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Abstract

The various roles that aggregation prone regions (APRs) are capable of playing in proteins are investigated here via
comprehensive analyses of multiple non-redundant datasets containing randomly generated amino acid sequences,
monomeric proteins, intrinsically disordered proteins (IDPs) and catalytic residues. Results from this study indicate that the
aggregation propensities of monomeric protein sequences have been minimized compared to random sequences with
uniform and natural amino acid compositions, as observed by a lower average aggregation propensity and fewer APRs that
are shorter in length and more often punctuated by gate-keeper residues. However, evidence for evolutionary selective
pressure to disrupt these sequence regions among homologous proteins is inconsistent. APRs are less conserved than
average sequence identity among closely related homologues ($80% sequence identity with a parent) but APRs are more
conserved than average sequence identity among homologues that have at least 50% sequence identity with a parent.
Structural analyses of APRs indicate that APRs are three times more likely to contain ordered versus disordered residues and
that APRs frequently contribute more towards stabilizing proteins than equal length segments from the same protein.
Catalytic residues and APRs were also found to be in structural contact significantly more often than expected by random
chance. Our findings suggest that proteins have evolved by optimizing their risk of aggregation for cellular environments by
both minimizing aggregation prone regions and by conserving those that are important for folding and function. In many
cases, these sequence optimizations are insufficient to develop recombinant proteins into commercial products. Rational
design strategies aimed at improving protein solubility for biotechnological purposes should carefully evaluate the
contributions made by candidate APRs, targeted for disruption, towards protein structure and activity.
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Introduction

Irreversible b-strand driven protein aggregation and amyloido-

genesis is a tremendous burden to biological organisms. Protein

loss-of function due to aggregation causes stress to the cell and

metabolic energy is lost on the expression, synthesis, and

degradation of proteins which aggregate. To overcome these

challenges and build cellular machineries that can sustain

metabolic flux, higher organisms have developed sophisticated

protein quality control mechanisms, including molecular chaper-

ones, post-translational modifications, and degradation/clearance

pathways to prevent aggregation from disrupting homeostasis [1–

3]. When quality control mechanisms are impaired, due to aging

or otherwise, protein aggregation can lead to ‘conformational

diseases’ in humans and animals [1,3–5].

Despite its deleterious effects, protein aggregation remains

unavoidable due to the inherent physico-chemical properties of

protein sequences and the formation of non-native conformations

due to sequence mutation or unfolding events in response to

environmental stress. However, studies of amyloidogenic proteins

have revealed that different protein sequences vary in their

propensity to aggregate, which can be attributed to the presence of

aggregation-nucleating short sequence stretches, capable of

forming the cross-b steric zipper motif, called aggregation prone

regions (APRs) [6–10]. Analyses of APRs indicate common

sequence properties including a high preference for b-branched

hydrophobic residues, strong b-sheet propensity, low net charge,

and in the case of fibril forming patterns, position-specific charged

residues [11,12]. Knowledge of these properties has enabled the

development of phenomenological and first-principle based

methods to predict APRs in any protein sequence [13–20].

The availability of computational APR prediction tools has

facilitated large-scale investigations into the aggregation propen-

sities of protein sequences [21–27]. Analyzing intrinsically

disordered protein (IDP) sequences using APR prediction tools

has revealed that the number of APRs found in IDPs is three times

less than those found in sequences for ordered proteins [21]. Given

the tendency for APRs to exist in ordered sequence regions, it was

proposed that APRs may have a role in promoting structural order

in native folds. More recent studies have extended the concept that
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APRs can play a role in promoting structural order based on the

prevalence of APRs in protein-protein interactions sites [22,28],

including antibody-antigen interfaces [23]. In fact, the trend for

APRs to exist in protein-protein interaction sites has led some

research groups to repurpose their APR prediction methods into

tools for identifying potential protein-ligand [29] and protein-

protein interaction sites [28]. On the other hand, mounting

evidence from analyses of large sequence datasets strongly suggests

that nature is actively minimizing the occurrence/impact of

aggregation prone regions in protein sequences. For example,

APRs are frequently punctuated by charged or proline residues

(labeled gate-keepers) [24], proteins with higher aggregation

propensities have shorter half-lives in the cell [25], and mRNA

expression levels in E. coli are lower for proteins with higher

aggregation propensities [26]. A study linking protein evolution

and aggregation discovered an overall decreasing trend for

aggregation propensity among organisms with increasing com-

plexity and longevity [30]. This implies that organisms have

evolved by minimizing the aggregation propensity of their

proteomes. Subsequently, it was determined that the aggregation

propensity differences between prokaryotic and eukaryotic pro-

teomes could be explained by differences in their number of IDPs,

which have fewer APRs than ordered proteins do [27]. This

contradictory finding, suggests that organisms may not have

minimized the aggregation propensity of their proteomes during

the course of evolution. In light of the above reports, there is a

need to further investigate the various roles that aggregation prone

regions have in protein structure and the concept that nature is

actively minimizing the aggregation propensity of protein

sequences.

This report presents findings from comprehensive analyses on

multiple non-redundant datasets of protein sequences and

structures (see Methods). Datasets were analyzed for aggregation

propensity differences among monomeric proteins, IDPs, and

randomized sequences with uniform and natural amino acid

compositions. To assess if evolutionary selective pressure has

minimized the aggregation propensity of protein sequences

through APR disruption, average sequence identity among

homologous proteins was compared to percent APR conservation

among the same sequences. IDPs and monomeric proteins were

used to evaluate the role that APRs have in promoting structural

order and stabilizing interactions. Proximity of APRs to catalytic

sites in enzyme structures was also investigated. Our findings

suggest that proteins have evolved by optimizing their risk of

aggregation for cellular environments through the overall mini-

mization of aggregation prone regions and the conservation of

those important for folding and function. In addition to promoting

aggregation under conditions that destabilize proteins, APRs also

stabilize protein structure and resist disorder, particularly, in

structural areas that are important for protein function. Therefore,

strategies employing site directed mutagenesis to improve protein

solubility should carefully evaluate the contributions made by

candidate APRs, targeted for disruption, towards protein structure

and activity. The major findings from this work are summarized in

Table 1.

Results/Discussion

To assess the various roles that aggregation prone regions have

in protein structure and the concept that evolution is actively

minimizing the aggregation propensities of protein sequences,

several non-redundant sequence datasets were generated (see

Methods) that include: a library of experimentally proven amyloid-

like fibril forming peptide sequences [31,32] (Amylsegs); sequences

and structures of 495 small (sequence length, 52–200 residues;

average, 152634) monomeric (both in crystal asymmetric units

and in biological units) and non-homologous (sequence identities

#30% in all against all alignments) proteins with high resolution

crystal structures (R#2.0 Å), (F495); 536 non-homologous IDP

sequences obtained from the DisProt database [33] (IDP536); and

961 catalytic residues in 314 non-homologous protein chains (299

proteins) derived from a dataset of functional residues compiled by

Xin et al. [34] (Cata). These datasets were supplemented with two

random sequence datasets (R10000 and N10000) each with

10,000 amino acid sequences, 100 residues long. A uniform

distribution of amino acids (5% for each amino acid) was used to

generate random sequences for R10000. Random sequences in

N10000 were generated from the amino acid distribution of

naturally occurring protein sequences found in F495. Each protein

sequence in F495 was also scrambled one hundred times to obtain

a dataset, SF49500, which contains 49,500 sequences that have

the same amino acid distribution, but not the same patterning as

sequences in F495 (see Methods). The F495 dataset was also

divided into two datasets, F1 and F2, of roughly equal number of

sequences but significantly different amino acid compositions.

Both F1 and F2 retain their natural protein sequence patterning

but have different amino acid compositions. The results described

in this report are organized into five sections. In the first section,

evidence is presented that indicates the aggregation propensities of

protein sequences have been minimized in comparison to random

sequences with uniform or natural amino acid compositions. The

second section describes an examination into whether evolution

disrupts or conserves APRs in the sequences of homologous

proteins. The third section compares the incidence of APRs in

ordered versus disordered residues in proteins. This is followed by

an evaluation of the contributions that all predicted APRs make

towards stabilizing the proteins in which they exist compared to

other protein segments of equal length from the same protein. The

last section reports on the spatial proximity of catalytic residues

and APRs to assess if APRs have a role in maintaining protein

function.

Author Summary

Biotechnology requires the large-scale expression, yield,
and storage of recombinant proteins. Each step in protein
production has the potential to cause aggregation as
proteins, not evolved to exist outside the cell, endure the
various steps involved in commercial manufacturing
processes. Mechanistic studies into protein aggregation
have revealed that certain sequence regions contribute
more to the aggregation propensity of a protein than
other sequence regions do. Efforts to disrupt these regions
have thus far indicated that rational sequence engineering
is a useful technique to reduce the aggregation of
biotechnologically relevant proteins. To improve our
ability to rationally engineer proteins with enhanced
expression, solubility, and shelf-life we conducted exten-
sive analyses of aggregation prone regions (APRs) within
protein sequences to characterize the various roles these
regions play in proteins. Findings from this work indicate
that protein sequences have evolved by minimizing their
aggregation propensities. However, we also found that
many APRs are conserved in protein families and are
essential to maintain protein stability and function.
Therefore, the contributions that APRs, targeted for
disruption, make towards protein stability and function
should be carefully evaluated when improving protein
solubility via rational design.

