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Abstract

The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical
reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major
biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming
computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each
of the components, and achieved separation of the different time scales at which reactions in each of the three networks
occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena.
Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used
by the others to process information and operate normally. Therefore, computational techniques for modeling integrated
cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and
Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model
simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is
qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We
validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular
osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and
produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good
candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to
zoom into components and interconnections and investigate them using such more detailed mathematical models.
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Introduction

While the genome contains all hereditary information, the

decisions that a cell makes are governed by a complex cellular

machinery that resides above the genome. Modeling this

machinery is both important—as it helps understand proper

cellular functioning and the implications of aberrations thereof,

and a daunting—given the ‘‘known unknowns’’ (e.g., kinetic

parameters of given reactions) and the ‘‘unknown unknowns’’

(data incompleteness is the rule, rather than the exception, in

biological research).

The cellular machinery can be broken down into three main

components—signaling, transcription regulation, and metabo-

lism—each of which consists of a network of molecules and

interactions among them. The signaling network is responsible for

relaying messages from the external environment of a cell to the

nucleus. Inside the nucleus, the transcription regulation network

determines, upon receiving signals, which genes are expressed, and

to what extent. The metabolic network is the energy and resource

management component of the cell, producing energy and

products that are required by cellular processes. Various modeling

techniques have been used successfully for modeling the dynamics

of each of these components individually.

The success of modeling each of the three components

individually notwithstanding, these components are intercon-

nected within the cell and their dynamics are intertwined, thus

creating a complex network whose modeling and understanding

are major endeavors in systems biology. Several biological

studies and surveys have highlighted this interconnection inside

the cell and the significance of analyzing the components

simultaneously rather than individually, including, but not

limited to, [1–6].

Indeed, several approaches were introduced recently for

integrated modeling of biological networks: regulatory FBA (rFBA)

[7], steady state regulatory FBA (SR-FBA) [8], integrated FBA

(iFBA) [9], integrated dynamic FBA (idFBA) [10], probabilistic

regulation of metabolism (PROM) [11], the method of [12],

dynamic FBA (dFBA) [13] and a recently published whole cell

computational model [14]. One common aspect to all the existing

models is the use of flux balance analysis (FBA) for modeling

carbon and energy metabolism. FBA is a widely used method that

estimates fluxes of metabolic reactions, thereby making it possible

to predict the growth rate of an organism or the rate of production

of a metabolite of interest. However, FBA is only suitable for

determining fluxes at steady state. With exceptions of some
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modified forms, FBA does not account for regulatory effects such

as activation of enzymes by protein kinases or regulation of gene

expression [15]. The methods that use the unmodified version of

FBA – all but idFBA and dFBA — only capture the steady state of

metabolism, therefore not capturing the full dynamic within the

cell. These methods mainly acquire the effects of changes that

individual components have on each other. On the other hand,

the methods that discretize FBA (dFBA and idFBA), are able to

reveal not only a more complete profile of the cell, but also the

dynamic behavior of the interconnections between the compo-

nents. For recent surveys of these methods, please see [16,17].

In this paper, we propose a new Integrated Hybrid Model

(IHM) that aims to capture the dynamic behavior within and

between the components of the cell, and which belongs to the class

of executable models [18]. This model integrates two types of

modeling techniques: Petri nets (PNs), which have been used for

modeling metabolic networks and signaling networks [19], and

Boolean networks, which have been used to model regulatory

networks as well as protein signaling networks [20,21]. One of the

first successful Petri net-based models of metabolism was devised

by Reddy et al. [22,23]. Over the recent years, various types of

Petri nets have been introduced and extensively used in modeling

different metabolic systems [24–27]. Signaling pathways, on the

other hand, have posed more of a challenge for Petri nets. Their

highly interleaved (with possible forward- and backward loops) and

parametrized nature makes it a difficult mapping onto a Petri net

framework. Despite these limitations, Petri nets have been shown

to be applicable in signaling pathways using careful parameter-

ization and execution strategies [28–32]. Transcription regulation

has been modeled successfully using Boolean networks, starting

with the work of [33]. Over the years, with the steady increase in

the amount of data on genetic regulation, Boolean networks

became a common strategy for modeling this cellular process; e.g.,

[34–36].

Our integrated hybrid model uses Petri nets to model the

metabolic and signaling components, and Boolean networks to

model the transcriptional component. Further, the model makes

connections between the Petri net and Boolean network compo-

nent using a special modeling part. Our modeling approach

assumes knowledge of the connectivity among the various species

in the system, and is then minimally parameterized based on

qualitative data. The dynamics of the biological system are then

obtained by executing the parametrized model. Of the existing

approaches, idFBA is comparable to our approach, as it allows for

modeling the dynamics by discretizing time and conducting FBA

analyses for short time intervals. However, idFBA is applicable

where FBA models have been curated (e.g., for single-cell

organisms), whereas our modeling approach is applicable more

broadly in terms of organism selection, and requires only

qualitative data.

