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Abstract

Experimental data from neuroscience suggest that a substantial amount of knowledge is stored in the brain in the form of
probability distributions over network states and trajectories of network states. We provide a theoretical foundation for this
hypothesis by showing that even very detailed models for cortical microcircuits, with data-based diverse nonlinear neurons
and synapses, have a stationary distribution of network states and trajectories of network states to which they converge
exponentially fast from any initial state. We demonstrate that this convergence holds in spite of the non-reversibility of the
stochastic dynamics of cortical microcircuits. We further show that, in the presence of background network oscillations,
separate stationary distributions emerge for different phases of the oscillation, in accordance with experimentally reported
phase-specific codes. We complement these theoretical results by computer simulations that investigate resulting
computation times for typical probabilistic inference tasks on these internally stored distributions, such as marginalization
or marginal maximum-a-posteriori estimation. Furthermore, we show that the inherent stochastic dynamics of generic
cortical microcircuits enables them to quickly generate approximate solutions to difficult constraint satisfaction problems,
where stored knowledge and current inputs jointly constrain possible solutions. This provides a powerful new computing
paradigm for networks of spiking neurons, that also throws new light on how networks of neurons in the brain could carry
out complex computational tasks such as prediction, imagination, memory recall and problem solving.
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Introduction

The question whether brain computations are inherently

deterministic or inherently stochastic is obviously of fundamental

importance. Numerous experimental data highlight inherently

stochastic aspects of neurons, synapses and networks of neurons on

virtually all spatial and temporal scales that have been examined

[1–5]. A clearly visible stochastic feature of brain activity is the

trial-to-trial variability of neuronal responses, which also appears

on virtually every spatial and temporal scale that has been

examined [2]. This variability has often been interpreted as side-

effect of an implementation of inherently deterministic computing

paradigms with noisy elements, and it has been attempted to show

that the observed noise can be eliminated through spatial or

temporal averaging. However, more recent experimental methods,

which make it possible to record simultaneously from many

neurons (or from many voxels in fMRI), have shown that the

underlying probability distributions of network states during

spontaneous activity are highly structured and multimodal, with

distinct modes that resemble those encountered during active

processing. This has been shown through recordings with voltage-

sensitive dyes starting with [6,7], multi-electrode arrays [8], and

fMRI [9,10]. It was also shown that the intrinsic trial-to-trial

variability of brain systems is intimately related to the observed

trial-to-trial variability in behavior (see e.g. [11]). Furthermore, in

[12] it was shown that during navigation in a complex

environment where simultaneously two spatial frames of reference

were relevant, the firing of neurons in area CA1 represented both

frames in alternation, so that coactive neurons tended to relate to a

common frame of reference. In addition it has been shown that in

a situation where sensory stimuli are ambiguous, large brain

networks switch stochastically between alternative interpretations

or percepts, see [13–15]. Furthermore, an increase in the volatility

of network states has been shown to accompany episodes of

behavioral uncertainty [16]. All these experimental data point to

inherently stochastic aspects in the organization of brain

computations, and more specifically to an important computa-

tional role of spontaneously varying network states of smaller and

larger networks of neurons in the brain. However, one should

realize that the approach to stochastic computation that we

examine in this article does not postulate that all brain activity is

stochastic or unreliable, since reliable neural responses can be

represented by probabilities close to 1.

The goal of this article is to provide a theoretical foundation for

understanding stochastic computations in networks of neurons in

the brain, in particular also for the generation of structured

spontaneous activity. To this end, we prove here that even

biologically realistic models C for networks of neurons in the brain

have – for a suitable definition of network state – a unique

stationary distribution pC of network states. Previous work had

focused in this context on neuronal models with linear sub-

threshold dynamics [17,18] and constant external input (e.g.

constant input firing rates). However, we show here that this holds

even for quite realistic models that reflect, for example, data on

PLOS Computational Biology | www.ploscompbiol.org 1 November 2013 | Volume 9 | Issue 11 | e1003311



nonlinear dendritic integration (dendritic spikes), synapses with

data-based short term dynamics (i.e., individual mixtures of

depression and facilitation), and different types of neurons on

specific laminae. We also show that these results are not restricted

to the case of constant external input, but rather can be extended

to periodically changing input, and to input generated by arbitrary

ergodic stochastic processes.

Our theoretical results imply that virtually any data-based

model C, for networks of neurons featuring realistic neuronal noise

sources (e.g. stochastic synaptic vesicle release) implements a

Markov process through its stochastic dynamics. This can be

interpreted – in spite of its non-reversibility – as a form of sampling

from a unique stationary distribution pC . One interpretation of pC ,

which is in principle consistent with our findings, is that it

represents the posterior distribution of a Bayesian inference

operation [19–22], in which the current input (evidence) is

combined with prior knowledge encoded in network parameters

such as synaptic weights or intrinsic excitabilities of neurons (see

[23–26] for an introduction to the ‘‘Bayesian brain’’). This

interpretation of neural dynamics as sampling from a posterior

distribution is intriguing, as it implies that various results of

probabilistic inference could then be easily obtained by a simple

readout mechanism: For example, posterior marginal probabilities

can be estimated (approximately) by observing the number of

spikes of specific neurons within some time window (see related

data from parietal cortex [27]). Furthermore, an approximate

maximal a posteriori (MAP) inference can be carried out by

observing which network states occur more often, and/or are

more persistent.

A crucial issue which arises is whether reliable readouts from pC

in realistic cortical microcircuit models can be obtained quickly

enough to support, e.g., fast decision making in downstream areas.

This critically depends on the speed of convergence of the

distribution of network states (or distribution of trajectories of

network states) from typical initial network states to the

stationary distribution. Since the initial network state of a cortical

microcircuit C depends on past activity, it may often be already

quite ‘‘close’’ to the stationary distribution when a new input

arrives (since past inputs are likely related to the new input). But it

is also reasonable to assume that the initial state of the network is

frequently unrelated to the stationary distribution pC , for example

after drastic input changes. In this case the time required for

readouts depends on the expected convergence speed to pC from –

more or less – arbitrary initial states. We show that one can prove

exponential upper bounds for this convergence speed. But even

that does not guarantee fast convergence for a concrete system,

because of constant factors in the theoretical upper bound.

Therefore we complement this theoretical analysis of the

convergence speed by extensive computer simulations for cortical

microcircuit models.

The notion of a cortical microcircuit arose from the observation

that ‘‘it seems likely that there is a basically uniform microcircuit

pattern throughout the neocortex upon which certain specializa-

tions unique to this or that cortical area are superimposed’’ [28].

This notion is not precisely defined, but rather a term of

convenience: It refers to network models that are sufficiently large

to contain examples of the main types of experimentally observed

neurons on specific laminae, and the main types of experimentally

observed synaptic connections between different types of neurons

on different laminae, ideally in statistically representative numbers

[29]. Computer simulations of cortical microcircuit models are

practically constrained both by a lack of sufficiently many

consistent data from a single preparation and a single cortical

area, and by the available computer time. In the computer

simulations for this article we have focused on a relatively simple

standard model for a cortical microcircuit in the somatosensory

cortex [30] that has already been examined in some variations in

previous studies from various perspectives [31–34].

We show that for this standard model of a cortical microcircuit

marginal probabilities for single random variables (neurons) can be

estimated through sampling even for fairly large instances with

5000 neurons within a few 100 ms of simulated biological time,

hence well within the range of experimentally observed compu-

tation times of biological organisms. The same holds for

probabilities of network states for small sub-networks. Further-

more, we show that at least for sizes up to 5000 neurons these

‘‘computation times’’ are virtually independent of the size of the

microcircuit model.

We also address the question to which extent our theoretical

framework can be applied in the context of periodic input, for

example in the presence of background theta oscillations [35]. In

contrast to the stationary input case, we show that the presence of

periodic input leads to the emergence of unique phase-specific

stationary distributions, i.e., a separate unique stationary distribu-

tion for each phase of the periodic input. We discuss basic

implications of this result and relate our findings to experimental

data on theta-paced path sequences [35,36] and bi-stable activity

[37] in hippocampus.

Finally, our theoretically founded framework for stochastic

computations in networks of spiking neurons also throws new light

on the question how complex constraint satisfaction problems

could be solved by cortical microcircuits [38,39]. We demonstrate

this in a toy example for the popular puzzle game Sudoku. We

show that the constraints of this problem can be easily encoded by

synaptic connections between excitatory and inhibitory neurons in

such a way that the stationary distribution pC assigns particularly

high probability to those network states which encode correct (or

good approximate) solutions to the problem. The resulting

network dynamics can also be understood as parallel stochastic

search with anytime computing properties: Early network states

Author Summary

The brain has not only the capability to process sensory
input, but it can also produce predictions, imaginations,
and solve problems that combine learned knowledge with
information about a new scenario. But although these
more complex information processing capabilities lie at
the heart of human intelligence, we still do not know how
they are organized and implemented in the brain.
Numerous studies in cognitive science and neuroscience
conclude that many of these processes involve probabi-
listic inference. This suggests that neuronal circuits in the
brain process information in the form of probability
distributions, but we are missing insight into how complex
distributions could be represented and stored in large and
diverse networks of neurons in the brain. We prove in this
article that realistic cortical microcircuit models can store
complex probabilistic knowledge by embodying probabil-
ity distributions in their inherent stochastic dynamics –
yielding a knowledge representation in which typical
probabilistic inference problems such as marginalization
become straightforward readout tasks. We show that in
cortical microcircuit models such computations can be
performed satisfactorily within a few 100 ms. Furthermore,
we demonstrate how internally stored distributions can be
programmed in a simple manner to endow a neural circuit
with powerful problem solving capabilities.

Stochastic Computations in Cortical Microcircuits
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provide very fast heuristic solutions, while later network states are

distributed according to the stationary distribution pC , therefore

visiting with highest probability those solutions which violate only

a few or zero constraints.

In order to make the results of this article accessible to non-

theoreticians we present in the subsequent Results section our

main findings in a less technical formulation that emphasizes

relationships to experimental data. Rigorous mathematical defini-

tions and proofs can be found in the Methods section, which has

been structured in the same way as the Results section in order to

facilitate simultaneous access on different levels of detail.

Results

Network states and distributions of network states
A simple notion of network state at time t simply indicates

which neurons in the network fired within some short time

window before t. For example, in [20] a window size of 2ms was

selected. However, the full network state could not be analyzed

there experimentally, only its projection onto 16 electrodes in area

V1 from which recordings were made. An important methodo-

logical innovation of [20] was to analyze under various conditions

the probability distribution of the recorded fragments of network

states, i.e., of the resulting bit vectors of length 16 (with a ‘‘1’’ at

position i if a spike was recorded during the preceding 2ms at

electrode i). In particular, it was shown that during development

the distribution over these 216 network states during spontaneous

activity in darkness approximates the distribution recorded during

natural vision. Apart from its functional interpretation, this result

also raises the even more fundamental question how a network of

neurons in the brain can represent and generate a complex

distribution of network states. This question is addressed here in

the context of data-based models C for cortical microcircuits. We

consider notions of network states y similar to [20] (see the simple

state yS(t) in Figure 1C) and provide a rigorous proof that under

some mild assumptions any such model C represents and

generates for different external inputs x associated different

internal distributions pC(yDx) of network states y. More precisely,

we will show that for any specific input x there exists a unique

stationary distribution pC(yDx) of network states y to which the

network converges exponentially fast from any initial state.

This result can be derived within the theory of Markov

processes on general state spaces, an extension of the more familiar

theory of Markov chains on finite state spaces to continuous time

and infinitely many network states. Another important difference

to typical Markov chains (e.g. the dynamics of Gibbs sampling in

Boltzmann machines) is that the Markov processes describing the

stochastic dynamics of cortical microcircuit models are non-

reversible. This is a well-known difference between simple neural

network models and networks of spiking neurons in the brain,

where a spike of a neuron causes postsynaptic potentials in other

neurons - but not vice versa. In addition, experimental results

show that brain networks tend to have a non-reversible dynamics

also on longer time scales (e.g., stereotypical trajectories of network

states [40–43]).

In order to prove results on the existence of stationary

distributions pC(yDx) of network states y, one first needs to

consider a more complex notion of network state yM (t) at time t,
which records the history of all spikes in the network C since time

t{H (see Figure 1C). The window length H has to be chosen

sufficiently large so that the influence of spikes before time t{H
on the dynamics of the network after time t can be neglected. This

more complex notion of network state then fulfills the Markov

property, such that the future network evolution depends on the past

only through the current Markov state. The existence of a window

length H with the Markov property is a basic assumption of the

subsequent theoretical results. For standard models of networks of

spiking neurons a value of H around 100ms provides already a

good approximation of the Markov property, since this is a typical

time during which a post-synaptic potential has a non-negligible

effect at the soma of a post-synaptic neuron. For more complex

models of networks of spiking neurons a larger value of H in the

range of seconds is more adequate, in order to accommodate for

dendritic spikes or the activation of GABAB receptors that may

last 100ms or longer, and the short term dynamics of synapses with

time constants of several hundred milliseconds. Fortunately, once

the existence of a stationary distribution is proved for such more

complex notion of network state, it also holds for any simpler

notion of network state (even if these simpler network states do not

fulfill the Markov property), that results when one ignores details

of the more complex network states. For example, one can ignore

all spikes before time t{2 ms, the exact firing times within the

window from t{2 ms to t, and whether a neuron fired one or

several spikes. In this way one arrives back at the simple notion of

network state from [20].

Theorem 1 (Exponentially fast convergence to a

stationary distribution). Let C be an arbitrary model for a network

of spiking neurons with stochastic synaptic release or some other mechanism for

stochastic firing. C may consist of complex multi-compartment neuron models

with nonlinear dendritic integration (including dendritic spikes) and

heterogeneous synapses with differential short term dynamics. We assume that

this network C receives external inputs from a set of input neurons i~1 . . . N
which fire according to Poisson processes at different rates xi(t). The vector

x(t) of input rates can be either constant over time (x(t):x), or generated by

any external Markov process that converges exponentially fast to a stationary

distribution.

