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Abstract

Systems biology proceeds through repeated cycles of experiment and modeling. One way to implement this is reverse
engineering, where models are fit to data to infer and analyse regulatory mechanisms. This requires rigorous methods to
determine whether model parameters can be properly identified. Applying such methods in a complex biological context
remains challenging. We use reverse engineering to study post-transcriptional regulation in pattern formation. As a case
study, we analyse expression of the gap genes Krüppel, knirps, and giant in Drosophila melanogaster. We use detailed,
quantitative datasets of gap gene mRNA and protein expression to solve and fit a model of post-transcriptional regulation,
and establish its structural and practical identifiability. Our results demonstrate that post-transcriptional regulation is not
required for patterning in this system, but is necessary for proper control of protein levels. Our work demonstrates that the
uniqueness and specificity of a fitted model can be rigorously determined in the context of spatio-temporal pattern
formation. This greatly increases the potential of reverse engineering for the study of development and other, similarly
complex, biological processes.
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Introduction

Systems biology is characterised by the tight integration of

experiments and computational modeling. One way to achieve

such integration is through reverse-engineering approaches, where

dynamical models of regulatory or biochemical reaction networks

are fit to quantitative data [1–9]. Reverse engineering has been

successfully used for systems analysis in many contexts, from

microbial metabolic, signaling and regulatory networks (see, for

example, [10–20]) to pattern-forming developmental processes in

animals (e.g. [21–25]). The approach is illustrated by the systems

biology modeling cycle shown in Figure 1 (adapted from [26]). As

a first step, a mathematical model is formulated that incorporates

the basic assumptions and hypotheses we have about the

regulatory process under study. The model is then tested by

fitting it to metabolic or expression data. This is achieved by

repeatedly altering its parameters and selecting suitable (mainly

better-fitting) solutions. A successful fit will yield a unique set of

parameter estimates that cause the model to reproduce the data

accurately. In this case, model output and estimated parameter

values can be analysed to gain biological insight. For instance,

regulatory parameters contain information on the strength and

type of regulatory interactions in a network. If the model fails to

produce a unique solution—predicting a large set of variant

networks instead—it is underdetermined and more data need to

be collected. If the model cannot fit the data, the underlying

hypothesis needs to be adjusted, or additional mechanisms and

factors need to be incorporated. Successive model-fitting/data-

acquisition cycles yield an increasingly accurate quantitative

picture of the underlying regulatory network.

While this approach has great potential for the investigation of

complex biological regulatory systems (e.g. [27]), it also harbors

many significant and non-trivial challenges. One of those is that it

is often difficult to decide what kind of data, and what kind of

model are needed to enable a successful fit. Another challenge is to

analyse whether a given solution is indeed specific and reliable.

There are a number of mathematical methods designed to

establish whether a reverse-engineering problem is well posed—in

other words, whether it is able to produce a unique and consistent

solution [5,7,28–30]. First, structural (or a priori) parameter

identifiability analysis can be used to examine whether the

problem has a non-trivial solution at all [31–33]. Second, practical

(or a posteriori) parameter identifiability analysis tells us whether

estimated parameter values are significant and reliable [31,34–36].

Finally, methods for optimal experimental design are employed to

determine what kind of measurements (for which regulatory

factors and which time points, for example) would improve the

quality of the fit most significantly [5,37–40].
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So far, unfortunately, the application of these powerful methods

to gain specific and novel biological insights has been limited. This

is due both to the complexity of most real-world biological

regulatory systems and the nature of the data used in reverse-

engineering studies. Most of these studies use models based on

large systems of coupled non-linear differential equations. This

makes it challenging to apply structural identifiability analysis.

Moreover, model fitting is generally computationally intensive due

to the significant number of parameters to be estimated. This

renders rigorous practical identifiability analysis extremely time

consuming. And finally, high-throughput datasets used for model

fitting often exhibit high levels of measurement error, combined

with low numbers of replicates. Under these circumstances, it is

difficult to accurately assess data variance, which is required for

both practical identifiability analysis and optimal experimental

design. For all these reasons, reverse-engineering studies often

proceed on an empirical basis, without being able to rigorously

establish parameter identifiability or the suitability of the datasets

and models used.

Here, we present a reverse-engineering study which combines

model fitting by global optimisation strategies with rigorous

structural and practical identifiability analysis. We apply this

methodology to a complex regulatory problem: the dynamics of

Figure 1. The systems biology modeling cycle. This cycle illustrates the interplay of experiment and modeling in modern systems biology
(adapted from [26]). Expression data are acquired and quantified. A model is formulated based on a regulatory hypothesis intended to explain the
observed expression patterns. The model is solved and fit to data (reverse engineering). Model output and parameter values are then analysed to
yield predictions and interpretations of the biological data. If necessary, the process is repeated—acquiring new data and improving the model—
until a satisfactory explanation of the observed phenomena is achieved. Model fits are shown on the left. The panel describing the model depicts the
processes of protein production, diffusion, and decay within and between nuclei (energids; lower panel). The upper panel shows the mitotic schedule
(M: mitosis, red; otherwise: interphase, blue background), with those time points indicated for which we have data. See text for details.
doi:10.1371/journal.pcbi.1003281.g001

Author Summary

The analysis of pattern-forming gene networks is largely
focussed on transcriptional regulation. However, post-
transcriptional events, such as translation and regulation of
protein stability also play important roles in the establish-
ment of protein expression patterns and levels. In this
study, we use a reverse-engineering approach—fitting
mathematical models to quantitative expression data—to
analyse post-transcriptional regulation of the Drosophila
gap genes Krüppel, knirps and giant, involved in segment
determination during early embryogenesis. Rigorous
fitting requires us to establish whether our models provide
a robust and unique solution. We demonstrate, for the first
time, that this can be done in the context of a complex
spatio-temporal regulatory system. This is an important
methodological advance for reverse-engineering develop-
mental processes. Our results indicate that post-transcrip-
tional regulation is not required for pattern formation, but
is necessary for proper regulation of gap protein levels.
Specifically, we predict that translation rates must be
tuned for rapid early accumulation, and protein stability
must be increased for persistence of high protein levels at
late stages of gap gene expression.

Reverse-Engineering Gap Gene Translation

PLOS Computational Biology | www.ploscompbiol.org 2 October 2013 | Volume 9 | Issue 10 | e1003281



spatio-temporal pattern formation in the early embryo of the

vinegar fly Drosophila melanogaster. The biological question we are

addressing is the importance of post-transcriptional regulation in

animal development. While many studies of pattern formation

focus on differential transcriptional regulation of genes (e.g.

[41,42]), other levels of expression control—such as regulated

RNA splicing, processing, translational regulation, or regulated

stability and degradation of gene products—cannot be ignored

[43]. There is increasing evidence that protein levels do not

generally match those of their respective mRNAs [44–46], and

many protein expression patterns do not even coincide with the

timing and localisation of mRNA transcription [47,48]. These

discrepancies are due (at least in part) to control at the level of

protein translation. Indeed, some of the earliest studies of

translational control were carried out in Drosophila (reviewed in

[48]). A number of pioneering studies examined the effect of

translational repression on maternal morphogen gradients, such as

those formed by the protein products of the maternal genes

hunchback (hb) and caudal (cad). mRNAs derived from those genes

are distributed uniformly while their proteins form steep concen-

tration gradients with antero-posterior polarity [49–54]. More

recently, systems-level studies indicate that such post-transcrip-

tional regulation is widespread and of general importance. Protein

expression levels in yeast cannot be predicted from mRNA

concentrations alone [55], and a similar lack of correlation

between mRNA and protein is observed in systems as different as

the minimal bacterium Mycoplasma pneumoniae [47] and mamma-

lian cell lines [46]. Therefore, post-transcriptional regulatory

mechanisms must be incorporated in a systems-level understand-

ing of cellular and organismal function.

