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Abstract

Fission yeast serves as a model for how cellular polarization machinery consisting of signaling molecules and the actin and
microtubule cytoskeleton regulates cell shape. In this work, we develop mathematical models to investigate how these cells
maintain a tubular shape of approximately constant diameter. Many studies identify active Cdc42, found in a cap at the
inner membrane of growing cell tips, as an important regulator of local cell wall remodeling, likely through control of
exocyst tethering and the targeting of other polarity-enhancing structures. First, we show that a computational model with
Cdc42-dependent local cell wall remodeling under turgor pressure predicts a relationship between spatial extent of growth
signal and cell diameter that is in agreement with prior experiments. Second, we model the consequences of feedback
between cell shape and distribution of Cdc42 growth signal at cell tips. We show that stability of cell diameter over
successive cell divisions places restrictions on their mutual dependence. We argue that simple models where the spatial
extent of the tip growth signal relies solely on geometrical alignment of confined microtubules might lead to unstable
width regulation. Third, we study a computational model that combines a growth signal distributed over a characteristic
length scale (as, for example, by a reaction-diffusion mechanism) with an axis-sensing microtubules system that places
landmarks at positions where microtubule tips touch the cortex. A two-dimensional implementation of this model leads to
stable cell diameter for a wide range of parameters. Changes to the parameters of this model reproduce straight, bent, and
bulged cell shapes, and we discuss how this model is consistent with other observed cell shapes in mutants. Our work
provides an initial quantitative framework for understanding the regulation of cell shape in fission yeast, and a scaffold for
understanding this process on a more molecular level in the future.
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Introduction

Many cells such as fungal hyphae, pollen tubes and some

bacteria grow from their tips by remodeling their cell wall [1–3].

Fission yeast (S. pombe) also grow this way and, as a well-studied

model organism, are good for understanding tip growth and, more

generally, the mechanisms of acquisition of cell shape [4–6]. Wild

type fission yeast cells have a cylindrical shape and maintain a

diameter of about 3.4 mm and double in length from approx-

imately 7.5 microns to 15 microns during their life cycle (see

Fig. 1A). Many fission yeast shape mutants have been identified

[7]. Common shape mutants include round cells [7,8], cells with

wider or thinner diameter [9–11], and branched cells [7,12].

Fission yeast and other eukaryotic tip-growing cells use Rho

GTPase signaling and the cytoskeleton to maintain polarized

growth [6,13]. Prior work identified two core modules that

regulate distinct aspects of fission yeast shape [6,14] (see Fig. 1A):

(i) The small Rho GTPase signaling protein Cdc42 and its

associated proteins establish a system that influences the width of

the growth zone [11,15,16]. Along with its activators and

inhibitors, guanine nucleotide exchange factors (GEFs) and

GTPase-activating proteins (GAPs) and actin-mediated transport,

the Cdc42 system contributes to the formation and upkeep of a

growth zone with characteristic width [11] (see Fig. 1B, C, D). By

accumulating at the cell tips, active Cdc42 defines an area where

vesicle delivery, exocytosis [17], and cell wall remodeling occurs by

delivery of cell wall synthases [18,19]. (ii) Microtubules align along

the long axis of the cells and deliver landmark proteins to the tips,

thus defining the tip region and maintain a straight central axis

[4,20,21] (see Fig. 1E, F). Microtubules provide a directed track for

kinesin-based delivery of +TIP proteins to the cell tip, such as

Tea1 [4] (see Fig. 1G, H). The microtubule system detects shape

and marks the cell tips even in mutant cells that lack the ability to

direct growth but have been confined to narrow microchannels,

and fails to mark the cell tips and instead marks regions on the side

of the cell tip if physical restrictions force a large shape change

[20–22].

While a large body of experimental work has identified genetic

mutations that result in modified cell morphology, such as polarity

and width, there has been little modeling work [23] to identify

which physical features are required for maintaining cell shape in

fission yeast. Cell-scale features such as polarity and width arise

from protein-scale cell-wall remodeling and expansion events.

Signaling proteins, because they function through short-range

interactions, likely operate on a molecular level as well. The

specific mechanisms of growth are likely very complex to allow

modeling at a molecular level at present; for example, Cdc42

regulates at least two parallel growth pathways [17]. Because of the
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large separation of scales, however, we anticipate that the cell

relies on a modular mechanism that could be approximately

described by a coarse-grained model that incorporates the main

features of the system. In this modeling study, we explore how the

two modules, one based on Cdc42 and another based on

microtubules, act in concert to achieve robust regulation—and

even recovery—of shape.

We first describe a model for how cell diameter depends on the

distribution of a steady Cdc42 signal on the cell tip. Secondly, we

study the implications of having a distribution of Cdc42 at the tip

that depends on cell shape and show that stability of cell diameter

conditions constrain the possible mechanisms for shape-dependent

signal. Finally, we show that a model combining a Cdc42 signal

distributed over a characteristic length-scale (as could be generated

by a reaction-diffusion process), Cdc42-signal-dependent cell

expansion, and microtubule-dependent detection of the long axis

of the cell can generate cells with stable diameter and cells with

shapes of known mutants. Given what is known about the

mechanistic roles of the missing or affected proteins, these results

are consistent with the proposed mechanisms of shape regulation.

Figure 1. Fission yeast cell shape and regulation by the Cdc42 and microtubule systems. A. Schematic of fission yeast. Cell outline and
nucleus in black, red arrows indicate outward cell wall expansion during bipolar growth, green represents growth-factor Cdc42 signal, purple shows
microtubules aligned to the long axis, orange-and-yellow circles are protein-carrying vesicles delivered along microtubules that mark the tips. B.
CRIB-GFP (a marker for active Cdc42 [29]) localizes at cell tips. Plot shows CRIB-GFP intensity measured along the contour of a cell tip in Fig. 1A of [15].
C. CRIB-GFP fluorescence in control cells. D. CRIB-GFP after enzymatic digestion of the cell wall that causes cell rounding. CRIB-GFP appears to
accumulate in patches along the cell surface. E. Atb2-GFP fluorescence shows microtubules in control cells. In elongated cells microtubules align
along the long axis of the cell. F. Atb2-GFP in rounded cells (after enzymatic digestion of the cell wall as in D) shows microtubules with random
orientations. G. Tea1-GFP, delivered to cell tips by microtubules shows tip-marker location in wild type cells. H. Tea1-GFP fluorescence in nearly-
round sla2D cells reveals misplaced tip markers. (C–F: reproduced from [16]; G, H: reproduced with permission from the Journal of Cell Science [57]). I.
Cell diameter versus CRIB-GFP signal full-width half-max (measured as in 1B) for wild-type cells and cells with modulated levels of Gef1, a Cdc42
activator. The fit is constrained to go through the origin in order to match the form of the model that predicts the ratio of cell diameter to FWHM. A
fit not constrained through the origin gives slope = .57, and intercept 2.15 mm (R = 0.86).
doi:10.1371/journal.pcbi.1003287.g001

Author Summary

Fission yeast is a rod-shaped organism that is studied, in
part, as a model for how cells develop and regulate their
shape. Despite extensive work identifying effects of
genetic mutations and pharmacological treatments on
the shape of these cells, there is a lack of mathematical
and computational models examining how internal cell
signals and the cytoskeleton organize to remodel the cell
wall, direct growth at cell tips, and maintain tubular shape.
In this work we describe how the spatial distribution of
regulatory protein signal at growing cell tips relates to cell
diameter. Further, we describe the consequences of this
signal depending on the shape of the cell, namely its
length and diameter. Finally, we propose a computational
model for understanding growth and shape that includes
an axis-sensing microtubule system, landmarks delivered
to cell tips along those microtubules, and a growth zone
signal that moves around but is attracted to the
landmarks. This picture explains a large number of
reported abnormal shapes in terms of only a few modular
components.

Model of Fission Yeast Cell Shape
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Results

Model for Remodeling under Turgor: From Membrane-
Bound Growth Factor Distribution to Cell Shape

Calcofluor staining that marks new cell wall, reveals that new

material during vegetative growth is incorporated at cell tips [24],

where Cdc42 accumulates. Two studies [11,15] using a fluorescent

marker for active Cdc42 found an approximately Gaussian

intensity profile along the meriodonal contour with a maximum

intensity at the cell tip (Fig. 1B). In one of these studies, active

Cdc42 distribution in cells that overexpress or lack Cdc42

activator Gef1 show that cell diameter correlates with the width

of the active Cdc42 signal profile [15] (Fig. 1I). Since Cdc42

targets actin cables to cell tips [17] and also helps the cell target the

exocyst using PIP2 independently of the cytoskeleton [17], and

because these two parallel pathways are thought to be responsible

for bringing the relevant cell-wall synthases such as Bgs1 and Bgs4

[18,19] to the tips for polarized growth, it is likely that the rate of

cell wall expansion depends on the local concentration of active

Cdc42. Newly deposited cell wall material will deform under

turgor pressure: turgor pressure likely deforms the cell wall within

the range of its elastic response, because even cells bent by

confinement in stiff microchambers sometimes recover their shape

within seconds [22].