We implemented and tested our modeling methodology on two

biological systems: (1) the transcriptional regulation of glucose in

human physiology, with knowledge based on [1], and (2)

osmoregulation in S. cerevisiae, based on the system in [37]. The

two systems differ in temporal and spatial scales. For the

transcriptional regulation of glucose, the interactions among

different components are reflected in the cooperation among

multiple cell types, and the mass transportation is through blood

vessels in the human body, thus acting at longer time scales than

single cell systems. On the other hand, the modeling of

osmoregulation in S. cerevisiae encompasses metabolism, signaling

and transcriptional regulation, all within a single cell. The

exchange of proteins or metabolites is mediated through diffusion

and cellular transportation. We choose the two systems to show

the diversity of the biological scenarios to which our integrated

hybrid model is applicable. The two systems are very well curated

and studied, both experimentally and computationally. This

makes them ideal for validating our methodology and for

comparing with existing modeling frameworks. Our modeling

approach produced results that match experimentally derived data

(in terms of both validation and prediction). There is an

abundance of qualitative data on biological interaction networks,

and developing models and methods that utilize such data is

desirable. Our proposed method fits within this category which

offers a complementary approach, rather than an alternative one,

to the FBA-based category of methods as well as other categories

such as kinetics-based methods.

Methods

Our integrated hybrid model combines two modeling tech-

niques, Petri nets and Boolean networks. We begin by briefly

reviewing each of these models, and their use in modeling

biological networks, and then describe the new integrated hybrid

model.

Petri nets and their execution
In our context, a Petri net (PN) is a 4-tuple (P,T ,w,M0) that

defines a weighted, complete, directed, bipartite graph. The

disjoint sets P and T correspond to two types of nodes, places and

transitions, respectively. In modeling signal transduction and

metabolism, they correspond to chemical species and biochemical

reactions that happen among these species. The element w is a

mapping defined w : (P|T)|(T|P)?Rz, where Rz is the set

of non-negative real numbers. These mappings could be used to

encode, for example, stoichiometries of biochemical reactions.

Finally, M0 : P?Rz is the initial marking of the Petri net, which

assigns a number of tokens to each place. This correspond to the

initial concentration of chemical species. The state of a Petri net is

given by a vector s of length DPD with sp being the number of tokens

in place p. In particular, the initial state, s(0), is given by the initial

marking M0. Additionally, a vector r of length DT D provides the

transition rates for the system, where rt denotes the rate of

transition t to simulate the empirical rate constant used in the law

of mass action that governs the corresponding reaction. The Petri

net can be executed both deterministically and stochastically [38–

40]. In this work, we utilize a stochastic protocol based on the

Gillespie ‘‘first reaction’’ method [41]. The method characterizes

Author Summary

Within the cell of an organism, three networks—signaling,
transcriptional, and metabolic—are always at work to
determine the response of the cell to signals from its
environment, and consequently, its fate. Evidence from
experimental studies is painting a picture of complex
crosstalk among these networks. Thus, while a wide array
of computational techniques exist for analyzing each of
these network types, there is clear need for new modeling
techniques that allow for simultaneously analyzing inte-
grated networks, which combine elements from all three
networks. Here, we provide a step towards achieving this
task by combining two population modeling techniques—
Petri nets and Boolean networks—to produce an integrat-
ed hybrid model. We demonstrate the accuracy and utility
of this model on two biological systems: transcriptional
regulation of glucose metabolism in human cells, and
cellular osmoregulation in yeast.
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the dynamics of each transition t[T by a propensity function a. Let t
be a transition whose inputs is the set It~fp[P : w(p,t)w0g and

outputs is the set Ot~fp[P : w(t,p)w0g. In state s, the propensity

a of transition t is defined by

at~rt| P
p[It

sp:

Given these propensity values, the method determines the putative

time t at which the next transition fires based on the probability

distribution function given by

P(t)~
X
t[T

at

 !
|e

{t
P

t[T
at :

The transition with the smallest time t is then chosen to fire. Firing

transition t amounts to updating the number of tokens in every

place p[It according to the rule sp~sp{w(p,t) and updating the

number of tokens in every place q[Ot according to the rule

sq~sqzw(t,q). Once a transition is executed, the state of the Petri

net changes. The execution time is updated by 1, which is, in our

case, a slight modification from the original algorithms where time

is updated by t. Consecutive firings of transitions results in a walk

through the state space of the Petri net from the start state s(0).
The final dynamics of the system is acquired by averaging several

full runs of Gillespie starting from the initial state M0 and

executing the same number of steps. A detailed description of Petri

nets and its application to systems biology can be found in [19].

See Figure 1 for an illustration.

Boolean networks and their execution
A Boolean network is a 3-tuple (B,F ,s0), where B is a vector of

n Boolean variables (that is, variables that take values in the set

f0,1g) and F is a vector of n Boolean functions with function fi, for

1ƒiƒn, associated with variable bi[B, and s0 is a vector of length

n that has a Boolean value for each of the n variables and denotes

the start state. In modeling transcriptional regulation, each

Boolean variable indicates whether a gene is being transcribed

at a given time and the Boolean functions stipulate how

transcriptional factors regulate the transcription of their targets.

The state of a Boolean network is a Boolean vector X of size n,

where Xi is the value of variable bi. The value of Xi of variable bi

is updated by applying function fi to the current state of the

Boolean network. More formally, let X(t) be the state of the

Boolean network at time t. Then, if function fi is executed at time

t, the state of the Boolean network one step later is given by

X(tz1), where Xj(tz1)~Xj(t) for every j=i, and

Xi(tz1)~fi(X(t)). In particular, X(0)~s0. Given a Boolean

network representing a set of variables, the dynamics of the system

can be simulated by repeatedly executing the Boolean functions

and updating the ‘‘current’’ state. In the classical synchronous

simulation, the states of all variables are updated simultaneously

after all of the functions in F have executed. In an asynchronous

simulation, only one Boolean function is chosen and executed in a

given time step. See Figure 1 for an illustration.