Then there exists a stationary distribution pC(yDx) of network states y, to

which the stochastic dynamics of C converges from any initial state of the

network exponentially fast. Accordingly, the distribution of subnetwork states ~yy
of any subset of neurons converges exponentially fast to the marginal distribution

pC(~yyDx) of this subnetwork.

Note that Theorem 1 states that the network embodies not

only the joint distribution pC(yDx) over all neurons, but

simultaneously all marginal distributions pC(~yyDx) over all possible

subsets of neurons. This property follows naturally from the fact

that pC(yDx) is represented in a sample-based manner [25]. As a

consequence, if one is interested in estimating the marginal

distribution of some subset of neurons rather than the full joint

distribution, it suffices to observe the activity of the particular

subnetwork of interest (while ignoring the remaining network).

This is remarkable insofar, as the exact computation of marginal

probabilities is in general known to be quite difficult (even NP-

complete [44]).

Theorem 1 requires that neurons fire stochastically. More

precisely, a basic assumption required for Theorem 1 is that the

network behaves sufficiently stochastic at any point in time, in the

sense that the probability that a neuron fires in an interval ½t,tzdt)
must be smaller than 1 for any t. This is indeed fulfilled by any

stochastic neuron model as long as instantaneous firing rates

remain bounded. It is also fulfilled by any deterministic neuron

model if synaptic transmission is modeled via stochastic vesicle

release with bounded release rates. Another assumption is that

long-term plasticity and other long-term memory effects have a

negligible impact on the network dynamics on shorter timescales

which are the focus of this article (milliseconds to a few seconds).

Precise mathematical definitions of all assumptions and notions

involved in Theorem 1 as well as proofs can be found in Methods

(see Lemma 2 and 3).

Stochastic Computations in Cortical Microcircuits
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An illustration for Theorem 1 is given in Figure 1. We use as our

running example for a cortical microcircuit model C the model of

[30] shown in Figure 1A, which consists of three populations of

excitatory and three populations of inhibitory neurons on specific

laminae. Average strength of synaptic connections (measured as

mean amplitude of postsynaptic potentials at the soma in mV, and

indicated by the numbers at the arrows in Figure 1A) as well as the

connection probability (indicated in parentheses at each arrow as

% in Figure 1A) are based in this model on intracellular recordings

from 998 pairs of identified neurons from the Thomson Lab [45].

The thickness of arrows in Figure 1A reflects the products of those

two numbers for each connection. The nonlinear short-term

dynamics of each type of synaptic connection was modeled

according to data from the Markram Lab [46,47]. Neuronal

integration and spike generation was modeled by a conductance-

based leaky-integrate-and-fire model, with a stochastic spiking

mechanism based on [48]. See Methods for details.

The external input x consists in a cortical microcircuit of inputs

from higher cortical areas that primarily target neurons in

superficial layers, and bottom-up inputs that arrive primarily in

layer 4, but also on other layers (details tend to depend on the

cortical area and the species). We model two input streams in a

qualitative manner as in [30]. Also background synaptic input is

modeled according to [30].

Figure 1B shows a small instantiation of this microcircuit

template consisting of 10 neurons (we had to manually tune a few

connections in this circuit to facilitate visual clarity of subsequent

panels). The impact of different external inputs x and of a single

synaptic connection from neuron 8 to neuron 7 on the stationary

distribution is shown in Figure 1D and E, respectively (shown is

the marginal distribution pC(~yyDx) of a subset of three neurons 2,7

and 8). This illustrates that the structure and dynamics of a circuit

C are intimately linked to properties of its stationary distribution

pC(yDx). In fact, we argue that the stationary distribution pC(yDx)
(more precisely: the stationary distribution pC(yDx) for all relevant

external inputs x) can be viewed as a mathematical model for the

most salient aspects of stochastic computations in a circuit C.

The influence of the initial network state on the first 150 ms of

network response is shown in Figure 1F and G for representative

trials starting from two different initial Markov states (blue/red,

two trials shown for each). Variability among trials arises from the

inherent stochasticity of neurons and the presence of background

synaptic input. Figure 1H is a concrete illustration of Theorem 1:

it shows that the relative frequency of a specific network state

(1,1,1) in a subset of the three neurons 2,7 and 8 converges quickly

to its stationary value. Furthermore, it converges to this (same)

value regardless of the initial network state (blue/red).

Stationary distributions of trajectories of network states
Theorem 1 also applies to networks which generate stereotyp-

ical trajectories of network activity [41]. For such networks it may

be of interest to consider not only the distribution of network states

in a short window (e.g. simple states with t~10 ms, or H~50 ms),

but also the distribution of longer trajectories produced by the

network. Indeed, since Theorem 1 holds for Markov states yM

with any fixed window length H, it also holds for values of H that

are in the range of experimentally observed trajectories of network

states [41,49,50]. Hence, a generic neural circuit C automatically

has a unique stationary distribution over trajectories of (simple)

network states for any fixed trajectory length H. Note that this

implies that a neural circuit C has simultaneously stationary

distributions of trajectories of (simple) network states of various

lengths for arbitrarily large H, and a stationary distribution of

simple network states. This fact is not surprising if one takes into

consideration that if a circuit C has a stationary distribution over

simple network states this does not imply that subsequent simple

network states represent independent drawings from this station-

ary distribution. Hence the circuit C may very well produce

stereotypical trajectories of simple network states. This feature

becomes even more prominent if the underlying dynamics (the

Markov process) of the neural circuit is non-reversible on several

time scales.

Extracting knowledge from internally stored distributions
of network states

We address two basic types of knowledge extraction from a

stationary distribution pC of a network C: the computation of

marginal probabilities and maximal a posteriori (MAP) assignments. Both

computations constitute basic inference problems commonly

appearing in real-world applications [51], which are in general

difficult to solve as they involve large sums, integrals, or

maximization steps over a state space which grows exponentially

in the number of random variables. However, already [21,25]

noted that the estimation of marginal probabilities would become

straightforward if distributions were represented in the brain in a

sample-based manner (such that each network state at time t
represents one sample from the distribution). Theorem 1 provides

a theoretical foundation for how such a representation could

emerge in realistic data-based microcircuit models on the

implementation level: Once the network C has converged to its

stationary distribution, the network state at any time t represents a

sample from pC(yDx) (although subsequent samples are generally

not independent). Simultaneously, the subnetwork state ~yy(t) of any

subset of neurons represents a sample from the marginal

distribution pC(~yyDx). This is particularly relevant if one interprets

pC(yDx) in a given cortical microcircuit C as the posterior

distribution of an implicit generative model, as suggested for

example by [20] or [21,22].

In order to place the estimation of marginals into a biologically

relevant context, assume that a particular component y1 of the

network state y~(y1, . . . ,yK ) has a behavioral relevance. This

variable y1, represented by some neuron n1, could represent for

example the perception of a particular visual object (if neuron n1 is

located in inferior temporal cortex [52]), or the intention to make a

saccade into a specific part of the visual field (if neuron n1 is

located in area LIP [53]). Then the computation of the marginal

pC(y1~1jx)~X
v2[f0,1g,...,vK [f0,1g

pC(y1~1,y2~v2, . . . ,yK~vK jx) ð1Þ

would be of behavioral significance. Note that this computation

integrates information from the internally stored knowledge pC

with evidence about a current situation x. In general this

computation is demanding as it involves a sum with exponentially

many terms in the network size K .

But according to Theorem 1, the correct marginal distribution

pC(y1Dx) is automatically embodied by the activity of neuron n1.

Hence the marginal probability y1~1 can be estimated by simply

observing what fraction of time the neuron spends in the state

y1~1, while ignoring the activity of the remaining network [21].

In principle, a downstream neuron could gather this information

by integrating the spike output of n1 over time.

Marginal probabilities of subpopulations, for example

pC(y1~1, y2~0, y3~1Dx), can be estimated in a similar manner

by keeping track of how much time the subnetwork spends in the

state (1,0,1), while ignoring the activity of the remaining neurons.

Stochastic Computations in Cortical Microcircuits
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A downstream network could gather this information, for

example, by integrating over the output of a readout neuron

which is tuned to detect the desired target pattern (1,0,1).

Notably, the estimation of marginals sketched above is

guaranteed by ergodic theory to converge to the correct

probability as observation time increases (due to Theorem 1

which ensures that the network is an ergodic Markov process, see

Methods). In particular, this holds true even for networks with

prominent sequential dynamics featuring, for example, stereotyp-

ical trajectories. However, note that the observation time required

to obtain an accurate estimate may be longer when trajectories are

present since subsequent samples gathered from such a network

will likely exhibit stronger dependencies than in networks lacking

sequential activity patterns. In a practical readout implementation

where recent events might be weighed preferentially this could

result in more noisy estimates.

Approximate maximal a posteriori (MAP) assignments to small

subsets of variables y1, . . . ,ym can also be obtained in a quite

straightforward manner. For given external inputs x, the marginal

MAP assignment to the subset of variables y1, . . . ,ym (with some

mƒK ) is defined as the set of values v̂v1, . . . ,v̂vm that maximize

X
vmz1[f0,1g,...,vK [f0,1g

pC(y1~v̂v1, . . . ,ym~v̂vm, ymz1~vmz1, . . . , yK~vK jx):

ð2Þ

A sample-based approximation of this operation can be

implemented by keeping track of which network states in the

subnetwork n1, . . . ,nm occur most often. This could, for example,

be realized by a readout network in a two stage process: first the

marginal probabilities pC(y1~v̂v1, y2~v̂v2, y3~v̂v3Dx) of all 23~8
subnetwork states (0,0,0), . . . ,(1,1,1) are estimated (by 8 readout

neurons dedicated to that purpose), followed by the selection of the

neuron with maximal probability. The selection of the maximum

could be achieved in a neural network, for example, through

competitive inhibition. Such competitive inhibition would ideally

lead to a winner-take-all function such that the neuron with the

strongest stimulation (representing the variable assignment with

the largest probability) dominates and suppresses all other readout

neurons.

Estimates of the required computation time
Whereas many types of computations (for example probabilistic

inference via the junction tree algorithm [51]) require a certain

computation time, probabilistic inference via sampling from an

embodied distribution pC belongs to the class of anytime computing

methods, where rough estimates of the result of a computation

become almost immediately available, and are automatically

improved when there is more time for a decision. A main

component of the convergence time to a reliable result arises from

the time which the distribution of network states needs to become

independent of its initial state y0. It is well known that both,

network states of neurons in the cortex [54] and quick decisions of

an organism, are influenced for a short time by this initial state y0

(and this temporary dependence on the initial state y0 may in fact

have some behavioral advantage, since y0 may contain informa-

tion about preceding network inputs, expectations, etc.). But it has

remained unknown, what range of convergence speeds for

inference from pC is produced by common models for cortical

microcircuits C.

We address this question by analyzing the convergence speed of

stochastic computations in the cortical microcircuit model of [30].

A typical network response of an instance of the cortical

microcircuit model comprising 560 neurons as in [30] is shown

in Figure 2A. We first checked how fast marginal probabilities for

single neurons converge to stationary values from different initial

network Markov states. We applied the same analysis as in

Figure 1H to the simple state (t~10 ms) of a single representative

neuron from layer 5. Figure 2B shows quite fast convergence of the

‘‘on’’-state probability of the neuron to its stationary value from

two different initial states. Note that this straightforward method of

checking convergence is rather inefficient, as it requires the

repetition of a large number of trials for each initial state. In

addition it is not suitable for analyzing convergence to marginals

for subpopulations of neurons (see Figure 2G).

Various more efficient convergence diagnostics have been proposed

in the context of discrete-time Markov Chain Monte Carlo theory

[55–58]. In the following, we have adopted the Gelman and

Rubin diagnostic, one of the standard methods in applications of

MCMC sampling [55]. The Gelman Rubin convergence diag-

nostic is based on the comparison of many runs of a Markov chain

when started from different randomly drawn initial states. In

particular, one compares the typical variance of state distributions

during the time interval ½t, 2t� within a single run (within-variance)

to the variance during the interval ½t, 2t� between different runs

(between-variance). When the ratio R̂R of between- and within-

variance approaches 1 this is indicative of convergence. A

comparison of panels B and C of Figure 2 shows that in the

case of marginals for single neurons this interpretation fits very

well to the empirically observed convergence speed for two

different initial conditions. Various values between 1.02 [58] and

1.2 [57,59,60] have been proposed in the literature as thresholds

below which the ratio R̂R signals that convergence has taken place.

The shaded region in Figure 2C–G corresponds to R̂R values below

a threshold of 1.1. An obvious advantage of the Gelman-Rubin

diagnostic, compared with a straightforward empirical evaluation

of convergence properties as in Figure 2B, is its substantially larger

computational efficiency and the larger number of initial states

that it takes into account. For the case of multivariate marginals

(see Figure 2G), a straightforward empirical evaluation of

convergence is not even feasible, since relative frequencies of 230

states would have to be analyzed.

Using the Gelman-Rubin diagnostic, we estimated convergence

speed for marginals of single neurons (see Figure 2C, mean/worst

in Figure 2E), and for the product of the simple states of two

neurons (i.e., pairwise spike coincidences) in Figure 2D. We found

that in all cases the Gelman-Rubin value drops close to 1 within

just a few 100 ms. More precisely, for a typical threshold of 1:2
convergence times are slightly below 100 ms in Figure 2C–E. A

very conservative threshold of 1:02 yields convergence times close

to 600 ms.

The above simulations were performed in a circuit of 560

neurons, but eventually one is interested in the properties of much

larger circuits. Hence, a crucial question is how the convergence

properties scale with the network size. To this end, we compared

convergence in the cortical microcircuit model of [30] for four

different sizes (500, 1000, 2000 and 5000). To ensure that overall

activity characteristics are maintained across different sizes, we

adopted the approach of [30] and scaled recurrent postsynaptic

potential (PSP) amplitudes inversely proportional to network size.

A comparison of mean (solid line) and worst (dashed line) marginal

convergence for networks of different sizes is shown in Figure 2F.