Can a model of cell growth where the cell wall is represented as

an elastic boundary (the peptidoglycan matrix) under turgor

pressure being remodeled at growth zones that polarized cells

place at the tips predict the correct cell diameter? What is the

relationship between the size and shape of the growth-zone signal

and cell shape and diameter? Taking into account the above

experimental observations, we developed a model of cell growth in

which an elastic boundary under turgor pressure is remodeled at

growth zones marked by Cdc42 at the tips. This model is a

modified version of a model by Dumais, et al. [25] (see Discussion

for comparison to other models of tip shape). Specifically we

assume that the process of wall expansion can be described by the

replacement of cell wall material strained by osmotic pressure by

unstrained material. Local cell wall remodeling occurs at a rate

proportional to the local concentration of a growth factor L(s),

where s is distance from cell tip, see Fig. 2. Function L(s) represents

the s-dependent concentration of Cdc42 and other proteins that

contribute to wall remodeling. We assume that the material

delivered according to L(s) is able to maintain a wall of constant

thickness around the cell, through local cell wall digestion and

synthesis processes. In this section we assume that the growth-zone

signal L(s) remains constant during cell growth but in the next

section we will consider the effect of the signal being also

dependent on cell size.

Figure 2. Coordinate axis and model of elastic cell wall remodeled under turgor pressure. A. Axisymmetric cell, meriodonal distance s,
distance from axis of symmetry r. Angle Q is the angle between axis of symmetry and the normal to cell surface. Angle h is measured around the axis
of symmetry. Enlarged part of cell wall shows unit vectors ŝs, h

_

along s and h. B. Illustration of cell wall remodeling model. Illustration of how
remodeling signal causes part of cell wall under tension to remodel and relax to new shape. Bottom: replacement of strained cell wall by unstrained
material followed by stretching of cell wall under turgor pressure. In the model the two processes happen simultaneously.
doi:10.1371/journal.pcbi.1003287.g002

Model of Fission Yeast Cell Shape
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First, we calculate the stresses, ss and sh, necessary to balance

turgor pressure P for an arbitrary simple axisymmetric shape

where the position of a piece of cell wall is described by the

distance to cell tip, s, and angle h (Fig. 2A). This depends on cell

wall thickness, d, and the principal curvatures, ks and kh [26]:

ss~
P

2dkh
sh~

P
2dkh

2{ ks
kh

� �
: ð1Þ

For compactness we will occasionally write s instead of s(s), and so

on. The balance of stresses in Eq. (1) assumes that growth through

wall remodeling occurs slowly compared to the timescale required

to establish mechanical equilibrium (hence the cell wall does not

expand unless remodeled). From the elastic stress–strain relation-

ship, which includes the Young’s modulus, E, and the Poisson

ratio, n, the corresponding strains are:

es~
1

E
ss{nshð Þ eh~

1

E
sh{nssð Þ: ð2Þ

We assume that during remodeling strained material is replaced

by unstrained material with thickness held constant, corresponding

to the wall expanding under turgor pressure in proportion to local

strain (Fig. 2B). The signal L(s) directs remodeling, and the cell

wall expansion rates js and jh are the product of the strain and the

remodeling rate set by the signal:

js~L sð ÞGmaxes jh~L sð ÞGmaxeh: ð3Þ

Here, we assume that L(0) = 1 and constant Gmax is the remodeling

rate at the cell tip. Geometrical considerations relate the expansion

rate to the velocities along the normal and tangential directions of

the surface, vn and vt, of a piece of the cell wall with coordinates s

and h [26]:

js~vn sð Þksz
Lvt sð Þ

Ls
jh~vn sð Þkhz

vt sð Þcos w

r
, ð4Þ

where w is the angle between the normal vector and the long axis

of the cell and r is the distance to the long axis, see Fig. 2A. The

velocities here are with respect to a frame of reference where

vn(0)~js=ks, meaning the motion at that tip is due to only local

expansion.

We solved Equations (1)–(4) numerically (see Methods) to

calculate steady-state tip shape as a function of growth-factor

signal L(s), see Fig. 3. Osmotic pressure P, Young’s Modulus E,

and the thickness of wall d combine to form Gmax P/Ed, a constant

that affects the speed of expansion but not the steady-state shape

(see Methods section). Therefore, the only factors that determine

the change of shape are the geometrical properties of the contour

and the signal L(s). Simulation results starting from a variety of

initial contours reach the same steady-state tip shape, showing that

the final calculated shape depends only on L(s).

We found that the diameter of the steady state cylindrical

projection increases linearly with the full-width half-max (FWHM)

of a Gaussian signal (Fig. 3A). Of course this must be the case

because the width of the signal is the only length scale in the

model, but the model predicts the ratio u of the cell diameter to the

FWHM of the signal ranges from 1.23 to 1.37 as the Poisson ratio

of the material inserted ranges from 0 to 0.5, see Fig. 3B.

Equivalently, the ratio of cell diameter to the standard deviation of

the signal sL, which we call a= 2.35 u, ranges from 2.89 to 3.22.

The calculated value of u, which is not the result of a fit, is close to

1.19, the value of the slope in the experiments of cell diameter

versus CRIB-GFP signal FWHM in Fig. 1I. We also tested how

the shape of the growth projection depends on the form of L(s) by

using the exponential power distribution (Fig. 3C). This reveals

what we might naively expect: a blunter or pointier signal gives a

blunter or pointier cell. In order words, the precise shape of the

growth projection changes in the same way the signal does. This

would be consistent with observations in budding yeast, where it

has been speculated that a sharper Cdc42 profile contributes to the

pointier shape of the shmoo as compared to a rounded bud [27].

We do not know of a genetic alteration that produces a drastically

non-Gaussian cortical active-Cdc42 profile but recent results

suggest that cells lacking Mid1 may be able to grow pointier tips

under some conditions [28], which might occur by sharpening the

Cdc42 profile through Pom1-dependent regulation by Rga4 [29].

Our results also suggest testing if the ice-cream cone shape

observed in some mutants [30] is due to a non-Gaussian Cdc42

profile or else due to a Gaussian Cdc42 profile with cell-length-

dependent width.

We also performed simulations to study how quickly the cell

diameter equilibrates after a change in the growth signal. Fig. 3D

shows simulations that start from a steady state protrusion

generated by a Gaussian signal; the signal width is instantaneously

changed by Ds and the shape is followed over time. We found that

the cell diameter equilibrates to the new steady state when the

protrusion extends by approximately half a cell diameter,

irrespective of the magnitude or sign of Ds.

Integrating the model (see Methods section ‘Evolution of tip shape

as function of growth-factor signal L(s)’), and factoring out physical

constants (leaving a dimensionless integral) uncovers a relationship

between growth velocity and the parameters of the model:

vgrowth&:058
P:r2:Gmax

Ed
, ð5Þ

where r is cell radius and the numerical prefactor depends on the

shape of L(s) (here Gaussian) and on the Poisson’s ratio of the material

being inserted. Here we use a Poisson’s ratio of 0.5; the value of the

prefactor increases by 96% as Poisson’s ratio is decreased to zero

because the strain approximately doubles (see Eq. (2) where ss and sh

are typically of same order of magnitude). Thus, growth velocity

scales linearly with turgor pressure. This linear relationship agrees

with the experimental findings in [22], where a change in turgor

pressure was simulated by confining cells in elastic chambers and

regulating osmolarity with sorbitol [22]. Using 1.6 microns for the

cell radius, a turgor pressure of .85 MPa [22], a cell-wall thickness of

200 nm [31], and a Young’s modulus of 101 MPa [22], along with a

velocity 2 mm/hr that corresponds to the cell doubling length in its

cycle with a constant velocity, we estimate for Gmax,0.33 sec21 (see

Table S1 for physical parameters related to the model in this section).

While this is only a rough estimate, this number differs by

approximately one order of magnitude from 0.022 sec21, an

independent estimate of the rate membrane is internalized by

endocytosis found by multiplying 25 actin patches per tip [32] by the

area of a 300 nm vesicle [33], dividing by the area of a 4.5 mm-wide

growth zone [15], and dividing by the 20-second lifetime of an actin

patch [34]. Perhaps the discrepancy exists because remodeling of cell

wall by cell wall synthases and hydrolases happens at a faster rate

compared to the rate of membrane delivery or removal at cell tips.