The integrated hybrid model and its execution
As described above, gene regulatory networks have been

successfully modeled using Boolean networks. Signaling and

metabolic networks have been successfully modeled using Petri

nets. In our integrated hybrid model, the regulatory components

of the biological system are modeled using Boolean networks,

whereas the other two components are modeled using Petri nets.

To facilitate connections between the two components, our model

contains, in addition to the Petri net and Boolean network

components, a set of Place-to-Boolean and Boolean-to-Place

triplets that create a Boolean value based on binarization of the

number of tokens and a number of tokens based on a Boolean

value, respectively. We now describe our modeling approach

formally.

Syntax. The integrated hybrid model (IHM) is a 4-tuple tuple

M~(Q,R,C,Y) where:

Figure 1. Illustration of Petri nets and Boolean networks. Consider a cellular network that involves three molecular species a, b and c, where a
is self-regulatory (activating), c inhibits b, and both a and b activate c in a cooperative manner. (Left) A Petri net representation, with three places
corresponding to the molecular species, and two transitions corresponding to the reactions. A read arc (line with arrows on both ends) connecting
place p to transition t means that when transition t fires, the number of tokens in place p does not change. Notice that the inhibition of b is
represented by transition t2 which consumes tokens from b. (Right) A Boolean network representation, with three Boolean variables corresponding to
the molecular species. The primed version of a variable indicated the next-state of that variable. In other words, these Boolean formulas can be
interpreted a A(tz1)~A(t), B(tz1)~not C(t), and C(tz1)~A(t) and B(t).
doi:10.1371/journal.pcbi.1003306.g001
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N Q~(P,T ,w,M0) is a Petri net.

N R~(B,F ,so) is a Boolean network where each Boolean

function fi[F takes as input the state of variables in B.

N C((P|B|R)|(B|P|Rz) is a set of triplets that connect

places in the Petri net component with Boolean variables in the

Boolean network component.

N Y is an initial marking of M such that that

Y (x)[
Rz if x[P

f0,1g if x[B

�

It is important to note that the two sets of variables, P and B,

are disjoint. In our approach, we model the metabolic and

signaling components using a single Petri net, and the transcrip-

tional regulation component using a single Boolean network. The

set of triplets in C is defined for the places and Boolean variables

that provide the connections at the interface of the biological

components. The choice of these triplets vary from one biological

system to another.

Semantics. Given an IHM M, it is now straightforward to

execute it and produce the dynamics of the system, as each of the

two components of the model is amenable to both deterministic

and stochastic executions.

Let V~P|B. The state s of IHM M is a vector of length DV D,
where entry sx is the number of tokens in x, if x[P, and the

Boolean value of x, if x[B. As the state of the system evolves as

transitions, Boolean functions, and triplets in C are executed, we

denote by s(t) the state of M at time t. In particular, s(0)~Y. In

other words, sx(t) denotes the value of variable x at time t.

Let s(t) be the state of the system at time t. Petri net transitions

and Boolean functions are executed at time t according the rules

described above. The state of variable b[B that is an element of a

triplet (p,b,u)[C is updated as follows:

sb(tz1)~
1 if sp(t)wu

0 if sp(t)ƒu

�
,

and the state of a Petri net place p[P that is an element of a triplet

(b,p,k)[C is updates as follows:

sp(tz1)~
k if sb(t)~1

sp(t) if sb(t)~0

�
:

In other words, in the Petri-to-Boolean conversion, we set the

Boolean variable to 1 if the number of tokens in the place exceeds

the given threshold u, and to 0 otherwise. For the Boolean-to-Petri

conversion, we set the number of tokens in the place to value k if

the Boolean variable has state 1, and keep the state unchanged

otherwise. The choice of the values of u in the Petri-to-Boolean is

not straightforward and must be learned from the data. We discuss

below how we set the thresholds for our two specific biological

systems.

Execution of the full IHM. As discussed above, once the

biological system is modeled using the IHM, it is straightforward

to execute it. However, as the three biological components operate

at different time scales, the execution of the integrated hybrid

model must account for this by introducing delays into the

execution protocol. Here, we describe the additional details of

execution, as they pertain to the full IHM model.

To execute the full IHM, we make use of a global clock, or simply

clock, that governs the execution of transitions and Boolean

functions, and a priority queue, or simply queue, for simulating

delays that capture the differences in time scales. At each tick of

the clock, each of the three components (Petri net, Boolean

network, and triplets), updates its state, resulting in an update to

the entire state of the system. The order in which the three

components update their states is random and thus changes from

one clock tick to the next. This is a rather simplistic approach to

incorporating stochasticity and concurrency in the model;

nonetheless, we show below that it works very well on the two

biological systems we consider here. We now describe how each of

the three components is updated in each tick of the clock, which is

similar to the general description above, yet with some minor

additional details.

The Petri net component is updated according to Gillespie’s first

reaction method. The only difference is that to obtain state s(tz1)
from state s(t), we average the execution of the Petri net

component over 20 times. More formally, we execute Gillespie’s

algorithm 20 independent times, each starting from state s(t), thus

producing 20 candidates for s(tz1). We then average these 20

candidates to produce a single next-state s(tz1), which is the state

of the Petri net component at the end of the clock tick. This

averaging approach was used before and shown to produce good

results when simulating signaling networks using Petri nets [32].