APRs in Protein Evolution, Stability and Catalysis
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Protein sequence aggregation propensities are
minimized

Tables 2–4 present data on the various statistical measures of

aggregation that were used in this study. Aggregation propensities

were computed by normalizing total TANGO [11] and WALTZ

[12] aggregation scores for protein sequences by their lengths. The

average aggregation propensities for sequences of our various

datasets are summarized in Table 2. For each dataset, the average

length of protein sequences which contain at least one APR, total

number of predicted APRs, average APR lengths and average

proportion of APR residues in protein sequences are summarized

in Table 3. The incidence of gate-keeper residues in APR flanking

regions for sequences in R10000, N10000, SF49500, F495 and

IDP536 datasets is presented in Table 4. Figure 1 shows box and

whisker plots of the aggregation propensities for all datasets. These

plots indicate an overlap among the aggregation propensity

distributions for the various datasets. Overlaps are expected

because the amino acid sequences in all datasets are composed of

the same twenty types of naturally occurring amino acids found in

proteins. Notwithstanding the overlaps, it can be seen that there

are important differences among datasets in the inter-quartile

ranges for both TANGO and WALTZ predicted aggregation

propensities. To determine the statistical significance of aggrega-

tion propensity distribution differences among datasets, two

sample t-tests were performed (See Methods) and the results are

summarized in Table S1 of the Supplementary Material. In the

following discussion, aggregation property averages (e.g. propen-

sity or APR length, etc.) are compared among the various datasets.

Standard deviations are provided along with averages.

Amino acid sequences in N10000 and SF49500 have a lower

TANGO average aggregation propensity (i.e. average normalized

aggregation score) than those in R10000 (Table 2). The average

TANGO aggregation propensity for N10000 is 5.4265.18, which

is ,16% lower than the corresponding value for R10000,

6.4865.89. The average TANGO aggregation propensity for

SF49500 is 5.2064.33, almost 20% lower. Consistent with these

averages, boxes representing inter-quartile ranges of TANGO

aggregation propensities for N10000 and SF49500 are smaller

(Figure 1) and the distributions of TANGO predicted aggregation

Table 1. Summary of major findings reported in this article.

1. The use of randomized sequence datasets has allowed us to deconstruct how changes in amino acid composition and patterning impact the aggregation
propensity of a protein sequence.

2. Multiple sequence alignments of homologues at the .50% sequence identity level show that APRs are often more conserved than other sequences regions
are.

3. Sequence analyses of intrinsically disordered proteins and monomeric proteins have provided direct evidence that APRs are more likely to contain ordered
residues.

4. APRs found in monomeric proteins often contribute more towards stabilizing a protein fold than the average contribution made by equal-length segments
within the same protein.

5. Catalytic residues frequently make close structural contact with APRs significantly more often than expected by random chance.

6. APR disruption is an attractive rational protein engineering strategy for improving protein solubility. However, disruption of APRs, without knowledge of their
contributions to protein structure and function, can lead to undesirable consequences, such as protein destabilization and/or loss-of-function.

doi:10.1371/journal.pcbi.1003291.t001

Table 2. Average aggregation propensities of sequences in different datasets.

Dataset
Number of
sequences

Average TANGO
aggregation propensity*

Range of TANGO
aggregation propensities*

Average WALTZ
aggregation propensity*

Range of WALTZ
aggregation propensities*

R10000 10,000 6.4865.89 0–47.23 3.3963.33 0–26.82

N10000 10,000 5.4265.18 0–36.58 2.4062.75 0–17.72

SF49500{ 49,500 5.2064.33 0–31.45 2.3462.48 0–22.00

F495 495 3.4162.98 0–14.94 2.5262.70 0–19.20

All-a 66 3.2463.03 0–13.88 2.5363.06 0–18.98

All-b 53 3.5962.87 0–9.28 2.7863.42 0–19.20

a+b 88 3.5862.92 0–12.59 2.6762.70 0–14.23

a/b 43 4.9562.72 0.41–10.68 2.3762.12 0–9.67

Other 245 3.1862.96 0–14.94 2.5062.53 0–10.04

F1` 252 3.6663.16 0–14.94 2.8462.67 0–14.23

F2` 243 3.2162.77 0–11.58 2.1962.51 0–19.20

IDP536 536 3.8564.05 0–31.42 1.7461.60 0–10.89

*TANGO/WALTZ aggregation propensity of a sequence was computed as its total TANGO/WALTZ aggregation score normalized by the number of residues in the
sequence.
{Dataset SF49500 was obtained by randomly scrambling each sequence in F495 a hundred times (see Methods for details).
`Datasets F1 and F2 were obtained by dividing F495 into two sets such that their amino acid compositions are significantly different (see Methods for details). Standard
deviations (s) are reported for all averages.
Standard error (SE) of the mean can be computed as s/!(number of sequences) with 95% confidence intervals (average aggregation propensity ,x. 6 SE*1.96).
doi:10.1371/journal.pcbi.1003291.t002

APRs in Protein Evolution, Stability and Catalysis
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propensities for N10000 and SF49500 are significantly different

from those in R10000 at the 95% confidence level (Table S1).

Interestingly, the percentage of sequences with at least one

TANGO predicted APR in SF49500 is 71.4%, which is higher

than that in N10000 (62.6%) or R10000 (68.9%). The number of

APRs per sequence is also higher for SF49500 (59878 APRs/

49500 sequences) = 1.21) than that for R10000 (10474/

10000<1.05) or N10000 (8965/10000<0.90), (Table 3). Howev-

er, the average length of APR containing sequences in SF49500 is

149635, which is greater than that for R10000 and N10000

(length 100), and the average proportion of APR residues (see

Methods, Equation 1) in SF49500 (10.365.4%) and N10000

(12.266.3%) is lower than those in R10000 (13.467.2%),

(Table 3). These values clarify why the percentage of sequences

with at least one TANGO predicted APR is greater in SF49500

than in R10000 but the average aggregation propensity is lower

for SF49500 than in R10000.

The smaller average TANGO aggregation propensity of

N10000 and SF49500 compared to R10000 is a consequence

of their differences in amino acid composition. The amino acid

distributions in N10000 and SF495000 are identical and

significantly different from the amino acid distribution in

R10000. The x2 value for the amino acid distributions in

R10000 versus N10000 (and SF49500) is 160.84. For 19

parameter distributions, x2 values .43.82 reject the null

hypothesis at the 99.9% confidence level (p-value,0.001) that

the two amino acid distributions are the same [35]. N10000

and SF49500 contain both fewer aggregation-promoting

residues and more gate-keeper residues than R10000. The

total proportion of aggregation-promoting b-branched nonpo-

lar (Ile and Val), aromatic (Phe, Tyr and Trp) and polar (Asn

and Gln) residues is smaller in N10000 and SF49500 (29%)

than in R10000 (35%) while the total proportion of gate-keeper

charged and proline residues (Asp, Glu, Lys, Arg and Pro) is

greater in N10000 and SF49500 (29.3%) than in R10000

(25%).

For WALTZ predicted APRs, the average aggregation propen-

sities for N10000 and SF49500 are again smaller (2.4062.75 and

2.3462.48, respectively) than that for R10000 (3.3963.33),

(Table 2). WALTZ predicted APRs also constitute 7.263.8% of

residues in SF49500 (8.563.9% in N10000) as compared to

9.464.7% in R10000, (Table 3). Note, only sequences that

contain at least one APR were used in these calculations. WALTZ

aggregation propensity box and whisker plot shows that the inter-

quartile ranges for N10000 and SF49500 are smaller than the

inter-quartile range for R10000 (Figure 1). The distribution of

WALTZ aggregation propensities in R10000 is also significantly

different from those in N10000 and SF49500 at 95% confidence

level (Table S1). Other observations for N10000 and SF49500

versus R10000 show similar trends as in TANGO predictions

(Tables 2 and 3). In summary, the above statistical measures have

highlighted the importance of amino acid composition in

explaining the average TANGO and WALTZ aggregation

propensity differences between N10000 and SF49500 versus

R10000.

Sequences of monomeric proteins in F495 have a lower average

TANGO aggregation propensity than randomized sequences with

natural amino acid composition (N10000 and SF49500), (Table 2).

The amino acid sequences in N10000 and SF49500 lack the

sequence patterning features of F495 due to randomization and

scrambling (see Methods). The average TANGO aggregation

propensity for F495 (3.4162.98) is 34% lower than that for

SF49500 (5.2064.33) and 37% lower than that for N10000

(5.4265.18)), (Table 2). Box and whisker plots of TANGO
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aggregation propensities indicate that the inter-quartile range for

F495 is smaller and the third quartile (Q3) is shifted to lower values

compared to SF49500 and N10000 (Figure 1). The distribution of

TANGO aggregation propensities in F495 is also significantly

different, at the 95% confidence level, from those in N10000 and

SF49500 (Table S1). The aggregation propensity differences

between F495 versus N10000 and SF49500 result from a similar,

but broader, set of APR differences as those between N10000,

SF49500 and R10000. Specifically, the percentage of sequences

with at least one TANGO predicted APR decreases from 71.4% in

SF49500 (62.6% in N10000) to 60.4% in F495, even though, the

average length of APR containing sequences in F495 (152634

residues) is similar in SF49500 (149635), and longer than that in

N10000 (100 residues), (Table 3). The average proportion of APR

residues also decreases from 10.365.4% in SF49500 (12.266.3% in

N10000) to 7.864.1% in F495 and the average APR length in F495

decreases by one residue from 8.4862.85 in SF49500 (8.4962.88 in

N10000) to 7.4761.99 in F495 (Table 3). The above analysis of

TANGO predicted APRs reveals the importance of sequence

patterning in explaining the average aggregation propensity

differences between N10000 and SF49500 versus F495. Similar

observations have been made by Chiti and coworkers via

experiments on a 29 residue peptide from horse heart apomyoglo-

bin. Sequence scrambled variants of the peptide showed substantial

increases in aggregation propensity compared to the wild-type

sequence due to clustering of amyloidogenic residues [36].