Shape-Dependent Growth Signal and Maintenance of
Cell Diameter

The model of the previous section showed that a steady signal

for cell wall growth distributed according to the measured active

Cdc42 distribution at cell tips can generate a cylindrical extension

Model of Fission Yeast Cell Shape
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with a diameter approximately equal to the measured diameter of

fission yeast cells. However the spatial distribution of the signal

that determines cell growth also depends on the cell shape

generated by the signal. Moreover, fission yeast doubles in volume

before division and the distribution of growth signal around the

cell tip may vary during the cell cycle. For example, the Cdc42

signal changes from monopolar to bipolar distributions; as cells

grow the signal oscillates and fluctuates, and may also change in

width [15]. How can the cell maintain a stable cell diameter

despite these mutual dependencies? In this section we explore the

importance of the mutual dependence between signal and shape.

Since the period of Cdc42 oscillations [15], ,5 min, is much

shorter than the doubling time, we expect that using the time-

averaged Cdc42 profile along cell tips would be a good

approximation for L(s). We anticipate a bigger effect is the

dependence of L on cell shape. The main feature of L that

determines the width of the growing projection is its standard

deviation, sL (Fig. 3A). Since wild type cells are approximately

spherocylindrical, we approximate the dependence of signal on

cell shape by function sL(�ww,L), where �ww is the average cell

diameter along the cell length excluding the tip cap regions and L

is cell length. Here we allow the cell diameter to vary slightly along

the cell axis but assume that the average diameter �ww and cell

length L are the features of shape that determine sL (as long as

cells remain approximately spherocylindrical).

The diameter of the growing portion of the cell changes

according to sL(�ww,L). This causes the average cell diameter to

change with length, making �ww a function of L. This interplay

between the diameter of the cell and the extent of a signal for

remodeling can be described by:

d½L�ww(L)�
dL

~a sL �ww(L),Lð Þ ð6Þ

In Eq. (6) we assume the diameter of the growing portion depends

only on the current average dimensions of the cell (here we neglect

the transient DL associated with equilibration of the diameter of

the growing portion to a change in sL shown in Fig. 3D). The

product inside the derivative of the left-hand side can be

understood as the area of a length-wise cross-section of the cell.

The derivative of this product with respect to changes in length is

equated to the signal-dependent diameter of a growing tip. Here a
is a constant given by the model of the preceding section that

ranges between 2.89 and 3.22 for a Gaussian L (see Fig. 3A, B).

Figure 3. Model for remodeling induced by growth factor yields several predictions. A. For a Gaussian growth-factor signal, cell diameter
is proportional to signal width as described in the main text. B. Effect of changing Poisson’s ratio of material inserted on the slope in A. C. Using for
input an exponential power distribution shows that a pointier or blunter signal gives a pointier or blunter cell. Excess kurtosis measures the
peakedness of the distribution. Parameters q and �ss are found numerically to match values of excess kurtosis while keeping the standard deviation
constant. Plot shows ratio of tip radius of curvature to cell radius. We note that for each value of excess kurtosis, the dependence of diameter on the
standard deviation of the signal is described by a different value of a (not shown). D. Length of the region of a transition between two widths after an
instantaneous change in the width sL of a Gaussian growth signal by Ds. Illustrative simulated cell outline showing the cell border (blue), region of a
transition with length DL, and cell diameters winit and wfinal of two regions of the growing tip. The size of the transition region, measured as the
length of the region spanning the middle two quartiles in width, is proportional to cell width and remains nearly constant as Ds increases or
decreases.
doi:10.1371/journal.pcbi.1003287.g003

Model of Fission Yeast Cell Shape
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Eq. (6) is valid for growth from just one tip or from both tips (as

long as both tips have the same growth signal distribution).

Starting with an initial length L0 after cell division and initial

average diameter �ww0:�ww(L0), integration of Eq. (6) gives the

average cell diameter �ww when cell reaches length L. To maintain

constant cell diameter through repeated cell growth and division,

the average cell diameter at division must be equal to the initial

diameter �ww0. This gives the following requirement:

�ww(2L0)~�ww(L0):�ww0: ð7Þ

The diameter of wild type cells does not change significantly

throughout the cell cycle, so we can assume that �ww changes by a

sufficiently small amount to allow us to perform a linear expansion

of sL �ww,Lð Þ in Eq. (6). Expanding around the initial diameter �ww0,

one has:

asL(�ww,L)&asL(�ww0,L0)zb(�ww{�ww0)zc(L{L0),

b:a
LsL(�ww,L)

L�ww

����
�ww0,L0

, c:a
LsL(�ww,L)

LL

����
�ww0,L0

ð8Þ

Figure 4. Stable diameter maintenance depends on how growth signal width varies with cell diameter (quantified by the value of b,
see Eq. (11)). A. Unstable case, b.1. Plot shows normalized growth signal width sL versus cell diameter �ww, along with the diagonal. The
intersection between diagonal and sL curve determines steady state cell diameter �ww0 , see Eq. (9) (for simplicity here we assume no cell length
dependence of sL , corresponding to c = 0). Small perturbations of the diameter from the value of the fixed point are amplified after successive cell
divisions. Arrows show how increased (decreased) diameter leads to wider (narrower) growth signal that in turn causes an increased (decreased)
diameter. B. Same as A, but for stable case, b,1. Perturbations in diameter are corrected, the fixed point is stable and cells maintain constant
diameter. C. Successive shapes of the cylindrical part of cells generated by model of Eq. (6) demonstrate instability for b.1. Cells begin with a
rectangular shape and grow from tips according to Eq. (6). We use a signal similar to Eq. (12) that includes a dependence on both average cell width

and length: sL(�ww,L)~
�ww{wexð Þ 1zc(L=L0{1:5)½ �

a(1{wex=w0)
. We consider small c such that the steady state diameter is �ww0&w0 (see Eq. (9)). We used

wex=w0~0:2, corresponding to b&1:25 and L0 = 2.5 w0. Parameter c and the perturbed value of the initial width, winitial, are indicated on figure.
Shapes of sample cells in the population are shown before the first, fifth, and eleventh divisions. Cells become wider and wider or thinner and thinner
depending on whether winitial is smaller or larger than �ww0 . The abrupt changes in width along cell length originate in the abrupt change of growth
signal width following cell division. These discontinuities will be smoother than in the model of Eq. (6), smoothed over a distance equal to cell radius,
see Fig. 3D D. Same as B, but for wex=w0~{0:2, corresponding to b&0:83. In this case cells start wider or thinner than �ww0 but converge back to the
steady state diameter.
doi:10.1371/journal.pcbi.1003287.g004

Model of Fission Yeast Cell Shape
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The above equations allow us to calculate the steady state cell

diameter at birth, for a given dependence of the growth signal

width on cell shape. Substituting Eq. (8) into Eq. (6) and applying

the steady state condition, Eq. (7), gives the steady state cell

diameter at birth, �ww0:

�ww0~c
L0(2b{2b)

(2b{2)(b{2)
zasL(�ww0,L0): ð9Þ

The solution of Eq. (9) for �ww0 defines a fixed point for the system.

Similarly, we find the average cell diameter as function of cell

length:

�ww Lð Þ~�ww0zc
2b{4
� �

L L0z2LbL
2{b
0 { 2b{2

� �
L2

2b{2ð Þ b{2ð ÞL : ð10Þ

Eq. (10) shows that the average cell diameter goes through a

maximum or minimum as cells grow, depending on the sign of c.

Our linear expansion is self-consistent when parameter

cL0=�ww0ƒ1, making the term added to �ww0 in Eq. (10) a small

correction compared to the initial diameter (for b = 1, the

maximum value of the third term in Eq. (10) is ,0:05cL0). The

linear expansion in Eq. (8) works as long as the magnitude of b is

of order unity, or less, after comparing the magnitudes of the last

two terms in Eq. (8).

We have calculated a fixed point for cell diameter (Eq. (9)), but

this point is not necessarily a stable one. Performing linear stability

analysis of Eq. (6), and requiring that if D�ww(L0){�ww0D~e then

D�ww(2L0){�ww(L0)D~beve leads to:

bv1 cell diameter stability criterionð Þ ð11Þ

Thus, the signal that determines cell growth expansion may

become more widely distributed across the cell tip with increasing

cell diameter (b.0), but this dependence has to be weak enough,

according to Eq. (11). When b,1, a small increase in cell diameter

away from its steady state value (by a perturbation or random

fluctuations, for example) will cause signal expansion; however the

cell diameter generated by the modified growth signal will not be

as large as the initial perturbation and as a result the cell diameter

will eventually return to its steady state value. When b.1, small

changes in cell diameter get reinforced by the resulting large

change in growth signal and thus the cell continues to become

wider and wider (or thinner and thinner). This is illustrated in

Fig. 4 that shows stable and unstable cell shapes after successive

divisions, for various values of b and c. .