The use of Petri net under a global clock is similar to the the timed

Petri net model [42].

The Boolean network component is updated synchronously

with necessary modifications to suit the use of a global clock. In

every clock tick, each Boolean variable that is not on the queue

and whose state changes from 0 to 1 at that clock tick is put on the

queue with state 1 with a time delay d chosen uniformly in the

range 0ƒdƒdmax. As the global clock ticks, the time delays of all

items on the queue decrease, and whenever the time delay of a

Boolean variable reaches 0 at a clock tick, the new state of the

variable (which is 1) becomes visible to the system. More formally,

let variable b be added to the queue at time t with delay t. Then,

the state of variable b in its duration on the queue is given by

sb(t’)~
0 tƒt’vtzd

1 t’~tzd

�
:

If a Petri-to-Boolean triplet is chosen to execute in a given tick of

the clock, then it executes instantaneously, according to the rule

described above. If a Boolean-to-Petri triplet is chosen to execute,

it is executed with time delay, in a similar fashion to the Boolean

network component. That is, the triplet is added to the queue with

a time delay, and when the time delay expires, the triplet is

evaluated and the value of the Boolean variable is updated.

Given the stochastic nature of the execution, the model must be

executed multiple times and the results are averaged. While the

syntax and semantics, as produced by the execution strategy, are

general enough, the specifics of the model in terms of the

connectivity and parameterization are determined by the biolog-

ical system under consideration. Below, we use our new modeling

approach on two biological systems. We describe for each of the

two systems the connectivity and parameters that we used.

Putting it all together. The construction of an IHM for a

biological system entails four steps:

1. First, the connectivity map of the network under consideration

is assembled. This can be achieved by mining the literature for

connections relevant to the network, or by making use of

information from public databases.

2. Second, the network elements are mapped to the individual

IHM components. As described above, signaling and metabolic

Petri-Boolean Modeling of Integrated Networks
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elements are mapped to a Petri net component, transcriptional

elements are mapped to a Boolean network component, and

the relevant connections between the two are established using

triplets.

3. Third, the resulting model is parameterized. This requires

establishing the Boolean functions in the Boolean network

component, establishing the thresholds in the connection

triplets, and setting the rates for transitions and the values for

the mapping w in the Petri net component for determining the

number of tokens passed between places and transitions.

4. The start state Y of the system is set. This is determined based

on the experiment or question that is being investigated.

Once these four steps are carried out, the resulting IHM can be

executed using the strategy described above and the dynamic

trajectories can be obtained and analyzed.

Results

In this section, we demonstrate the application of our new

modeling approach on two biological systems: transcriptional

regulation of glucose and Osmoregulation in S. cerevisiae. Both

biological systems intrinsically involve metabolic, signaling,

transcriptional regulatory components and complicated interac-

tion in-between these components. They cannot be comprehen-

sively modeled using traditional frameworks that specifically

targets separate cellular components.

Transcriptional regulation of glucose
In order to assess the ability of IHM to capture the dynamics of

complex biological systems we implement an IHM model for the

system of transcriptional regulation of glucose metabolism, which

was surveyed in [1]. Timely uptake of cellular glucose from the

blood, a task regulated by the secretion of insulin and glucagon, is

crucial to human metabolism. This system involves the interaction

of multiple cellular components in cells of different cell types and

cells that span a physical distance. We demonstrate that IHM can

readily be adapted to model such a biological scenario, and allows

us to investigate issues such as the interplay between AKT and

FOXO in this system. Given that the modeled system involves

more than a single cell type, it is unclear how to apply FBA-based

techniques to it.

Assembling the connectivity map. Desvergne et al. re-

viewed the transcriptional regulation of the insulin gene under

different levels of blood glucose. At a high blood glucose level (for

example after feeding), the insulin gene is transcribed in pancreatic

b-cells and released to tissues, such as liver and muscle, to uptake

glucose from the blood. When blood glucose is low, glucagon is

secreted from pancreatic a-cells to bind the liver cell receptor to

decompose stored glycogen into glucose, maintaining the blood

glucose level as is necessary for tissues such as the brain. The

response of glucagon signal by the liver cell is effectuated by the

signaling pathway of extracellular signal-regulated kinase (ERK)

[43], cAMP-dependent protein kinase (PKA) and cAMP-response

element-binding protein (CREB) [44,45]. The mechanism by

which glucose and insulin, independently or together, modulate

insulin gene transcription involves the sensing of the blood glucose

level by both the pancreatic a and b-cells in their transcriptional

network. The transcriptional regulation of insulin is mediated by a

handful of transcriptional factors including FOXO [46,47], PDX1

[48,49] and hepatocyte nuclear factors (HNFs) [50–52]. Blood

insulin also triggers the PI3K-AKT1 pathway [53] which

inhibits FOXO and promotes the insulin production in tissues

including liver and pancreatic b-cell [54]. By collecting from the

aforementioned literature all the necessary information about

interactions within and between different components, we

manually constructed the connectivity map of the network, which

is the first step toward constructing the integrated hybrid model.

Figure 2 shows the connectivity map, which includes intracellular

interactions between the liver, pancreatic-b, and pancreatic-a cells.

Parameterizing the model. Once the topology was ac-

quired, a minimal amount of custom parameterization is needed.

Most of the parameters were set in a very simple way, with some

exceptions that we describe in detail below:

N Rates of all Petri net transitions are set to 1:0 for all internal

transitions and to 0:9 for all sink and source transitions.