Notably we find that the network size has virtually no effect on

convergence speed. This suggests that, at least within the scope of

the laminar microcircuit model of [30], even very large cortical
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networks may support fast extraction of knowledge (in particular

marginals) from their stationary distributions pC(yDx).

In order to estimate the required computation time associated

with the estimation of marginal probabilities and MAP solutions

on small subpopulations n1, . . . ,nm, one needs to know how fast the

marginal probabilities of vector-valued states (y1, . . . ,ym) of subnet-

works of C become independent from the initial state of the

network. To estimate convergence speed in small subnetworks, we

applied a multivariate version of the Gelman-Rubin method to

vector-valued simple states of subnetworks (Figure 2G, dotted

lines, evaluated for varying circuit sizes from 500 to 5000 neurons).

We find that multivariate convergence of state frequencies for a

population of m~30 neurons is only slightly slower than for uni-

variate marginals. To complement this analysis, we also investi-

gated convergence properties of a ‘‘random readout’’ neuron

which integrates inputs from many neurons in a subnetwork. It is

interesting to note that the convergence speed of such a readout

neuron, which receives randomized connections from a randomly

chosen subset of 500 neurons, is comparable to that of single

marginals (Figure 2F, solid lines), and in fact slightly faster.

Impact of different dynamic regimes on the convergence
time

An interesting research question is which dynamic or structural

properties of a cortical microcircuit model C have a strong impact

on its convergence speed to the stationary distribution pC .

Unfortunately, a comprehensive treatment of this question is

beyond the scope of this paper, since virtually any aspect of circuit

dynamics could be investigated in this context. Even if one focuses

on a single aspect, the impact of one circuit feature is likely to

depend on the presence of other features (and probably also on the

properties of the input). Nonetheless, to lay a foundation for

further investigation, first empirical results are given in Figure 3.

As a reference point, Figure 3A shows a typical activity pattern

and convergence speed of single marginals in the small cortical

microcircuit model from Figure 1. To test whether the overall

activity of a network has an obvious impact on convergence speed,

we constructed a small network of 20 neurons (10 excitatory, 10

inhibitory) and tuned connection weights to achieve sparse overall

activity (Figure 3B). A comparison of panels A and B suggests that

overall network activity has no significant impact on convergence

speed. To test whether the presence of stereotypical trajectories of

network states (similar to [41]) has a noticeable influence on

convergence, we constructed a small network exhibiting strong

sequential activity patterns (see Figure 3C). We find that

convergence speed is hardly affected, except for the first 200 ms
(see Figure 3C). Within the scope of this first empirical

investigation, we were only able to produce a significant slow-

down of the convergence speed by building a network that

alternated between two attractors (Figure 3D).

Distributions of network states in the presence of
periodic network input

In Theorem 1 we had already addressed one important case

where the network C receives dynamic external inputs: the case

when external input is generated by some Markov process. But

many networks of neurons in the brain are also subject to more or

less pronounced periodic inputs (‘‘brain rhythms’’ [61–63]), and it

is known that these interact with knowledge represented in

distributions of network states in specific ways. For instance, it had

been shown in [35] that the phase of the firing of place cells in the

hippocampus of rats relative to an underlying theta-rhythm is

related to the expected time when the corresponding location will

be reached. Inhibitory neurons in hippocampus have also been

reported to fire preferentially at specific phases of the theta cycle

(see e.g. Figure S5 in [12]). Moreover it was shown that different

items that are held in working memory are preferentially encoded

by neurons that fire at different phases of an underlying gamma-

oscillation in the monkey prefrontal cortex [64] (see [65] for

further evidence that such oscillations are behaviorally relevant).

Phase coding was also reported in superior temporal sulcus during

category representation [66]. The following result provides a

theoretical foundation for such phase-specific encoding of knowl-

edge within a framework of stochastic computation in networks of

spiking neurons.

Theorem 2 (Phase-specific distributions of network

states). Let C be an arbitrary model for a network of stochastic spiking

neurons as in Theorem 1. Assume now that the vector of input rates x(t) has in

addition to fixed components also some components that are periodic with a

period L (such that each input neuron i emits a Poisson spike train with an L-

periodically varying firing rate xi(t)). Then the distribution of network states y

converges for every phase l (0ƒlvL) exponentially fast to a unique stationary

distribution of network states pC,l(yDx) at this phase l of the periodic network

input x.

Hence, a circuit C can potentially store in each clearly separable

phase l of an (externally) imposed oscillation a different, phase-

specific, stationary distribution pC,l(yDx). Below we will address

basic implications of this result in the context of two experimen-

Figure 1. Network states and stationary distributions of network states in a cortical microcircuit model. A. Data-based cortical
microcircuit template from Cereb. Cortex (2007) 17: 149-162 [30]; reprinted by permission of the authors and Oxford University Press. B. A small
instantiation of this model consisting of 10 network neurons 1, . . . ,10 and 2 additional input neurons i1,i2 . Neurons are colored by type (blue:input,
black:excitatory, red:inhibitory). Line width represents synaptic efficacy. The synapse from neuron 8 to 7 is removed for the simulation described in E.
C. Notions of network state considered in this article. Markov states are defined by the exact timing of all recent spikes within some time window H,
shown here for H~50 ms. Simple states only record which neurons fired recently (0 = no spike, 1 = at least one spike within a short window t, with
t~10 ms throughout this figure). D. Empirically measured stationary distribution of simple network states. Shown is the marginal distribution pC(~yyDx)
for a subset of three neurons 2,7,8 (their spikes are shown in C in black), under two different input conditions (input pattern 1: i1 firing at 10 Hz and i2
at 50 Hz, input pattern 2: i1 at 50 Hz and i2 at 10 Hz). The distribution for each input condition was obtained by measuring the relative time spent in
each of the simple states (0,0,0), …, (1,1,1) in a single long trial (100 s). The zero state (0,0,0) is not shown. E. Effect of removing one synapse, from
neuron 8 to neuron 7, on the stationary distribution of network states (input pattern 1 was presented). F. Illustration of trial-to-trial variability in the
small cortical microcircuit (input pattern 1). Two trials starting from identical initial network states yM (0) are shown. Blue bars at the bottom of each
trial mark periods where the subnetwork of neurons 2,7,8 was in simple state (1,1,1) at this time t. Note that the ‘‘blue’’ initial Markov state is shown
only partially: it is actually longer and comprises all neurons in the network (as in panel C, but with H~1s). G. Two trials starting from a different
(‘‘red’’) initial network state. Red bars denote periods of state (1,1,1) for ‘‘red’’ trials. H. Convergence to the stationary distribution pC in this small
cortical microcircuit is fast and independent of the initial state: This is illustrated for the relative frequency of simple state (1,1,1) within the first 300 ms

after input onset. The blue/red line shows the relative frequency of simple state (1,1,1) at each time t estimated from many (105) ‘‘blue’’/‘‘red’’ trials.
The relative frequency of simple state (1,1,1) rapidly converges to its stationary value denoted by the symbol 5 (marked also in panels D and E). The
relative frequency converges to the same value regardless of the initial state (blue/red).
doi:10.1371/journal.pcbi.1003311.g001
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Figure 2. Fast convergence of marginals of single neurons and more complex quantities in a cortical microcircuit model. A. Typical
spike response of the microcircuit model based on [30] comprising 560 stochastic point neurons. Spikes of inhibitory neurons are indicated in red. B.
Fast convergence of a marginal for a representative layer 5 neuron (frequency of ‘‘on’’-state, with t~10 ms) to its stationary value, shown for two
different initial Markov states (blue/red). Statistics were obtained for each initial state from 105 trials. C. Gelman-Rubin convergence diagnostic was

applied to the marginals of all single neurons (simple states, t~10 ms). In all neurons the Gelman-Rubin value R̂R drops to a value close to 1 within a
few 100 ms, suggesting generally fast convergence of single neuron marginals (shown are 20 randomly chosen neurons; see panel E for a summary of
all neurons). The shaded area below 1.1 indicates a range where one commonly assumes that convergence has taken place. D. Convergence speed of
pairwise spike coincidences (simple states (1,1) of two neurons, 20 randomly chosen pairs of neurons) is comparable to marginal convergence. E.
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tally observed phenomena: stereotypical trajectories of network

states and bi-stable (or multi-stable) network activity.

Figure 4A–D demonstrates the emergence of phase-specific

distributions in a small circuit (the same as in Figure 3C but with

only one chain) with a built-in stereotypical trajectory similar to a

spatial path sequence generated by hippocampal place cell

assemblies [35,36]. Figure 4A shows a typical spike pattern in

response to rhythmic background stimulation (spikes from

inhibitory neurons in red). The background oscillation was

implemented here for simplicity via direct rhythmic modulation

of the spiking threshold of all neurons. Note that the trajectory

becomes particularly often initiated at a specific phase of the

rhythm (when neuronal thresholds are lowest), like in experimental

data [35,36]. As a result, different phases within a cycle of the

rhythm become automatically associated with distinct segments of

the trajectory. One can measure and visualize this effect by

comparing the frequency of network states which occur at two

different phases, i.e., by comparing the stationary distributions

pC,l(yDx) for these two phases. Figure 4B shows a comparison of

phase-specific marginal distributions on a small subnetwork of 3

neurons, demonstrating that phase-specific stationary distributions

may indeed vary considerably across different phases. Conver-

gence to the phase-specific stationary distributions pC,l(yDx) can be

understood as the convergence of the probability of any given state

to a periodic limit cycle as a function of the phase l (illustrated in

Figure 4C). An application of the Gelman-Rubin multivariate

diagnostic suggests that this convergence takes places within a few

cycles of the theta oscillation (Figure 4D).

Theta-paced spatial path sequences in hippocampus constitute a

particularly well-studied example of phase-specific network activity

[35]. Our theoretical framework suggests a novel interpretation of

these patterns as samples from a Markov chain with a phase-

dependent stationary distribution of network states induced by the

theta-rhythm. A basic prediction of this interpretation is that two

trajectories in successive theta cycles should exhibit significantly

stronger similarities than two trajectories from randomly chosen

cycles (due to inherent temporal dependencies of the Markov

chain). Two trajectories from distant cycles, on the other hand,

should relate to each other similarly as randomly chosen pairs of

trajectories. Evidence for such an effect has been reported recently

by [36], where it was found that ‘‘sequences separated by 20 cycles

approach random chance, whereas sequences separated by only a

single theta cycle are more likely to be similar to each other.’’

The previously described theoretical framework also provides

an interesting new perspective on multi-stability, a wide-spread

phenomenon which has been observed in various sensory domains

[67,68]. Different authors have noted that multi-stability, both on

the neuronal and perceptual level, could be understood as a side

effect of sampling from a multi-modal distribution [19,21,69].

Recent data from hippocampus suggest that oscillations, which

had previously received little attention in this context, may play an

important role here: [37] found that switching between different

attractors ( = modes of the stationary distribution in our terminol-

ogy) occurs preferentially at a specific phase during the theta cycle,

whereas activity patterns within each cycle preferentially stayed in

one attractor. Hence, the precise timing of switching between

modes was found to be strongly tied to the theta rhythm. Such

chunking of information in separate packages (theta cycles) has

been proposed as an important constituent of neural syntax [42].

In Figure 4E we reproduce phase-dependent switching in a

simple network model of bi-stable dynamics (the same network as

in Figure 3D) in the presence of a 6 Hz background oscillation.

Indeed, we find that switching occurs preferentially at a specific

phase of the oscillation (see Figure 4F) when the total firing rate of

the network is lowest. Note that this is consistent with [37] who

found that the separation between representations in different

cycles was strongest at the point of the lowest average firing rate in

the population (see Figure 1b in [37]). This phenomenon can be

explained in our model by noting that the attractors are deeper

during periods of high network activity. Conversely, attractors are

more shallow when the population firing rate is lower, leading to

an increased transition probability between attractors. If one takes

a closer look at Proposition 1 and Lemma 1 in Methods one sees

that this is also consistent with our theoretical framework: A lower

population firing rate r̂r translates into a smaller contraction factor

(1{EH), implying a tighter bound on the contraction speed of

state distributions and thus higher transition probabilities to

radically different states from the current (initial) network state.

Altogether, one sees that the presence of background oscillations

has relevant functional implications on multi-stability. In partic-

ular, the presence of background oscillations in multi-stable

networks facilitates both exploitation within a cycle and explora-

tion across cycles: Within a cycle high firing rates force the

network into one of the attractors, thereby avoiding interference

with other attractors and facilitating the readout of a consistent

network state. At the end of a cycle low firing rates allow the

network to switch to different attractors, thereby promoting fast

convergence to the stationary distribution. The rhythmic deepen-

ing and flattening of attractors and the resulting phase-specific

attractor dynamics could be particularly useful for the extraction

of information from the circuit if downstream networks are phase-

locked to the same rhythm, as reported, for example, for the

interactions between neurons in hippocampus and prefrontal

cortex [70].

Solving constraint satisfaction problems in networks of
spiking neurons

Whenever an inhibitory neuron fires, it reduces for a short while

the probability of firing for its postsynaptic targets. In fact, new

experimental data [71] show that inhibitory neurons impose quite

powerful constraints on pyramidal cells. But also how pyramidal

cells are embedded into their network environment imposes

constraints on local network activity. From this perspective, the

resulting firing patterns of a cortical microcircuit can be viewed as

stochastically generated solutions of an immensely complex

constraint satisfaction problem, that is defined both by external

inputs x to the circuit and by the way each excitatory and

inhibitory neuron is embedded into its circuit environment.