Aggregation propensity differences between F495 versus

N10000 and SF49500 for WALTZ predicted APRs are dissimilar

to those of TANGO predicted APRs (Tables 2 and 3, and

Figure 1). The inter-quartile range for WALTZ predicted

aggregation propensities in F495 is similar to the inter-quartile

ranges for SF49500 and N10000 (Figure 1) and t-tests show that

the distribution of WALTZ predicted aggregation propensities in

F495 is statistically similar to SF49500 and N10000 distributions.

The average WALTZ aggregation propensity for sequences in

F495 (2.5262.70) is comparable to that for sequences in N10000

(2.4062.75) and SF49500 (2.3462.48). The average APR lengths

for WALTZ predicted APRs in SF49500 (6.1360.61), N10000

(6.1260.63) and F495 (6.1360.68) are also the same (Table 3).

The percentage of sequences that contain at least one WALTZ

predicted APR in SF49500 and F495 are again similar at 63.6%

and 63.2% respectively. The average proportion of APR residues

in sequences of SF49500 (7.263.8%), N10000 (8.563.9%) and

F495 (7.763.9%) are also similar (Table 3). From the observations

above, scrambling sequences (SF49500) or producing random

sequences with natural amino acid compositions (N10000) did not

increase the number of WALTZ predicted APRs as it did for

TANGO. WALTZ uses position-specific matrices that enable the

program to predict APRs with fibril forming charged residues

[12]. Consequently, sequence randomization may not have

produced sequence patterns that WALTZ position-specific matri-

ces have defined as aggregation prone.

Table 4. Average incidence of gate-keeper residues flanking APRs in different datasets*.

R10000 N10000 SF49500 F495 All-a All-b a+b a/b Other IDP536

TANGO predicted APRs

Average # of Gate-keeper
residues

2.261.1 2.461.1 2.561.1 2.661.2 2.661.3 2.661.2 2.561.3 2.861.1 2.561.2 2.461.1

Frequency at PB21 (%) 53.6 58.9 58.3 57.1 59.7 44.7 57.3 65.2 57.1 56.8

Frequency at PB22 (%) 30.4 35.1 35.8 42.0 43.5 44.7 41.5 50.0 40.4 37.8

Frequency at PB23 (%) 26.2 30.2 31.3 31.6 32.3 34.0 26.8 33.3 32.5 28.9

Frequency at preceding
flanking residues

36.7 41.4 41.8 43.6 45.2 41.1 41.9 49.5 43.3 41.2

Frequency at PE+1 (%) 44.0 50.3 52.0 51.1 61.3 53.2 53.7 39.4 51.7 45.1

Frequency at PE+2 (%) 34.8 37.3 38.2 41.2 45.2 48.9 36.6 51.5 36.0 38.5

Frequency at PE+3 (%) 27.4 30.8 31.8 33.8 22.6 31.9 35.4 45.4 34.5 32.2

Frequency at succeeding
flanking residues

35.4 39.5 40.7 42.0 43.0 44.7 41.9 45.4 40.7 38.6

WALTZ predicted APRs

Average # of Gate-keeper
residues

1.761.1 1.961.1 1.961.1 2.061.1 2.061.0 2.161.2 2.261.1 2.261.2 1.961.1 2.061.2

Frequency at PB21 (%) 29.2 33.4 33.6 37.9 42.6 39.0 45.4 46.6 31.1 33.6

Frequency at PB22 (%) 26.7 31.4 31.7 32.9 37.7 39.0 32.0 34.5 30.0 34.8

Frequency at PB23 (%) 25.7 29.6 30.4 30.5 24.6 30.5 34.0 36.2 29.6 32.4

Frequency at preceding
flanking residues

27.2 31.5 31.9 33.8 35.0 36.2 37.1 39.1 30.2 33.6

Frequency at PE+1 (%) 29.9 34.2 34.8 35.3 37.7 32.2 32.0 39.7 36.0 37.3

Frequency at PE+2 (%) 27.5 32.0 31.9 34.0 27.9 40.7 42.3 31.0 32.2 32.7

Frequency at PE+3 (%) 26.7 29.7 30.8 32.2 27.9 32.2 33.0 36.2 32.2 32.1

Frequency at succeeding
flanking residues

28.0 32.0 32.5 33.8 31.1 35.0 35.7 35.6 33.5 34.0

*Flanking positions preceding an APR are shown as PB21, PB22 and PB23, where PB21 is nearest to the APR. Similarly, flanking positions succeeding an APR are shown
as PE+1, PE+2 and PE+3, where PE+1 is nearest to the APR.
doi:10.1371/journal.pcbi.1003291.t004
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After dividing F495 into different SCOP subclasses, the average

aggregation propensity and other statistical measures of aggrega-

tion, such as proportion of sequences with at least one APR,

number of APRs per sequence and average proportion of APR

residues, remain similar to F495 for all subclasses (Tables 2 and 3),

except in the a/b subclass. The a/b subclass contains only 43

(,9%) proteins from F495. The average TANGO aggregation

propensity of the a/b subclass (4.9562.72) is higher than that for

F495 (3.4162.98), but the corresponding values for WALTZ

aggregation propensities are similar (2.3762.12 for a/b and

2.5262.70 for all F495), (Table 2). A greater percentage of

sequences in the a/b subclass contain one or more TANGO/

WALTZ predicted APRs (TANGO, 79.1% for a/b subclass

versus 60.4% for F495; WALTZ, 72.1% for a/b subclass versus

63.2% for F495) and the number of APRs per sequence is also

higher for the a/b subclass (TANGO, 1.53 for a/b subclass versus

0.91 for F495; WALTZ, 1.35 for a/b subclass versus 1.09 for

F495), (Tables 2 and 3). However, the average APR lengths in the

a/b subclass are similar to that for all F495 protein sequences.

Excluding the a/b subclass, the results in Tables 2 and 3 for the

various SCOP classes suggest that differences in topology and

secondary structure content alone do not produce average

aggregation propensity changes that are similar to those observed

after modifying sequence composition and patterning.

Average TANGO aggregation propensities are similar between

IDP536 and F495 (3.8564.05 for IDP536 and 3.4162.98 for

F495, Table 2). Box and whisker plots for IDP536 and F495 also

show that these datasets have similar predicted aggregation

propensities (Figure 1). The x2-test on amino acid compositions

of F495 and IDP536 yields a value of 20.4, thereby, accepting the

null hypothesis that they have the same amino composition. The

number of TANGO predicted APRs per sequence (2.46, Table 3)

and the average APR length (9.1363.90) is considerably larger in

IDP536 compared to F495 (0.91 and 7.4761.99, respectively).

Figure 1. Box (blue rectangles) and whisker (dotted lines) plots for TANGO (top panel) and WALTZ (bottom panel) aggregation
propensities (normalized TANGO/WALTZ aggregation scores) for different datasets used in this study is shown. The edges of the blue
boxes represent inter-quartile ranges, 25 (Q1) and 75 (Q3) percentiles, and the medians are indicated by red vertical lines. In each plot, the whiskers
represent limits of the distribution computed automatically, via tools available in MatLab2012a, and outlier points are represented as red colored +s.
The axes are the same in all plots. This allows direct comparisons among plots for different datasets. It can be seen that TANGO aggregation
propensities follow this order: R10000.N10000, SF49500.F495, F1, F2, IDP536. For WALTZ aggregation propensities, the trend appears to be
R10000.N10000, SF49500, F495, F1, F2, IDP536. Also note that WALTZ predicted aggregation propensities tend to be lower than those of TANGO.
These plots were made using MATLAB (www.mathworks.com).
doi:10.1371/journal.pcbi.1003291.g001
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However, TANGO predicted APR differences between IDP536

and F495 are offset by longer sequence lengths in IDP536

(7636562), which results in a similar average proportion of APR

residues (7.864.1% for F495 and 6.965.4% for IDP536, Table 3)

and similar average TANGO aggregation propensities (Table 2).

Longer APR lengths may result from lower sequence complexity

among IDPs [33,37]. For WALTZ, the average aggregation

propensity (1.7461.60) and average proportion of APR residues

(4.762.7%) for IDP536 is lower than that for F495 (2.5262.70

and 7.763.9%, respectively), but the average APR lengths

(6.0960.54 for IDP536 and 6.2561.15 for F495) remain similar

(Table 3). To assess if IDP536 and F495 actually have similar or

different average aggregation propensities, the total proportion of

ordered and disordered residues is needed for both datasets. This

data is available for IDP536, but it is not for F495. Therefore,

comparisons among ordered and disordered regions of protein

sequences, instead of full length sequences from folded and

intrinsically disordered proteins, are needed to better understand

the relationship between aggregation and structural disorder (see

section entitled APRs have fewer disordered than ordered residues).