In this study, we investigate the role of post-transcriptional

regulation within the context of a well established experimental

model system: the gap genes involved in segment determination

during the blastoderm stage of early Drosophila development

(reviewed in [56]). Since the relevance of post-transcriptional

regulation for maternal hb expression is well established (see above,

and [52,53]), we will focus on the remaining three trunk gap genes:

Krüppel (Kr), knirps (kni), and giant (gt). All these genes encode

transcription factors, and are expressed in broad, overlapping

domains along the embryo’s antero-posterior (A–P) axis. Gap

genes respond to activating transcriptional regulatory inputs from

long-range maternal morphogen gradients—such as Bicoid (Bcd),

Hb, and Caudal (Cad)—as well as repressive inputs from the

terminal gap genes tailless (tll) and huckebein (hkb). In addition, there

is extensive repressive gap gene cross-regulation, which is required

for the correct dynamic positioning, maintenance, and sharpening

of each gap gene expression domain.

The advantages of using the gap gene network for our case

study are twofold. The first advantage is that gap gene patterning

is relatively simple and tractable compared to other developmental

processes. It essentially occurs in one dimension, along the A–P

axis of the embryo. No significant tissue rearrangements or growth

are involved. Diffusion is not yet limited by cell membranes as the

embryo is still syncytial at this stage. In addition, all three genes

considered here have a very compact structure, with only one or

two short introns, and none of them exhibits any sign of alternative

splicing. The second advantage is that the gap gene system is

exceptionally well understood. All genes involved in segment

determination have been identified and their interactions have

been characterised at the genetic and molecular level (see [56] and

references therein). More importantly, there exist extensive

quantitative datasets (including accurate variance measurements)

for spatio-temporal gap mRNA and protein expression [56–63].

These datasets have been used to fit a range of gene regulatory

network models, analysis of which has led to many quantitative

systems-level insights into the dynamic mechanisms underlying

gap gene regulation [22–25,36,58,64–66].

All these previously published models focus on transcriptional

regulation of gap genes. They lump together transcriptional and

post-transcriptional phases of gene regulation, and take into

account only protein concentrations (not mRNA) as model

observables. Therefore, these models implicitly assume that post-

transcriptional regulation is not required to explain the patterns

formed by gap genes. This assumption is not unreasonable, given

the similarity of gap mRNA and protein patterns, and the fact that

such simplified models can reproduce gap protein patterns to a

high degree of accuracy and temporal resolution [22,36].

Moreover, the experimental literature contains very little evidence

or arguments for post-transcriptional regulation of Kr, kni, or gt.

The only exception we could find is a paper by Gaul et al. [67],

which invoked post-transcriptional regulation of Kr to explain the

anterior displacement of its mRNA domain with respect to the

protein pattern. This phenomenon was later shown to be due to

the dynamic anterior shift of the central Kr domain [22]. However,

absence of evidence is not evidence of absence. Therefore, it is

necessary to put the hypothesis that post-transcriptional regulation

is not required for gap gene patterning to a rigorous and

quantitative test.

As mentioned above, we test this hypothesis using a reverse-

engineering approach. This is achieved by formulating a model,

which incorporates the simple assumption that gap protein

patterns reflect those of their respective mRNAs a given amount

of time earlier in development (plus a small contribution by gap

protein diffusion; see Figure 1, right-hand panel). Since we do not

consider gap gene cross-regulation, we can model Kr, kni, and gt

separately. Each model is then fitted to protein expression data,

using mRNA patterns as external inputs, or boundary conditions.

If our models are able to reproduce gap protein patterns correctly,

we can conclude that no post-transcriptional regulation is required

for the expression of the gap genes considered here. If our models

fail to fit, however, we will be able to identify those expression

features that do rely on post-transcriptional regulatory processes.

Our model consists of the following system of ordinary

differential equations, representing the change of gap protein

concentration yi over time t in a row of dividing nuclei i along the

A–P axis of the embryo:

dyi

dt
~a ui(t{t)zD½(yi{1{yi)z(yiz1{yi)�{l yi: ð1Þ

Here, the dependence of protein on mRNA patterns is linear.

ui(t{t) is a time-delayed external input representing mRNA

concentration t minutes ago. We obtain ui for arbitrary time

points t by linear interpolation from measured expression data

points. Transcription is paused during mitosis, when chromo-

somes are condensed. Therefore, the production term is set to

zero whenever ui(t{t) falls into a mitotic period (see Materials

and Methods for time schedule). t is a production delay which

summarises the time from initiation of transcription (when

transcripts become detectable by our staining methods) to the

appearance of the resulting protein. It includes contributions

from the completion of transcription, RNA splicing and

processing, nuclear export, and translation. a is the rate of

protein production from mRNA. D is the rate of gap protein

diffusion among neighboring nuclei i{1, i, and iz1. It depends

on the square of the distance between nuclei which is halved

upon each nuclear division [64]. l is the protein degradation

rate.

Reverse-Engineering Gap Gene Translation
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After establishing the structural identifiability of our parameters,

we need to estimate t (production delay), a (production rate), D
(diffusion rate), and l (degradation rate) by fitting the model to

data. This is achieved by minimising the weighted sum of squared

differences between experimentally measured (ydata) and modeled

protein expression values (ymodel ) for each nucleus i and time point

tj for which we have data:

V (p)~
X

i,j

(ydata
i (tj){ymodel

i (tj ,ui,p))2

s2
i (tj)

: ð2Þ

p~ft,a,D,l,g is the parameter vector to be estimated. Weights

s2
i (tj) are given by measured variances for each data point.

Equation (2) represents a weighted least squares (WLS) problem,

which we solve using global optimisation methods as described

below. The reliability and accuracy of the resulting parameter

estimates are then analysed using practical parameter identifia-

bility analysis.

Using the reverse-engineering approach described above, we

have obtained fitted models and parameter estimates for post-

transcriptional regulation of Kr, kni, and gt. Identifiability analysis

shows that our fitting results and parameter estimates are robust

and specific. They yield values for rate parameters which are

biologically plausible and informative with regard to the time scale

and diffusive properties of gap gene patterning. Our fits reveal that

post-transcriptional regulation is not required for the correct

timing and positioning of gap protein domain boundaries. They

do suggest, however, that post-transcriptional regulation is

required for the accurate control of gap protein levels, implying

some temporal regulation of translational efficiency, and/or

protein stability. Specifically, our models predict an early boost

in translational efficiency, plus a general stabilisation of gap

protein products towards the end of the blastoderm stage.

Results

Quantitative Gap Gene mRNA Expression Data
We have created a quantitative mRNA expression dataset with

high spatial and temporal resolution for the trunk gap genes

Krüppel (Kr), knirps (kni) and giant (gt), which spans the entire

duration of the blastoderm stage in the early embryo of Drosophila

melanogaster (cleavage cycles C10–C14A; C14A is further subdivid-

ed into time classes T1–8). In contrast to previously published

semi-quantitative gap gene mRNA data—based on colorimetric

(enzymatic) staining protocols, wide-field microscopy, and an

efficient but simple data processing pipeline [66,68] —we used

fluorescent staining protocols, confocal microscopy and fully

quantitative data processing methods (see Materials and Methods,

and [69]). This work extends a previously published fully

quantitative expression dataset for gap gene mRNAs, which only

covered the early part of the blastoderm stage (C10–C13) [58].

Our data consist of quantified time-series of gap gene mRNA

expression (Figure 2; Supplementary Figures S1, S2, S3), which

are equivalent and comparable in quality, as well as spatio-

temporal range and resolution, to the comprehensive protein

expression data available from the FlyEx database (http://urchin.

spbcas.ru/flyex, [57,59,60]). This allows us, for the first time, to

rigorously and accurately compare gap gene expression during the

blastoderm stage at both mRNA and protein level.

Such a comparison between spatio-temporal gap mRNA and

protein expression reveals that, to a first approximation, the

mRNA patterns appear very similar to those observed for the

corresponding proteins: all mRNA transcripts are expressed in

broad, overlapping domains, whose relative timing and spatial

arrangement with regard to each other strongly resemble that of

gap protein domains (Figure 2A). In addition, the central,

abdominal, and posterior mRNA domains of Kr, kni, and gt shift

towards the anterior of the embryo over time (Figure 2B). The

extent of this movement is on the same order of magnitude as the

analogous shifts of the corresponding protein domains (Figure 2B,

Supplementary Table S1) [22,59,66]. Since anterior domain

boundaries generally move less far than posterior ones, domain

width of both mRNA and protein domains decreases over time

(Figure 2B, Supplementary Table S1) [59]. Based on these

observations, we can conclude that expression dynamics of gap

mRNA and protein domains are largely qualitatively equivalent

with regard to each other.