Constraint satisfaction problems are from the computational

perspective a particularly interesting class of problems, because

many tasks that a brain has to solve, from the generation of a

Summary of marginal convergence analysis for single neurons in C: Mean (solid) and worst (dashed line) marginal convergence of all 560 neurons.
Mean/worst convergence is reached after a few 100 ms. F. Convergence analysis was applied to networks of different sizes (500–5000 neurons). Mean
and worst marginal convergence of single neurons are hardly affected by network size. G. Convergence properties of populations of neurons. Dotted:
multivariate Gelman-Rubin analysis was applied to a subpopulation of 30 neurons (5 neurons were chosen randomly from each pool). Solid:
convergence of a ‘‘random readout’’ neuron which receives spike inputs from 500 randomly chosen neurons in the microcircuit. It turns out that the
convergence speed of such a generic readout neuron is even slightly faster than for neurons within the microcircuit (compare with panel E). A
remarkable finding is that in all these cases the network size does not affect convergence speed.
doi:10.1371/journal.pcbi.1003311.g002
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percept from unreliable and ambiguous sources to higher level

tasks such as memory recall, prediction, planning, problem

solving, and imagination, can be formulated as constraint

satisfaction problems [72]. However, numerous constraint satis-

faction problems are known to be NP-hard, thereby limiting the

applicability of exact solution strategies. Instead, approximate or

heuristic algorithms are commonly used in practice (for example

evolutionary algorithms [73]). Here we propose that networks C of

spiking neurons with noise have an inherent capability to solve

constraint satisfaction problems in an approximate (heuristic)

manner through their stochastic dynamics. The key principle is

that those network states y, which satisfy the largest number of

local constraints, have the highest probability under the distribu-

tion pC(yDx). These constraints are imposed by the way each

neuron of C is embedded into the circuit, and the current external

input x which can selectively activate or deactivate specific

constraints.

We have selected a specific constraint satisfaction problem for

demonstrating the capability of networks of spiking neurons to

generate rapidly approximate solutions to constraint satisfaction

problems through their inherent stochastic dynamics: solving

Sudoku puzzles (see Figure 5A). Sudoku is a well-suited example

because it is complex enough to be representative for many

problem solving tasks, and lends itself well to visual interpretation

and presentation (but note that we do not aim to model here how

humans solve Sudoku puzzles). The rules of the Sudoku game can

be easily embedded into common models for cortical microcircuits

as recurrent networks of Winner-Take-All (WTA) microcircuit

motifs [29]. Each WTA motif is an ensemble of pyramidal cells (on

layers 2/3 or 5/6) that are subject to lateral inhibition (see

Figure 3. Impact of network architecture and network dynamics on convergence speed. Convergence properties for single neurons (as in
Figure 2C) in different network architectures were assessed using univariate Gelman-Rubin analysis. Typical network activity is shown on the left,
convergence speed on the right (solid: mean marginal, dashed: worst marginal). A. Small cortical column model from Figure 1 (input neurons not
shown). B. Network with sparse activity (20 neurons). C. Network with stereotypical trajectories (50 neurons, inhibitory neurons not shown). Despite
strongly irreversible dynamics, convergence is only slightly slower. D. Network with bistable dynamics (two competing populations, each comprising
10 neurons). Convergence is slower in this circuit due to low-frequency switching dynamics between two attractors.
doi:10.1371/journal.pcbi.1003311.g003
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Figure 5B). Each pyramidal cell can in fact be part of several

interlocking WTA motifs (Figure 5B, right).

This architecture makes it easy to impose the interlocking

constraints of Sudoku (and of many other constraint satisfaction

problems). Each pyramidal cell (or each local group of pyramidal

cells) votes for placing a particular digit into an empty field of the

grid, that is not dictated by the external input x. But this

pyramidal cell is subject to the constraints that only one digit can

be placed into this field, and that each digit 1, . . . ,9 occurs only

once in each column, in each row, and in each 363 sub-grid.

Hence each pyramidal cell is simultaneously part of four inhibitory

subnetworks (WTA motifs).

A specific puzzle can be entered by providing strong input x to

those neurons which represent the given numbers in a Sudoku

(Figure 5A, left). This initiates a quite intuitive dynamics:

‘‘Clamped’’ neurons start firing strongly, and as a consequence,

neurons which code for conflicting digits in the same Sudoku field,

the same row, column or 363 sub-grid, become strongly inhibited

through di-synaptic inhibition. In many Sudoku fields this will lead

to the inhibition of a large number of otherwise freely competing

Figure 4. Emergence of phase-specific stationary distributions of network states in the presence of periodic network input. A. A
network with a built-in stereotypical trajectory is stimulated with a 6 Hz background oscillation. The oscillation (top) is imposed on the neuronal
thresholds of all neurons. The trajectories produced by the network (bottom) become automatically synchronized to the background rhythm. The
yellow shading marks the three neurons for which the analysis in panels B and C was carried out. The two indicated time points (green and purple
lines) mark the two phases for which the phase-specific stationary distributions are considered in panels B and D (83 ms and 103 ms into the cycle,
with phase-specific distributions pC,1 and pC,2 , respectively). B. The empirically measured distributions of network states are observed to differ
significantly at two different phases of the oscillation (phases marked in panel A). Shown is for each phase the phase-specific marginal distribution
over 3 neurons (4, 5 and 6), using simple states with t~10 ms. The zero state (0,0,0) is not shown. The empirical distribution for each phase w was
obtained from a single long run, by taking into account the network states at times w,wzT ,wz2T , etc., with cycle length T~ 1

6
s. C. Illustration of

convergence to phase-specific stationary distributions. Shown is the relative frequency of subnetwork state (1,1,0) on the subset of neurons 4,5 and 6
over time, when the network is started from two different initial states (red/blue). In each case, the state frequency quickly approaches a periodic limit
cycle. D. Convergence to phase-specific stationary distributions takes place within a few cycles of the underlying oscillation. Shown is the multivariate
Gelman-Rubin convergence analysis to the phase-specific stationary distribution for two different phases. E. Bi-stable network under the influence of
a 6 Hz background oscillation. F. In response to the periodic stimulation, transitions between the two attractors (modes) become concentrated
around a specific phase of the distribution.
doi:10.1371/journal.pcbi.1003311.g004
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Figure 5. Solving Sudoku, a constraint satisfaction problem, through structured interactions between stochastically firing
excitatory and inhibitory neurons. A. A ‘‘hard’’ Sudoku puzzle with 26 given numbers (left). The solution (right) is defined uniquely by the set of
givens and the additional constraints that each digit must appear only once in each row, column and 363 subgrid. B. An implementation of the
constraints of the Sudoku game in a spiking neural network C consists of overlapping WTA circuits. WTA circuits are ubiquitous connection motifs in
cortical circuits [29]. A WTA circuit can be modeled by a set of M stochastically spiking output neurons zk that are subject to lateral inhibition (left).
The same pyramidal cell can be part of several such WTA motifs (right). In the Sudoku example, each digit in a Sudoku field is associated with four
pyramidal cells which vote for this digit when they emit a spike. Each such pyramidal cell participates in four WTA motifs, corresponding to the
constraints that only one digit can be active in each Sudoku field, and that a digit can appear only once in each row, column and 363 subgrid. C. A
typical network run is shown during the last 1500 ms before the correct solution was found to the Sudoku from panel A (the total solve time was
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neurons, thereby greatly reducing the space of configurations

generated by the network. In some cases, inhibition will

immediately quieten all neurons except those associated with a

single remaining digit (the only choice consistent with the givens).

In the absence of competition, these uninhibited neurons will start

firing along with the givens, thereby further constraining

neighboring neurons. This form of inhibitory interaction therefore

implicitly implements a standard strategy for solving easy Sudokus:

checking for fields in which only one possibility remains. In harder

Sudokus, however, this simple strategy alone would be typically

insufficient, for example when several possibilities remain in all

fields. In such cases, where inhibition leaves more than one

possible digit open, a tentative digit will be automatically picked

randomly by those neurons which happen to fire first among its

competitors. This ensures that, instead of getting stuck, the

network automatically explores potential configurations in situa-

tions where multiple possibilities remain. Altogether, through this

combination of constraint enforcement and random exploration,

those network states which violate few constraints (good approx-

imate solutions) are visited with much higher probability than

states with conflicting configurations. Hence, most time is spent in

good approximate solutions. Furthermore, from all 981 Sudoku

configurations the solving configuration is visited in this process

especially often.

Figure 5C shows a typical network run during the last

1:5 seconds (out of a total simulation time of approximately 3 s)

before the correct solution was found to the Sudoku puzzle from

Figure 5A. For this simulation we modeled lateral inhibition in

each WTA motif by reciprocally connecting each neuron in the

subnetwork to a single inhibitory neuron. For each of the 9 digits

in a Sudoku field, we created an associated local group of four

pyramidal cells. This can be seen in Figure 5C, where spike

responses of pyramidal cells associated with three different Sudoku

fields are shown (the three colored fields in Figure 5A and B). Each

field has 9 possible digits, and each digit has four associated

neurons. Hence, for each of the three Sudoku fields (WTA motifs),

9:4~36 neurons are shown. Spikes are colored black for those

neurons which code for a wrong digit, and green for the four

neurons which code for the correct digit in a Sudoku field (the

correct digits in Figure 5C are 6, 8 and 4). The overall

performance of the network (fraction of correctly solved fields)

during the last 1.5 seconds before the solution is found is shown in

Figure 5C above.

In our simulations we found that the solve time (the time until

the correct solution is found for the first time) generally depends on

the hardness of the Sudoku, in particular on the number of givens.

For the ‘‘hard’’ Sudoku with 26 givens from Figure 5A, solve times

are approximately exponentially distributed at an average of

29 seconds (Figure 5D). The average performance during the first

five seconds of a run (obtained from 1000 independent runs) is

shown in Figure 5E. The plot shows quick convergence to a

(stationary) average performance of approximately 0.9. This

demonstrates that the network spends on average most time in

approximate solutions with high performance. Among these high-

performance solutions, the correct solution occurs especially often

(on average 2% of the time).

Discussion

A theoretical foundation for memory-based stochastic
computation in cortical microcircuits

We have shown that for common noise models in cortical

microcircuits, even circuits C with very detailed and diverse non-

linear neurons and synapses converge exponentially fast to a

stationary distribution pC(yDx) of network states y. This holds both

for external inputs x that consist of Poisson spike trains of a fixed

rate, and for the case where x is periodic, or generated by some

Markov process with a stationary distribution. The same

mathematical framework also guarantees exponentially fast

convergence to a stationary distribution of trajectories of network

states (of any fixed time length), thereby providing a theoretical

foundation for understanding stochastic computations with exper-

imentally observed stereotypical trajectories of network states.

These results extend and generalize previous work in [17] and [18]

in two ways. First, previous convergence proofs had been given

only for networks of simplified neurons in which the (sub-

threshold) neuronal integration of pre-synaptic spikes was assumed

a linear process, thereby excluding the potential effects of dendritic

non-linearities or synaptic short-term dynamics. Second, previous

work had focused only on the case where input is provided by

neurons with fixed firing rates (a special case of Theorem 1). In

addition we show that these convergence proofs can be derived

from a fundamental property of stochastic spiking networks, that

we have formulated as the Contraction Lemma (Lemma 1 in

Methods).

The stationary distribution pC provides an attractive target for

investigating the stochastic computing capabilities of data-based

models C for local circuits or larger networks of neurons in the

brain. In contrast to the much simpler case of Boltzmann

machines with non-spiking linear neurons and symmetric synaptic

connections, it is unlikely that one can attain for cortical

microcircuit models C a simple analytical description of pC . But

our computer simulations have shown that this is not necessarily

an obstacle for encoding salient constraints for problem solving in

pC , and for merging knowledge that is encoded in pC with online

information from external inputs x in quite fast stochastic

computations. In fact, the resulting paradigm for computations

in cortical microcircuits supports anytime computing, where one

has no fixed computation time. Instead, first estimates of

computational results can be produced almost immediately, and

can be rapidly communicated to other circuits. In this way, no

processor (circuit) has to idle until other processors have completed

their subcomputations, thereby avoiding the arguably most critical

general bottleneck of massively parallel computing systems.

Instead, each microcircuit C can contribute continuously to an

iterative refinement of a global computation.

approximately 3s in this run, see panel D for statistics of solve times). The network performance (fraction of cells with correct values) over time is
shown at the top. The spiking activity is shown for 3 (out of the 81) WTA motifs associated with the 3 colored Sudoku fields in A and B. In each of
these WTA motifs there are 36 pyramidal cells (9 digits and 4 pyramidal cells for each digit). Spikes are colored green for those neurons which code
for the correct digit in each Sudoku field (6, 8 and 4 in the example). D. Histogram of solve times (the first time the correct solution was found) for the
Sudoku from panel A. Statistics were obtained from 1000 independent runs. The sample mean is 29 s. E. Average network performance for this
Sudoku converges quickly during the first five seconds to a value of 0:9, corresponding to 90% correctly found digits (average taken over 1000 runs;
shaded area: +2 standard deviations). Thereafter, from all possible 981 configurations the network spends most time in good approximate solutions.
The correct solution occurs particularly often, on average approximately 2% of the time (not shown).
doi:10.1371/journal.pcbi.1003311.g005
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Estimates for the computation time of stochastic
computations

Our computer simulations for a standard cortical microcircuit

model C suggest that convergence to pC is fast enough to support

knowledge extraction from this distribution pC within a few 100 ms,

i.e. within the typical computation time of higher-level brain

computations. These first estimates need to be corroborated by

further theoretical work and computer simulations. In particular,

the relationship between the structure and dynamics of cortical

microcircuits and their convergence speed merits further investiga-

tion. Furthermore, in the case where pC is a multi-modal

distribution there exists an obvious tradeoff between the conver-

gence speed to pC and the typical duration of staying in an

‘‘attractor’’ (i.e., a region of the state space which has high

probability under pC ). Staying longer in an attractor obviously

facilitates the readout of the result of a computation by downstream

networks. A number of experimental data suggest that neuromod-

ulators can move neural circuits (at least in the prefrontal cortex) to

different points on this tradeoff curve. For example it is argued in

[74,75] that the activation of D1 receptors through dopamine

deepens all basins of attraction, making it harder for the network

state to leave an attractor. Additional molecular mechanisms that

shift the tradeoff between fast sampling (exploration) and the

temporal stability of found solutions are reviewed in [76]. Another

interesting perspective on convergence speed is that slow conver-

gence may be beneficial for certain computations in specific brain

areas (especially early sensory areas). Slow convergence enlarges the

time span during which the network can integrate information from

non-stationary external inputs [77–79]. In addition the initial state

y0 of a network may contain information about preceding events

that are computationally useful. Those considerations suggest that

there exist systematic differences between the convergence speed to

pC in different neural systems C, and that it can be modulated in at

least some systems C dependent on the type of computational task

that needs to be solved.