An analysis of APR flanking residues among sequence datasets

indicates that APRs are, on average, flanked more often by gate-

keeper residues (Asp, Glu, Lys, Arg, or Pro) in F495, N10000,

SF49500 and IDP536 datasets than in R10000 (Table 4). The

average number of gate-keeper residues flanking TANGO

predicted APRs in F495 is 2.661.2. Comparable values are

observed for N10000 (2.461.1), SF495000 (2.561.1) and IDP536

(2.461.1). However for R10000, the corresponding value is lower

at 2.261.1. For WALTZ predicted APRs, the average number of

flanking gate-keeper residues in F495 is 2.061.1 which is

comparable to averages for N10000 (1.961.1), SF49500

(1.961.1), and IDP536 (2.061.2). Gate-keeper residues flank

WALTZ predicted APRs in R10000 less often at 1.761.1

(Table 4). Comparing the incidence of flanking gate-keeper

residues in TANGO and WALTZ predicted APRs, gate-keeper

residues flank WALTZ predicted APRs with lower frequencies

(,20–25% lower) than TANGO predicted APRs (Table 4).

Charged gate-keeper residues oppose aggregation by keeping

APRs solvated when they become exposed due to local flexibility

or protein destabilization. However, WALTZ predicted APRs are

more likely to contain charged or polar residues than TANGO

predicted APRs due to the parameterization of WALTZ. As a

result, the need to gate-keep WALTZ predicted APRs under

normal conditions may be lower. Gate-keeper residues for all

SCOP classes show similar trends as for F495, except for the a/b
class which has slightly more gate-keeper residues (2.861.1 for

TANGO predicted APRs and 2.261.1 for WALTZ predicted

APRs, Table 4). Taken together, these observations suggest that

the aggregation propensity of protein sequences has been

minimized by increasing the number of gate-keeper residues in

APR flanking regions, which is consistent with earlier studies

[24,38]. Gate-keeper residues occur with greater frequency in the

flanking regions of APRs in F495, SF49500 and N10000 than in

R10000 due to amino acid composition differences. However,

N10000, SF49500 and F495 have identical amino acid compo-

sitions. Differences in the number of flanking gate-keepers residues

between N10000/SF49500 versus F495 suggests that number of

gate-keeper residues flanking APRs is also determined by sequence

patterning as well as amino acid composition.

Selective pressure to reduce the burden of protein aggregation

in biological organisms has minimized the aggregation propensi-

ties of protein sequences by directing changes to amino acid

composition and patterning during protein evolution. Results

presented in this section indicate that changes in sequence

patterning via scrambling and randomization of protein sequences

increases the TANGO predicted aggregation propensity more

than do changes in amino acid composition. This is reflected in a

greater difference in average aggregation propensity between

F495/IDP536 and N10000/SF49500 than between SF49500/

N10000 and R10000 (Tables 2 and 3) for TANGO, but not for

WALTZ predicted APRs. To support the finding that changes to

patterning impacts sequence aggregation propensity more than

changes to amino acid composition, the F495 dataset was divided

into two datasets (F1 and F2) that retain their natural protein

sequence patterning but have significantly different amino acid

compositions (see Methods). The average TANGO aggregation

propensities for F1 (3.6663.16) and F2 (3.2162.77), and average

WALTZ aggregation propensities for F1 (2.8462.67) and F2

(2.1962.51), are both similar to their respective values for F495

(TANGO 3.4162.98; WALTZ 2.5262.70), (Table 2). Further-

more, in the case of TANGO predicted APRs, the difference in

average aggregation propensity between F1 and F2 is considerably

less than it is between F495 and N10000/SF49500. Thus, changes

to sequence patterning (F495 versus N10000) produce greater

differences in average aggregation propensity than changes to

amino composition do (F1 versus F2), at least for TANGO

predicted APRs. Overall, the use of three different randomly

generated sequence datasets, R10000, SF49500 and N10000, and

three natural protein sequence datasets, F1, F2, F495, has allowed

us separate the impact evolutionary selective pressure has had on

amino acid composition and sequence patterning of protein

sequences.

APR conservation in protein homologues
A lack of APR conservation among homologous sequences is

expected if protein evolution disfavors the tendency for proteins to

aggregate [27,30]. Here, the conservation of APRs among

homologues of 9 proteins, selected from F495, was studied at

two sequence identity cut-off values (see Methods). These 9

proteins contain $3 TANGO predicted APRs and $3 WALTZ

predicted APRs or $3 Amylsegs, indicating these proteins have a

high propensity to aggregate under suitable conditions. Table 5

shows APR and Amylseg conservation (Equation 11) among

homologues of these 9 proteins at 80% and 50% sequence identity.

Note these analyses did not include remote homologues (,30%

sequence identity). The term ‘distant homologues’ used below

refers to homologues that have at least 50% sequence identity with

a parent sequence and the term ‘close homologues’ refers to

homologues that have at least 80% sequence identity with a parent

sequence. All homologues have the same fold as the parent

protein. For the majority of these proteins, APR conservation

levels are slightly lower than average sequence identity among

close homologues. This observation is in agreement with that of

Gromiha and coworkers [32] on protein sequence families

containing highly homologous thermophilic and mesophilic

proteins. However, when the sequence identity cut-off among

homologues was dropped from 80% to 50%, the corresponding

decrease in percent APR conservation is smaller. In other words,

APRs are more conserved than average sequence identity among

distant homologues that have at least 50% sequence identity to a

parent sequence. Furthermore, amyloid-like fibril forming peptide

segments (Amylsegs) in PDB entries 1KCQ (human gelsolin

domain 2), 2D4F (human b-microglobulin), and 2VB1 (hen egg-

white lysozyme), are highly conserved among their homologues at

both sequence identities (50% and 80%). Overall, the data in

Table 5 indicates that among close homologues, APRs are slightly

less conserved than average sequence identity. A lack of APR

conservation among closely related homologues suggests that

APRs in Protein Evolution, Stability and Catalysis
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Å

3
9

9
2
6

5
8

8
.5

9
2

.5
9

6
.7

2
6

5
6

3
6

1
4

6
5

.3
8

8
.0

9
8

.2

1
O

W
1

,1
.8

0
Å
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evolution is continuing to disrupt aggregation prone sequence

regions. On the other hand, among distantly related homologues,

APRs are more conserved than average sequence identity,

indicating that some of these regions may play a role in

maintaining protein folds and activity.

APRs have fewer disordered than ordered residues
Sequences from IDPs contain both ordered and disordered

regions, which facilitates an investigation into the structural

ordering of residues located in predicted APRs. Of the 232,321

residues in IDP536 sequences, 60,638 (26.1%) fall into regions

annotated as intrinsically disordered by DisProt [33], the source

database for IDP536. Amino acid residues not annotated as

disordered regions were assumed to be ordered in this analysis.

Therefore of the 232,321 residues in IDP536, 171,683 (73.9%)

were assumed to be ordered. After predicting APRs in IDP536

using TANGO, it was found that 12,066 (5.2%) of the 232,321

IDP536 residues fall within one of 1,316 predicted APRs. Of the

12,066 APR residues, 1,327 (11% of the 12,066 APR residues)

residues are disordered leaving the remaining 10,739 (89% of

12,066) residues as ordered. Using this data, a contingency table

was prepared to categorize IDP536 residues as ordered and not

part of an APR, or ordered and part of an APR (likewise for

disordered residues, see Table 6). Performing a x2 analysis on the

contingency table rejects the null hypothesis (p,0.001) that the

structural classification of an amino acid residue in IDP536, as

ordered or disordered, is independent from the likelihood that the

residue is part of an APR. Furthermore, the contingency table

produces an odds ratio of 2.98:1 indicating that an ordered residue

is three times more likely to be part of an APR than a disordered

one (see the tutorial by McHugh for more information on

contingency tables and odds ratios [39]). WALTZ predicted APRs

have comparable results (odds ratio 2.02:1, see Table 6). Thus,

these observations are independent of the APR prediction tool

used. Similar to the results reported above, Schymkowitz and

coworkers [21] have reported that ordered proteins have three

times the number of APRs that IDPs do. Here, we report that

APRs are three times more likely to contain ordered versus

disordered residues which provides direct evidence that APRs are

located in order forming regions. At a fundamental level, APRs are

promoting local structural order in all conditions, irrespective of

whether conditions stabilize or destabilize proteins.

APRs stabilize native protein folds
The observation that APRs are more likely to contain ordered

versus disordered residues suggests the need for an examination of

APRs within globular protein structure. To perform the analysis,

protein sequences from the F495 dataset, for which atomic

coordinates are available, were used to investigate the secondary

structure, solvent exposure, and relative solvent isolatedness of

predicted APRs. Within F495 sequences regions with atomic

coordinates, TANGO predicted 409 APRs, WALTZ predicted

516 APRs, and 19 Amylsegs of length $6 were found. Residues in

these APRs occupy all three secondary conformational states

(helix, coil, and strand) as measured by binning STRIDE [40]

output (see Table S2 in Supplementary material). Overall,

Amylsegs, TANGO, and WALTZ predicted APRs exist primarily

in b-strands. This observation differs from the work of Doig and

coworkers, who reported that amyloidogenic regions were often

located in a-helical secondary structure [41]. Figure 2 compares

the percent solvent exposure of TANGO and WALTZ predicted

APRs and Amylsegs in F495 structures (Equations 2, 3 and 5). The

average percent solvent exposure for TANGO predicted APRs is

16.9612.2% (range 0–73%) and WALTZ predicted APRs is

23.3614.9% (range 0–66%). On average, Amylsegs in F495 are

more solvent exposed than TANGO or WALTZ predicted APRs

(average percent solvent exposure 32.1618.5% and range 1–

62%). However, Amylsegs are longer than TANGO and WALTZ

predicted APRs, with an average length of 11.5610.4 residues. In

comparison, the average APR lengths are 7.562.0 for TANGO

predicted and 6.160.7 for WALTZ predicted APRs. Because

proteins in F495 are small globular monomers with larger surface

area to volume ratios, longer sequence segments are more likely to

contain solvent exposed portions than smaller segments do. The

low average percent solvent exposure of TANGO and WALTZ

predicted APRs implies that these sequence regions are buried in

their protein structures. Similar observations have been previously

reported [22,41].