However, if we examine the data more closely, two significant

differences between mRNA and protein become apparent. First,

boundary positions of mRNA domains—with the exception of the

anterior Kr border—are displaced anteriorly compared to their

corresponding protein domains (Figure 2B; Supplementary Table

S1). This displacement is caused by the anterior shift of gap

domains over time [22,59]. The effect is substantially more

pronounced for posterior domain borders than for anterior ones. It

is associated with a generally slightly smaller width of mRNA

domains compared to protein (Supplementary Table S1). Second,

the timing of initial and maximum peak expression is delayed for

protein compared to mRNA (Figure 2C). Delayed first appearance

of protein versus mRNA patterns during the early blastoderm

stage has been reported and quantified previously [58,59]. Our

data reveal a similar phenomenon in late-blastoderm expression

dynamics: mRNA expression of all three gap genes peaks around

30 min before gastrulation (time class T3 in Figure 2C), while

protein expression shows a maximum approximately 15–20 min

later (time class T6–7). This obviously agrees with the fact that it

takes time to export the mRNA from the nucleus, to process and

translate it into protein. In addition, we detect a post-peak

decrease in mRNA abundance that was not reported in an earlier

PCR- and microarray-based analysis of pre-gastrulation gene

expression with a lower temporal resolution than our data [70].

Interestingly, this trend is not reflected in levels of gap proteins,

which only show a marginal decrease (if any) before the onset of

gastrulation (see Figure 2C and also Supplementary Text S1).

In addition to our quantification of the timing and position of

averaged gene expression patterns, we have also analysed the

embryo-to-embryo variability of gap domain width as well as peak

and boundary positions during the blastoderm stage. This had not

been possible with our earlier, semi-quantitative dataset [66]. It

has been reported previously that the precision of gap protein

domain boundary positions increases over time due to cross-

regulatory interactions [24,25,59]. Such a trend—although much

less obvious—is also present in our mRNA data (Supplementary

Figure S4). Noise levels in the mRNA data are generally higher

than in protein patterns. Both Kr and kni (but not gt) show higher

levels of variability in mRNA compared to protein data at a

majority of sampled data points. Moreover, we observe a high

level of fluctuations between time points in our mRNA data (for all

three genes) indicating increased levels of experimental noise. This

may be due to the harsher treatment of embryos for in situ

hybridisation compared to antibody staining (see [58] for a more

detailed discussion). Nevertheless, the overall trends are similar for

mRNA and protein, as levels in variability of all measured

expression features is generally lower at T6 than at earlier time

points during C14 (Supplementary Figure S4). This indicates

canalisation of development at two levels: first, protein patterns are

generally more precise than mRNA domains at comparable stages,

Reverse-Engineering Gap Gene Translation
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and second, mRNA precision—as is the case for protein—

increases over time.

Reverse Engineering: Structural Identifiability Analysis
The fact that mRNA and protein patterns of the gap genes Kr,

kni, and gt are similar (yet not identical), and show a delay in

dynamics with regard to each other, raises the non-trivial question

whether protein patterns simply reflect earlier mRNA levels (with

a small additional contribution by protein diffusion), or whether

spatially and temporally specific post-transcriptional regulation is

required to account for the observed distribution of proteins. We

use a reverse-engineering approach to distinguish between these

two alternative possibilities. In this approach, we test the

hypothesis that no post-transcriptional regulation is required by

fitting a simple dynamical model to data. This model incorporates

the following assumptions (see Introduction): It includes time-

delayed but linear production of protein from its mRNA, as well as

protein diffusion and decay. It takes mRNA patterns as an input to

predict protein expression. A good fit of the model to protein

expression data would therefore favor absence of post-transcrip-

tional regulation, while a failure to fit the data would point us to

specific features of gap protein expression that require regulated

nuclear export, splicing, or translation.

Our reverse-engineering approach can only give us quantitative

and specific insights into the problem of post-transcriptional

regulation if it is fit to data in a manner which is as rigorous and

reproducible as possible. As a first step, this requires us to

determine whether the model is formulated in a way such that the

fitting procedure has a unique solution. Since our model is feed-

forward and linear, this can be achieved using structural (or a priori)

parameter identifiability analysis. This analysis is performed under

an ideal scenario where noise-free time-continuous experimental

data are assumed to be available, and the objective is to answer the

question whether under those ideal conditions the parameters can

be given unique values. There are three possible outcomes: (1) The

model is structurally globally identifiable (s.g.i.) if all parameters p
can be uniquely identified within a biologically meaningful region

of parameter space, which we will call V (p [ V). (2) The model is

structurally locally identifiable (s.l.i.) if one or more parameters can

be uniquely identified in a given neighborhood p [ n(p) 5 V, or

(3) the model is not structurally identifiable, if neither of (1) or (2)

apply.

Figure 2. Comparison of gap gene mRNA and protein expression patterns. (A) Time series showing integrated one-dimensional expression
patterns of gap gene mRNA (left column) and protein (right column) along the A–P axis in cleavage cycle C14A (time classes T1–T8). Kr is shown in
green, kni in red, and gt in blue. X-axes represent A–P position in %, where 0% corresponds to the anterior pole of the embryo. Y-axes represent
mRNA and protein concentrations in relative units. Grey background indicates the region displayed in (B). (B) Space-time plots indicating domain
boundary positions of the central Kr domain (top), the abdominal kni domain (middle), and the anterior and posterior domains of gt (bottom). Solid
patterns indicate mRNA patterns, dashed lines protein. Time flows downwards. (C) Temporal dynamics of peak expression for the central Kr domain
(top), the abdominal kni domain (middle), and the posterior gt domain (bottom). Solid lines indicate mRNA, dashed lines protein. Relative
concentrations (as in (A)) are plotted against time.
doi:10.1371/journal.pcbi.1003281.g002

Reverse-Engineering Gap Gene Translation
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Although several methods for the analysis of structural

identifiability of linear models exist, the model described by

equation (1) presents the peculiar challenge of incorporating a

delay parameter within the input function ui (the production

term). In this scenario the Laplace transform (L½:�) based method

may be used to assess whether the s.g.i. condition holds (see [28]

and references cited therein). The underlying idea is to verify

whether a canonical form of the transfer matrix of the system 1 is

unique. The basic steps are the following: the model (equation 1) is

rewriten in matrix form and its Laplace transform is computed; the

possibility of computing the transfer matrix is demonstrated by an

invertibility conditon; the analytical canonical form of the transfer

matrix is then obtained; symbolic manipulation is finally used to

prove uniqueness of the transfer matrix. Details of our calculations

can be found in Supplementary Text S2.

In the case of our model for post-transcriptional regulation (see

Introduction, equation 1) structural identifiability analysis reveals

that model parameters are globally identifiable in the realm of

non-negative real numbers Rz|0 (which is expected given that

rate and delay parameters cannot be less than zero). For this result

to apply, the following conditions must be met by the experimental

data: (1) some concentrations of mRNA and proteins must be non-

zero in the interior of the model range at sampling times, and (2)

protein data must be available for time points before or after

mitosis (i.e. when the production rate is not zero; see Supplemen-

tary Text S2 for details). Both of these conditions are met in our

data, and we conclude that our model parameters are globally

structurally identifiable, i. e. our optimisation problem has a

specific and unique solution.

Reverse Engineering: Model Fitting
Next, we proceeded to fit our model to quantitative spatio-

temporal protein expression data. This was done for Kr, kni, and gt

separately by solving the model for each gene numerically, and

minimising a weighted sum of squared differences between

expression patterns predicted by the model and those measured

by experiment (see equation 2). Minimisation of squared

differences was achieved by two different global optimisation

algorithms, based on parallel simulated annealing (pLSA), and an

enhanced scatter search (eSS) method, respectively (see Materials

and Methods for details and references). Both of these independent

optimisation approaches resulted in equivalent model fits and

parameter estimates (Figure 3; Table 1). In order to further

corroborate the robust performance of our algorithms, we

performed a systematic comparison of eSS with a number of

standard global optimisation approaches. The results can be found

in Supplementary Text S3. They indicate that different algorithms

show significant differences in computational efficiency, but

converge to very similar solutions.