Microtubule-Based Distribution of Growth Signal and
Stability of Cell Diameter

In fission yeast, the most obvious shape-sensing organelle is the

microtubule cytoskeleton (see Fig. 1). During interphase, the part

of the cell cycle where the cell elongates, microtubules radiate from

three to five organizing centers attached to the nucleus [35]. From

these centers, approximately two microtubules usually extend

tipward in either direction, undergoing catastrophes and rescues

[36,37], often spending one or two minutes probing the cell-tip

region before shrinking away after a catastrophe. Their alignment

appears to depend on geometrical confinement within the cell

[20,21]. In addition to centering the nucleus, these microtubules

target the delivery of polarity regulators to the cell tips.

Microtubules allow motor proteins such as kinesin Tea2 along

with plus-tip proteins like Tip1 and Mal3 to deliver cargo such as

protein Tea1 to the cell tips [38,39]. Tea1 forms a complex with

Tea4 that also localizes formin and actin-cable-nucleator For3 to

cell tips [40].

If a narrow tubular shape helps to focus microtubule tips, and if

microtubule-dependent polarity effectors direct growth, can the

microtubule system be the main mechanism for maintenance of

diameter and rod-like shape of fission-yeast? In other words, is a

mechanism where the width of the growth signal is primarily

determined by the width of microtubule-based delivery able to

maintain cell diameter? Indeed, this has been proposed in at least

two experimental studies of fission-yeast shape [20,21]. The

discussion of the preceding section shows that the feasibility of such

a mechanism depends on criteria such as Eq. (11) that have not

been explored quantitatively.

As a simple, instructive, model of how microtubule-based signal

could help control cell diameter, let us approximate the cell as two

caps connected by a cylinder of diameter �ww. Let us also assume

that microtubules deliver cell tip growth proteins approximately

uniformly near the cell tip, avoiding or extending past the corner

region connecting the caps to the cylindrical body by a distance of

size wex. We further assume that the microtubule system can

achieve this in a way that signal width sL is independent of cell

length, i.e. c = 0. One has:

sL(�ww,L)~
�ww{wex

a(1{wex=�wwWT
0 )

, ð12Þ

where the denominator is a scaling factor that gives the wild type

diameter �wwWT
0 as the fixed point in Eq. (9) and wex is positive

(negative) when the growth zone is smaller (larger) than the cap

region. The magnitude of the width of such a growth signal would

be consistent with the experimentally-measured Tea1 profile that

is approximately Gaussian with standard deviation ,1 mm [41].

For this dependence of signal on shape, we find, using Eq. (8):

b~�wwWT
0 =(�wwWT

0 {wex): ð13Þ

This b value is larger than unity for any positive wex. Thus, for

positive wex the signal distribution of the simple model of Eq. (12)

is an unstable width regulation mechanism. It can be shown that

other such simple geometrical models can give values of b that are

smaller than unity, but are generally near unity. Hence,

microtubule-only-based models of cell diameter regulation may

suffer from instability problems.

Microtubule bending and buckling, which is observed in fission

yeast [42], could focus the microtubules near the cell tip and could

reduce the dependence of tip growth factor delivery width on cell

diameter compared to the model of Eq. (12), thus providing a

stable width regulation mechanism. To explore this possibility, we

employed a detailed computational model of microtubules

proposed by Foethke and others [42], which treats the microtu-

bules as growing and shrinking flexible rods attached to a spherical

nucleus in a viscous fluid by drifting springs (see Fig. 5A). The

persistence length of microtubules in the simulations was 7.3 mm;

while several orders of magnitude longer than the cell length, the

pN forces generated by polymerization are large enough to bend

and buckle the microtubules that grow against a cell tip [42]. We

used the two-dimensional version of their model (available at

www.cytosim.org) that allows extracting locations of positions of

microtubule tips. We expect the 2D version to give similar results

to the full 3D model, since each microtubule lies approximately on

a 2D plane. Microtubule catastrophe rates, in that model, increase

with both the length of the microtubule and the force on the tip.

Model of Fission Yeast Cell Shape
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Using that model, we changed the diameter and length of the two-

dimensional confining cell and tracked the coordinates of many

microtubule tips (see Table S2 for model parameters). This gives a

profile of where the microtubule tips touch the cell boundary

during interphase as a function of cell diameter (see Fig. 5B, C).

Snapshots of simulations in Fig. 5A show configurations of

microtubules and the focusing effect of buckling.

As an approximation for the microtubule-based growth signal

width sL(�ww,L) derived from the simulations of Fig. 5A, we

examined a model in which the growth factor distribution across

the cell tip is equal to the distribution of the likelihood of

microtubule tip contact per unit area (see Fig. 5B). Such a model

assumes that a localized growth factor signal is delivered in

proportion to the time-averaged density of microtubule tips

touching the cell membrane. Repeated simulations of microtubule

dynamics give a frequency distribution for the location of

microtubule tips as a function of the meridional distance

(Fig. 5C). This probability density function is fitted to a Gaussian

distribution and the standard-deviation fit parameter sL as

function of cell diameter �ww and length is shown in Figs. 5D and

F. (Note: Conversion of the distribution of Fig. 5C to the

corresponding 3D distribution before extracting parameter sL

does not change the following conclusions).

The signal sL of the model described in the preceding

paragraph generates the wrong cell diameter, which is also

unstable. Plot of signal width sL as a function of cell length in

Fig. 5F shows a weak length dependence, c<0.04. The

dependence of sL on cell diameter is approximately linear for

cell diameters smaller than 7 mm, for a cell length 7 mm (Fig. 5D).

As the diameter becomes comparable to cell length however, a

sharp unfocusing transition occurs and sL increases rapidly (spike

in Fig. 5D). The intersection between the sL(�ww) curve and �ww=a
(green or red line for the extreme values of the Poisson’s ratio in

Fig. 3B) gives the fixed point that is the steady state cell diameter

for small c, see Eq. (9). The slope of sL(�ww) at the intersection gives

b, which determines diameter stability, see Fig. 4. We find that the

candidate fixed point occurs at very large diameters around 8 mm,

within the microtubule unbundling region where b..1, an

unstable case. Had the sL curve in Fig. 5D intersected with the

green and red lines at �wwWT
0 = 3.4 mm, we would have b,1 and a

Figure 5. Microtubule-only model of growth signal distribution leads to unstable width regulation. A. Snapshots of microtubule
distributions using the 2D version of model of Foethke et al. [42] for two different cell widths. B. Microtubule tip locations (red: touching cell
boundary; blue: not touching) extracted from model shown in A. C. Time-averaged probability distribution of microtubule tips touching cell
boundary as function of distance from cell tip. Continuous curve: Gaussian fit. D. Standard deviation of microtubule tip signal from plots as in panel
C, versus cell diameter for two parameter sets shown in Table S2. Cell length: 8 mm. The red and green lines show curve sL~�ww=a using the upper and
lower values for parameter a that depends on the value of Poisson’s ratio for inserted material (see Fig. 3B). The intersection between the tip signal
width curve and the straight lines is the fixed point that determines the cell diameter, see Eq. (9) (here the value of c is small, see panel E). The slope
of sL �wwð Þ at the intersection determines stability of cell diameter (see Fig. 4). The graph shows a fixed point at the wrong diameter (near 8 mm instead
of ,3.2 mm), and that that fixed point is unstable since b.1 at the intersection (similar to Fig. 4A). E. b versus a obtained from signal sL �wwð Þ in panel
D. Graph was obtained by first fitting sL �wwð Þ to an analytical function. We then varied a to find the intersection of the straight line in D with the sL �wwð Þ
curve. The value of b was calculated at the intersection using Eq. (8) and the analytic form of the derivative. The value of �ww at the interestion is shown
at two points of the curve. Note that stability (b,1) occurs only for values of a above 15, while the range found for a found in Fig. 3B is 2.89 to 3.22. F
Standard deviation of microtubule tip signal varies slightly with cell length. Cell diameter = 3.2 mm. Line shows least-squares linear fit with slope
0.0137.
doi:10.1371/journal.pcbi.1003287.g005
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stable diameter regulation mechanism. However, the focusing of

the microtubules by buckling is too strong to allow for such an

intersection for the range of values of a found in Fig. 3B, see

Fig. 5E. Changing parameters in the model such as reducing the

characteristic force for force-dependent microtubule catastrophes

by a factor of ten (Fig. 5D), increasing the hydrolysis rate by up to

a factor of five (not shown), or increasing the stiffness of

microtubules by up to a factor of ten (not shown) did not modify

the above conclusions since sL did not change significantly.

