiles
for the 3 variable peptide positions, illustrated as weblogos [48]. At a
given peptide position i, the letter height is determined by pB,i(s), i.e.,
the probability of observing the amino acid type s at position i. The
color scheme is as follows: hydrophobic (A, V, L, I, P, W, F, M, Y) black,
polar (G, S, T, C) green, neutral (Q, N) purple, basic (K, R, H) blue, and
acidic (D, E) red.
doi:10.1371/journal.pcbi.1003277.g004
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Figure 6 shows the results of these unbiased peptide screening

simulations. In Figure 6B, we show a probability distribution in

terms of RMSD and amino acid type, si, for P0. The distribution

should be interpreted such that, for a given RMSD, it gives the

probability for the occurrence of various amino acid types at P0.

For example, at high RMSD values (.10 Å), the probability is

roughly uniform (&1=20), indicating that the peptide behaves as if

in the unbound state. In particular, this means that peptide does

not attach to surface regions other than the PDZ peptide-binding

pocket despite the search through peptide sequence space. The

picture changes drastically when the peptide is close to the

peptide-binding pocket (low RMSD), in which the sequence

distribution becomes skewed, particularly towards V, I, and L. In

fact, the binding specificity profile for P0, P{1, and P{2,

constructed using the same bound state definition as before

(RMSD,6 Å), is highly similar to the one obtained previously

using the ‘‘restricted’’ screening simulations (cf. Figure 4A and

Figure 6A). The consistency of these results suggests that our

peptide screening method might be able to function as a tool to

identify peptide binding sites on protein structures and at the same

time provide a rough estimate of the their peptide-binding

properties.

Summary and conclusions
We have developed an equilibrium MC-based method for

characterizing protein-peptide interactions. The method samples

jointly the peptide sequence and conformational spaces in a single

run. In particular, this strategy makes search through sequence

space computationally efficient and allows relative free energies to

be estimated for a large number of peptides. In this work, we

explored possible applications and used 3 different PDZ domains,

with different peptide-binding specificities, as a test case. The

peptide screening method relies on two approximations on the

unbound state which are found not to impact the results

significantly. Rather than measuring relative populations of bound

and unbound states for many different peptide sequences, the

method relies on measuring a conditional probability distribution

of the sequences in a single run. Using this aspect of the method,

we found good agreements with both full-scale protein-peptide

binding simulations performed separately for each sequence as

well as with experimental results. We also obtained specificity

profiles for each of the 3 domains and compared with the

experimentally known profiles, with a good overall agreement. An

advantage of the method is that conformational ensembles are

readily available for analysis, for visited sequences, which can

reveal the interplay between binding specificity and conforma-

tional flexibility of the peptide chain. Finally, we explored the

possibility of using the screening procedure for discovering new

peptide-binding pockets on protein structures, with encouraging

results.

Supporting Information

Figure S1 Experimental structures of the PSD95,
GRIP1, and PICK1 domains in complex with peptide
ligands. Visualization of the X-ray structures of (A) PSD95 [42]

and (B) GRIP1 [43], and the NMR structure of (C) PICK1 [44].

The peptide ligands have the sequences KQTSV, ATVRTYSC,

and ESVKI, respectively, and are shown in stick representation

(deep blue, except the C-terminal amino acids shown in red). The

Figure 5. Interplay between peptide binding specificity and
structural heterogeneity. A useful feature of the peptide screening
method is that the underlying joint probability distribution P(�rr,�ss) (see
Figure 1) can provide further insight into the structural underpinnings
of specificity. Shown is a simple analysis of the specificity profiles of
PSD95, GRIP1, and PICK1 in Figure 4. (A–C) The degree of sequence
randomness at different peptide positions i, as measured by the
sequence entropy Si~{

P
s p

B,i
(s) ln p

B,i
(s), where p

B,i
(s) is defined as

in Figure 4 and the sum goes over all 20 different amino acid types s.
For reference, we note that for a position in which all amino acid types
occur with equal probability, Si~ln 20&3. (D–F) Superposition of a
random sample of bound state conformations �rr with various peptide
sequences �ss, in ribbon representation (peptides shown in blue and PDZ
domains in grey). For clarity, only single structures of the PDZ domains
are shown. We find that the relatively larger structural heterogeneity at
P{2 for peptides bound to PSD95 is connected to a higher Si. The C-
terminal amino acid, P0 , (red) is tightly bound to the peptide-binding
pocket in all 3 cases and this feature is conserved across different
binding-competent sequences.
doi:10.1371/journal.pcbi.1003277.g005

Figure 6. Using computational peptide screening for peptide-
binding site discovery. We tested a modified version of the
screening procedure in which the peptide is free to search the entire
protein surface. This approach was applied to the protein PSD95 with
the peptide G-xxxxx (x indicates a variable position), at kBT~0:45. (A)
Peptide-binding specificity profile determined as previously for the 5
variable positions, i.e., using the conditional probability distribution of �ss
given the bound state, PB(�ss). The letter color scheme is same as in
Figure 4. (B) Probability distributions of �ss given different values of
RMSD, P(�ssDRMSD), for the C-terminal peptide position, P0 . Far from
the binding pocket (high RMSD), all amino acid types are visited
roughly uniformly whereas close to the binding pocket (low RMSD) the
distribution becomes skewed towards strongly binding sequences.
doi:10.1371/journal.pcbi.1003277.g006
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PDZ domains are shown in ribbon (light blue). The image was

created using the PyMol molecular visualization program.

(TIFF)

Figure S2 Multisequence Monte Carlo simulations of
free peptide chains. The first step of the peptide screening

strategy (see Figure 1A) requires obtaining a uniform distribution

of sequences, i.e., PU(�ss)~constant. Multisequence simulations

were performed of the isolated peptides KKE-xxx (PSD95),

ATVRT-xxx (GRIP1), and ES-xxx (PICK1), where x represents

a variable amino acid position, at kBT~0:45, 0:55, and 0:51,

respectively. The figure shows probability distributions pU(s) in

amino acid type s taken over all 3 variable positions. To achieve

roughly flat distributions, i.e., pU(s)&1=20, sets of 20 h(s)
parameters were determined separately for each peptide by an

iterative procedure, as explained in the text.

(TIFF)

Figure S3 Detailed balance in all-atom multisequence
Monte Carlo simulations. To test the soundness of the

proposed method, we performed multisequence simulations of the

peptide A-x-A, where x is a variable amino acid position, at

kBT~0:45. These simulations amounts to calculating the

thermodynamic behavior for the 20 different variants x in a

single run. For comparison, therefore, we perform ordinary MC

simulations separately for each of the 20 tripeptides AGA, AAA,

AVA, etc., at the same temperature. We test the consistency of the

two set of results by comparing the probability distributions p(xi)
for different sidechain rotamer angles, xi. The figure shows p(xi)
for (A) x1, (B) x2, and (C) x3 for valine, obtained from the ‘‘fixed-

sequence’’ simulation (FSMC) of the tripeptide AVA and the

multisequence MC simulation (MSMC) of A-x-A, with x~V. The

consistency of the results confirms that the multisequence

simulation samples the correct thermodynamic distribution.

(TIFF)

Figure S4 Conformational diversity in the PSD95
peptide-bound state. Superposition of bound conformations

from peptide screening simulations of PSD95, sub-grouped into

peptides conformations with (A) RMSDv3 A
0

and (B)

3 Å,RMSD,6 Å, respectively.

(TIFF)
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