Predicted APRs are expected to be buried in protein cores since

sequence hydrophobicity is a differentiating physico-chemical

property for APR prediction programs. Therefore, it is of interest

to know whether predicted APRs are buried in protein cores

beyond what is expected from the hydrophobicity of their

constituent residues. To investigate this question, a measure called

Burial Preference (BurPref) was devised (see Methods). The

BurPref of an APR is the ratio of the observed APR solvent

exposure to the expected APR solvent exposure calculated from

the average surface areas of its constituent amino acid residues in

F495 (Equations 2–4 and 6). If the BurPref of an APR is less than

one, then the APR is more buried than expected and vice versa. The

average BurPref for TANGO predicted APRs in F495 is

0.8260.56 (range 0–4.15) and for WALTZ predicted APRs is

0.8960.55 (range 0–3.69). This indicates that TANGO and

WALTZ predicted APRs are, on average, more buried in the

protein cores of F495 than expected. On the other hand, the

average BurPref for the 19 Amylsegs is 0.9760.47 (range 0.05–

1.65), which indicates that these segments are not preferentially

buried. BurPref values for TANGO and WALTZ predicted APRs

suggests that sequence hydrophobicity alone cannot explain their

degree of burial. Other factors are also important such as the role

an APR has in providing protein stability or function. Overall,

BurPref values for TANGO/WALTZ predicted APRs support the

view [41] that the risk associated with aggregation prone sequence

regions is minimized by their burial within protein structures. As a

consequence, APR initiated aggregation may be limited to

conditions in which the native structure is destabilized or in which

APRs become exposed during co-translation or due to local

protein flexibility.

Buried APRs can form multiple interactions within their protein

structure and contribute towards stabilizing native folds. To

quantify the contribution an APR makes towards the stability of a

protein, solvent isolatedness (Iso) [42] was computed. Solvent

isolatedness of a protein segment (such as an APR) measures the

fraction (0–1) of its surface buried by the rest of the protein

structure (Equations 3, 7, and 8). A large solvent isolatedness value

for a protein segment indicates that most of its surface is

interacting with the rest of protein. On the other hand, a small

solvent isolatedness value for a protein segment indicates that most

of its surface is solvent exposed and thus contributes few stabilizing

protein interactions. The average solvent isolatedness (Iso) values

for TANGO predicted APRs (0.8360.12; range 0.27–1.0),

WALTZ predicted APRs (0.7760.15; range 0.34–1.0), and

Amylsegs (0.6860.19; range 0.38–0.99), all indicate that these

sequence regions have multiple interactions within their parent

protein structures and are thus mostly solvent protected.

To assess if APR segments are more solvent isolated than

expected, relative solvent isolatedness (RIso) was computed

(Equations 7, 8 and 10). This quantity provides a measure of

APRs in Protein Evolution, Stability and Catalysis
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how much more an APR contributes to the stability of a protein

than expected, based on the average solvent isolatedness of equal

length segments from the same protein [42]. The relative solvent

isolatedness values for TANGO and WALTZ predicted APRs and

Amylsegs are greater than one which indicates that they are more

solvent isolated than expected (TANGO average RIso 1.3360.18,

range 0.47–1.73; WALTZ average RIso 1.2060.22, range 0.56–

1.67; Amylsegs average 1.1960.29, range 0.66–1.64), (Figure 3(a)).

Therefore, TANGO and WALTZ predicted APRs, as well as

Amylsegs, contribute towards protein stability more than expected.

To assess the significance of APR solvent isolatedness values, Z-

scores of solvent isolatedness were computed for predicted APRs

and Amylsegs (Equations 7, 8 and 9). Although average Z-scores

for WALTZ predicted APRs (0.8860.95; range 21.9–2.8) and

Amylsegs (0.7861.14; range 21.2–2.4) are below one, the average

Z-score for TANGO predicted APRs is 1.4460.76 (range 21.9–

Table 6. Incidence of intrinsically disordered residues in TANGO/WALTZ predicted APRs.

Intrinsically disordered residues (#) Ordered residues (#) Total residues (#)

TANGO predicted APRs

Residues within TANGO APRs 1327 (11%{, 2.2%6) 10739 (89%, 6.3%) 12066 (100%, 5.2%)

Residues outside TANGO APR 59311 (26.9%, 97.8%) 160944 (73.1%, 93.7%) 220255 (100%, 94.8%)

Total residues 60638 (26.1%, 100%) 171683 (73.9%, 100%) 232321 (100%, 100%)

Odds ratio 0.335 2.98

Fisher’s exact probability 0.00088 (,0.001)

WALTZ predicted APRs

Residues within WALTZ APRs 1268 (15.2%, 2.1%) 7096 (84.8%, 4.1%) 8364 (100%, 3.6%)

Residues outside WALTZ APRs 59370 (26.5%, 97.9%) 164587 (73.5%, 95.9%) 223957 (100%, 96.4%)

Total residues 60638 (26.1%, 100%) 171683 (73.9%, 100%) 232321 (100%, 100%)

Odds ratio 0.495 2.018

Fisher’s exact probability 0.0009 (,0.001)

{Percentages are for numbers along the rows and add up to 100%.
6Percentages are for numbers along the columns and add up to 100%.
doi:10.1371/journal.pcbi.1003291.t006

Figure 2. Solvent exposure presented in a bar plot for all 409 TANGO predicted APRs (blue bars), 516 WALTZ predicted APRs
(green bars), and 19 Amylsegs (red bars) in the crystal structures of monomeric proteins from F495. X-axis shows the percent solvent
accessible surface area and Y-axis indicates frequency of APRs and Amylsegs. On average, TANGO and WALTZ predicted APRs show lower solvent
exposures compared to the Amylsegs.
doi:10.1371/journal.pcbi.1003291.g002
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3.3). Therefore, the contributions made by TANGO predicted

APRs towards stabilizing the protein, in which they exist, are more

than one sigma greater than the average contribution made by

equal length segments (Figure 3(b)). Others have previously

proposed that APRs make stabilizing interactions in native folds

[25,43]. However, this is the first report that TANGO/WALTZ

Figure 3. Solvent isolatedness of APRs and Amylsegs in the crystal structures of monomeric proteins from F495 is plotted. (a) Bar
diagram showing the relative solvent isolatedness of TANGO predicted APRs (blue bars), WALTZ predicted APRs (green bars) and Amylsegs (red bars).
X-axis shows relative solvent isolatedness and Y-axis indicates frequency. Most APRs and Amylsegs contribute more to the stability of native protein
structures than expected from equal length segments from their parent proteins. (b) Bar diagram showing Z-scores for significance of solvent
isolatedness values for TANGO predicted APRs (blue bars), WALTZ predicted APRs (green bars) and Amylsegs (red bars). X-axis shows the Z-scores and
Y-axis indicates frequency. TANGO isolatedness Z-scores have an average of 1.4460.76 indicating that APR isolatedness values are significant.
doi:10.1371/journal.pcbi.1003291.g003
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predicted APRs and Amylsegs make more stabilizing interactions

in native folds than, on average, those made by equal-length

segments from the same protein.

Catalytic residues are spatially proximal to APRs
Evidence that APRs stabilize native protein folds calls for an

examination into whether functional sites are located within APRs

or are structurally proximal to them. In this report, co-localization

of catalytic sites and TANGO or WALTZ predicted APRs in

crystal structures of enzymes is investigated using the Cata dataset

which contains 961 catalytic residues from 314 non-homologous

protein chains (299 enzymes). Catalytic residues form a subset of

active site residues in enzymes. Thus, most enzymes contain few

catalytic residues and the likelihood that these residues are located

either within APRs, or near APRs, by random chance is low.

Incidences of catalytic residues within TANGO/WALTZ pre-

dicted APRs and their flanking regions were estimated using

equation 12 (see Methods). These estimated numbers were

compared with the observed incidence of the catalytic residues

within TANGO/WALTZ predicted APRs and their flanking

regions. Ninety nine of the 961 catalytic residues (10.3%) were

estimated to fall within TANGO predicted APRs and flanking

regions and 57 of them (5.9%) were observed within these regions.

Similarly, 103 out of the 961 catalytic residues (10.7%) were

estimated and 69 (7.2%) were observed to fall within WALTZ

predicted APRs and flanking regions. Therefore, the observed

incidence of the catalytic residues within APRs and their flanking

regions is lower than the estimates and it can be concluded that the

catalytic residues are not usually found within these regions. This is

expected given that most catalytic residues are charged or polar.

On the other hand, catalytic residues do tend to be in structural

contact with APRs (structural contacts are inferred when a

catalytic residue heavy atom is within 4.5 Å from an APR residue

heavy atom, see Methods). Of the 961 catalytic residues, 373

(38.8%) are in structural contact with at least one neighboring

TANGO predicted APR residue. Similarly, 310 (32.3%) catalytic

residues are in contact with at least one neighboring residue within

WALTZ predicted APRs. Although, it has previously been

observed that APRs and amyloidogenic regions can be located

in protein-protein interfaces [22,28], including antigen-antibody

interfaces [23], this is the first report of structural proximity

between APRs and catalytic residues to our knowledge.