The models of Eq. (12) and Fig. 5 are not the only possibilities.

Additional microtubule-based mechanisms could interpolate

between these two models. For example, if Tea1 delivery happens

after some time after first touch of microtubule tip to cell

periphery, this would give a larger sL compared to Fig. 5D. Tea1

tip delivery events do seem to be distributed over a wider area

compared to Fig. 5D (see experimental data in Fig. 3E in [41]) but

the dependence on cell diameter has not been studied. Overall, it

appears that several non-trivial mechanisms would have to be

added to microtubule geometric alignment model to achieve the

desired effect of a signal with an approximately shape-independent

width.

One additional mechanism that would enhance stability is that

with a growth signal that can develop its own, approximately

microtubule-independent width, likely via a reaction-diffusion

mechanism [41,43,44]. In this case the role of the microtubules

would be to provide a target for the growth signal by delivering

landmark proteins that direct the signal to the cell tip. Such a

mechanism would be consistent with experimental observations

that show that the lack of fully functional microtubules or missing

polarity proteins delivered along microtubules lead to defective cell

shapes that still show polarized growth. For example, cells missing

Tea1 can grow a third tip out of the center of the cell [12] and

mutations of microtubule-associated protein Alp1 can lead to

curved cells [45]. Mutations of cysteine 354 in beta-tubulin

changes the overall rate of microtubule growth, shrinkage,

catastrophe, and rescue [46]; these changes lead to partially

misplaced Tea1 and often to growth from the side of the cell [46].

These cells are also late or defective in initiating bipolar growth,

suggesting that the landmarks are necessary to place a new growth

site as the cell becomes longer and more mature [46]. Spheroplasts

treated with microtubule inhibitor MBC are able to polarize and

extend growth projections [16]. Membrane-bound Mod5 appears

to cooperate with Tea1 to maintain a robust Tea1 distribution

[41]. Related work in budding yeast also supports the ability of the

Cdc42 system to break symmetry and establish a polarized growth

zone independently of microtubules [43,47].

In the next section we show how a model with growth zones,

microtubules, and landmarks that may be necessary to establish a

stable cell diameter can explain several features of cell shape in

wild type and mutant cells.

Model for Shape Maintenance by Growth Zones,
Microtubules, and Landmarks

To investigate how the microtubule and tip signal growth

components of shape maintenance fit together, we built a

qualitative model that includes signal-dependent growth, diffusing

growth zones with a native width as from a reaction-diffusion

system, and an axis-sensing microtubule system that delivers

landmarks to the cell tips (see Fig. 6). Then we explored the

parameter space of the model. Here we show that changes to the

focusing of the microtubules and the dynamics of the Cdc42

system can lead to bent or bulged shapes, and we describe how

many of the known aberrant shapes can be understood within this

modeling framework.

In the model we assume that the landmark proteins, such as

Tea1, that are delivered by the microtubule system provide an

attractive potential U(s) at cell tips for the center of the Cdc42

growth zone signal (purple zone in Fig. 6A). This potential, arising

from the interaction between Tea1, Mod5 [41] and associated

proteins on the cell membrane is approximated as a Gaussian

distribution of width sMT and depth U0. We assume that the

Tea1/Mod5 interactions allow sMT and U0 to be independent of

cell length and diameter. The molecular basis of the interactions

between the Tea1 zone and the Cdc42 system have not been

established [40,48,49]. Recent work has shown that Tea1 and

Pom1 mark cell tips by organizing in dynamic clusters of varying

density [44,50] and presumably so does Cdc42. We anticipate that

the loose interaction between the Tea1/Mod5 and Cdc42 zones

can be captured by a diffusion in a potential process: the constant

assembly and disassembly of the Cdc42 clusters in the cap would

lead to random motion of the center of the growth signal zone that

is biased towards the minimum of the U(s) potential. This diffusion

process can be quantified by one additional parameter, Dgz, the

intrinsic diffusion coefficient of the center of the Cdc42 signal. The

standard deviation of the growth signal L(s) is assumed to be fixed

to a value sL, independent of cell shape. An approximately-

constant sL could arise from a Cdc42 reaction-diffusion system

and its regulators [43]. Vesicle delivery and removal of Cdc42 can

also regulate the size of the Cdc42 zone [47]. We do not write

explicit equations for the concentrations in the Cdc42 system

because many quantitative and molecular details about those

interactions are unknown in fission yeast. However, a known

property of the solutions to such equations is that kinetic rates and

Figure 6. Model with growth zones, microtubules and land-
marks (see main text and Methods for detailed description). A.
Model schematic shows cell outline (black) and the potential U(s)
defined by the microtubule ends at cell tips (purple gradients). B.
Center of diffusing growth zone (represented by a green circle) moves
diffusively in the microtubule-tip-based potential. C. Growth signal
(green gradient) leads to local cell wall expansion. D. A straight line
(purple) representing the microtubule system extends towards local
length maximum to define the center of the U(s) potential. E. Points on
the cell outline move towards the cell stencil (red) centered at the
position of the center of the growth signal and oriented normal to the
cell contour.
doi:10.1371/journal.pcbi.1003287.g006
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diffusion coefficients can give rise to a robust length scale and

spatial structure that could remain approximately constant as cells

double in size [44]. The phenotypes of wider or narrower

diameters seen in Cdc42-regulator deletion mutants such as

Rga4D and Gef1D [11] or overexpression of Gef1 [15] would

correspond to different sL but here we do not model the

mechanisms determining sL.

For simplicity, we study the model in two dimensions. We

anticipate that features of the model, such as how far from the tip

the growth zone normally diffuses and how often it escapes the

microtubule-based potential at the tip, do not depend qualitatively

on the dimensionality. (The diffusion of the center of the growth

signal along the cell cortex is marginally compact in 2D, similar to

1D compact exploration [51]. Each individual microtubule is also

typically found on a 2D plane.) A 3D model could have additional

features such as allowing corkscrew-shaped cells that are neglected

here. We developed a version of the 3D axisymmetric growth

model that could be plugged into the 2D model that uses a

protruding stencil for a growth projection from a 2D contour (see

Fig. 6 and Methods for details). The stencil size scales to match the

width of a growth zone. We used a stencil model since a direct

conversion of the model of Fig. 2 to two dimensions does not work

because an elastic boundary under turgor pressure in 2D always

becomes circular. The growth stencil has the shape of a cross-

section of the 3D tip shape derived earlier for a Gaussian growth-

factor signal (Fig. 3A). Instead of calculating the shape change

based on remodeling under pressure, the outline deforms to

accommodate the protrusion of the stencil. The 2D model allows

us to examine shapes that would not be axially symmetric without

the added complication and computation of a fully three-

dimensional model.

Finally, we assume that the microtubule system marks the

two most distant parts of the cell that correspond to the two

cell tips. This is represented in the model as a line from one

point on the cell boundary to another. (This would approxi-

mation would fail for extremely bent cell shapes where

microtubules cannot extend to the tips and touch the sides

[20–22]). During every step of the simulation, the line

representing the microtubule system repeatedly attempts to

increase length by small movements of these two points. This

process finds a local maximum of distance between two points

on the outline, and for simple shapes such as a rectangle

capped on opposite sides by semicircles the process finds the

global maximum of distance between points on the entire

boundary. The ends define centers of potential U(s) on the cell

boundary for diffusing growth zones.