Fitting results differ slightly between genes. The best fit between

model and data is obtained by Kr optimisation runs, with a root-

mean-square (RMS) score of around 11.1–11.2 (Table 1; see

Methods for a mathematical definition of RMS, which represents

the average deviation of model from data for each data point).

Although minor patterning defects can be observed at early stages

(especially between C13 and T2) and expression levels disagree

somewhat at the last time points (T7/T8, see below), model and

data match to within the noise level of the data at intermediate

times (Figure 3, left column).

Of all fitting solutions, Kni shows the largest overall deviation

between model and data with a RMS score of 21.1–21.2 (Table 1).

Nevertheless, position and shape of the Kni protein domain, as

well as the temporal dynamics of expression, are reproduced

correctly (Figure 3, centre column). In particular, the model shows

peak expression at the correct stage, and agrees with data to high

accuracy in non-expressing areas. In contrast, protein expression

predicted by the model is consistently lower than measured within

the area of the abdominal Kni domain. This discrepancy accounts

for the large RMS value.

Expression patterns resulting from Gt optimization runs exhibit

similar properties as those of Kni, with a slightly lower residual

error (RMS around 17.2; see Table 1). Again, the timing, position,

and shape of both Gt domains are reproduced quite accurately in

the model, while predicted expression levels are generally too low

(Figure 3, right column). The only noticeable positional defect is a

slight anterior displacement of the posterior gt domain at early

stages (up to T1).

Despite the problems with reproducing accurate levels of

expression for Kni and Gt, all three models show initiation and

build-up of gap proteins at the appropriate stages of development,

and the qualitative shape of the temporal expression profile is

reproduced correctly up to T6 (Figure 3B). In contrast, model and

data disagree conspicuously at later time points (T7/8), since the

model predicts rapidly diminishing concentrations of gap proteins

before the onset of gastrulation. This downregulation is much

weaker (Kni), or entirely absent (Kr, Gt) in the data.

In summary, our models capture the position, shape, and width

of gap protein domains accurately. Minor deviations in these

spatial expression features are only observed during earlier time

points, when noise levels in the data are high. Temporal features of

gap protein expression—such as initiation of expression, shifts in

domain position, or the time point of maximum expression—are

also reproduced correctly. However, our models fail to reproduce

the exact levels of gap protein expression, as well as their

downregulation towards the end of C14. These two specific

failures of our model fits have interesting implications for our

understanding of gap gene regulation (see Discussion).

Reverse Engineering: Parameter Estimation and Analysis
Model fitting resulted in reproducible and biologically plausible

estimates of parameter values for Kr, kni, and gt. We performed a

number of independent optimisation runs for each model using

both of our two alternative fitting strategies (100 runs of pLSA, 10

runs of eSS per model). Parameter estimates from different runs

varied only minimally between solutions (for pLSA see Supple-

mentary Figure S5), and estimated parameter values provided by

either of the two alternative optimisation strategies agreed to high

accuracy. This indicates that our parameter estimates are robust

with regard to the choice of optimisation strategy. Table 1 shows

parameter values from a representative optimisation run for each

fitting approach.

Predicted values for the delay parameter t (see equation 1)

require some more detailed attention, since such parameters are

notoriously difficult to estimate. For this reason, we verified the

validity of our estimates for t by the following numerical approach:

we performed a series of fits for the gt model, with tgt fixed to

values between 0 and 8 minutes, including a particularly high-

density sampling of tgt around the values predicted by optimisa-

tion (Supplementary Figure S6). These control fits show a

minimum of the residual error which coincides precisely with

the parameter values inferred from optimisation. This corrobo-

rates the reproducibility and accuracy of our approach.

Our parameter estimates are informative from a biological point

of view, and yield experimentally testable predictions. First of all,

we note that production and decay rates (a and l, respectively) are

well balanced in this system. Decay rates l correspond to protein

half lives of 9.1 (Kr), 9.0 (Kni), and 6.2 (Gt) minutes, indicating

that gap proteins must be very unstable—to enable patterning at
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the extremely short time scale of gap gene expression dynamics.

Gap protein diffusion is generally very low, especially in the case of

Kr. Protein production delays (incorporating contributions of

transcription, splicing, nuclear export, and translation; see

Introduction) range between 2:4 and 6:3 minutes. While the

upper value is within the expected range (see Discussion) the

former estimate is rather low, and may need further investigation

(see also next section).

Reverse Engineering: Practical Identifiability Analysis
While it is encouraging that independent optimisation runs and

methods give consistent parameter estimates, it is necessary to test

the reliability and accuracy of these estimates using practical (or a

posteriori) parameter identifiability analysis (see Introduction). We

have performed such an analysis using two complementary

approaches.

One approach to the practical analysis of parameter identifia-

bility is based on a geometrical interpretation of the ‘optimisation

landscape’ given by the value of the weighted-least-squares cost

function (V (p), in equation (2)) [35,36]. To illustrate this

approach, we will assume a two-dimensional parameter space

for simplicity. This results in a three-dimensional topography of

the optimisation landscape, where minima lie in ‘troughs’ or

‘depressions’ of the contour determined by the cost function. The

Figure 3. Comparison of model output and measured protein concentrations. (A) Spatial profiles of Kr (green), kni (red), and gt (blue) for
early (T1), mid (T4), and late (T8) time classes during C14A. X-axes represent A–P position (in %), Y-axis show relative concentrations (as in Figure 2A).
(B) Temporal dynamics of peak concentrations for the central Kr domain (left), the abdominal kni domain (centre), and the posterior gt domain (right).
X-axes represent time, Y-axes show relative concentrations (as in Figure 2C). In all panels, model output is shown as a dashed black line; measured
protein concentrations are shown as dark colored lines (mean) and lightly shaded background (standard deviations).
doi:10.1371/journal.pcbi.1003281.g003
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more shallow the trough in which a minimum lies, the more

uncertain the parameter estimate, since changing parameter

values around the optimum will lead to only a slight increase in

the value of the cost function. It is possible to characterise the local

surface of any optimisation landscape around a given minimum

using linear approximations. This allows us to define an ellipsoidal

confidence region around our minimum, resulting in estimates for

the confidence intervals for each of our parameters.

If there is no correlation among parameters, the principal axes

of the confidence ellipsoid will lie parallel to those of parameter

space. Confidence intervals for parameters can then be calculated

as the intersect of the ellipsoid with these axes. Correlations among

parameters are detectable as an inclination between the ellipsoid’s

principal axes and the axes of parameter space. This makes it

possible to calculate two distinct ranges: the dependent confidence

interval is given by the intersection of the ellipsoid with a given

parameter axis (as above), while the projection of the ellipsoid

region onto the parameter axis specifies the independent

confidence interval. Independent confidence intervals typically

overestimate the uncertainty in parameters, while dependent

confidence intervals underestimate it. If both confidence intervals

turn out to be similar and small, a parameter can be considered

well determined.

Confidence intervals, as calculated by equations (4) and (5) (see

Materials and Methods) are shown in Figure 4. Compared to the

entire range of search space, confidence regions for all three rate

parameters (a, l, and D; see equation (1)) are small in models of all

three gap genes. Dependent and independent confidence intervals

for a and l deviate significantly, suggesting strong mutual

correlation among model parameters. This is not the case for D,

where independent and dependent confidence intervals are very

similar. Note that the lower limits of some intervals for DKr and

Dkni are negative, and therefore lie outside the allowed range of

parameter values. This artifact results from the linear approxima-

tion of the optimisation landscape used in this method. Confidence

intervals for delay parameters t are larger compared to rate

parameters. Nevertheless, they lie within a well confined and

biologically plausible range (Figure 4). As for the case of a and l
above, there appears to be a high degree of correlation for t with

other parameters in all three models.

Correlation coefficients between parameters can be calculated

from the covariance matrix (Figure 5A; see equation 6 in Materials

and Methods). In all three models, correlation is high between a and

l. This is expected since high decay rates can compensate for high

production rates. Both of these parameters are also correlated to the

delays given by t. These correlations are highest for gt, and still very

substantial for both Kr and kni. Again, this is to be expected since

production delay can be mimicked to some degree by low production

rates. In contrast, we found that diffusion rates are largely

independent of other model parameters, except for a slight negative

correlation between Dkni and akni, and between Dkni and lkni. This

could be due to the extremely low values of diffusion rates in all of our

models, or due to the fact that diffusion affects spatial, rather than

strictly local, regulatory mechanisms, which could explain the

increased degree of decoupling between the two processes.