N The maximum number of tokens that a place can have is 100.

N The values of w(p,t) and w(t,p) were set to 0 for every pair

(p,t) or (t,p) that does not have a connection in Figure 2. For

the rest of the place/transition pairs, we set the w value to 1.

N For the Boolean network and connection triplets, for Petri-to-

Boolean connection, the thresholds are shown in Figure 2; for

Boolean-to-Petri connections, we used k~25.

N For the time delay, we set dmax to 20

In addition to these general rules, the following parameters were

fine-tuned to simulate the conditions of the feed and fast cycle used

for validating the model (described in the following section).

1. In the Petri net component that corresponds to liver

metabolism, the values of w(p,t) and w(t,p) for every pair

(p,t) or (t,p) that does have a connection in Figure 2, we set the

w value to 2.

2. In the pancreatic b cell’s signaling, the Petri net connection

involving transition t between Blood glucose and Glut1/2 sensor

has the weights w(pGlucose,t)~w(t,pGlut1=2)~5.

3. In the pancreatic b cell’s signaling, the Petri net connection

involving transition t between Stored Insulin and Secreted Insulin

requires an input of the read-arc from Glut1/2 with weights

w(pGlut1=2,t)~w(t,pGlut1=2)~3.

4. The arithmetic condition between ATP and the pancreatic b
cell’s nucleus is evaluated based on x tokens, where

x~(sATPzsADP)=2, which is a constant value due to the

conservation of tokens between these two places.

5. A mechanism to facilitate feed/fast cycle is not considered to be

a part of the IHM static description, but is needed to sustain

feed/fast cycle, by introducing the following two invariants,

which are tested at every time step.

N Feeding is activated when the system is determined to be in

the starvation state. At each time step the condition

(
P

p[S sp)zsGlucosev10, where S is a set of places for liver

metabolism, is tested. If the condition evaluates to true, 2

tokens are deposited into the Glucose place for the next 15

steps; otherwise, no action is taken.

N Fasting is activated when the system is determined to be in the

hungry state. In this state, the pancreatic-a cell is activated in

response to low Glucose (below the hungry threshold of 20

tokens). In this state, the Boolean-to-Petri connection

associated with Glucagon and Transcribed insulin are adjust by

continuously reducing k by a small amount (uniform random

value v0:05). In the feeding state, the original k values

associated with these connections are restored.

Model validation and results. To validate the performance

of our model, we focused on modeling the regulation of insulin and

glucose production by means of the interactions between and

Petri-Boolean Modeling of Integrated Networks
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within the liver cell and the pancreatic a, and b cells under the

conditions of high and low glucose. Both of these scenarios can be

captured by modeling the oscillatory behavior of the feed and fast

cycle—the phenomenon frequently used in analyzing glucose and

insulin regulation.

To simulate the feed and fast cycle, we differentiate between two

conditions: hunger and starvation. The former condition is defined by

the low blood glucose and triggers the release of glucose by the

liver via gluconeogenesis, whereas the latter condition is charac-

terized by much lower glucose and promotes manual ‘‘feeding.’’ In

the phase of fasting, the activity of liver glucose production slows

down proportionally to the time duration since the last manual

feeding, allowing the system to transition into the starvation

condition as the liver becomes less effective.

We validate our model against feed/fast cycle from two sources,

as shown in Figure 3. The experimental data of glucose circulation

by Korach-André et al [55] (red lines on the top two plots) and an

ODE-based model of the simplified regulator system of blood

glucose by Liu et al [56] (blue lines on the bottom two plots) are

compared to our IHM outcomes (solid black line in all plots). The

IHM results are averages of 100 stochastic executions of the entire

system, as described above. The plots show good match between

the dynamics of IHM and both experimental data and ODE

model. In fact, the slower insulin absorption in IHM is closer to

experimental data than the results of the ODE model. This

validation shows IHM’s efficacy in capturing the dynamics of

glucose absorption and insulin secretion even in light of complex

model dynamics. The concentrations on the x-axis are measured

as the number of tokens, and time is measured in arbitrary units.

Further, we observe the complete dynamics of this system.

Figure 4 shows the dynamics of all the components of the model

and their interconnections. The dashed lines indicate the

beginning of manual feeding (the start and end of a single feed/

fast cycle). The model is an average of 100 individual simulation

runs. We can see from the interconnection plots that insulin spikes

when glucose is added in the system during feeding. The insulin is

slowly utilized as the system switches into fasting phase and

maintains the lower level of glucose through the liver. Addition-

ally, the level of glucagon increases as soon as the feeding ends and

levels of glucose start to drop, resulting in hepatic glucose

production and maintaining of glucose inside the normal range

[57]. The liver metabolism plot shows a clear propagation of

Figure 2. Graphical representation of glucose system. Red shapes are Petri net places (signaling and metabolism), and small black squares on
the arrows represent Petri net transitions (dashed lines correspond to enzymatic interactions). Green squares are Boolean network elements for
regulatory components. Blue ovals are also Petri net places and correspond to interconnection elements. The Petri-to-Boolean arithmetic conditions
are noted on/through red arrows (specific values are defined in the section of parametrizing the model). The Boolean-to-Petri connections are
indicated with green arrows. The initial condition defined by vector Y, is set as follows: all Petri net places have 0 tokens except ADP (10 tokens) and
Glucose (20 tokens); all Boolean network elements are set to 0, except HNF3beta and HNF1beta, which are set to 1. The ‘a’ connections into Boolean
variables correspond to the negation functions. For the Petri net component, the ‘a’ connection from transition t to place p is a schematic
representation of inhibition, which is implemented using the standard Petri net definition as p being an input place to transition t. Transitions without
inputs or outputs represent sources and sinks, respectively.
doi:10.1371/journal.pcbi.1003306.g002
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glucose through the system. As the fluxes through the system