Figure 7. Two-dimensional model with one growing tip generates three families of shapes. A. Examples of simulated cell outlines (as
described in section ‘Model for Shape Maintenance by Growth Zones, Microtubules, and Landmarks’). Three regions in parameter space show
occurrence of: (I) straight cells, (II) bent cells, and (III) wide cells. Cell shapes were generated by starting from an outline of a 8 mm long cell with tips
shaped according to the model of Fig. 6 and a growth zone placed at one tip. The model was evolved until cell length doubled or thrice the amount
of time necessary for a straight-growing cell to double had elapsed. B. Regions of different shapes as function of growth zone diffusion coefficient
Dgz and standard deviation of microtubule-based potential sMT. Circles on plot indicate parameters used for the shapes in panel A. For the definition
of the regions, see Methods. The depth of the potential was U0 = 0.2 mm2/min, a value that shows a range of model behaviors. If the potential is very
deep, any diffusion coefficient that allows the growth zone to escape from the tip also allows it to explore the side of the cell. If the potential is very
shallow, a diffusion coefficient that allows the growth zone to be confined also precludes exploration of most of the cell boundary during the growth
phase of the cell. C. Cell bend, measured as squared sine of angle between initial and final cell axes as described in Methods as a function of the same
parameters as in panel B. D. Cell width, measured as described in Methods, as a function of same parameters as in panel B.
doi:10.1371/journal.pcbi.1003287.g007
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To explore the family of shapes produced by the above model

we started from a 2D cross-section of the cell shape calculated in

the 3D model (Fig. 3A) and length 8 mm. This shape was evolved

until the long axis of the cell had doubled. For cells that did not

elongate linearly, we ended the simulation at three times the time

it would take the long axis to double were the cell growing straight.

We simulated cells with either one or two growth zones since some

shape mutants grow in a monopolar manner (single growing tip,

such as tea1D [12]) while others are bipolar (two Cdc42 zones, such

as some for3D cells [52]).

Simulations reveal three families of shapes: straight cells, bent

cells, and bulged cells (see Figs. 7, 8). For small diffusion

coefficients and narrow microtubule-based potentials, cells grow

approximately straight (region I on Figs. 7 and 8). As the potential

defined by the microtubule becomes wider, if the diffusion

coefficient is large enough that the growth zone can move away

from the tip during the lifetime of the cell, the cell often grows

away from the axis of the cell, resulting in a bent final shape

(region II on Figs. 7 and 8). Finally, as the diffusion coefficient

becomes large enough that the potential no longer confines the

growth zone or the potential becomes so wide that it extends well

beyond the cell tips, the growth zones can explore the entire

surface of the cell and the cell develops bulges and diameter

increases (region III on Figs. 7 and 8). When cells in region III are

evolved over long times, they develop an irregular shape, see

Fig. 8E (in region III, in the long time limit, each growth zone

would generate a protrusion of changing orientation; the average

diameter of this protrusion is determined by a balance of t1/2

diffusive growth signal spread with linear extension).

Both the bent (region II) and bulged (region III) cell

morphologies have been observed by experimentalists, as we will

discuss in the remainder of this section. The ban mutants become

banana shaped [7] and our results suggest that this could be the

result of the combination of wider Tea1 and other landmark

protein distribution with a fast diffusing Cdc42 cap. Thus, they

may provide an experimental window into the interrelationships

among growth, Cdc42 signaling, and the microtubule system. We

note that our simulations show equal numbers of S-shaped and

banana-shaped cells while prior reports show primarily banana

shapes [7]. One possibility is that the model of Fig. 6 is correct in

that initial cell bending is due to diffusing growth caps. Aspects of

the microtubule system not included in the model might

subsequently preferentially stabilize banana shapes as compared

to S-shapes: for example, U-shaped buckled microtubules are

Figure 8. Two-dimensional qualitative model with two growing tips generates three families of shapes. A–D. Same as Fig. 7, but with
two growing tips. E. Evolution of bulged cell (parameters indicated by circle for region III) with two diffusing growth zones at long times. Model
evolved for (going right) one, two, three, and ten times the amount of time necessary for a straight-growing cell to double.
doi:10.1371/journal.pcbi.1003287.g008
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more likely to occur as compared to S-shapes [42] but the model

of Fig. 6 does not account for microtubule buckling. Microtubules

in the ban5-3 mutant tend to be shorter during interphase [7], and

the shape of these cells often includes sharp bends. Since the ban5-

3 mutation is on the gene encoding for alpha tubulin Atb2 [53],

the resulting cell shape can be attributed to a failure of the

microtubule system to reach and indicate the tips for growth,

consistent with our model. Another possibility is that microtubule

buckling is the primary cause for some of the banana shapes,

rather than growth cap diffusion: the landmark distribution

generated from buckled microtubules would lead to banana-

shaped cells. Images of ban2-92, ban3-2, and ban4-81 mutants do

show a buckled microtubule bundle on one side of the cell [7] but

what is cause and effect is unclear. The mechanism behind shape

in these ban mutants might act through components of the

microtubule organizing centers attached to the nucleus [54]. We

propose experimental measurements of active Cdc42 zone

diffusion in the ban mutants to help separate cause and effect in

these shape mutants.

Long cells blocked in G2 also become curved in a way similar to

the banana mutants [7,55]. This could be related to a cell-length

limit for the normal response of the microtubule system: if

mictrotubules are unable to extend all the way to cell tip, this

might give rise to a wider and/or shallower potential U(s).

Bulge-shaped cells have also been observed in Mid1 mutants

[28,56] and in the sla2D cells shown in Fig. 1H [57]. We suggest

these shapes might be related to a rapidly diffusing growth zone in

combination with defects in microtubule organization. Alterna-

tively, unregulated random nucleation, growth and disassembly of

Cdc42 growth zones (as occurs during mating [58]) could explain

these shape mutants. To date, bulged mutants have not been

explored as much as other aberrant shape phenotypes, possibly

because such a trait may be caused by factors other than

mutations.

Here we did not address T-shaped cells [12]. These phenotypes

may occur because of a failure to initially place the growth zone at

the tips.

Discussion

Summary of This Work
This work addresses three questions: (1) Can a physical model

for how fission-yeast cell shape could depend on a cortical signal

reproduce the observed cell diameter and tip shape using the

measured active Cdc42 profile? (2) What are the ramifications of a

shape-dependent signal for growth, and can a mechanism where

the width of the tip growth signal is determined by microtubule

focusing lead to stable regulation of diameter? (3) Can a number of

abnormal fission yeast shapes be understood in terms of

disruptions to a few interacting modular components that link

the cytoskeleton to Rho GTPase signaling?

To address the first question (1), we developed a coarse-grained

mathematical description of the cell boundary as an elastic shell

shaped by turgor pressure (Fig. 2A), and of how the shape of this

boundary would change due to continuous renewal of the

boundary material (Fig. 2B). Results from this model include a

rate of signal width to cell diameter in accord with experimental

results [11,15] (Fig. 3A). We predict this ratio remains the same in

diameter mutants that accumulate a Gaussian Cdc42 distribution

at cell tips. We also predict how cell diameter equilibrates after a

sudden changes to growth signal (Fig. 3D).

To address the second question (2), we give an account of how

feedback between a growth signal and cell shape might affect

diameter. Results from this model include a condition for stable

diameter regulation (b,1, Fig. 4), and data from a detailed

microtubule simulation ([42], Fig. 5) suggesting that simple

feedback between growth signal and cell shape through physical

exploration by the microtubules may not be sufficient to establish a

constant cell diameter. We predict that in mutant cells that

become wider or thinner over successive generations, as in Fig. 4C,

the growth signal width increases rapidly with increasing cell

diameter, such that b.1.

To address the third question (3), we describe a qualitative

model that incorporates components of fission-yeast shape

regulation to provide a basis for understanding shape abnormal-

ities (Fig. 6). The model includes coarse grained versions of the

microtubule-dependent tip-sensing mechanism, the landmark

proteins delivered by motor proteins along those microtubules,

and the active-Cdc42-dependent growth described in the first part

(1). The results of Fig. 7 and 8 showing an exploration of model

parameters predict correlations among cell shape defects, distri-

bution of microtubule-dependent landmark proteins, and mobility

of Cdc42 growth zones.

As a whole, this theoretical work describes a framework for

understanding how shape is regulated and maintained in fission

yeast, and motivates experimental investigation into the physical

components of the cell that correspond to mechanisms of the

model.

Comparison to Other Models for Tip Cell Wall Growth
Our model of signal-dependent growth relates to previous

models of tip shape in other cell types. We note that there are some

differences between fission yeast and other tip-growing cell types.

Pollen tubes, for example, secrete pectic polymers to build their

cell wall at the cell tip and they are cleaved of methyl groups as

they mature [59,60] while fission yeast lacks pectin and its cell wall

contains primarily glucan and chitin [61,62]. Vegetative fission

yeast also does not have a Spitzenkörper [1,63], the organizing

center for vesicle delivery in growing tips of fungal hyphae, so our

model differs from models that have investigated the consequences

of Spitzenkörper-dependent tip growth [64,65].

Several models for plant and hyphae tip growth that rely on

gradients of mechanical and viscous properties of the cell wall

along the cell tip [25,60,64,66,67]. Here we assumed a uniform

Young’s modulus, E. We are not aware of measurements of the

modulus as a function of distance from tip, E(s) in fission yeast.