While computationally efficient, the linear identifiability analysis

described above can lead to serious artifacts or biases in the

estimation of confidence intervals due to its simplifying assump-

tions. Therefore, we validated its results by using the computa-

tionally much more expensive approach of bootstrapping [31,71–

73]. The bootstrap method is based on resampling protein

expression patterns from distributions defined by the mean and

variance of our measurements (for an equivalent analysis of the

sensitivity of parameter estimates with regard to perturbations in

the mRNA data see Supplementary Text S4). The model is then

fitted to a large number (N~1000 in our case) of such sampled

noisy patterns. Confidence intervals and correlations for param-

eter estimates can be directly extracted from the resulting

parameter distributions.

Distributions of parameter estimates obtained by bootstrapping

are shown in Figure 6. In all cases, estimated parameter values are

confined to relatively small subregions of search space. Only

diffusion rates D show a tendency towards saturation at their lower

limit (D~0; Figure 6G–I). Distributions are generally unimodal,

with the exception of Kr which shows two distinct clusters in

parameter space. The cause of this bimodal distribution remains

unclear. One of the clusters (568 solutions) has implausibly small

values for t (v2 min). Therefore, we only considered the remaining

432 solutions (see dashed circle in Figure 6D) for further analysis.

Another interesting feature of these parameter distributions are the

two horizontal lines visible in Figure 6E, which indicate an exclusion

of tkni values around 6.25 and 6.30 minutes. This corresponds

roughly to the time between data points, which seems to indicate

that the structure of the data used for model fitting has a non-

negligible impact on parameter estimation in this case.

None of these irregularities observed in parameter distributions

seriously affects our ability to compute confidence intervals. This

was done by determining the 95-percentile range for each

parameter separately. The resulting confidence intervals and the

initial guess are shown in Figure 4. The optimal solution of the

unperturbed data set in every case lies within or very close (lgt) to

the limits of the corresponding confidence interval (diamonds in

Figure 4). With the exception of confidence intervals around D,

the size of bootstrap intervals lies between those of the dependent

and independent intervals calculated by linear approximation. In

general, this confirms the accuracy and reliability of this method.

Some notable exceptions apply. First, most confidence intervals

based on bootstrapping are clearly asymmetric around the

estimated optimal values. This asymmetry reflects a non-linear

dependence of the optimisation problem on parameter values,

which cannot be captured by confidence intervals calculated from

linear approximation. Second, size of confidence intervals for t
obtained by the bootstrap are frequently more similar to the size

given by the dependent confidence interval, indicating that delay

ranges are more accurately determinable than estimated by linear

approximation.

Table 1. Comparison of residual scores and parameter
estimates obtained from pLSA and eSS optimisation
approaches.

KrLSA KreSS KniLSA KnieSS GtLSA GteSS

WLS 487.67 487.62 1960.10 1958.20 868.15 865.05

RMS 11.21 11.10 21.13 21.20 17.23 17.19

a 0.0970 0.0964 0.0783 0.0785 0.1107 0.1139

l 0.0764 0.0756 0.0770 0.0772 0.1110 0.1139

D 0.0015 0.0015 0.0125 0.0126 0.0159 0.0180

t 5.2953 5.1786 6.3083 6.3649 2.3900 2.6127

Scores and parameter estimates from two representative solutions (one for
each optimisation method) are shown for Kr, kni, and gt models. WLS
corresponds to the weighted least squares score V (p) as defined in equation 2.
RMS is the root-mean-square score as defined in equation 3. a is the production
rate, l the decay rate, D the diffusion rate, and t the production delay as
defined in equation 1. LSA indicates scores and estimates from Lam Simulated
Annealing, eSS scores and estimates from enhanced scatter search.
doi:10.1371/journal.pcbi.1003281.t001
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Correlation matrices calculated by linear approximation or

bootstrapping are very consistent. The anisotropic shape of

parameter distributions resulting from bootstrapping reveal strong

positive correlations between rate parameters for production and

decay (a and l; Figure 5B, 6A–C). Somewhat weaker, but

nevertheless strong correlations occur between these same rate

parameters and the production delays t (Figure 5B, 6D–F). In

contrast, diffusion rates D are much less correlated with any of the

other parameters (Figure 5B, 6G–I).

Discussion

In this study, we have used a reverse-engineering approach to

test whether post-transcriptional regulation is required for the

correct expression of gap protein domains. For this purpose, we

have created a high-resolution quantitative dataset of mRNA

expression patterns for the gap genes Kr, kni, and gt covering the

entire blastoderm stage. Comparison of gap mRNA and protein

expression data indicates that both are remarkably similar,

although features in the mRNA data emerge a few minutes

earlier than those of the corresponding protein patterns. Results of

our model fits confirm this general impression: the timing and

position of gap protein domains can be explained largely by a

simple linear delay model, which assumes that protein patterns

correspond to mRNA patterns a given amount of time in the past

(plus a small contribution of protein diffusion). Based on this, we

conclude that post-transcriptional regulation is not essential for

gap gene mediated pattern formation. This result confirms a

Figure 4. Confidence intervals for parameter estimates. This figure shows 95% confidence intervals for parameters a (production rate), l
(decay rate), D (diffusion rate), and t (production delay; see equation 1) for Kr (green), kni (red), and gt (blue). DpI are independent, DpD dependent
intervals obtained from linear analysis (connected solid lines), DpB are intervals obtained from bootstrapping (dashed lines). Dots (on solid lines)
represent eSS parameter estimates, diamonds (on dashed lines) those from SA. Striped grey background indicates parameter values that lie outside
the search space limits used for optimisation. Note that only a subregion of the search space is shown in each panel (see Materials and Methods for
values of search space limits).
doi:10.1371/journal.pcbi.1003281.g004
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widely held assumption by the Drosophila research community that

had never been put to a rigorous test.

On the other hand, our results reveal surprising and significant

differences between mRNA and protein levels. In particular, our

models fail to correctly reproduce both early dynamics of

expression initiation (for Kni and Gt), and late maintenance of

protein levels (for all three gap proteins; Figure 3; see also [58]).

This indicates that temporally and spatially specific post-

transcriptional regulation is required to explain these particular

expression features. Only a detailed quantitative study, such as the

one presented here, is able to detect such subtle nuances. No

experimental evidence is currently available on the regulatory

mechanisms or the functional importance of these newly

discovered expression features.

Our models yield predictions that are informative and specific

enough to enable focused molecular and biochemical investiga-

tions of these phenomena. The early boost in build up of Kni and

Gt protein could be explained by a modulation of protein

production rates. One potential mechanism for this would be a

translation rate that depends on the diffusion limited arrival of

mRNA molecules at the ribosomes. The maintenance of high

protein levels despite rapid mRNA decay towards the end of the

blastoderm stage indicates some mode of protein stability

regulation. Such temporal regulation has been observed for Bcd

protein [74,75]. It could be achieved by non-linear dependence of

the decay rate on protein concentration. Co-operative stability—

increased longevity of dimers compared to monomers—has been

proposed as a potential mechanism for increased protein half life

at high concentration levels [76].

One last aspect of post-transcriptional regulation that requires

our attention is the protein production delay predicted by our

models. These delays, between 2:4 and 6:3 min long (Table 1), are

short but yet significant enough to affect the dynamic regulatory

properties of the system. They have several effects: First of all,

production delays must be kept rather short to allow pattern

formation on a time scale of less than 10 min in a system of rapidly

dividing nuclei [58,59]. There is some experimental evidence to

show that this is achieved through a compact gene structure—

short open reading frames with a very limited number of short

introns [77]. While kni has a primary transcript about 3 kilobases

(kb) long, its paralogue knirps-related (knrl) (encoding a functionally

equivalent protein) contains a long intron which results in a

primary RNA of about 23 kb. Its limited length allows kni to

become expressed early, at cleavage cycle 13. In contrast,

cytoplasmic mRNA of knrl only appears around mid cleavage

cycle 14A, about half an hour later. The second aspect of the

production delay is important in the context of the transient nature

of gap gene patterning. While it has been shown that mRNA and

protein levels of a gene converge at steady state [78], they can be

significantly different when a system is far from asymptotic

behavior. In the case of the gap gene system, this is reflected by the

systematic anterior displacement of mRNA compared to protein

domains, caused by the dynamic anterior shift of gap gene

expression domains over time [22,25,59]. This phenomenon had

been attributed to post-transcriptional regulation by some authors

[67], but can now be fully explained by a combination of the

anterior movement of the domains, the production delay, and the

slightly different half lives of mRNA and protein.