becomes too low, it contributes to the feeding condition and the

next feed/fast cycle. In the dynamics of pancreatic-b cell

regulation, we can clearly see a stronger response form insulin

gene expression during the feeding, and more moderate insulin

production in response to glucose produced by the liver during

fasting. Lastly, signaling plot (which contains species form liver

and pancreatic-b cell on one plot) shows the the activation

through PI3K?AKT1aFOXO pathway, which is known to be a

positive feedback from insulin to promote further regulation of

insulin production. Particular, the activity of this pathway

prevents FOXO1 from exhibiting negative feedback onto the

b-cell regulation, which, in turn, would impair the production of

insulin.

It has been a long standing hypothesis that glucose is a regulator

of FOXO1 through the insulin receptor. FOXO1 is found to be a

central player in b-cell compensation of insulin resistance [58].

FOXO1 negatively regulates insulin expression in b-pancreatic

cell [47]. In type-2 diabetic population, the insulin production

does not meet the metabolic demand [59]. The positive feedback,

comprised of insulin?PI3K?AKT1aFOXOaPDX1?insulin,

helps b-cell mitigate the difference between the demand and

supply of insulin at the initial stage of diabetes. A sustained

execution of this pathway leads to failure of b-cell as is

characterized by the reduction of mass and number of b-cells

[60]. This failure is closely related to PDX1 [61]. Bernel-Mizrachi

et al. provide time series data, comparing the feed and fast cycle in

the normal condition and under reduced Akt, which is responsible

for suppressing FOXO1 [62]. If the concentration of Akt1 is low,

FOXO1 becomes active and the insulin expression is expected to

be lower than normal, and, therefore, the absorption of glucose

slows down. We are interested in testing this hypothesis using our

integrated hybrid model for this system.

The reduction of AKT activity on FOXO was achieved by

reducing the rate of AKT1aFOXO reaction, while also increasing

its source reaction rate (? FOXO). The dynamics of IHM under

normal Akt and reduced Akt (kdAkt) are compared to the

experimental data from [62] in Figure 5. In all images, yellow

background indicates feeding stage, and red corresponds to fasting.

The experimental data measures the glucose levels at the feeding

stage and insulin secretory response during fasting. IHM shows the

entire cycle. We observe the glucose of kdAkt model being higher

than normal condition, as well as lower insulin secretion in

reduced Akt scenario. These results correspond to the hypothesis

and the observations in the experimental data.

PI3K kinase has been shown to be able to induce the insulin

secretion (PI3K?AKT1aFOXOaPDX1?insulin) which further

facilitates glucose uptake. Inhibition of PI3K results in the

accumulation of blood glucose. In order to validate our model

against this scenario we inhibit PI3K kinase in our IHM model of

the glucose metabolism system and compare the result to

experimental data extracted from [63]. As is shown in Figure 6,

IHM correctly recovers the accumulation of blood glucose. The

dynamics resembles the experimental data. In the experiment,

mice were first treated with pan-PI3K/mTOR inhibitors PI-103

[63] before glucose is administered. We set the initial concentra-

tion of PI3K to zero to simulate this treatment.

Osmoregulation in S. cerevisiae
Yeast responds to the environmental osmolarity by adjusting the

cellular glycerol concentration [37]. Such response is mediated

through signaling pathways that sense the extracellular osmotic

pressure as well as transcriptional regulation of about 10% of the

yeast genes that manipulate the metabolism of glycerol. The effect

of the medium osmolarity is first sensed and transmitted by the

well-studied HOG/MAPK pathway [64,65] whose upstream

involves two redundant branches—Sho1 branch [66,67] and

Sln1 branch [68]. The HOG signaling pathway is one of the first

to sense the osmotic upshift, playing a pivotal role in yeast’s

adaptation to high osmolarity. Hog1, the end effector of HOG

pathway, activates in the nucleus the central transcriptional factors

Hot1 [69], Msn2/4 [70] and Ptp2/3 [71]. These transcriptional

factors turn on the expression of enzymes that promote glycolysis,

which leads to the production of glycerol, an inert osmolyte. The

surge in the glycerol concentration increases the cytosolic

osmolarity, counteracting the osmotic upshift in the environment

and protecting the cell from dehydration. While the effect of

Gpd1/Gpp2 (which is a product of Hot1 and MSN2/4) gene

Figure 3. Comparison of blood glucose (left) and insulin (right) dynamics in a single fast/feed cycle as simulated by our model with
the experiential data by Korach-André et al [55] (top) and ODE-based model by Liu et al [56] (bottom). Our IHM is shown in solid black
line. Experimental data and ODE model results are reconstructed from Figure 7 in [56]. The results of IHM dynamics qualitatively match to both
experimental data and ODE-generated data.
doi:10.1371/journal.pcbi.1003306.g003
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controls osmoregulation via glycerol production though metabolic

pathway, Ptp2/3 is a much stronger mediator of osmotic stress, as

it acts on suppressing the activity of Hog1 transcription factor

directly.