Another important issue is the tradeoff between sampling time

and sampling accuracy. In high-level cognitive tasks, for example,

it has been argued that ‘‘approximate and quick’’ sample-based

decisions are often better than ‘‘accurate but slow’’ decisions

[80,81]. Of particular interest in this context is the analysis of [81]

who studied the time-accuracy tradeoff during decision making,

under the assumption that the mind performs inference akin to

MCMC sampling. Due to the nature of MCMC sampling, early

samples before convergence (during the burn-in period) are biased

towards the initial state of the system. In the absence of time

pressure, the optimal strategy is therefore to wait and collect

samples for a long period of time (in theory indefinitely). In the

presence of even moderate time costs, however, the optimal

sampling time can be shown to be finite, a result which can

provide a rational explanation of the anchoring effect in cognitive

science [81] (under time pressure people’s decisions are influenced

by their ‘‘initial state’’). Notably, the analysis of [81] was based on

the assumption that the MCMC algorithm exhibits geometric

convergence, the discrete-time equivalent to the exponential

convergence speed proved in this paper for stochastic spiking

networks. Applying a similar analysis to study optimal time-

accuracy tradeoff points in cortical microcircuits therefore presents

a promising avenue for future research.

Which probability distributions p can be encoded as a
stationary distribution pC of some neural circuit C?

It had been shown in [21] and [22] that, under certain

assumptions on the neuron models and circuit structure, in

principle every joint distribution p over discrete-valued random

variables can be represented as a stationary distribution pC of

some network C of spiking neurons. Forthcoming unpublished

results suggest that such internal representations of a given

distribution p can even be learned from examples drawn from p.

This will provide a first step towards understanding how the

stationary distribution pC of a microcircuit can be adapted

through various plasticity processes to encode salient constraints,

successful solution strategies (rules), and other types of knowledge.

This research direction promises to become especially interesting if

one takes into account that knowledge can not only be encoded in

the stationary distribution of network states, but also in the

simultaneously existing stationary distribution of trajectories of

network states.

Relationship to attractor networks and transients
between attractors

Attractor neural networks [82] were originally deterministic

computational models, where gradient descent leads the network

from some given initial state y0 (the input for the computation) to

the lowest point of the attractor (the output of the computation) in

whose basis of attraction y0 lies. The computational capability of

an attractor neural network is substantially larger if its attractor

landscape can be reconfigured on the fly by external input x, as in

[83] and in the Sudoku example of this article. This usually

requires that the attractors are not programmed directly into the

network parameters, but emerge from some more general

computational principles (e.g. constraint satisfaction). Attractor

neural networks gain additional computational capability if there is

some noise in the system [84]. This enables the network to leave

after a while suboptimal solutions [85]. Alternative modeling

frameworks for the transient dynamics of neural systems are

provided by the liquid computing model [77], and on a more

abstract level by sequences of metastable states in dynamical

systems [86]. Here we propose to view both transient and attractor

dynamics of complex data-based circuits C from the perspective of

probabilistic inference, in particular as neural sampling [21] (or

more abstractly: as MCMC sampling) from their inherent

probability distribution pC over network states (or trajectories of

network states), that serves as the knowledge base of these neural

systems.

A new computational framework for analyzing brain
activity

We had focused in our computer simulations on the investiga-

tion of the stationary distribution pC for models C of cortical

microcircuits. But the results of Theorem 1 and Theorem 2 are of

course much more general, and in principle apply to models C for

networks of neurons in the whole brain [87]. This perspective

suggests understanding spontaneous brain activity (see [9]) as

sampling from this global distribution in the absence of external

input, and brain computations with external inputs x as sampling

of brain states from conditional distribution pC(yDx), thereby

merging the knowledge base pC of the brain with incoming new

information x. This computational framework could in principle

explain how the brain can merge both types of information in such

seemingly effortless manner, a capability that can only partially be

reproduced in artificial devices with current technology. Large-

scale computer simulations will be needed to test the viability of

this hypothesis, in particular the relationship between the known

global structure of the brain network C and properties of its

stationary distribution pC , and the convergence speed to pC .

Possibly the brain uses an important trick to speed up convergence
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during brain-wide sampling, for example by sampling during any

concrete brain computation only from a subnetwork C’ of C: those

brain areas that control variables that are relevant for this

computation. Functional connectivity would be explained from

this perspective as opening of communication channels that

support sampling from the (marginal) joint distribution of those

variables that are stored within the functionally connected brain

areas. Structured spontaneous brain activity [9] would then

receive a functional interpretation in terms of updating these

marginal joint distributions on the basis of newly acquired

knowledge.

Stochastic solutions of constraint satisfaction problems
as a paradigm for higher level brain computation

A surprisingly large number of computational tasks that the

brain has to solve, from the formation of a percept from multi-

modal ambiguous sensory cues, to prediction, imagination, motor

planning, rule learning, problem solving, and memory recall, have

the form of constraint satisfaction problems: A global solution is

needed that satisfies all or most of a set of soft or hard constraints.

However, this characterization per se does not help us to

understand how the brain can solve these tasks, because many

constraint satisfaction problems are computationally very de-

manding (in fact, often NP-hard [88]), even for a fast digital

computer. In the Sudoku example we have shown that the

inherent stochastic dynamics of cortical microcircuits provides a

surprisingly simple method for generating heuristic solutions to

constraint satisfaction problems. This is insofar remarkable, as this

computational organization does not require that specific

algorithms are programmed into the network for solving specific

types of such problems (as it is for example needed for solving

Sudoku puzzles according to the ACT-R approach [89]). Rather,

it suffices that salient constraints are encoded into the network (e.g.

through learning) in such a way that they make certain firing

patterns of a subset of neurons more or less likely.

Future work will need to investigate whether and how this

approach can be scaled up to larger instances of NP-complete

constraint satisfaction problems. For example, it will be interesting

to see whether stochastic networks of spiking neurons can also

efficiently generate heuristic solutions to energy minimization

problems [90] arising in visual processing.

Furthermore, additional research is needed to address suitable

readout mechanisms that stabilize and evaluate promising

candidate solutions (see [76] for an experimentally supported

mechanism that might contribute to this function). This is an

important issue since, in its current form, the network will simply

continue the stochastic exploration of heuristic solutions even after

it has found the optimal solution. Therefore, in the absence of

additional mechanisms the network is not able to hold on to (or

store) previously found (near-)optimal solutions. To solve this issue

one could consider, for example, one or several networks

C1, . . . ,Ci which generate in parallel heuristic solutions to a given

problem. The output of these networks could then be further

processed and integrated by a readout network Ciz1 which

attempts to extract a MAP solution, for example by adopting a

solution from some Cj only if it has higher value than the currently

stored state. Hence, the sampling networks C1, . . . ,Ci would have

stationary distributions pCj
(yDx) which encourage exploration and

broadly assign probability to many different heuristic solutions,

whereas the readout network would ideally exhibit a sharply

peaked stationary distribution at the global optimum of the

constraint satisfaction problem. Studying the feasibility of this

approach requires further research.

Relationship to models for probabilistic inference in
cognitive science

A substantial number of behavioral studies in cognitive science

(see e.g. [69,91–94]) have arrived at the conclusion that several of

the previously discussed higher level mental operations are

implemented through probabilistic inference. Some of the

underlying data also suggest that probabilistic inference is

implemented in the brain through some form of sampling (rather

than through arithmetical approaches such as belief propagation

[44]). But according to [94]: ‘‘The key research questions are as

follows: What approximate algorithms does the mind use, how do

they relate to engineering approximations in probabilistic AI, and

how are they implemented in neural circuits?’’ This article

contributes to these fascinating questions by providing a rigorous

theoretical foundation for the hypothesis that neural circuits in the

brain represent complex probability distributions pC(yDx) through

sampling. In addition, we have provided evidence that this form of

sampling in cortical microcircuits may be fast enough to facilitate

the approximate estimation of marginals or marginal MAP

assignments, which commonly appear in real-world inference

tasks, within a few 100 ms. A major challenge for future work will

be to understand also neuronal plasticity on the implementation

level from this perspective. For example, how can prior knowledge

be acquired and integrated into the stationary distribution pC(yDx)
of a realistic circuit C (featuring short-term plasticity, dendritic

processing, etc.) in an autonomous fashion, and in a manner

consistent with statistically optimal learning [25]?

Long-term plasticity and other slower features of
network dynamics

In biological networks it is reasonable to assume that the

network dynamics unfolds on a continuum of time scales from

milliseconds to days. Our goal in this article was to focus on

stochastic computations on shorter time scales, between a few

milliseconds to seconds. To this end we assumed that there exists a

clear separation of time scales between fast and slow dynamical

network features, thus allowing us to exclude the effect of slower

dynamical processes such as long-term plasticity of synaptic

weights during these shorter time scales. In network models and

experimental setups where slower processes significantly influence

(or interfere with) the dynamics on shorter time scales, it would

make sense to extend the concept of a stationary distribution to

include, for example, also the synaptic parameters as random

variables. A first step in this direction has been made for neurons

with linear sub-threshold dynamics and discretized synapses in

[18].

Deterministic network models and chaos
Deterministic network models such as leaky integrate-and-fire

neurons without noise (no external background noise, no synaptic

vesicle noise and no channel noise) violate the assumptions of

Theorem 1 and 2. Furthermore, although realistic neurons are

known to possess various noise sources, the theoretical assumptions

could in principle still fail if the network is not sufficiently stochastic:

this would happen, for example, if there exists some strong input

(within the limits of typical input activity) which entirely overrules

the noise, leading to a firing probability 1 in some time interval

½t,tzdt) during the network simulation. Such deterministic

behavior would correspond to the instantaneous firing rate of a

stochastic neuron becoming infinite at some point during that

interval (in violation of assumption A2, see Methods: Scope of

theoretical results). From an empirical perspective, a simple

necessary condition for sufficient stochasticity is the presence of
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trial-to-trial variability for each single spike produced by a

network. Consider, for example, the spike times generated by a

specific neuron in a network simulation, in response to some fixed

input spike train. If there exists a spike which always occurs at the

exact same time during multiple repetitions of this experiment

starting from identical initial states, then the assumptions of

Theorem 1 and 2 are obviously violated.

For deterministic (or insufficiently stochastic) networks the

question arises whether convergence to a unique stationary

distribution may still occur under appropriate conditions, perhaps

in some modified sense. Notably, it has been recently observed

that deterministic networks may indeed lead to apparently

stochastic spiking activity [95,96]. This apparent stochasticity

was linked to chaotic spiking dynamics. This suggests that chaos

may act as a substitute for ‘‘real’’ noise in deterministic networks

(similar to pseudo random-number generators emulating true

randomness): Chaotic systems are sensitive to small perturbances

in initial conditions, and may thus exponentially amplify otherwise

insignificant noise sources such as ubiquitous thermal noise [5].

Thus, chaos could play an important role in both emulating and

amplifying stochasticity on the network level.

[96] focused their analysis of stochasticity on firing rate

fluctuations and spiking irregularity, and it remains unclear

whether these networks would still appear stochastic if one takes

into account full network states (as in this article). The Gelman-

Rubin convergence analysis of population activity proposed in this

paper could be applied to provide some insight into this question.

A more thorough investigation of chaos in the context of our

results would also call for a rigorous theoretical analysis of ergodic

properties of chaotic spiking networks.

Further experimentally testable predictions
Our theoretical results demonstrate that every neural system C

has a stationary distribution pC(yDx) of network states y. This can

be tested experimentally, for various behavioral regimes and

external inputs x. A first step in this direction has already been

carried out in [20] (see also the discussion in [97]). The hypothesis

that pC serves (for ‘‘neutral’’ external inputs x) as a prior for

probabilistic inference through sampling suggests that pC is

constantly modified through prior experience (see [98,99] for first

results) and learning (see [10] for fMRI data).

Our Theorem 2 suggests in addition that neural systems C that have

a prominent rhythm (such as for example the theta oscillation in the

hippocampus) are able to store several stationary distributions pC,l of

network states, one for each clearly separable phase l of this rhythm. It

has already been shown in a qualitative manner that in some

behavioral situations certain states y appear with substantially high

probability at specific phases l of the rhythm (see e.g.

[36,62,64,66,100]). But a systematic experimental analysis of phase-

dependent distributions of network states in the style of [20] is missing.

Our Theorem 1 predicts in addition that a generic neural circuit C
also has a stationary distribution over trajectories of network states. The

existence of stereotypical trajectories of network states in the awake

brain has been frequently reported (see e.g. [40,41,98,101]). But a

statistical analysis of the distribution of such trajectories, especially also

during spontaneous activity, is missing. Of particular interest is the

relationship between the distribution of trajectories and the stationary

distribution of (simple) network states. Do some network states y
typically have a high probability because they occur in some high

probability trajectory? And how does the distribution of trajectories

change during learning?

The model for problem solving that we have presented in

Figure 5 suggests that external constraints have a significant and

characteristic impact on the structure of the stationary distribution

pC , by reducing the probability of network states which are

inconsistent with the current constraints x. In principle, this could

be analyzed experimentally. In addition, this model suggests that

there may be special mechanisms that prolong the time span

during which a neural system C stays in a network state y with

high probability under pC(yDx), in order to support a readout of y
by downstream networks. These mechanisms need to be revealed

through experiments.