Finally, production delays that are on the same order of

magnitude as the time scale of pattern formation can lead to severe

alterations of the transient dynamic behavior of the system. For

example, delays can greatly increase the time it takes for the

system to reach its steady stage [79,80]. This may be functionally

important for gap gene patterning, where the expression domains

in the posterior half of the embryo have to be kept moving

anteriorly until the onset of gastrulation (and the subsequent

disappearance of gap expression), while gap domains in the central

part of the embryo remain stable and reach their steady states

much earlier [25,59].

As in the case of delays, our models yield predictions of rate

parameter values that are plausible, informative, and experimen-

tally testable. Predicted decay rates imply gap protein half lives

that lie between 6 and 10 min, which is somewhat lower than the

10 to 40 min measured for the Bcd protein [74,75]. Our

predictions of diffusion and production rates are harder to assess.

The reason for this is that they are formulated in relative units,

since our measurements of mRNA and protein concentrations are

relative and do not yield absolute concentrations. This limitation

could be overcome by emerging experimental techniques that

allow the estimation of absolute levels of mRNA and protein in

vivo [61,81–83]. However, we can already draw some conclusions

from our estimated relative values. In particular, our results

Figure 5. Parameter correlations. This figure shows correlation matrices for parameter values derived from linear analysis (A), and bootstrapping
(B), for Kr (green frame), kni (red frame), and gt (blue frame). Parameter notation: a (production rate), l (decay rate), D (diffusion rate), and t
(production delay; see equation 1). Colors indicate sign and strength of correlations. Matrices in (A) are calculated from equation 6 (see Materials and
Methods). Matrices in (B) are derived from the singular value decomposition of bootstrap distributions.
doi:10.1371/journal.pcbi.1003281.g005

Reverse-Engineering Gap Gene Translation

PLOS Computational Biology | www.ploscompbiol.org 10 October 2013 | Volume 9 | Issue 10 | e1003281



indicate that gap protein diffusion must be severely restricted. This

is corroborated by our observation that gap protein domains are

generally only about 1–2 nuclei wider than their corresponding

mRNA domains (see Supplementary Table S1), and is consistent

with the model-based prediction that diffusion is not required for

correct gap protein mediated patterning [22,25]. Finally, produc-

tion rates are the most difficult to measure. In this regard, the

prediction of our models that protein production and decay must

be quite tightly balanced may be helpful to overcome this technical

limitation.

Our simple model of transcriptional regulation is limited in

several important ways. We have explicitly refrained from

implementing particular post-transcriptional regulatory mecha-

nisms due to the absence of specific experimental evidence at this

point. Our main aim in this current study was to first establish

whether any post-transcriptional regulation is necessary for gap

gene regulation. Our results clearly show that such regulation is

required for the proper level, but not timing and position, of gap

gene expression. Future investigations will combine experimental

and data-driven modeling approaches to extend the model, and

render it more mechanistically accurate.

Another limitation concerns the coarse-grained nature of our

production delay. It summarizes contributions by transcriptional

elongation, mRNA processing and splicing, nuclear export, and

translation (see Introduction). Such coarse-graining is warranted in

the light of our experimental protocols, which cannot yet

distinguish between nascent and primary transcripts, or mature

mRNA. A more accurate measurement of mRNA production

could be achieved by using intronic probes [84]. However, this is

challenging in our context due to the extremely compact structure

of gap genes. Another way to address this issue would be to

formulate a model with a distributed production delay, reflecting

Figure 6. Parameter distributions obtained from bootstrapping. This figure shows illustrative examples of scatter plots for parameter values
derived from 1’000 fits to simulated noisy data (sampled from the distributions of protein data measurements; see Figure 3 for mean and standard
deviations of spatial expression profiles). Parameter values for Kr are shown in green (left column, A, D, G), for kni in red (centre column, B, E, H), and
for gt in blue (right column, C, F, I). Parameter notation: a (production rate), l (decay rate), D (diffusion rate), and t (production delay; see equation 1).
Black triangles indicate the original parameter estimate obtained with unperturbed data. Dashed ellipse around parameter values for Kr (in D)
indicates parameters selected for further analysis. Arrow in E indicates striped interference pattern in the distribution of kni parameter values. See text
for details.
doi:10.1371/journal.pcbi.1003281.g006
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the fact that the measured mRNAs are at different stages of their

maturation process. We have not implemented such distributed

effects in our current model since the benefit in terms of biological

insight would be limited, while estimating a distribution of

parameter values would pose significant technical challenges for

model fitting.

The last, and most important, limitation of our current

approach is that transcriptional and post-transcriptional regulatory

processes involved in gap gene patterning are still implemented in

different models. It is our aim to synthesise both of these stages

into a regulatory network model featuring realistic production

delays. We expect that such a model would solve several important

issues. For instance, current gene network models still fail to

reproduce the early regulatory and expression dynamics—based

on regulatory inputs from maternal gradients only—in an accurate

and biologically plausible manner [22,36,58]. An integrated model

featuring a true expression delay will undoubtedly help to

overcome this problem. Both the quantitative dataset of mRNA

expression, and the mathematical analysis of gap gene translation

presented here will be crucial for the implementation of such a

model.

At a more general scale, we have provided a proof of principle

that rigorous model fitting and parameter identifiability analysis

are possible in the context of the complex regulation of animal

development. We hope that this will enable a more widespread

and rigorous application of reverse-engineering approaches to

problems of biological pattern formation. In our view, this

constitutes an important methodological advance, which is crucial

to apply the considerable potential of quantitative reverse-

engineering strategies for our understanding of development.

Materials and Methods

Data Acquisition
Blastoderm stage embryos of Drosophila melanogaster (raised at

25uC) were collected 1–4 hrs after egg laying. Embryos were fixed

and stained using FITC- (Kr, gt) or DIG-labeled (kni) riboprobes,

plus polyclonal antiserum against Even-Skipped (Eve) [85],

according to standard experimental protocols [58,86–88]. Nuclei

were counterstained using Hoechst 34580. Imaging took place on

a Leica TCS SP5 confocal microscope using a 206objective, and

an additional digital zoom of 1.3x. We imaged the blastodermal

nuclear layer of laterally oriented embryos at two z-positions, 1.0–

1.2 mm apart. Data channels were scanned sequentially at a

resolution of 102461024 pixels. Only embryos at cleavage cycle

14A (C14A) [89] were chosen for further processing. For earlier

time points, we use previously published gap mRNA expression

data [58].

Data Processing
Data processing and quantification methods are described

elsewhere in detail [58,69]. In brief, we create a binary whole-

embryo mask by thresholding, which is used to automatically crop

and align embryo images such that anterior is left, dorsal up. We

identify nuclei and their surrounding territories of cytoplasm using

watershed-based image segmentation algorithms [58,57]. From

these watershed masks, we determine the position of nuclei, as well

as the concentration of mRNA (in nuclei plus surrounding

cytoplasm), and Eve protein (in nuclei only). Embryos are classified

into eight time classes (T1–8; each 6:125 min long) during C14A,

based on Eve expression patterns and morphological markers [69].

Non-specific background staining is removed as previously

described [90]. Expression data are registered using a spline-

based approach [91]. Background removal and data registration

are implemented in an integrated tool [92]. Finally, registered

mRNA data within a lateral strip (covering 10% of the embryo)

are placed into 100 bins along the A–P axis, and concentration

values in each bin are averaged per gene and time class. Individual

expression profiles, integrated patterns, and the number of

embryos used for each time class, are shown in Supplementary

Figures S1, S2, S3. Gap mRNA expression patterns for C10–C13

were taken from [58], and scaled to provide a smooth transition

between the two datasets. Integrated protein expression data used

in our analysis are from the FlyEx database: http://urchin.spbcas.

ru/flyex [57,60]. We normalise our mRNA data (using the same

scaling factor for all time classes) by adjusting peak concentrations

to the maximum expression level observed for protein. Expression

peaks, domain boundary positions (points of 50% maximum

expression), and domain widths were calculated from spline

approximations to the expression data as described in [63].