To assess the significance of the observed structural proximity

between APRs and catalytic residues, statistical simulations were

performed by generating one million catalytic decoy lists. Each list

contained the residue coordinates of 961 randomly chosen decoy

catalytic residues from the atomic coordinates of protein chains in

the Cata dataset. Randomly chosen decoy catalytic residues were

selected for each true catalytic residue in Cata and were limited to

any residue within the same protein structure as the true catalytic

residue. Thus, if there are X number of true catalytic residues from

protein Y in the Cata dataset, all decoy lists contained X number of

decoy catalytic residues from the same protein Y. Using decoy

catalytic lists enabled us to calculate an expected number of

residues in structural contact with predicted APRs. This expected

number was compared to the observed number of true catalytic

residues in structural contact with predicted APRs. Figure 4(a)

shows the distribution of the number of decoy catalytic residues

which are in structural contact with TANGO predicted APR

residues for all one million lists. The average number of decoy

catalytic residues in contact with TANGO predicted APRs is

254613. This yields a Z-score of 9.3 for the 373 of 961 true

catalytic residues in the Cata dataset that are in structural contact

with TANGO predicted APRs and suggests the number of true

catalytic residues in contact with TANGO predicted APRs is

highly significant. These calculations were repeated by varying the

distance cut-off for inferring structural contacts (3.5 Å and 6.0 Å).

The observed number of true catalytic residues in contact with

TANGO predicted APRs is 278 and 461 at 3.5 Å and 6.0 Å,

respectively. Statistical simulations to compute the expected

number of randomly chosen decoy catalytic residues in contact

with TANGO predicted APRs yield Z-scores of 10.1 at the 3.5 Å

cut-off distance and 11.7 at the 6.0 Å cut-off distance for the

number of true catalytic residues in contact with TANGO

predicted APRs. Catalytic residues in the Cata dataset are also

in close structural proximity to WALTZ predicted APRs,

significantly more often than expected. There are 224, 310 and

405 catalytic residues in contact with WALTZ predicted APRs at

cut-off distances of 3.5 Å (Z-score, 5.8), 4.5 Å (Z-score, 5.7) and

6.0 Å (Z-score, 8.5) respectively. To further probe our observation

of catalytic residues in contact with APRs, an additional condition

on the solvent exposure of randomly selected residues as decoy

catalytic residues was imposed. Decoy catalytic residues were

required to have a solvent exposure that was similar to the solvent

exposure of their corresponding true catalytic residue (ASA value

of each decoy catalytic residue must be within 610% of the ASA

value for the corresponding true catalytic residue). At the

structural contact cut-off distance of 4.5 Å, Z-scores for catalytic

residues in contact with TANGO and WALTZ predicted APRs

are 5.9 and 3.1 respectively when 610% ASA condition was

imposed. As such, Z-scores decreased but remain statistically

significant. Z-scores decreased when the ASA condition was

imposed because the probability that a decoy catalytic residue is in

contact with an APR increases when decoy catalytic residues are

limited to the same solvent exposure as their true catalytic residues.

Computing expected values for the number of residues in contact

with APRs, using both ASA limitations and multiple distance cut-

offs, has supported our finding that catalytic residues are in close

structural contact with APRs significantly more often than

expected by random chance.

To visualize the co-localization of APRs and catalytic residues

in enzyme structures, an example from the Cata dataset is shown

in Figure 4(b)). Cholesterol Oxidase from B. Sterolicum (PDB entry:

1I19, UniProt entry: Q7SID) is a 561 residue monomeric enzyme

with covalently bound FAD that catalyzes oxidation and

isomerization of steroids [44]. This enzyme contains three catalytic

residues, namely, Glu 311, Glu 475 and Arg 477, and two

TANGO identified APRs, 229-LTAVVW-234 and 511-

VAIWLNVL-518. Two catalytic residues, Glu 475 and Arg 477,

make several close contacts with the second APR (Figure 4(b)),

which lies in the substrate binding domain [44]. Considering the

large structural size of Cholesterol Oxidase, and the fact that is has

only three catalytic residues and two TANGO predicted APRs,

which are short in length, it is surprising to find its catalytic

residues in structural contact with its APRs.

Are there examples of catalytic residues making structural

contact with experimentally validated amyloid-fibril forming

peptide segments, Amylsegs? To answer this question, the

AmylSegs dataset was searched for peptide segments from

enzymes. Amylsegs contain amyloid-fibril forming peptides

derived from nine different enzymes. Six of these nine enzymes

have been annotated in UniProtKB for catalytic residues and have

at least one crystal structure deposited in the PDB (Table 7). Of

these six, three enzymes (pancreatic ribonuclease A, hen egg white

lysozyme and human lysozyme) have a catalytic residue that is in

contact with at least one Amylseg residue. The criterion used here

to identify a structural contact is the same as in analyses on the

Cata dataset (distance cut-off of 4.5 Å for a pair of heavy atoms).
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Figure 4. Catalytic residues are in contact with APRs more often than expected by random chance. (a) Histogram shows the number of
residues (out of a maximum of 961) that are in contact with TANGO predicted APRs from 1,000,000 decoy catalytic residue lists (see Methods). X-axis
shows the number of residues and Y-axis shows the frequency. There are 373 true catalytic residues in structural contact (using a distance cut-off of
4.5 Å) with the TANGO predicted APRs, shown by a red square along the X-axis. (b) Structural proximity between catalytic residues and a TANGO
predicted APR in Cholesterol oxidase from B. Sterolicum is shown. Catalytic residues represented by cyan colored sticks are in contact with APRs
represented by red colored ribbons. The image was made using chain A in PDB entry 1I19. Note, only structurally proximal catalytic residues and one
APR are shown for simplicity.
doi:10.1371/journal.pcbi.1003291.g004
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Figure 5 shows an example of catalytic residues from human

lysozyme, Glu 35 and Asp 53, which are in contact with its

Amylseg regions. There are three peptides in the Amylsegs dataset

from human lysozyme that have been experimentally shown to

form amyloid fibrils. These are 5-RCELARTLKR-14, 25-

LANWMCLAKW-34 and 56-IFQINS-61 [45]. Catalytic residue,

Glu 35, lies immediately after the second peptide and makes

contact with residues 30-CLAKW-34 as well as contact with

residues 56-IFQ-58 from the third peptide. Catalytic residue Asp

53 also contacts the third peptide. Indeed, catalytic residues are

making structural contact with experimentally validated amyloid-

fibril forming peptide segments.

Protein functional sites require optimal combinations of

flexibility and stability to fulfill their biological purposes. Therefore,

it is logical for catalytic residues, which require consistent and

specific orientations, to be in contact with regions that promote local

structural order and form stabilizing interactions. While this report

has focused on catalytic residues, an interesting example of an

Amylseg, 182-SFNNGDCFILD-192, containing a Ca2+ binding

residue at D187 in human gelsolin has also been identified. The

D187N mutation, which disrupts the metal binding site, leads to

protein instability and amyloidosis in patients with a disease called

familial amyloidosis-Finnish type [46]. Co-localization of metal

catalyzed oxidation (MCO) sites and APRs have also been observed

in the structures of therapeutic proteins where metal-ion leachates

contribute towards drug product degradation [47].

Protein solubility optimization strategy
The results presented above show that protein sequences have

evolved by optimizing their risk of aggregation for cellular

environments by both minimizing aggregation prone regions and

conserving those that are important for folding and function.

Outside the cell, protein aggregation is commonly encountered in

the laboratory and is a major hurdle in successful development of

protein based biotechnology products, such as biotherapeutics. For

these applications, the aggregation propensity may need to be

further reduced in order to enhance protein yields from cell

cultures and to improve protein solubility, especially at high

concentrations. Disruption of APRs via site directed mutagenesis is

an attractive protein engineering strategy to improve protein

solubility [13,14,23,48–50]. Alternatively, ‘supercharging’ func-

tional proteins with very high electrostatic surface charge has also

been shown to improve protein solubility beyond levels normally

observed for natural proteins [51–53]. Because APRs can also

form part of HLA-DR binding T-cell immune epitopes [54,55],

disrupting APRs potentially leads to a lower risk of immunogenic

reactions in patients receiving biotherapeutic drugs. Insights

gained from this report caution that the contributions made by

candidate APRs, targeted for disruption, towards protein stability

and function should be considered when identifying sites that are

suitable for rational mutagenesis. Disruption of APRs, without

knowledge of their contributions, can lead to undesirable

consequences, such as protein destabilization and/or loss-of-

function. This work also complements our efforts to distinguish

between ‘active’ and ‘inactive’ APRs in proteins [56,57].

A broader implication of this research is that a general strategy

for identifying mutation sites for improving solubility of a candidate

protein can be proposed. This strategy is presented in Figure 6 and

the major steps are described below. If a protein of biotechnological

interest aggregates at higher than a desired level, the following

information is needed to employ the strategy: protein sequence,

three dimensional structure, homologues, potential cross-b motif

forming APRs and functional sites. APR prediction programs often

identify several potential APRs in the sequence of a protein. For

each APR, its contribution towards protein stability should be

evaluated. This can be done by computing solvent isolatedness for

the APR and equal length segments from the same protein

(Equation 8). If the APR has a high solvent isolatedness (low solvent

exposure, buried in protein core) then it should not be a target for

disruption. If the APR has a low solvent isolatedness (high solvent

exposure, located at or near protein surface) then it is expected to

make a smaller contribution to protein stability and can be marked

for disruption depending upon the outcomes of the following tests.