New ideas for neuromorphic computation
The Sudoku example has shown that networks of spiking

neurons with noise are in principle able to carry out quite complex

computations. The constraints of many other demanding

constraint satisfaction problems, in fact even of many NP-complete

problems, can be encoded quite easily into circuit motifs composed

of excitatory and inhibitory spiking neurons, and can be solved

through the inherent stochastic dynamics of the network. This

provides new computational paradigms and applications for

various energy-efficient implementations of networks of spiking

neurons in neuromorphic hardware, provided they can be

equipped with sufficient amounts of noise. In particular, our

results suggest that attractive computational properties of Boltz-

mann machines can be ported into spike-based hardware. These

novel stochastic computing paradigms may also become of interest

for other types of innovative computer hardware: Computer

technology is approaching during the coming decade the

molecular scale, where noise is abundantly available (whether

one wants it or not) and it becomes inefficient to push through

traditional deterministic computing paradigms.

Conclusion
The results of this article show that stochastic computation

provides an attractive framework for the investigation of compu-

tational properties of cortical microcircuits, and of networks of

microcircuits that form larger neural systems. In particular it

provides a new perspective for relating the structure and dynamics

of neural circuits to their computational properties. In addition, it

suggests a new way of understanding the organization of brain

computations, and how they are modified through learning.

Methods

Network states and distributions of network states
Markov states. The Markov state yM (t) (or more explicitly,

yM:H(t)) of a network at time t is defined here as the recent history

of spike times of all neurons in the network within the period

(t{H,t�. The term ‘‘Markov’’ refers to the fact that, under mild

conditions and for a sufficiently long window H, the network

dynamics of a neural circuit after time t becomes independent of

the network activity at times ƒt{H, given the Markov state

yM (t) and the external input x. Hence, the network dynamics has

the Markov property with respect to this state definition.

For each neuron k [ 1 . . . K in a neural circuit a spike history of

length H is defined as the list of spike times emitted by neuron k
within the window (t{H,t�. Spike times are counted relative to

the beginning of the window at t{H. If m is the number of spikes

within (t{H,t� for neuron k, then the list takes the form,

yk
M (t):(yk,1(t), . . . ,yk,m(t)) [ Rm, ð3Þ

where 0vyk,1(t)v . . . vyk,m(t)ƒH.

We denote the space of all possible network states of length H
by SH or, when unambiguous, simply by S. Note that this
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definition is equivalent to the state definition in [18], to which the

interested reader is referred for further formal details (e.g. the

associated s-algebra S of the state space S).

Scope of theoretical results: Required properties of the

network and neuronal noise models. We study general

theoretical properties of stochastic spiking circuit models, driven

by some external, possibly vector-valued, input x(t), which could

represent for example input rates in a set of input neurons or

injected input currents. Formally, the input sequence can assume

values from any state space Q; a concrete example is vector-valued

input with Q~RN , where N is the number of input dimensions.

We consider in this article two different noise models for a neuron:

In noise model I, the spike generation is directly modeled as a stochastic

process. All network dynamics, including axonal delays, synaptic

transmission, short-term synaptic dynamics, dendritic interactions,

integration of input at the soma, etc. can be modeled by a function

which maps the Markov state (which includes the recent spike history

of the neuron itself) onto an instantaneous spiking probability. This

model is highly flexible and may account for various types of neuronal

noise. In the more specific noise model II, the firing mechanism of the

neuron is assumed to be deterministic, and noise enters its dynamics

through stochastic vesicle release at afferent synaptic inputs. Also

combinations of noise models I and II in the same neuron and circuit

can be assumed for our theoretical results, for example neurons with a

generic stochastic spiking mechanism which possess in addition

stochastic synapses, or mixtures of neurons from model I and II in

the same circuit.

In noise model I, the instantaneous spiking probability of

neuron k at time t is given by,

lim
dt?0

1

dt
:p(neuron k fires in (t, tzdt))~rk(t): ð4Þ

This instantaneous firing rate rk(t)~f (yM (t)) at time t is assumed

to be bounded and completely determined by the network’s

current Markov state yM:H(t), for some sufficiently large H. More

precisely, the following four assumptions are made for noise model

I:

A1 Spikes are individual events: We assume that,

lim
dt?0

1

dt
:p(more than one neuron fires in (t, tzdt))~0, ð5Þ

which is, for example, fulfilled if each neuron has some

independent source of stochasticity.

A2 Bounded rates: The instantaneous firing rates are

bounded from above:

0ƒrk(t)ƒr̂rk for some r̂rkv?. The ensuing upper bound on

the total network firing rate is denoted by r̂r, i.e.

0ƒ

PK
k~1 rk(t)ƒr̂r. It is assumed that instantaneous rates are

bounded at any time, and in the presence of any input x(t).

A3 Bounded memory: The firing rates rk(t) at time t depend

on the network’s past activity only through the history of recent

spikes in a finite window (t{H,t� of length H. Hence, the direct

effect of a spike at time t on future firing rates of all neurons is

limited to a bounded ‘‘memory period’’, ½t,tzH). This bounded

memory period H can be understood as a lower bound for H
during the subsequent convergence proofs (since smaller H would

violate the Markov property). In addition to this bounded-memory

dependence on network spikes, rk(t) may depend on the current

input x(t) in any manner consistent with A2.

A4 Time-homogeneity: The functional mapping from recent

spikes and/or input signals x(t) to instantaneous firing rates rk(t)

does not change over time. In particular, we do not consider long-

term plasticity of synaptic weights and/or excitabilities in this

work.

Assumptions A2{A4 can be summarized as follows: Let

x(t) [ Q and yM:H(t) [ S be the trajectories of input and network

states as defined above. Then there exists a memory constant H
and rate bounds 0ƒr̂rkv?, such that for each neuron k there

exists a function fk : Q|S?½0,r̂rk�, where rk(t)~fk(x(t),yM:H(t))

for all t. The function fk is time-invariant but otherwise

unconstrained, and can capture complex dynamical effects such

as non-linear dendritic interactions between synaptic inputs or

short-term plasticity of synapses.

The input signal x(t) can formally represent any variable which

exerts some arbitrary influence on the instantaneous network

dynamics (the neuronal firing functions fk). In the simplest case,

x(t) could be a vector of firing rates controlling the spiking

behavior of a set of N input neurons i, such that

fi(x(t),yM:H(t))~xi(t) in these neurons. In this case (which we

focused on in the main text), input neurons are formally

considered part of the circuit C. Note that in principle, x(t) could

also represent the strength of currents which are injected into a

subset of neurons in the network C, or the recent spiking history of

a set of external input neurons (‘‘input Markov states’’). If the input

comprises rates or currents, these can be either fixed (e.g. fixed

input firing rates) or dynamically changing (in particular rates

which are either subject to stochastic ergodic dynamics, or

periodically changing rates). Below convergence proofs will be

provided for both fixed and dynamic input conditions. If the input

is defined in terms of input Markov states, the dynamic input

analysis is applicable under conditions described further below.

In noise model II the basic stochastic event is a synaptic vesicle

release (in noise model I it is a spike). Accordingly, the Markov

state yM (t) of a network in noise model II is defined as the list of

vesicle release times for each synaptic release site in the network

(instead of spike timings for each neuron). We assume here that

each synaptic release site releases at a given instance t at most one

vesicle filled with neurotransmitters. But a synaptic connection

between two neurons may consist of multiple synaptic release sites

(see [102,103] and [3] for reviews). Instead of expressing the

network dynamics through an instantaneous firing probability

function for each neuron k, rk(t)~fk(x(t), yM:H(t)) (noise model

I), for noise model II the network dynamics is expressed in terms of

instantaneous release probabilities for each synapse k:

yk(t)~gk(x(t), yM:H(t)). Similar to noise model I, it is assumed

that there exists a window length H, such that the dynamics of

vesicle release at time t is fully determined by the timing of

previous vesicle releases within (t{H,t�, and hence can be

expressed in terms of a corresponding variation of the definition of

a Markov state yM:H(t). The same framework of assumptions

applies as in noise model I: vesicle releases are individual events,

and the functions gk are assumed to be bounded from above by

rate constants ŷykv?.

Combinations of noise model I and II are also possible. In this

case, the Markov state yM (t) may contain both spike times and

vesicle release times. The assumptions of noise model I/II

described above apply to the corresponding stochastic neurons

and vesicle releases, respectively. Altogether, note that all three

types of networks (based on model I, II and mixtures of the two)

are based on a common framework of definitions and assumptions:

in all cases the dynamics is described in terms of stochastic

components (neurons, synapses) which generate point events

(spikes/vesicle releases) according to instantaneous probabilities

which depend on the recent event history of the network.
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Convergence of state distributions. Below, proofs for the

existence and uniqueness of stationary distributions of network

states for the considered network models are given. Furthermore,

bounds on the convergence speed to this stationary distribution are

provided. To obtain a comprehensive picture, convergence is

studied under three different input conditions: constant, stochastic,

and periodic input. All proofs are described in detail for noise

model I. The results transfer in a straightforward manner to noise

model II and mixtures of these two models, since the same

framework of assumptions applies to all cases.

Network dynamics as a Markov process. We view the

simulation of a cortical microcircuit model, under a given input

condition and starting from a given initial network state, as a

random experiment. Formally, we denote the set of all possible

outcomes in this random experiment by V, the set of all considered

events by F (i.e. a s-algebra on V), and the probability measure

which assigns a probability to each event in F by P. An outcome is

the result of a single run of the network. An outcome is associated

with an assignment of particular values to all defined random

variables. An event is a set of outcomes, for example the set of all

outcomes in which neuron 7 spikes within the first

200 milliseconds of the experiment. Suppose X is a random

variable with some state space (R,R), i.e. X assumes values in R,

and R is a set of events on the space R. Formally, such a random

variable X is defined as a map X : V?R, which assigns a value

x [ R to every possible outcome v [ V. To denote the probability

that the random variable X assumes some value in the set B [ R,

we define the short-hand PX (B) :~P(X[ B). Furthermore, if Y is

another random variable we use the notation PX DY~y(B) :~
P(X[BDY~y) for conditional probabilities, and write even

shorter, when unambiguous, PX Dy(B). The base probability space

(V,F ,P) is assumed to be rich enough such that all random

variables which are needed in the following exist.

We define the index set of time T~ft[R : t§0g, and the

stochastic process (Yt, t [ T), as a description of the stochastic

evolution of Markov states of a network C for t§0. For each time

t[T we define a random variable Yt (also written Y (t))
representing the Markov state of the network at time t. Yt takes

values on the state space S of all possible Markov states of some

fixed duration H. We denote by S the s-algebra associated with S.

The assumptions on the network described in the previous section

imply that the process has the Markov property for Markov states

of any length H§H, since the future evolution of the process is

then entirely independent of the past, given the current Markov

state. For the subsequent proofs, we therefore assume some H§H.

We also define a random variable Y of entire sample paths on the

measurable space (ST ,ST ), i.e. a map Y : V?ST . Realizations of

Y are sample paths (or trajectories), i.e. functions yM (t), t[T ,

taking values in S. Since realizations of Y are functions, Y can be

thought of as a random function.

For subsequent proofs the following definition of a transition

probability kernel is essential: A transition probability kernel P on a

measurable state space (S,S) is a function P : S|S?½0,1�, which

assigns a probability to the transition from any point x [ S to any

set B[S. More precisely, if one fixes a particular ‘‘initial state’’

x[S, then P(x,B):Px(B) is a probability measure in its target

argument B, corresponding to the result of applying the transition

kernel P to x (in addition, for each event B [ S in the target space,

P(x,B) is S-measurable in its source argument). Stochastic

transition matrices of Markov chains are, e.g., transition proba-

bility kernels.

Here we write Ps:t for the transition probability kernel

corresponding to progression of the state of the network C from

time s to szt, i.e.,

Ps:t(y0,B) :~ P(Y (szt)[BDY (s)~y0): ð6Þ

We further define the shorthand Pt~P0:t for the progression of

duration t starting from initial time s~0. Transition kernels can

also be applied to probability measures w of initial states y0 (as

opposed to single initial states y0). We will write Ps:tw to denote the

result of applying the kernel Ps:t to an initial probability measure

w. The result Ps:tw is again a probability measure, assigning a

probability to any event B[S on the state space according to:

(Ps:tw)(B) :~

ð
S

Ps:t(y0,B)dw(y0), ð7Þ

Since Ps:tw is again a probability measure on the state space (S,S),
transition kernels can be applied sequentially. Note that due to the

Markov property one has, Pr:(t1zt2)w~P(rzt1):t2Pr:t1 w for

s§0, t1,t2w0.

Stochastic network dynamics is contracting. Before

studying specific input conditions, a few basic key properties of

the network dynamics Y are developed. Let Ps:t be the transition

probability kernel corresponding to progression of the network C

from time s to szt. For the proofs below, transitions to the resting

state, Y (szt)~0, will be of particular importance. The resting

state 0 is defined as the ‘‘empty’’ Markov state in which no spikes

occurred within the last H time units. The first key observation is

the following Proposition:

Proposition 1 Consider the probabilityPs:H(y0,0), that the process Y will

be in the resting state 0 at time szH, starting from some initial state y0[S at time

s. This ‘‘return probability’’ to the resting state is bounded from below by,

Ps:H(y0,0)§ H, ð8Þ

where E :~e{r̂r. This holds regardless of the input trajectory x(t) driving the

network.

The proposition follows directly from the fact that r̂r bounds the

sum of all instantaneous firing rates in the network. Hence with at

least probability e{r̂rH~ H no neuron fires within H time units (cf.

[18]). In technical terms, this implies that the stochastic kernel

corresponding to a duration of length H fulfills the Doeblin

condition [104] – a property which is highly useful for proving

convergence and ergodicity results.

Proposition 1 entails a central contraction property of stochastic

networks of spiking neurons C, which holds in the presence of any

input trajectory x(t), and forms the basis for several subsequent

proofs. The following definitions are essential: We will measure

below the difference between any two probability distributions w1

and w2 in terms of the total variation E:E of the signed measure

m~w1{w2. Any such signed measure m can be expressed in terms

of its non-negative and non-positive components, m~mz{m{,

where mz and m{ are both non-negative measures (but in general

no probability measures). The total variation of a signed measure

m on a measurable space (X ,X ) is defined as

EmE~mz(X )zm{(X ), i.e. the total mass of its positive and

negative components. According to this definition,

EmE~ EmzEzEm{E.