Since the expansion rate in our model depends on the ratio L(s)/E,

such a dependency could be mathematically folded in to L(s), with

the new signal being L(s)/E(s). This implies that softer parts of the

cell wall extend faster under the same stress and signal. This effect

could be relevant for cell growth immediately after septation when

the new and old ends may have different mechanical properties: in

budding yeast the scar region that contain septins has a 10-fold

larger modulus compared other parts of the cell [68]. However L
and E are not independent parameters so if future experimental

measurements show an s-dependent modulus, they would point to

additional complexities not included in our model that would

require modeling of cell-wall renewal at a molecular-level.

We have also neglected passive plastic cell wall flow (flows in our

model are due to cell wall remodeling). We believe this is a good

approximation for fission yeast cells since they stop growing from

the tips when entering mitosis, without bursting or obvious cell

wall thinning. Deformed fission yeast cells quickly recover their

shape after undergoing large deformations, also indicative of

elastic behavior [20]. We note that the relative importance of

passive plastic deformation versus biochemical-driven expansion

are difficult to disentangle, as has been discussed extensively in
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plant cell growth [69,70]. Our work motivates further investigation

of this issue in fission yeast.

Our model is most closely related to Dumais et al. [25] who

modeled the cell wall of tip-growing plant cells (such as elongating

root hair cells of M. truncatula) as a thin viscoplastic shell. In

Dumais et al., the mechanical properties of the wall—extensibility,

yield stress, and Poisson’s ratio—vary with distance from the tip

and their interaction gives rise to shape. The extensibility function

plays a similar role to our L(s) and both models share the same

algebraic expressions for elastic shells [26]. While the equations

that describe the steady state are mathematically very similar, in

Dumais et al., the delivery profile of the cell wall material is

assumed to be tuned according to cell wall expansion, to maintain

a constant wall thickness. We assume that the delivery profile,

proportional to L(s), guides local cell expansion by directing local

exocytosis and cell wall remodeling enzymes to specific parts of the

cell. Since we model the cell wall as an elastic material, the cell

wall would not flow during a transient when delivery is stalled,

unlike in Dumais et al. We also make the assumption that the

material delivered is able to maintain a wall of constant thickness,

consistent with recent theoretical work in bacterial cell wall

remodeling [71]. We also assume a different expansion rate: in Eq.

(3) we assume the expansion rate is proportional to local strain

while Dumais et al. assume that the strain rate (corresponding to

our j) is distributed according to a local energy minimization.

Campas and Mahadevan [67] identify two length scales in tip

growing cells, one describing the distance away from the tip at

which the polymers of the cell wall become increasingly cross-

linked causing a transition from a fluid to a solid wall (in pollen

tubes this depends on pectin methyl-esterases and their inhibitors)

and another describing the distance from the tip where the rate of

material deposited to the wall falls off. These two length scales lead

to a spectrum of possible cells diameters and shapes where the

radius of curvature at the tip and the radius of the cell body differ.

Here we assume cell wall expansion is linked to delivery of wall

material through L(s). Thus, changes of tip shape and diameter

rely on different L(s) profiles.

Fayant et al. [60] developed a finite element model for growing

lily pollen tubes and use the model alongside experiments to

identify a cell-wall component responsible for changing the

mechanical properties of the wall. In that model, the Young’s

modulus varies with the angle between the tip and the long axis of

the cell, reflecting a continuous maturation process as wall

material moves backward from the tip. Experiments reveal this

maturation process to be the esterification of pectin. They assume

exocytosis acts to maintain constant cell-wall thickness during

expansion.

The rod shape is not exclusive to eukaryotes: a few well-studied

bacteria maintain a shape that is similar to that of fission yeast with

growth occurring along the cylindrical cell body or at cell tips,

depending on the organism [72]. B. subtilis, E. coli, and C. crescentus

grow by patterned insertion of peptidoglycans into the sidewall

using a MreB-dependent mechanism and some disagreement

remains as to whether this operates by circumferential motion of a

complex including MreB [73,74] or as a consequence of a helical

MreB structure [75,76]. Huang, Wingreen and others used

molecular-level models to describe the growth of Gram-negative

bacteria such as E. coli [75,77,78]. In these studies, an elastic

network glycan strands and peptide crosslinks expands as material

is inserted with some orientation preference. These models capture

cracked-cell shapes that result from patches of defects in the

network [77]. Jiang and others also put the growth and shape of

multiple Gram-negative cells into a common framework [79].

They use a continuum model of the peptoglycan network to show

how growth, cell-wall mechanics, and the bacterial cytoskeleton

can interact to produce shape. According to that study, a dynamic

helical bundle of MreB exerts forces on the cell wall as it is

remodeled, keeping it from swelling in response to the turgor

pressure. They use the model to explain shape change after the

loss of the MreB helix due to drug treatment. Because the models

of bacterial shape by Huang et al. [77] and Jiang et al. [79]

describe cells that use a different mechanism to maintain shape,

the pattern of growth is very different from the model of fission

yeast described in this paper. However, the concept of remodeling

part of the wall, of breaking down a peptoglycan network and

inserting new material as in Huang et al [77] is similar to the

assumptions of our model, even if the region that expands is

different.

Modular Control of Fission Yeast Shape
Shape regulation, as described in the last part of this work

(Fig. 6), is essentially modular. The separate components—the

microtubule system, the Cdc42 signaling, and the landmarks—

interact but are described by separate genes and consist of separate

proteins. And to some extent they can operate separately: many of

the shaping mechanisms are understood because the other

modules continue to work if they are disrupted, as in the case of

banana-shaped cells where the Cdc42 cap may function normally

but the landmarks are misplaced. Our description of the bent cell

shaping mechanism differs from the ideas presented in literature

that suggest that the banana shape comes from a length scale

within a reaction-diffusion equation [55] (note: such a mechanism

also does not distinguish between S and banana shapes) or from

whole-cell buckling [80]; these contrasting explanations motivate

further experimental study of the ban mutants.

The framework described in this work also appears to be

consistent with recent observations of spheroplasts, cells that have

become round because the wall has been enzymatically digested

[16]. Despite their round shape, these cells form a growth zone of

the proper size (and of the altered size in cells missing components

of the Cdc42 system) at a random location. Because the growth

zone size in this case seems to be independent of the physical shape

of the cell, this argues that the Cdc42 system has an intrinsic length

scale that ultimately sets the diameter of the cell. The fact that tip

growth can occur in spheroplasts treated with microtubule

inhibitors [16] provides further support for the conclusions of this

work. The fact that spheroplasts with microtubules unperturbed by

drugs grow a straighter protuberance [16] is also consistent with

the picture advanced here. This particular study also implies

another aspect of shape regulation, recovery: cells can recover

polarized growth from a spherical shape. This indicates that the

machinery is robust enough to reestablish polarity even in cases

where it is lost completely.

How would oscillations and fluctuations [15] affect our results?

Since the fluctuations and oscillations of Cdc42 take place over a

period of around 5 minutes, we expect that the growth of the cell

(which doubles over hours) evolves according the time-averaged

tip Cdc42 tip signal. Cdc42 oscillations and fluctuations may

enhance the mobility of the Cdc42 zone by increasing parameter

Dgz in Fig. 6B. Oscillations and fluctuations could play a bigger

role in the establishment of multiple growth zones, change of

polarity, and in the efficient use of resources (which may be

concentrated at one tip in small cells that only have enough growth

machinery to grow at one tip) [15]. Here we showed that certain

predicted aspects of calculated shape and parameter dependence

of the model are not strongly dependent on whether one or two

growth zones is used (see Fig. 7, 8).
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In addition to genetic and pharmacological manipulation, prior

studies on fission-yeast shape also included perturbations to the

physical environment of the cell. In particular, in two prior studies

cells were confined within curved chambers to study the response

of the growth machinery [20,21]. One study used elastic

microchambers [20], the other curved passages [21]—but in both

cases they found that cells forced to adopt curved morphologies

misplaced landmarks due to a change in the organization of the

microtubule system. Both of these studies support the framework

of fission-yeast shape regulation proposed in this work (though in

Fig. 6 we assume the microtubules can mark the most distant part

of the cell and do not account for extremely bent cells). Terenna et

al. [21] found that Tea1 and Bud6 get more tightly focused at the

cell tips upon confinement of banana-shaped mto1D cells into

straight channels. While we do not offer an explanation for this

observation, our study motivates similar studies of the response of

Tea1 and Cdc42 upon confinement of wild type and shape

mutants to channels of varying diameter. Such experiments may

allow measuring the value of parameter b that we propose is

important for determining cell diameter.