Assembling the connectivity map. Like in the previous

case, we first constructed an integrated hybrid model for the

system of S. cerevisiae HOG pathway by manually collecting

information from a previous curation by Lee et al [10] and

additional literatures referred above. Figure 7 provides a

visualization of this model. Unlike the previous example, this

model focuses on the interplay within a single cell type. In addition

to the clear interaction between signaling and transcriptional

regulation via Hog1 and the provision of enzymes from the

transcriptional regulation to the metabolic component, we also see

Figure 4. The dynamics of all components in the IHM for feed/fast cycle in for the transcriptional regulation of glucose metabolism.
The plots show selected species from different components — component interconnections (top left), selected species from liver metabolism (top
right), selected species from pancreatic beta-cell and liver signaling (bottom left), and selected species pancreatic beta-cell regulation (bottom right).
X-axis for Petri net components are expressed in tokens, and for Boolean component is an average of Boolean values, 0 and 1.
doi:10.1371/journal.pcbi.1003306.g004

Figure 5. The dynamics of IHM under normal Akt and reduced Akt (kdAkt) as compared to the experimental data in [62] (Figures 2B
and 2D in [62]). The kdAkt experiment was modeled by IHM by reducing the rate at which Akt suppresses FOXO and increasing the rate of the
source transition into FOXO. In all images, yellow background indicates feeding stage, and red corresponds to fasting. The experimental data
measures the glucose levels at the feeding stage and insulin secretory response during fasting. IHM shows the entire cycle. We observe the glucose of
kdAkt model being higher than normal condition, as well as lower insulin secretion in reduced Akt scenario. These results correspond to the
observations in the experimental data.
doi:10.1371/journal.pcbi.1003306.g005
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a feedback of glycerol to the signaling component, a communi-

cation between signaling and metabolic components via metab-

olites.

Parameterizing the model. Most of the parameters in this

IHM are set to the exact same default values that we used in the

previous example, with only two instances, where the specific

behavior needed to be fine-tuned.

1. In signaling the Petri net connection t between Ptp2/3 TF and

Pbs2 has different weights w(pPtp2=3TF ,t)~w(t,pPbs2)~2.

2. For the Boolean network and connection triplets, for Petri-to-

Boolean connection, the thresholds are shown in Figure 7; for

Boolean-to-Petri connections, we used k~20.

3. The source transition for Osmosis stress is set to 100 when

simulating ‘‘stress’’ condition and to 0 when simulating ‘‘no

stress’’ condition.

Model validation and results. This particular system was

analyzed by Lee et al with the idFBA model [10]. Using this

example, we compare the performance of IHM and idFBA.

Figure 8 shows the behavior of the models under high and low

osmotic stress conditions. The behavior of the selected species in

the system corresponds to those validated by Lee et al [10]. The

results of three models is depicted: IHM, idFBA model, and kinetic

based model for this system. The plots show the behavior of the

system in the presence of high osmotic stress (solid lines) and low

osmotic stress (dashed lines). The results of IHM corresponds well

with idFBA in all of these species in the high osmotic stress case.

However, there are two discrepancies in the low osmotic stress

case. In our model, both ATP and Glycerol go down, while in

idFBA they stay constant. The former decline can be easily

explained by the transition in IHM where all of the ATP gets

converted into ADP in the presence of no metabolic activity. The

latter decline is explained by the topology, where any available

Glycerol (the initial concentrations in this case) will always be used

for activating Hog1. Overall, our integrated model achieves

comparable results by just mainly relaying on the topology of

the system. In addition, while IHM is a stochastic model and

requires averaging, a single result take just a few seconds with an

average of 100 iteration taking no longer then 5 minutes. In

idFBA, on the other hand, many parameters are involved in

executing ODEs.

We further analyzed the complete dynamics. Figure 9 show the

dynamics of all the components in the HOG pathway in the cycle

of presence of osmotic stress, followed by the absence of osmotic

stress, and finally under the osmotic stress again. We can clearly

see the activity of Hog1 pathway in the presence of osmotic stress,

and its idleness under no stress condition. During the osmotic

shock, Gpd1/Gpp2 feedback is always on as it mediates the

production of glycerol. However, it can be seen from the plot, that

when the concentration of Hog1 becomes too high, it turns on

Ptp2/3 feedback that directly suppresses signaling of Pbs2, slowing

down the response to osmotic stress. Also, the Stl1 stays expressed

during osmotic stress and regulates the activity of metabolism.

Discussion

We proposed a simple, yet effective, integrated hybrid model

(IHM) that allows for simultaneously modeling signaling, metabolic,

and regulatory processes within a single framework, while explicitly

capturing the dynamics within each component and the interplay

among them. As we applied the integrated model to two biological

systems, we demonstrated how much our model can capture by

mainly relying on the topology of the system (given the simple and

general rules for setting most of the model’s parameters). In both

systems, we were able to successfully validate our results against

both experimental data and other models. In the case of

transcriptional regulation of glucose, we compared our model

against an ODE-based model that only focuses on glucose-insulin

interactions, while in our case we consider a larger system. The

results compare well against the experimental data. No compar-

ison was done with other integrated models, since it is not clear

how to formulate an FBA-based model for this system. In the case

of the osmoregulation system, we compared our model against the

idFBA approach [10].