Lemma 1 (Contraction Lemma) The following strict contraction

property holds for the Markov process Y , for any H§H, and for any initial

probability measures w1 and w2 at any time s§0:

EPs:Hw1{Ps:Hw2E ƒ(1{EH):Ew1{w2E: ð9Þ
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In words: applying the dynamics of the network C for H time units is

guaranteed to reduce the distance between any two initial distributions w1 and

w2 of network states by a factor 1{ H.

Proof: Define the auxiliary measure n0 as zero everywhere

outside 0, and n0(0)~ H. Rewrite w1{w2~m~mz{m{ in terms

of the non-negative measures mz and m{, such that

Ew1{w2E ~ EmzEzEm{E, ð10Þ

and note that Ew1E ~ Ew2E ~ 1 implies that EmzE ~ Em{E.

Then

EPs:Hw1{Ps:Hw2E ~EPs:Hmz{Ps:Hm{E ð11Þ

~ E(Ps:Hmz{EmzE:n0){(Ps:Hm{{Em{E:n0)E ð12Þ

ƒ EPs:Hmz{EmzE:n0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
§0 for all events B[S

E z EPs:Hm{{Em{E:n0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
§0 for all events B[S

E ð13Þ

~ EPs:HmzE{EmzE:En0E z EPs:Hm{E{Em{E:En0E ð14Þ

~(1{En0E):EmzE z (1{En0E):Em{E ð15Þ

~(1{ H): EmzEzEm{Eð Þ ð16Þ

~(1{ H):Ew1{w2E: ð17Þ

The equality in (11) follows from linearity of transition probability

kernels. The transition to (13) is an application of the triangle

inequality. The transition to (14) uses the fact that both

Ps:Hmz{EmzE:n0 and Ps:Hm{{Em{E:n0 are non-negative: this

follows from Proposition 1, which ensures that the measure

Ps:Hmz has at least mass EmzE: H at the resting state 0 and,

hence, for any (non-negative) measure n,

Ps:Hn § EnE:n0: ð18Þ

Finally, note that (15) uses a general property of transition

probability kernels P, which ensures that EPnE ~ EnE, for any

non-negative measure n.

Note that the above Contraction Lemma which holds for

spiking neural networks has some similarities to Lemma 1 in [105]

who analyzed artificial analog neural networks in discrete time.

Proof of Theorem 1 for fixed input rates. We divided the

precise formulation of Theorem 1 into two Lemmata: Lemma 2 is

a precise formulation for the case where inputs are fixed (e.g. fixed

input rates). Lemma 3 in the next section corresponds to the case

where input rates are controlled by a Markov process. The precise

assumptions on the network model required for both Lemmata are

described above (see ‘‘Scope of theoretical results’’).

Here we assume that the vector of inputs x(t) provided to the

network is kept fixed during a trial. Concretely, this is for example

the case if there is a set of input neurons whose rates are fixed. In

this case, x(t) is a vector of input rates, which remains constant

over time. The input neurons are formally considered part of the

network in this case. Alternatively, a constant x could correspond

to constant currents which are injected into a subset of neurons.

Under constant input conditions, x(t):x, the dynamics of the

process is time-homogeneous: the transition probability kernels are

invariant to time-shifts, i.e.

Ps1 :tw~Ps2:tw, s1,s2§0, tw0: ð19Þ

Lemma 2 Let x(t):x. Then the Markov process Y has a unique

stationary distribution p, to which it converges exponentially fast,

EPt(y0,:){pE ƒ 2:(1{ H)t{1, t§0, ð20Þ

from any initial Markov state y0[S.

Proof: Y is clearly non-explosive, aperiodic and stochastically

continuous (cf. [18]). To prove exponential ergodicity it thus

suffices to show that some skeleton chain is geometrically ergodic

(see for example Theorem 18.1 in [106]). The skeleton chain

YHn, n[N, with transition probability kernel PH is aperiodic and

irreducible and hence has a unique stationary distribution p.

Then, through recursive application of Lemma 1 with w2~p,

EPHnw1{PHnpE ƒ (1{ H)n:Ew1{pE, ð21Þ

EPHnw1{pE ƒ 2:(1{ H)n, ð22Þ

proving geometric ergodicity of the skeleton chain, and thus

exponential ergodicity of Y . The quantitative convergence bound

follows from (22) by choosing a singleton y0 as initial distribution,

and using the general fact that for any transition probability kernel

P and distributions w1 and w2,

EPw1{Pw2E ƒ Ew1{w2E, ð23Þ

thus guaranteeing that the total variation distance does not

(temporarily) grow between Hn and H(nz1).

Lemma 2 provides a general ergodicity result for the considered

class of stochastic spiking networks in the presence of fixed input

rates x. The proof relies on two key properties of stochastic spiking

networks: aperiodicity and irreducibility. These properties can be

understood intuitively in the context of Figure 1H. If the intrinsic

network dynamics was not aperiodic, for example, then one might

be able to observe oscillating pattern frequencies over time (as in

Figure 4C). Lemma 2 proves that this cannot occur in stochastic

spiking networks as long as input rates are fixed. Oscillating

pattern frequencies can indeed only emerge when input rates are

themselves periodically changing (see Theorem 2 and Figure 4). If

the network dynamics was not irreducible on the other hand, i.e. if

there were network states which are unreachable from some other

network states, then pattern frequencies could potentially be

observed to converge to different fixed points for different initial

states (e.g. the two lines in Figure 1H settling at different values).

This cannot occur in stochastic spiking networks due to

Proposition 1 which guarantees that the state space is connected

through the resting state 0.

Note that, although aperiodicity and irreducibility are well

known necessary and sufficient conditions for ergodicity in discrete

time Markov chains on finite state spaces, they are not sufficient

for exponential ergodicity in continuous time Markov processes on
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general state spaces (see [107] for precise definitions of w-

irreducibility and aperiodicity for such processes). Additional

conditions in this more complex case which ensure exponential

ergodicity, such as nonexplosivity, stochastic continuity and

geometric ergodicity of a skeleton chain, have also been taken

into account in the proof for Lemma 2 (i.e. stochastic spiking

networks also meet these additional criteria).

Lemma 2 constitutes a proof for Theorem 1 for fixed input rates

x. In the main text we refer to the stationary distribution of the

circuit C under fixed input x as pC(yDx). The proof above

guarantees a stationary distribution for both Markov and simple

states. In the main text y refers to the simple network state yS if not

stated otherwise.

Proof of Theorem 1 for input rates controlled by a

Markov process. Fixed input assumptions may often hold for

the external input x(t), driving a stochastic computation in a

neural system C, only approximately. Stochastic fluctuations on

various spatial and temporal scales may be present in the input. In

addition, inputs may have their own short-term stochastic

dynamics: Imagine, for example, a visual scene of randomly

moving dots. Despite the presence of such short-term dynamical

features in the input, in many cases one may still suspect that

network state distributions converge. Indeed, below we generalize

the convergence results from the constant case to the quite large

class of stochastic (and stochastically changing) inputs which are

generated by a uniformly ergodic Markov process. Uniform

ergodicity is defined as exponential ergodicity (exponentially fast

convergence to a unique stationary distribution) with convergence

constants which apply uniformly to all initial states [107] (this

holds for example for the convergence constants in Lemma 2).

Let X be a time-homogeneous input Markov process, in the sense

that the input trajectory x(t) provided to the network C is itself

generated randomly from a Markov process X . Let (Q,Q) be the

(measurable) state space of X . Then define a joint input/network

Markov process Z on the state space (Q|S, s(Q|S)), where

s(:) denotes the s-algebra generated by :. Further definitions for Z
are analogous to those introduced for Y .

Lemma 3 If the input process X is uniformly ergodic, then the joint

Markov process Z has a unique stationary distribution p̂p on the joint input/

network state space, to which convergence occurs exponentially fast, i.e. there

exist constants Cv?,rv1, such that

EPt(z0,:){p̂pE ƒC:rt,t§0, ð24Þ

for any initial state z0 of the joint Markov process Z.

Proof: If X and Y were entirely independent processes (if X did

not influence Y ) then the joint process Z would automatically be

exponentially ergodic if both X and Y are. Although in the present

case Y is not independent of X , a weaker version of independence

applies: the return probability to the resting state Y (t)~0 during

(t{H,t� is at least H regardless of the input trajectory of X during that

time. This property can be exploited to show that the distribution of

hitting times to a joint resting state has an exponential bound. It follows

that the joint process is exponentially ergodic. A detailed proof is given

in the next section.

The second part of Theorem 1 (exponentially fast convergence

for the case of external input generated by an ergodic Markov

process) follows from Lemma 3. Note that in the main text we

slightly abuse the notation pC(yDx) for the dynamic case to indicate

the stationary distribution over network states y, where x denotes a

specific Markov process controlling the inputs.

Detailed proof of Lemma 3. We have split the proof of

Lemma 3 into proofs of four auxiliary claims (Propositions 2–5).

Consider the following variations of Proposition 1, which hold for

the Markov process Z describing the joint dynamics of input and

network states. Let fx(t)g denote a particular input sequence

defined for t§0 (a realization of the input process X ) and y0[S an

initial network Markov state (with H§H) at time s§0. Then

P(Y (szH)~0 D Y (s)~y0,X~fx(t)g)§ H, ð25Þ

P(Y (szH)~0 D X~fx(t)g)§ H: ð26Þ

It is easy to show that these properties, together with the fact

that X is uniformly ergodic, ensure that Z is irreducible and

aperiodic. Hence, to prove exponential ergodicity of Z it suffices to

show that some skeleton chain is geometrically ergodic [107]. To

that end, we will consider the skeleton chain ZHn, n[N and prove

geometric ergodicity by showing that the hitting time distribution

PtC
(tC) to a small set C on the joint state space Q|S of input and

network states admits an exponential bound.

The hitting time tD to some set D on the input state space Q is

defined as

tD~minfn[Nz : XHn[Dg: ð27Þ

For notational convenience we abbreviate in the following t~tD.

Due to uniform ergodicity of X (which implies Harris recurrence

[107]), there exists some set D to which the hitting time t is finite

(v?) from any initial state, with probability one [108].

Furthermore, there exists according to [107] a small set D and

constants kw1 and 1ƒVv?, such that

Vx0[Q : E kt D X (0)~x0½ �vV : ð28Þ

This implies that there exists a small set D on the input state space

Q which can not only be reached in finite time from any initial

input state x0, but for which the hitting time distribution to D has

also finite mean and variance (and finite higher-order moments).

At least one pair of constants k and V which fulfills (28) is

guaranteed to exist, but in fact the following Proposition shows

that one can specify a particular desired bound on the right-hand

side (for reasons which will become clear later), and find a

matching l on the left-hand side.

Proposition 2 There exists a lw1, such that

Vx0[Q : E lt D X (0)~x0½ �v(1{ H){1=2: ð29Þ

Proof: Define v(l) :~E lt D X (0)~x0½ �. Let k and V be any

valid pair of constants which fulfills (28). The trivial case is

v(k)v(1{ H){1=2. In the remainder of the proof it is assumed

that k is ‘‘too large’’, such that v(k)§(1{ H){1=2. By definition of

the exponential function, for any lw0,

v(l)~E ltDx0½ �~E
X?
n~0

(log l)ntn

n!
Dx0

" #
ð30Þ

~
X?
t~0

X?
n~0

PtDx0
(t)

(log l)ntn

n!
: ð31Þ
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By Tonelli’s theorem, since all summands are non-negative, the

order of the double sum can be exchanged:

v(l)~
X?
n~0

X?
t~0

PtDx0
(t)

(log l)ntn

n!
ð32Þ

~
X?
n~0

(log l)n

n!
E½tnDx0�: ð33Þ

Note that E½tnDx0� are the moments of the distribution PtDx0
½t�. By

uniform ergodicity of X , all moments must exist, and in addition

there exists a kw1 such that v(k)v?. It is straightforward to see

that the series then converges for all 1ƒlƒk, such that v(l) is

continuous on ½1,k�. Finally, since v(1)~1 and

v(k)§(1{ H){1=2, by the intermediate value theorem there

exists some 1vlvk such that v(l)~(1z(1{ H){1=2)=2.

Denote by t(m) the time at which the skeleton chain XHn visits

the small set D for the m-th time:

t(m)~minfn[Nz : A n1vn2v . . . vnmƒn[N :

XH:nk
[D,k[f1, . . . ,mgg:

ð34Þ

Furthermore, denote by d(m) the time between the (m{1)-th and

m-th visit:

d(1) :~t(1), ð35Þ

d(m) :~t(m){t(m{1), mw1: ð36Þ

According to this definition, one can express the hitting time of

degree m as t(m)~
Pm

k~1 d(k). The following Proposition extends

the exponential bound on the first hitting time to hitting times of

higher degrees.

Proposition 3 There exists a lw1, such that,

Vx0[Q : E lt(m)
D X (0)~x0

h i
v(1{ H){m=2: ð37Þ

Proof:

E lt(m)
Dy0

h i
~

ð
dP

d(1...m) Dy0
(d(1...m)):l

Pm
k~1

d(k)
ð38Þ

~

ð
dP

d(1) Dy0
(d(1)):ld(1)

ð
dP

d(2) Dy0,d(1) (d
(2)):ld(2) � � �

� � �
ð

dP
d(m) Dy0,d(1...m{1) (d

(m)):ld(m) ð39Þ

v (1{ H){1=2
h im

: ð40Þ

Let tC be the hitting time to the small set C~D|0 on the joint

state space Q|S of input and network states,

tC~minfn[Nz : XHn[D,YHn~0g: ð41Þ

Furthermore, let R be the number of visits to the small set D
prior to and including time tC ,

R~max

fm[Nz : A n1vn2v . . . vnmƒtC[N : XHnk
[D, k[f1, . . . ,mgg:

ð42Þ

Proposition 4 For any input trajectory x(t) and any initial network

state y0[S,

P(R~m D Y (0)~y0,X~fx(t)g)ƒ(1{ H)m{1: ð43Þ

This follows from (25) and (26) which ensure that whenever the

input process visits the small set D, there is also a small probability

that the network is in the resting state.