The protein structural region around the APR should be examined

for contacting functional residues and for sequence conservation

among homologues. If the APR contains residues that are in

structural contact with functional residues and the APR is more

conserved than average sequence identity among homologues, then

it should not be targeted for disruption. If the APR is not in contact

with functional residues and is less conserved than the average

sequence identity among its homologues, then it is a priority target

for disruption. If the APR is not structurally proximal to functional

residues, but is more conserved than average sequence identity

among its homologues, it can still be targeted for disruption after

verifying that the conservation is not due other structure-function

purposes such as allostery. If the APR is structurally proximal to

functional residues, but is less conserved than average sequence

identity among the homologues, it can still be targeted for disruption

if molecular modeling can offer clues into potential sites and

mutations that can be safely substituted. In this case, care should be

taken to avoid disturbing the conformations of functional and

contacting residues. This can be done by choosing a residue within

the APR which is not in direct contact with functional residues, but

whose mutation disrupts the APR.

Methods

Datasets used in this study

1. F495 contains 495 non-redundant monomeric protein se-

quences, all of which have high resolution crystal structures

available in the Protein Databank (PDB) [58]. F495 sequences

were found by searching the PDB website (www.rcsb.org) with

the following parameters: Experimental method, X-ray;

Resolution, 2 Å or better; Free R-factor, #20%; Chain length,

Figure 5. Catalytic residues that make structural contact
(distance cut-off 4.5 Å) with Amylsegs of human lysozyme
are shown. The human lysozyme (UniProtKB entry: P61626) contains
two catalytic residues, Glu 35 and Asp 53. These residues are
represented as cyan colored sticks and are in contact with Amylsegs
(25-LANWMCLAKW-34 and 56-IFQINS-61) represented by red colored
ribbons. The image was made using the PDB entry, 1IWT.
doi:10.1371/journal.pcbi.1003291.g005
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Figure 6. A general strategy for identifying mutation sites to improve protein solubility via disruption of APRs is shown. This strategy
calls for an evaluation into the contributions made by candidate APRs towards the stability and function of a protein before deciding to disrupt it for
the purpose of improving protein solubility. The following guidelines for rational disruption of APRs have emerged from this study. (i) If the candidate
APR is buried in the protein core and contributes to the stability of the protein, then it should not be targeted for disruption. (ii) If the APR is located
at or near the protein surface, is highly solvent exposed, not in contact with functional residues and is also less conserved than the average sequence
identity among homologues to the parent sequence, then it is a priority target for disruption. Outside these two extremes, additional intermediate
situations are identified where disruption of a candidate APR via point mutations can improve protein solubility without impacting its stability or
function.
doi:10.1371/journal.pcbi.1003291.g006
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50–200 residues; Sequence identity #30%; Asymmetric unit, 1

chain; Biologically active unit; 1 chain. The search yielded 522

structures. SEQRES records for these sequences were re-

checked for redundancy (sequence identity #30%) by per-

forming all-against-all sequence alignments in ClustalW [59].

27 protein sequences were found redundant and discarded,

reducing the data set to 495 proteins. Sequences of F495 were

also assigned to SCOP fold classes [60] of which 66 were all-a,

53 all-b, 88 a+b, 43 a/b, and 245 were not classified or other.

2. SF49500 contains 49,500 protein sequences obtained by

scrambling each sequence in F495 a hundred times. Randomly

selected amino acids in a parent sequence are assigned to new,

randomly selected positions in a scrambled sequence until all

amino acids have been reassigned. If a randomly selected

position within a scrambled sequence is already occupied then

new randomly selected positions are chosen until all unoccu-

pied positions are filled. All scrambled sequences of a parent

sequence have amino acid compositions and lengths that are

identical to their parent sequence.

3. F1 and F2 were obtained by dividing sequences from F495

using k-means clustering of individual sequence amino acid

compositions. Clustering produced two new datasets with

amino acid compositions that are significantly different from

each other. The F1 dataset contains 252 (51%) sequences from

F495 with amino acid composition, Ala, 6.2%; Cys, 1.8%; Asp,

5.9%; Glu, 8.8%; Phe, 4.0%; Gly, 6.5%; His, 2.7%; Ile, 6.1%;

Lys, 8.9%; Leu, 8.1%; Met, 2.5%; Asn, 4.4%; Pro, 4.0%; Gln,

3.2%; Arg, 4.4%; Ser, 5.5%; Thr, 5.1%; Val, 7.2%; Trp, 1.2%

and Tyr, 3.5%. The F2 dataset contains 243 (49%) sequences

from F495 with amino acid composition, Ala, 9.1%; Cys,

2.1%; Asp, 5.8%; Glu, 6.2%; Phe, 3.3%; Gly, 7.8%; His, 2.7%;

Ile, 4.6%; Lys, 4.4%; Leu, 9.2%; Met, 2.2%; Asn, 4.3%; Pro,

4.7%; Gln, 4.5%; Arg, 5.8%; Ser, 6.8%; Thr, 5.4%; Val, 6.5%;

Trp, 1.4% and Tyr, 3.2%. The x2 value for the two

distributions is 89.01, indicating that they are significantly

different from each other at 99.9% level of confidence.

4. N10000 contains ten thousand, 100-residue long sequences

that were randomly generated using the amino acid distribu-

tion obtained from sequences in F495: Ala, 7.5%; Cys, 1.8%;

Asp, 5.8%; Glu, 7.5%; Phe, 3.8%; Gly, 7.1%; His, 2.8%; Ile,

5.4%; Lys, 6.5%; Leu, 8.7%; Met, 2.3%; Asn, 4.3%; Pro,

4.4%; Gln, 3.8%; Arg, 5.1%; Ser, 6.2%; Thr, 5.3%; Val, 6.9%;

Trp, 1.4% and Tyr, 3.4%.

5. R10000 contains ten thousand, 100-residue long sequences

that were randomly generated with a uniform distribution of

5% for each amino acid.

6. IDP536 contains 536 non-redundant (sequence identity #30%)

protein sequences which have at least one intrinsically disordered

region. IDP536 sequences were taken from the DisProt database

V6 (www.disprot.org) [33]. All IDP536 sequence regions that are

not annotated as disordered were annotated as ordered.

Sequences from IDP536 have the following amino acid

composition: Ala, 7.5%; Cys, 1.4%; Asp, 5.8%; Glu, 7.7%;

Phe, 3.3%; Gly, 6.9%; His, 2.2%; Ile, 4.6%; Lys, 6.5%; Leu,

8.5%; Met, 2.3%; Asn, 4.3%; Pro, 5.8%; Gln, 4.9%; Arg, 5.2%;

Ser, 7.9%; Thr, 5.6%; Val, 6.0%; Trp, 1.0% and Tyr, 2.7%.

7. Cata is adapted from Xin and Radivojac [34] and contains

annotated catalytic residues from structures available in the

PDB. Sequences from proteins in Cata were also checked for

redundancy (sequence identity #30%) yielding a final dataset

of 961 catalytic residues in 299 enzymes (314 unique

polypeptide chains).

8. Amylsegs contains 517 non-identical, experimentally verified

amyloid forming peptide sequences. Peptides in Amylsegs are

part of full length amyloidogenic protein sequences. Amylsegs

dataset curation has been described elsewhere [31,32].

APR and gate-keeper prediction
TANGO [11] and WALTZ [12] were used to predict APRs in

all sequence datasets. Both programs have been extensively

validated using independent testing sets and found to be highly

accurate. The following options were used as input parameters for

both programs: Temperature, 298K; pH, 7.0; Ionic Strength,

150 mM; Concentration 1 mM; TANGO/WALTZ aggregation,

$10%; Minimum window size, 6; Flanking residues, 3.

Statistical measures of aggregation and APRs
The outputs from TANGO and WALTZ yield data on the total

sequence aggregation score and sequence length along with

position, length, sequence and flanking residues for each predicted

APR. The total aggregation score for each sequence was

normalized by the length of the sequence to obtain its aggregation

propensity. The proportion of APR residues (APRprop(%)) in a

sequence was also computed as follows:

APRprop %ð Þ~
X

i~1,nAPR jð ÞAPRlen i, jð Þ
� �

�100=seqlen jð Þ ð1Þ

APRlen(i, j) is the length of the ith APR in the jth sequence, nAPR(j)

is the number of APRs in the jth sequence, seqlen(j) is the number of

residues in the jth sequence. Averages and standard deviations were

computed for both aggregation propensities and proportional APR

residues. These results are reported in Tables 2 and 3.

Flanking residue positions that precede (PB21, PB22, PB23)

and succeed (PE+1, PE+2, PE+3) each APR were searched for the

presence of gate-keeper residues (Asp, Glu, Lys, Arg and Pro)

[24,25] and their frequencies were computed at each of these

positions. These results are presented in Table 4.

Solvent exposure, burial preference and isolatedness of APRs
Atomic coordinates from F495 proteins were submitted to

STRIDE [40] to obtain secondary structure information and

solvent accessible surface areas (ASA) for all residues within their

three dimensional context. Average ASA values for each of the

twenty amino acids in the F495 dataset were obtained by summing

the ASAs of amino acid, k, in all proteins and dividing the sum by

the number of k amino acids in F495, where k runs from 1 to 20.

AvASARes kð Þ~
X

j~1, 495
ASAReskj

� �.
NResk ð2Þ

AvASAResk is the average ASA for amino acid of type k. ASAReskj

is the ASA of each amino acid residue of type k in protein j and

NResk is the number of amino acid residues of type k in F495

dataset. ASA values for individual residues of APRs were summed

to obtain observed solvent accessible surface areas (SASAobs) for

each predicted APR.