The IHM framework has an intuitive graphical representation

that makes the construction of the connectivity map of the model a

relatively simple task. Further, as experimental evidence becomes

available to provide support for new connections or against

existing ones, the connectivity map can be readily updated to

accommodate this new evidence without having to recreate the

model from scratch. Our model is reconstructible and its

parameterization is obtainable from qualitative data, which is

abundant in the literature and public databases. It is important to

note that while the connectivity map is often easy to obtain from

the literature and public databases, parameterizing the IHM poses

the biggest challenge in terms of obtaining the executable model.

In this paper, we parameterized the IHM for both biological

systems manually—a task that took very short time to achieve,

given that most of the parameters were set using general rules and

Figure 6. Glucose response from PI3K inhibition. The comparison between IHM model (left) and experiment (right). Inhibiting PI3K was
modeled by setting rate between Secreted insulin and PI3K to 0. In IHM model, glucose is higher with PI3K inhibition which is consistent with
experimental data. The experimental data is reconstructed from Figure 3C in [63].
doi:10.1371/journal.pcbi.1003306.g006
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only a few of them had to be fine-tuned. The results (e.g., the feed/

fast cycle in the regulation of glucose metabolism system) are

qualitatively robust to most parameter values that we choose, as

tested by executing the model with parameters varied around the

chosen value. We identify as a direction for future research the task

of devising computational techniques for automated parameteri-

zation of our IHM using qualitative experimental data. Some

techniques for a similar task were recently introduced [72] and we

will build on those.

While the aforementioned existing approaches for integrated

analysis of biological networks provide promising frameworks, a

salient feature of all of them is that they depend on flux-balance

analysis (FBA) as a main analytical component. This dependence

means that an FBA model must be curated for the system under

analysis, which is not clear how to obtain for a system such as the

regulation of glucose metabolism, which involves more than a

single cell type. Further, this dependence necessarily makes the

analysis metabolism-centric and shifts the focus from the other two

components. Third, as FBA is aimed at understanding the

behavior of the system at steady state, the dynamics of the system

cannot be studied, except under the idFBA modeling technique, as

it takes a step-wise approach to conducting FBA. Our model, on

the other hand, is not based on FBA and, consequently, provides a

complementary approach to the FBA-based ones.

Our model builds on the success of Boolean networks and Petri

nets for modeling cellular networks. As advances continue to be

made for both modeling techniques, our integrated modeling

approach would readily benefit from these advances, as different

flavors of of Boolean networks (e.g., probabilistic ones) and Petri

nets (e.g., colored Petri nets) can be plugged into our model

without having to modify the way the connectivity map is

constructed or the system is executed. In other words, our model

can be viewed as a reconfigurable model, where different

components, along with their execution protocols, can be

assembled to generate a model of integrated systems.

It is important to note that while we made decisions on the

model to fit the two biological systems we studied, other biological

systems may require more features in the modeling approach. For

Figure 7. Diagram of the S. cerevisiae HOG pathway. Graphical representation of glucose system. Red shapes are Petri net places (signaling and
metabolism), and small black squares on the arrows represent Petri net transitions (dashed lines correspond to enzymatic interactions). Green squares
are Boolean network elements for regulatory components. Blue ovals are also Petri net places and correspond to interconnection elements. The Petri-
to-Boolean arithmetic conditions are noted on/through red arrows (specific values are defined in the section of parametrizing the model). The
Boolean-to-Petri connections are indicated with green arrows. The initial condition defined by vector Y, is set as follows: all Petri net places have 0
tokens except ADP, which has 10 tokens; all Boolean network elements are set to 0. See caption of Figure 2 for more details about the representation.
doi:10.1371/journal.pcbi.1003306.g007
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example, in the Petri-to-Boolean connections, it might be the case

that the state of the Boolean variable is set based on a function of a

set of the Petri net places. Our IHM can be easily extended to

incorporate such features, with little or no need to modify the

execution strategy. That is, the model is easy to extend as long as

the syntax of the new features and their effects on the execution

strategy are well-defined.

Last but foremost, our IHM approach lends itself in a

straightforward manner to hypothesis generation. Perturbation

experiments can be simulated in silico by setting the numbers of

tokens at Petri net places and Boolean variables to a certain value,

and the system can be executed to study the effect. For example, a

Boolean variable can be set to 0 to simulate its inhibition, or the

number of tokens can be set to a large number in place to

represent a constitutive enzyme. Further, new components can be

added in or existing ones can be removed easily to study the effect

of these components on the overall performance of the system.

Finally, while we chose to model transcriptional regulation using

Figure 8. Validation of our model against idFBA and ODE-based model as generated by Lee et al [10] (contrast to Figure 9 in [10]).
The plots show the dynamics under osmotic stress (solid lines), and under no osmotic stress (dashed lines). The colors on all plots are indicated in the
top left panel. The correspondence in qualitative behavior for all solid lines indicate similar results for all models under osmotic stress; for all dashed
lines indicate similar results for all models under no osmotic stress.
doi:10.1371/journal.pcbi.1003306.g008

Figure 9. Dynamics of IHM for all components of HOG pathway under osmotic stress. The plots show selected species from different
components — component interconnections (top left), species from metabolism (top right), selected species from regulation (bottom left), and
selected species signaling (bottom right). X-axis for Petri net components are expressed in tokens, and for Boolean component is an average of
Boolean values, 0 and 1.
doi:10.1371/journal.pcbi.1003306.g009
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Boolean networks here, the entire system (that is, all three types of

biological networks) could be represented using a single Petri net.

This allows for a more refined simulation of the transcription

factors and their targeted genes, but also requires replacing the

Boolean functions by Petri net transitions whose parameters must

be learned from the data.
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