Model Structure and Numerical Solver
The basic objects of our model represent nuclei plus their

associated surrounding cytoplasm (energids). The state variables of

the model describe the concentration of intra-nuclear gap protein

within each energid. Change in gap protein concentration across

time and space is described by a system of ordinary differential

equations (ODEs; see equation 1 in the Introduction), and depends

on protein production from mRNA (concentration averaged

across both nuclear and cytoplasmic portions of the energid),

protein diffusion between energids, and protein decay. The model

spans the entire blastoderm stage, from 1 min after the onset of

cleavage cycle 10 (C10; t0~0 min) to the end of C14A at the onset

of gastrulation (te~97:675 min) [89]. During this time, four

mitotic divisions occur (division 10, 4:5{7:8 min; division 11,

14:3{17:3 min; division 12, 26:4{29:7 min; division 13,

45:7{50:8 min; [89]). During mitosis, transcription of mRNA is

interrupted and unfinished transcripts are actively degraded [93].

This process has never been quantified. Here, we assume fast

mitotic mRNA degradation: therefore, the protein production

term in our model (see equation 1) is set to zero, whenever the time

point t{t (current time minus the production delay) comes to lie

within the time of mitosis. At the end of each mitotic phase, nuclei

divide instantaneously (and thus the number of ODEs in the

model increases approximately two-fold), and the distance

between them is halved. Due to the presence of diffusion, our

ODEs are coupled across space. The spatial range of our model is

defined for each gap gene independently. In general, models cover

most of the segmented trunk region of the embryo. Ranges were

defined to include the posterior boundary of the anterior Gt

domain, the central Kr domain, the abdominal Kni domain, and

the posterior domain of Gt (Kr: 25.5–88.5%, kni: 32.5–88.5%, gt:

32.5–95.5% A–P position, where 0% is the anterior pole).

Although our models are feed-forward and linear, they depend

on a non-linear external input (the mRNA expression profiles).

Therefore, we solve these systems of ODEs numerically using an

implementation of the MATLAB dde23 solver in C [94]. The solver

was modified to satisfy the following requirements: (i) it must be able

to provide dense output at time points for which there is no external

input data; (ii) it must be able to handle discontinuities propagating

through the system due to the delay history; and (iii) it has to handle

implicit formulas if the stepsize becomes bigger than the delay. We

use linear interpolation between data points to provide mRNA

concentrations as external inputs at arbitrary points.

Structural Identifiability Analysis
Structural parameter identifiability analysis was performed

using the Laplace transform based approach [28]. The idea is to
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obtain the transfer matrix of the system in rational canonical form

and to assess whether the transfer matrix is unique. Supplementary

Text S2 provides a detailed description of this approach, and the

calculations we performed.

Parameter Estimation
Numerical solutions are produced for time points C10–C13,

and T1–T8 within cleavage cycle 14A. We then calculate a

weighted sum of squared differences (according to equation 2),

which is minimised using two alternative optimisation strategies.

The first of these consists of global optimisation using (parallel) Lam

Simulated Annealing (pLSA; [95–98]). This method is reliable and

robust, and has been successfully used in previous reverse-

engineering studies of the gap gene system [22,58,64]. pLSA is

computationally intensive and was implemented in C. The second

approach consists of a scatter search approach (eSS), which

systematically explores parameter space, triggering a local gradi-

ent-based search [99] whenever a promising parameter set has been

found [100–104]. eSS is implemented in the AMIGO toolbox

(based on MATLAB; [105]). Both strategies resulted in virtually

identical model fits and parameter estimates (Figure 3; Table 1).

The following search space limits were used for optimisation. a:

0.005–5.0; l: 0.0347–0.6931; D: 0.0–0.3; t: 0.0–10.0.

The quality of the fit between data and model output is

measured by the root mean square (RMS) score, which represents

the average difference between modeled and measured protein

concentrations across all data points:

RMS(p)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i,j

(ydata
i (tj){ymodel

i (tj ,ui,p))2

s
, ð3Þ

where ydata
i (tj) denotes the concentrations of protein y in nucleus i

at timepoint tj , while ymodel
i (tj ,ui,p) corresponds to the according

simulated value of protein concentration dependent on the chosen

parameter set p~ft,a,D,lg. The RMS—unlike the weighted least

square sum (see equation (2))—is independent of not only the noise

in measurement but also the number of data points used for fitting.

It therefore makes model fits of different gap genes comparable to

each other on a quantitative basis.

Practical Identifiability Analysis
We used two alternative strategies for practical parameter

identifiability analysis. The first one is based on a local linear

approximation of the ‘energy’-landscape given by the objective

function (2) around a given optimum as described in [35,36,66].

Estimates of the local contour of this landscape are used to

determine an ellipsoidal confidence region around the optimal

parameter set obtained by eSS. Dependent confidence intervals

(100%{a~95%) are then given by the intersection of the ellipsoid

with the parameter axes

DDpi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C(a)=(JT (p̂p)S J(p̂p))ii

q
, ð4Þ

while independent confidence intervals are specified by the

projection of the ellipsoid onto the parameter axes

DI pi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C(a)((JT (p̂p) S J(p̂p)){1)ii

q
: ð5Þ

Correlations among model parameters can be calculated based

on the covariance matrix cov~(JT SJ){1 as

corij~
covijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

covii covjj
p : ð6Þ

In all equations, diagonal entries in S correspond to 1=s2 with s
beeing the standard deviation on measurement. p̂p is the inferred

parameter set obtained via eSS and J denotes the sensitivity

matrix of the model given by the first order derivative of the

observables with respect to the parameters. C(a) is calculated as

the upper a part of Fishers distribution with m and N{m degrees

of freedom

(p�{p̂p)T (JT (p̂p) S J(p̂p))(p�{p̂p)ƒC(a), ð7Þ

with

C(a)~
m

N{m
VMLE(p̂p)Fa(m,N{m): ð8Þ

The second strategy is based on a bootstrapping approach,

where we sample a normal distribution (based on measured means

and variances) for each of our protein expression data points. Data

points for which no variance estimates were available were not

randomised. Resulting sampled expression profiles were corrected

by setting negative concentration values to zero. 1000 boot-

strapping samples were generated for each gap gene in this way.

These samples were then fitted by pLSA as described above.

Bootstrapping runs were performed in parallel on a cluster

provided by the Spanish Supercomputing Network (RES—Red

Española de Supercomputación). From the resulting distribution

of parameter values, we directly calculate 95% confidence

intervals, plus correlation coefficients indicating mutual depen-

dence of model parameters. In the case of Kr, which shows a

bimodal parameter distribution (Figure 6), we only considered a

subset of the sampled estimates (see Results). For an analysis of the

sensitivity of parameter values to changes in mRNA expression

patterns, analogous to the protein bootstrap, please refer to

Supplementary Text S4.

Supporting Information

Figure S1 Quantification of Kr mRNA data. Each panel

represents a time class (T1–T8) in C14A showing an example

embryo image (top), un-registered expression profiles (middle), and

integrated expression patterns (bottom, with standard deviations

shown as dark grey background). Embryo images show lateral

views: anterior is to the left, dorsal up. Graphs plot relative mRNA

concentration against A–P Position (in %, where 0% is the

anterior pole). Expression profiles consider only the central 10%

strip along the dorso-ventral axis. Green profiles in middle panels

were extracted from embryos shown in images above. Lightly

shaded background in lower panels represents the region of the

embryo considered in our models. See Materials and Methods for

details on data processing.

(PDF)

Figure S2 Quantification of kni mRNA data. Each panel

represents a time class (T1–T8) in C14A showing an example

embryo image (top), un-registered expression profiles (middle), and

integrated expression patterns (bottom, with standard deviations

shown as dark grey background). Embryo images show lateral

views: anterior is to the left, dorsal up. Graphs plot relative mRNA

concentration against A–P Position (in %, where 0% is the

Reverse-Engineering Gap Gene Translation

PLOS Computational Biology | www.ploscompbiol.org 13 October 2013 | Volume 9 | Issue 10 | e1003281



anterior pole). Expression profiles consider only the central 10%

strip along the dorso-ventral axis. Red profiles in middle panels

were extracted from embryos shown in images above. Lightly

shaded background in lower panels represents the region of the

embryo considered in our models. See Materials and Methods for

details on data processing.