Studies of the shmoo shapes in mating yeast could offer

possibilities to test some of our predictions. Since pheromone

concentration influences Cdc42 dynamics [58], use of artificial

pheromone gradients may allow shaping of the Cdc42 profile to

observe the resulting change of shmoo shape. Use of electric fields

to control Cdc42 distribution [81] is yet another approach.

Finally, we have identified three mechanisms that could lead to

round cells: (1) Establishment of a very wide Cdc42 region leading

to a diameter comparable to cell length; (2) Sensitivity of cell

growth signal to cell diameter (case b.1); (3) Highly motile Cdc42

patch (the latter leading mostly to bulgy cells). Case 3 is similar to

the random motion of a Cdc42 parch along the cell periphery in

mating cells [58]. Future studies imaging the distribution and

dynamics of Cdc42 and the cytoskeleton in wild type and mutant

cells could help distinguish among these possibilities and test the

validity of the proposed modular mechanism.

Methods

1. Methods Related to Model for Remodeling under
Turgor Pressure (Fig. 2)

Evolution of tip shape as function of growth-factor signal

L(s). The differential equations described by Eq. (4) can be

rearranged to give a differential equation for vt (as in [25]):

Lvt

Ls
{

ks cos w

khr

� �
vt~ js{

ks

kh
jh

� �
: ð14Þ

The geometric relations sin w~rkh (see Fig. 1) and ks~Lw=Ls
allow this to be simplified:

Lvt

Ls
{cot wvt

Lw

Ls
~ js{

ks

kh
jh

� �
: ð15Þ

The left-hand side is sin wL(vt csc w)=Ls, so the expression can be

written:

L vt csc wð Þ
Ls

~csc w js{
ks

kh
jh

� �
: ð16Þ

Adding the boundary condition vt(0)~0, which is imposed by

axisymmetry, the system admits the following solution:

vt sð Þ~sin w

ðs

o

csc w js{
ks

kh
jh

� �
ds0

vn sð Þ~ jh

kh
{cos w

ðs

o

csc w js{
ks

kh
jh

� �
ds0

ð17Þ

Eq. (5) of the main text is obtain by substituting Eq. (3) into Eq.

(17), substituting Eq. (2) followed by (1) into the result. Eq. (5)

shows that the growth velocity depends on the ratio Gmax P/Ed,

The axisymmetric nature of the model allows the cell surface to

be represented by a tip-to-tip contour. For calculation purposes,

we discretized the contour to a series of points, with s being the

sum of segment lengths from tip to point. Derivatives and

curvatures were calculated using the five-point stencil. For a given

cell shape and L(s), numerical integration of Eq. (17) gives the

normal and tangential velocities. Every point on the contour was

moved by~vv:dt (where~vv is the total velocity vector). After this step,

new point positions along the segmented contour were calculated

to maintain equal separation between the points, with additional

points added as the contour becomes longer to maintain

approximately the initial spacing. We checked that dt and the

spacing between points along s were sufficiently small for

numerical integration. To calculate whole-cell shapes in Fig. 3A,

steady-state tip shapes were joined to a cylindrical middle section

and the length of that section was chosen to give constant volume.

2. Methods Related to Model for Shape Maintenance by
Growth Zones, Landmarks, and Microtubules (Fig. 6)

Cell boundary. The outline of the cell border is modeled as a

series of discrete points (see Fig. 6E) as described in Methods

section 1 for the axisymmetric growth model. Here Catmull–

Romm splines were used for the interpolation during contour

resegmentation. This alleviates an effect where repeated linear

resegmentation erodes the contour, especially as dt becomes small.

Discretization of the cell boundary. For the simulation to

accurately represent the continuum model, the number of points

along the cell boundary should be chosen so that the distance

between points is much smaller than the inverse of any curvature

along the contour representing the cell outline. Therefore the

initial number of beads n is chosen by:

n~100:Pinit=min kstencil,kinitð Þ, ð18Þ

where Pinit is the length of the perimeter at initialization, kstencil is

the curvature at the tip of the stencil, and kinit is the curvature at

the tip at initialization.

Growth stencil (Fig. 6E). For the model of Fig. 6, we import

a tip outline from the three-dimensional model. This is defined as

the intersection of the three-dimensional outline with any plane

that includes the axis of symmetry of the three-dimensional

outline, trimmed back at the section of the outline where the cell

becomes cylindrical. A Gaussian growth-factor profile was used to

generate this outline, which can then be scaled to match the width

parameter of a growth zone. The axis of symmetry of this stencil is

then aligned to the normal vector at its position on the contour

representing the cell outline. For growth, the tip is moved along

this normal vector by v dt, where v is the magnitude of the growth

velocity vector, and points along the contour representing the cell

outline are moved towards points that are the same distance along

the stencil. Points on the contour representing the cell outline do

not move if that movement would be inward (if the inner product

of the normal vector with the direction to the corresponding point
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on the stencil is negative), and only move a maximum distance of

2 v dt (12s/S) where s is the distance from the growth zone and S is

the maximum distance along the growth stencil. This prevents

discontinuities in the contour representing the cell outline.
Diffusing growth zone (Fig. 6B). While the cells expands,

the center of the growth signal zone diffuses in a one-dimensional

potential, U(s), or equivalently U�(s):U(s)=f, where f is the drag

coefficient. Potential wells surround the tips of the microtubule,

and they have the form of a Gaussian with standard deviation sMT

and depth U0. The movement of the growth zone is simulated

according to Brownian dynamics:

Dsgz

Dt
~LsU

� sð Þz
ffiffiffiffiffiffiffiffiffiffi
2Dgz

Dt

r
:R, ð19Þ

where sgz is the growth-zone position, Dgz is the growth-zone

diffusion coefficient, R is a random number picked from a

Gaussian probability density function with standard deviation one

and mean zero, and Dt is the integration time step.
Choice of integration time step Dt. Because, for each time

step, only the local gradient of the potential, hsU *(s), is used to

describe the interaction of the growth zone with the potential, the

distance that the growth zone travels during one time step due to

both that interaction and diffusion should be small compared to

the scale of the features of that potential. After excluding

numerical prefactors of order unity, this leads to the conditions:

U0
�

sMT

DtvvsMT ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dgz

:Dt
p

vvsMT : ð20Þ

Changes to the contour representing the cell outline should also be

small compared to the features of that outline during any single

time step. An appropriate scale for the features of the outline is the

inverse of the stencil-tip curvature, 1/kstencil, and changes to the

outline go as vgrowth Dt. This gives the additional condition:

Dtvv1



kstencilvgrowth

� �
ð21Þ

To meet the above criteria we chose the time step to be:

Dt~:03:min sMT
2



Dgz,sMT
2



U0
�, kstencilvgrowth

� �{1
� �

ð22Þ

Measuring bend and width from cell outlines. Because

the cell shapes tend to be mostly tubular (visual observation) the

degree of bend is approximated by the angle between the line

representing the microtubules, which has two ends that move in

short steps when it will increase length (described above in ‘Model

for Shape Maintenance by Growth Zones, Microtubules, and

Landmarks’), and the initial cell axis (i.e., the angle between the

purple line and the horizontal in Fig. 6D). We used the squared

sine of this angle as a metric with a non-zero average. This

measure has some limitations; for instance, a simulated cell

growing at both tips that develops a c-shape will appear to have no

bend. However, conditions leading to c-shapes also lead to other

bent shapes cells and the squared sine is a representative measure.

Measuring width also relies on the line simulating microtubules for

detecting the endpoints. Moving away from each tip, the distances

between pairs of points are compared out to half the cell length

away from the tip and the maximal distance is considered to be the

width. To divide cells into the three categories of straight cells,

bent cells, and bulged cells (Figs. 7 and 8), we chose thresholds for

the degree of bend (squared sine of 0.0015) and measured width

(3.45 mm). Category I, straight cells, included only regions of

parameter space where both the degree of bend and the measured

width were below the threshold. Category II, bent cells, included

only regions where the degree of bend was above the threshold

and the measured width was below the threshold. Category III

included everything else. These thresholds were set by trial and

error to match what by inspection appeared to be the three

categories.

Supporting Information

Table S1 Parameters used in this paper.

(DOCX)

Table S2 Parameters for the two-dimensional model of Foethke

et al (see Fig. 5). For the units, distances are given in mm, forces are

given in pN, and times are expressed in seconds. Bolded values are

changed for some simulations as described in the text. These

values are used in a configuration file for the Cytosim program

found at http://www.cytosim.org/cytosim/index.html. We used

the compiled version 3.0 beta found on that site, which comes with

a set of configuration files. The default values for the microtubule

simulation can be found in the pombe.cym file.
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