SASAobsAPRij~
X

k~1,APRlen i,jð ÞASARes kð ÞAPRij ð3Þ

APRij is the ith APR in the jth protein from F495. SASAobsAPRij

is the observed SASA of APRij. ASARes(k)APRij is the ASA of an

individual residue, k, in APRij. The summation runs over the

length of APRij, APRlen(i,j). Expected ASA values for each

APRs in Protein Evolution, Stability and Catalysis
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APR (SASAexp) were computed by summing the average ASA

values from F495 for each of the constituent amino acid

residues.

SASAexpAPRij~
X

k~1,APRlen i,jð ÞAvASARes kð ÞAPRij ð4Þ

SASAexpAPRij is the expected SASA of APRij. AvASARes(k)A-

PRij is the average ASA of residue type k in APRij, computed

using Equation 2. The total surface area (TotSA) for an APR

outside of its three-dimensional context was computed by

submitting atomic coordinates, only from APR segments, to

STRIDE. Note that in both calculations, APRs have identical

conformations. TotSA and SASA values for each APR were

used to compute percent solvent accessibility (SolvAcc) of the

APR, burial preference (BurPref) for an APR, and solvent

isolatedness (Iso) of an APR from solvent [42] as follows:

SolvAccAPRij~100 � SASAobsAPRij

�
TotSAAPRij

� �
ð5Þ

BurPrefAPRij~SASAobsAPRij

.
SASAexpAPRij ð6Þ

ProtBurSAAPRij~TotSAAPRij-SASAobsAPRij ð7Þ

IsoAPRij~ ProtBurSAAPRij

� ��
TotSAAPRij ð8Þ

SolvAccAPRij is the percent solvent accessibility of APRij. SASAobsAPRij

is the solvent accessible surface area of APRij within its three-

dimensional context. TotSAAPRij is the total surface area of the APR

outside of the three-dimensional context of protein j. SASAexpAPRij

is the expected solvent accessible surface area of APRij computed

from average ASA values for its constituent amino acids in F495.

BurPrefAPRij is a ratio of the observed to expected solvent accessible

surface area for APRij. It indicates the preferential burial of APRij

in protein cores. If BurPrefAPRij is below one, APRij is more buried

than expected from the average burial of its constituent residues. If

BurPrefAPRij is above one, APRij is more solvent exposed than

expected from the average solvent exposure of its constituent

residues. ProtBurSAAPRij is the surface area of APRij that is buried

by the rest of the protein j. IsoAPRij values can be interpreted as the

contribution APRij makes towards the stability of protein j. To

evaluate the significance of this contribution, IsoAPRij values were

also computed for all segments the equal length as APR, i in protein,

j. Each segment was obtained by sliding a window the equal length

as APR, i over the structure of protein, j one residue at a time.

Average (,Isoij.) and standard deviation (sIsoij) values for

segments within protein j were used to compute Z-scores (Z-score

(IsoAPRij)) and relative values (RIsoAPRij) for solvent isolatedness of

APRij using the following equations:

Z-score IsoAPRij

� �
~ IsoAPRij-SIsoT
� ��

sIso ð9Þ

RIsoAPRij~IsoAPRij

�
SIsoT ð10Þ

APR and Amylsegs conservation
Nine selected monomeric proteins from F495 were used for

sequence conservation analyses. These 9 proteins contain $3

TANGO predicted APRs and $3 Waltz predicted APRs or $3

Amylsegs, indicating these proteins have a high propensity to

aggregate under suitable conditions. PDB entries for these proteins

are 1FUK (C-terminal domain of yeast initiation factor 4A), 1JEO

(Hypothetical protein MJ1247 from Methanococcus jannaschii),

1KCQ (Human Gelsolin Domain 2), 1OW1 (SPOC domain of

human transcriptional factor SHARP), 1SK7 (Hypothetical

protein pa-HO from Pseudomonas aeruginosa), 1Z77 (Transcriptional

regulator (tetR family) from Thermotoga maritima), 2D4F (Human b-

microglobulin), 2VB1 (Hen Egg White Lysozyme) and 3NR5

(Human RNA polymerase III transcription repressor Maf1). Note

that Hen egg-white lysozyme, human b-microglobulin and human

gelsolin are well studied amyloidogenic proteins [61–63].

Sequence conservation analyses for the above mentioned

proteins were performed at two arbitrarily chosen levels of

sequence identity, 80% and 50%. The procedure for selecting

homologues at the 80% level is described below. Sequences of the

nine proteins (query sequences) were searched for homologues in

the UniProtKB database (www.uniprot.org) [64,65] using blastp

and all default options. For each query, hit sequences with $80%

sequence identity were selected, provided that homologous regions

of hit sequences covered the query sequence completely. Since hits

to query sequences were sometimes longer than the length of the

query sequence, only portions of hit sequences that aligned with

the query sequence were taken for conservation analysis. All the

retrieved homologous sequences were re-aligned using ClustalW

[59]. For each query sequence, the ClustalW input file included

the sequence from the PDB file as the first sequence. Any sequence

with a ClustalW alignment score of ,80 to the first sequence was

deleted from the alignment. Sequences with alignment scores of

100 to the first sequence were also removed. All the above steps

were repeated to obtain homologous sequences with $50%

sequence identity to selected PDB files.

An APR was labeled as ‘conserved’ between two homologous

sequences, if the APR has the same sequence in both homologues.

Percent APR conservation in a multiple sequence alignment was

computed using the following formula:

PAPRconserved %ð Þ~ nAPRtotal{nAPRuniq

� �
�100=nAPRtotal ð11Þ

PAPRconserved is the proportion of conserved APRs in an

alignment, nAPRtotal is the total number of APRs for all the

sequences in the alignment and nAPRuniq is the number of unique

APRs (non-identical sequence) over all sequences in the alignment.

These calculations were performed for both TANGO and

WALTZ predicted APRs. Analogous calculations were also

performed for all peptide sequences from Amylsegs that were

detected in the 9 proteins and their homologues.

Incidence of catalytic residues in APRs and flanking
regions

Number of the catalytic residues from the Cata dataset that fall

within the TANGO/WALTZ predicted APRs and their flanking

regions were estimated using the following equation:

NCata-APR~ NCata �NAPRsð Þ=NTot ð12Þ

NCata-APRs is the estimated number of catalytic residues that fall

within TANGO/WALTZ predicted APRs and their flanking

regions. Three residues preceding and three residues succeeding

an APR are considered as its flanking regions. NCata is the number

of catalytic residues in the Cata dataset. This number is 961.

NAPRs is the number of residues in APRs and their flanking regions
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predicted using TANGO and WALTZ in the sequences of the 299

enzymes (314 Chains) in the Cata dataset. For 823 TANGO

predicted APRs and their flanking regions, NAPRs is 11,414 (6498

residues in TANGO APRs plus 4916 residues in the flanking

regions). NAPRs is 11,856 for 982 WALTZ predicted APRs and

their flanking regions (5988 residues in the APRs and 5868

residues in the flanking regions). NTot is 110,334, the total number

of residues in the sequences of the 299 enzymes.

Structural proximity of catalytic residues to APRs
TANGO and WALTZ predicted APRs were also mapped onto

protein structures from the Cata dataset to search for structural

contacts made by catalytic residues to residues in predicted APRs.

A catalytic residue is considered to be in structural contact with an

APR, if at least one of its heavy atoms is within 4.5 Å from a heavy

atom in any residue that falls within an APR. The choice of a

4.5 Å cut-off is arbitrary but was used here because it is common

in the literature [66–68]. Catalytic residues in structural contact

with APRs residues were counted for both TANGO and WALTZ

predicted APRs.

To assess the significance of the observed structural proximity

between APRs and catalytic residues, statistical simulations were

performed by generating one million decoy catalytic lists. Each list

contained the residue coordinates of 961 randomly chosen decoy

catalytic residues from the atomic coordinates of protein chains in

the Cata dataset. Randomly chosen decoy catalytic residues were

selected for each true catalytic residue in Cata and were limited to

any residue within the same protein structure as the true catalytic

residue. For each of the 1,000,000 randomly generated lists, the

number of residues making structural contact with APR residues

(APR contacting) was computed again in the same way as for the

Cata dataset.

The number of APR contacting residues was counted for each

random list to generate a distribution of expected APR contacting

residues. This distribution was also used to compute Z-scores for

the incidence of APR contacting residues in the Cata dataset in the

same way as the Z-score for solvent isolatedness was calculated

(Eq. 9). The analogous calculations were also performed using the

contact distance cut-off values of 3.5 Å and 6.0 Å.

To further probe our observation of catalytic residues in contact

with APRs, a restriction on the solvent exposure of randomly

selected residues as catalytic decoys was imposed. Decoy catalytic

residues were required to have a solvent exposure that was similar

to their corresponding true catalytic residue (ASA value of each

decoy must be within 610% of ASA of true catalytic residue). For

each of the 1,000,000 randomly generated lists, the number of

residues making structural contact with APR residues (APR

contacting) was computed again in the same way as for the Cata

dataset.

Supporting Information

Table S1 Calculated p-values for two sample t-tests on the

distributions of aggregation propensities for sequences contained

in various datasets used in this work. {p-values,0.05 indicate that

the two datasets have significantly different distributions of

aggregation propensities (yellow) at the 95% level of confidence.

Datasets that have similar distributions of aggregation propensities

are colored blue (p-value.0.05). The p-values for TANGO

predicted aggregation propensities are shown in the upper triangle

and the p-values in the lower triangle are for WALTZ predictions.

The two-sample t-tests were performed using MATLAB (www.

mathworks.com).

(DOCX)

Table S2 Secondary structure assignments for residues in

TANGO/WALTZ predicted APRs and Amylsegs.

(DOCX)
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