(PDF)

Figure S3 Quantification of gt mRNA data. Each panel

represents a time class (T1–T8) in C14A showing an example

embryo image (top), un-registered expression profiles (middle), and

integrated expression patterns (bottom, with standard deviations

shown as dark grey background). Embryo images show lateral

views: anterior is to the left, dorsal up. Graphs plot relative mRNA

concentration against A–P Position (in %, where 0% is the

anterior pole). Expression profiles consider only the central 10%

strip along the dorso-ventral axis. Blue profiles in middle panels

were extracted from embryos shown in images above. Lightly

shaded background in lower panels represents the region of the

embryo considered in our models. See Materials and Methods for

details on data processing.

(PDF)

Figure S4 Positional variability in gap domain features.
This figures shows standard deviations for the position of

characteristic features of the central Kr domain (left), the

abdominal kni domain (center), and the posterior gt domain (right;

see also Supplementary Table S1). Data for mRNA shown as solid

lines, for protein as dashed lines. ‘Maximum’ corresponds to the

domain peak or maximum; ‘Anterior’ is the position of the

anterior boundary, ‘Posterior’ that of the posterior boundary

(determined as the position of 50% maximum concentration levels

in each domain); ‘Domain width’ corresponds to the distance

between anterior and posterior boundaries. Positions are indicated

in % A–P embryo length. We only plot time points T1–T6, as low

mRNA expression levels at T7/T8 make a precise quantification

of variability impossible at those stages.

(PDF)

Figure S5 Parameter distributions of 100 pLSA optimi-
sation runs. This Figure shows illustrative examples of scatter

plots for parameter values derived from 1’00 fits. Parameter values

for Kr are shown in green (left column, A, D, G), for kni in red

(center column, B, E, H), and for gt in blue (right column, C, F, I).

Parameter notation: a (production rate), l (decay rate), D
(diffusion rate), and t (production delay; see equation 1 of the

main text). Since we applied the stochastic optimisation method

pLSA, we checked whether parameter estimates of multiple (100)

optimisation runs would show any significant deviation from one

another. However, parameter estimates turned out to be tightly

confined in parameter space, supporting evidence that pLSA

robustly recovers the same solution across runs. Limits for axes are

chosen according to Figure 6 of the main paper.

(PDF)

Figure S6 Parameter estimation with fixed delays. In

order to test whether we can determine the value of delay

parameters t correctly, we performed a series of runs for the gt

model, fixing tGt to values between 1:00 and 8:00 min (with a step

size of 1:00 min between series of optimisation runs). Resulting

WLS scores V(p) are shown as black dots. For comparison, the red

triangle indicates the WLS score of the model obtained by

estimating tGt. The inset shows a detailed view of the interval

between 2:00 and 3:00 which we sampled more intensively, with a

step size of 0:05. Optimal parameter values (for red-triangle

solutions) are indicated on the right.

(PDF)

Table S1 Comparison of domain position and width
between mRNA and protein data. Mean (m) and variances

(s2) of the position of expression peaks (‘max’), domain boundary

positions (‘A’, anterior; ‘P’, posterior), and domain widths are

shown for the central domain of Kr (green), the abdominal domain

of kni (red), and the posterior domain of gt (blue).

(PDF)

Text S1 Testing significance of mRNA decay during late
C14 using the two-sided Kolmogorow-Smirnow-Test.
(PDF)

Text S2 Structural identifiability analysis.
(PDF)

Text S3 Comparison of global optimization solvers.
(PDF)

Text S4 Sensitivity of parameter estimates to mRNA
data.
(PDF)
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82. Little SC, Tkačik G, Kneeland TB, Wieschaus EF, Gregor T (2011) The

formation of the bicoid morphogen gradient requires protein movement from

anteriorly localized mrna. PLoS Biol 9: e1000596.

83. Morrison AH, Scheeler M, Dubuis J, Gregor T (2012) Quantifying the Bicoid

morphogen gradient in living fly embryos. Cold Spring Harb Protoc 2012:

398–406.

84. Perry MW, Boettiger AN, Bothma JP, Levine M (2010) Shadow enhancers

foster robustness of drosophila gastrulation. Curr Biol 20: 1562–1567.

85. Kosman D, Small S, Reinitz J (1998) Rapid preparation of a panel of

polyclonal antibodies to drosophila segmentation proteins. Dev Genes Evol

208: 290–294.

86. Kosman D, Mizutani CM, Lemons D, Cox WG, McGinnis W, et al. (2004)

Multiplex detection of rna expression in drosophila embryos. Science 305:

846.

87. Janssens H, Kosman D, Vanario-Alonso CE, Jaeger J, Samsonova M, et al.

(2005) A high-throughput method for quantifying gene expression data from

early drosophila embryos. Dev Genes Evol 215: 374–381.

88. Janssens H, Hou S, Jaeger J, Kim AR, Myasnikova E, et al. (2006) Quantitative

and predictive model of transcriptional control of the drosophila melanogaster

even skipped gene. Nat Genet 38: 1159–1165.

89. Foe VE, Alberts BM (1983) Studies of nuclear and cytoplasmic behaviour

during the five mitotic cycles that precede gastrulation in Drosophila

embryogenesis. J Cell Sci 61: 31–70.

90. Myasnikova E, Samsonova M, Kosman D, Reinitz J (2005) Removal of

background signal from in situ data on the expression of segmentation genes in

Drosophila. Dev Genes Evol 215: 320–326.

91. Myasnikova E, Samsonova A, Kozlov K, Samsonova M, Reinitz J (2001)

Registration of the expression patterns of Drosophila segmentation genes by

two independent methods. Bioinformatics 17: 3–12.

92. Kozlov KN, Myasnikova E, Samsonova AA, Surkova S, Reinitz J, et al. (2009)

GCPReg package for registration of the segmentation gene expression data in
Drosophila. Fly (Austin) 3: 151–156.

93. Shermoen AW, O’Farrell PH (1991) Progression of the cell cycle through

mitosis leads to abortion of nascent transcripts. Cell 67: 303–310.
94. Manu (2007) Canalization of Gap Gene Expression During Early Development

in Drosophila melanogaster. Ph.D. thesis, Stony Brook University.
95. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated

annealing. Science 220: 671–680.

96. Lam J, Delosme JM (1988) An efficient simulated annealing schedule:
derivation. Technical Report Technical Report 8816, Yale Electrical

Engineering Department.
97. Lam J, Delosme JM (1988) An efficient simulated annealing schedule:

implementation and evaluation. Technical Report Technical Report 8817,
Yale Electrical Engineering Department.

98. Chu KW, Deng Y, Reinitz J (1999) Parallel simulated annealing by mixing of

states. J Comput Phys 148: 646–662.
99. Dennis Jr JE, Gay DM, Welsch RE (1981) Algorithm 573: an adaptive

nonlinear least-squares algorithm [e4]. ACM T Math Software 7: 369–383.
100. Egea JA, Vries D, Alonso AA, Banga JR (2007) Global optimization for

integrated design and control of computationally expensive process models. Ind

Eng Chem Res 46: 9148–9157.
101. Egea JA, Rodriguez-Fernandez M, Banga JR, Marti R (2007) Scatter search for

chemical and bio-process optimization. J Global Optim 37: 481–503.
102. Egea JA, Vazquez E, Banga JR, Marti R (2009) Improved scatter search for the

global optimization of computationally expensive dynamic models. J Global
Optim 43: 175–190.

103. Egea JA, Martı́ R, Banga JR (2010) An evolutionary method for complex-

process optimization. Comput Oper Res 37: 315–324.
104. Villaverde AF, Egea JA, Banga JR (2012) A cooperative strategy for parameter

estimation in large scale systems biology models. BMC Syst Biol 6: 75.
105. Balsa-Canto E, Banga JR (2011) Amigo, a toolbox for advanced model

identification in systems biology using global optimization. Bioinformatics 27:

2311–2313.

Reverse-Engineering Gap Gene Translation

PLOS Computational Biology | www.ploscompbiol.org 16 October 2013 | Volume 9 | Issue 10 | e1003281