Proposition 5 There exists a lw1 and a constant Wv? such that,

Vz0[(Q|S) : E ltC D Z(0)~z0½ �vW : ð44Þ

Proof: Let t~(t(m), m[Nz). Choose some l which fulfills

Proposition 3.

E ltC Dz0½ �~
ð

dPt,RDz0
(t,m)lt(m) ð45Þ

~

ð
dPtDz0

(t)

ð
dPX Dz0,t(fx(t)g)

X?
m~1

P(R~mDy0,fx(t)g)lt(m) ð46Þ

ƒ

ð
dPtDz0

(t)
X?
m~1

(1{ H)m{1lt(m) ð47Þ

~

ð
dPtDx0

(t)
X?
m~1

(1{ H)m{1lt(m) ð48Þ

~
X?
m~1

(1{ H)m{1

ð
dP

t(m) Dx0
(t(m)):lt(m) ð49Þ

v

X?
m~1

(1{ H)m{1(1{ H){m=2 ð50Þ

~
X?
m~1

(1{ H)(m=2){1~: Wv?: ð51Þ
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By Proposition 5, Z is exponentially ergodic [107]. This

completes the proof of Lemma 3.
Distribution of trajectories of network states. The

Markov states yM:H(t) are segments of spiking trajectories of

length H. Hence, all statements developed above apply to

convergence of the distribution over these (short) spiking

trajectories. If one is interested in the convergence of longer

trajectories, the simplest option is to choose a larger H, since any

finite H§H is admissible, and all convergence results readily

extend to trajectories of any finite length. A limitation of this

approach is that the quantitative convergence statements will

suffer from making H too large, since convergence rates scale

approximately with EH (and E%1). Hence, in practice, empirical

convergence tests are required to make statements about specific

circuits.

Proof of Theorem 2
If the input sequence is periodic with period L, i.e.

x(t)~x(tzL) for all t§0, then the Markov process Y will be

time-periodic, in the sense that transition kernels are invariant to

shifts which are multiples of the period L:

Ps:tw~PszkL:tw, s§0, tw0, k[N: ð52Þ

This implies the following result, which is a more precise version

of Theorem 2:

Lemma 4 Under periodic input, i.e. x(t)~x(tzL) for all t§0 with

some L§H, the time-periodic Markov process Y with period L has a

periodically stationary distribution ~ppl , to which convergence occurs exponen-

tially fast from any initial state. In particular, for every 0ƒlvL there exists a

unique stationary distribution ~ppl such that,

EPlzLn(y0,:){~pplE ƒ2:(1{ H)
tL
H
s:n

, n[N, ð53Þ

from any initial Markov state y0.

Proof: For each 0ƒlvL there exists a skeleton chain

YlzLn, n[N, with transition probability kernel Pl:L~

PlzL:L~Plz2L:L~ . . . , which is time-homogeneous, irreducible,

and aperiodic and thus has a unique stationary distribution

~ppl . An application of Pl:L, which corresponds to a full

period, decreases the total variation distance to ~ppl by at least

(1{ H)t
L
Hs:

EPl:Lw1{~pplE ~ EPl:Lw1{Pl:L~pplE ð54Þ

ƒ EPl:HtL
H
sw1{Pl:HtL

H
s~pplE ð55Þ

ƒ(1{ H)
tL
H
s:Ew1{~pplE: ð56Þ

The first inequality follows from the fact that applying the

remaining PlzHtL
H
s:L{HtL

H
s

can only further decrease the total

variation distance between the two distributions, according to (23).

The second inequality is due to Lemma 1.

Lemma 4 then follows from recursive application of (54)–(56) for

multiple periods, and choosing a singleton y0 as initial distribution.

In the main text, we use the notation pC,l(yDx) for a phase-

specific stationary distribution, where x denotes a specific periodic

input sequence.

Relation to previous theoretical work
Previous work on the question whether states of spiking neural

networks might converge to a unique stationary distribution had

focused on the case where neuronal integration of incoming spikes

occurs in a linear fashion, i.e., linear subthreshold dynamics

followed by a single output non-linearity [17,18]. In addition these

earlier publications did not allow for the experimentally observed

short term dynamics of synapses. The earlier publication [17] had

studied this question as a special case of the mathematical

framework of non-linear Hawkes processes, a class of mutually

exciting point processes (see also [109]). The authors had arrived

for the more restricted type of neurons which they considered at

exponential convergence guarantees under a similar set of

assumptions as in this article, in particular bounded memory

and bounded instantaneous firing rates (and these results can thus

be seen as a special case of Theorem 1, for the case of constant

external input). [17] also derived convergence results for linearly

integrating neurons with unbounded memory dynamics under a

different set of assumptions, in particular Lipschitz conditions on

the output non-linearity and constraints on the effective connec-

tivity matrix of the network. Whether such alternative set of

assumptions can be found also in the context of non-linear

integration of incoming spikes (needed e.g. for synaptic short-time

dynamics or dendritic non-linearities) remains an open question.

The recent publication [18] also focused on neurons with linear

sub-threshold dynamics followed by an output non-linearity

(termed there non-linear Poisson neurons) with static synapses,

and extended the convergence results of [17] to networks with

Hebbian learning mechanisms. In addition, an important meth-

odological innovation by [18] was the introduction of spike history

states (which are equivalent to the Markov states yM (t) in this

article) which allowed them to study convergence in the

framework of general Markov processes (in contrast to point

processes in [17]). Theorem 1 in this article contains as a special

case the convergence results of [18] for their Model I (non-linear

Poisson neurons in the absence of Hebbian learning). We note that

although [18] focused on neurons with linear sub-threshold

dynamics (and required that firing rates are strictly greater than

0), their method of proof for Model I could be readily extended to

cover also non-linear sub-threshold dynamics to yield the first part

of our Theorem 1 (the case where inputs have constant firing

rates).

We are not aware of previous work that studied convergence in

spiking networks with dynamic synapses, or in the presence of

stochastic or periodic inputs (see the second part of Theorem 1

concerning Markov processes as input, and Theorem 2). We

further note that our method of proof builds on a new and rather

intuitive intermediate result, Lemma 1 (Contraction Lemma),

which may be useful in its own right for two reasons. On the one

hand it provides more direct insight into the mechanisms

responsible for convergence (the contraction between any two

distributions). On the other hand, it holds regardless of the input

trajectory x(t), and hence has in fact an even larger scope of

applicability than Theorem 1 and 2. Hence, Lemma 1 could be,

for example, applied to study non-stationary evolutions of state

distributions in response to arbitrary input trajectories.

Extracting knowledge from internally stored distributions
of network states

A key advantage of sample-based representations of probability

distributions is that probabilities and expected values are in

principle straightforward to estimate: To estimate the expected

value Ep(y)½g(y)� of a function g(y) under a distribution p(y) from a
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number of samples y1, . . . ,yT , simply apply the function to each

sample and compute the time average 1
T

PT
t~1 g(yt). As long as the

samples yt are distributed according to p(y), either independently

drawn, or as the result of an ergodic Markov chain/process with

stationary distribution p(y), this estimate is guaranteed to converge

to the correct value as one increases the number of samples [110],

i.e. limT??
1
T

PT
t~1 g(yt) ~ Ep(y)½g(y)�. Estimates based on a

finite observation window represent an approximation to this

exact value.

Under the mild assumptions of Theorem 1 the dynamics of a

stochastic spiking network in response to an input x are

exponentially ergodic and there exists a unique stationary

distribution pC(yDx), according to which network states y(t) are

distributed. Hence, the expected value EpC (yDx)½g(y)� of any

function g(y) under the stationary distribution pC(yDx) can be

estimated by computing the sample-based time average

1

T

ðT

0

g(y(t))dt: ð57Þ

This approach can also be used to estimate marginal

probabilities, since probabilities can be expressed as expected

values, for example,

pC(y1~1Dx)~EpC (yDx)½d(y1,1)�, or ð58Þ

pC(y1~1,y2~0,y3~1Dx)~EpC (yDx)½d(y1,1):d(y2,0):d(y3,1)�, ð59Þ

where d(a,b)~1 if a~b and 0 otherwise. Hence, in order to

estimate the probability pC(y1~1Dx) it suffices to measure the

relative time the neuron spends in its active state, i.e.
1
T

Ð T

0
d(y1,1)dt. Similarly, to estimate the probability

pC(y1~1,y2~0,y3~1Dx) it is sufficient to keep track of the

relative frequency of the pattern (1,0,1), by computing
1
T

Ð T

0
d(y1,1):d(y2,0):d(y3,1)dt.

Simulations of data-based cortical microcircuit models
All simulations of microcircuit models for Figures 1–4 were

carried out in PCSIM [111]. A time step of 1 ms was chosen

throughout. Further analysis of spike trains was performed in

Python [112].

Stochastic neuron model. A stochastic variation of the leaky

integrate-and-fire model with conductance-based integration of

synaptic inputs was used, for both excitatory and inhibitory

neurons. Sub-threshold dynamics of the membrane potential u(t)
was defined according to a standard leaky integration model with

conductance-based synapses [113], using passive membrane

parameters R~60 MV,C~0:35 nF and a resting potential

Vresting~{60 mV. At simulation start, initial potentials were

randomly chosen from ½{65,{55�mV. Reversal potentials for

excitatory synapses and inhibitory synapses were set to 0 mV and

{75 mV, respectively. Neuronal noise was modeled by a voltage-

dependent instantaneous probability of firing (instead of a fixed

threshold) [48],

p(neuron spikes in ½t,tzdt))

dt
~

1

ts

e(u(t){q)=du, ð60Þ

for dt?0, with parameters ts~19 ms,du~4 mV taken from [48].

In contrast to [48] we used a non-adaptive threshold,

q~{45 mV. After a spike, a neuron enters an absolute refractory

period of 3 ms. Thereafter, the membrane is reset to the resting

potential and leaky integration is continued. Altogether, the

resulting neuronal spiking mechanism is consistent with the

theoretical noise model I described in equation (4).

Note that Theorem 1 also holds for substantially more complex

multi-compartment neuron models incorporating, for example,

data on signal integration in the dendritic tuft of pyramidal cells

[114,115], and data on Ca-spikes in pyramidal cells on layer 5

[116], but we have not yet integrated these into the simulated

microcircuit model because of a lack of coherent quantitative data

for all the neuron types involved.

Synaptic short-term plasticity. The short-term dynamics

of synapses in all data-based simulations was modeled according to

[47,117]. The model predicts that at a synapse with ‘‘weight’’ w

the amplitude Ak of the kth spike in a spike train with interspike

intervals D1,D2,::,Dk{1 is given by,

Ak~w:uk
:Rk,

uk~Uzuk{1(1{U) exp{Dk{1=F , ð61Þ

Rk~1z(Rk{1{uk{1Rk{1{1) exp{Dk{1=D ,

where the hidden dynamic variables uk[½0,1� and Rk[½0,1� are

initialized for the first spike to u1~U and R1~1. The parameters

U , D and F represent the utilization of the synaptic efficacy of the

first spike after a resting state, the recovery and the facilitation time

constants, respectively. These parameters were set based on

experimental data on short-term plasticity in dependence of pre-

and post-synaptic neuron (excitatory or inhibitory) as in [30] (see

in particular Table 1 in this reference), by randomly drawing for

each neuron values for U , D, and F from corresponding data-

based Gaussian distributions.

Connectivity and synaptic parameters. Synaptic param-

eters and connectivity rules for the data-based cortical column

model were taken from [30], see Figure 1A. In particular, we

adopted from [30] the connection probabilities and transmission

delays for each type of connection (EE, EI, IE, II) and each cortical

layer ([30], Figure 1), as well as short-term plasticity parameters.

Furthermore, synaptic efficacies of individual synapses were drawn

from Gamma distributions with data-based means and variances

for each type of connection (EE, EI, IE, II) taken from [30]. Two

input streams were connected to the microcircuit, each consisting

of 40 input neurons. In contrast to [30] we used rate-based Poisson

input neurons instead of injecting ‘‘frozen’’ spike patterns.

Background synaptic inputs were emulated as in [30] via

background input currents to each neuron, with conductances

modeled according to [118]. To adjust connectivity for cortical

microcircuit models of different sizes, we also adopted the method

proposed by [30], in which recurrent weights are scaled inversely

proportional to network size.

We tested the validity of our cortical microcircuit model by

comparing the average activity of different layers (see Figure 2A)

under various conditions against the values reported by [30]. We

confirmed that all layers exhibited very similar average activity to

[30] under all considered conditions.

Details to small microcircuit model in Figure 1
The small cortical microcircuit model of Figure 1B was

constructed based on the cortical column template of [30]:

Stochastic Computations in Cortical Microcircuits
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Synaptic connections between neurons and their weights were

chosen to approximately reflect connection probabilities and mean

synaptic strengths of the cortical column template [30]. Due to the

very small size of this network, the resulting dynamics was not

immediately satisfactory (for example, the influence of inputs on

Layer 5 neurons was too weak). To shift the circuit into a more

responsive regime, we manually adjusted a few synaptic weights

and neuronal excitabilities. In particular, we injected small

constant currents into some of the neurons to modulate their

intrinsic excitability. Furthermore, to increase activity and

correlations between highlighted neurons 2, 7 and 8, we increased

synaptic weights 8?2 and 8?7 by factors 5 and 10, respectively.

To set the initial Markov state of the network, preparatory input

was shown for 1 s before the actual start of the simulation. Two

different preparatory inputs were injected to set the two initial

states considered in Figure 1F–H (first: i1 at 100 Hz, i2 at 100 Hz,

second: both i1 and i2 at 0 Hz). To reproduce the same initial

Markov state in multiple trials (for example the two trials shown in

Figure 1F), the same random seed was used during the preparatory

phase for these trials. The random seed was then reinitialized at

t~0 to different values for each trial.

Estimates of required computation time
Gelman-Rubin univariate and multivariate analysis. Va-

rious methods have been developed for measuring convergence speed

to a stationary distribution in the context of Markov chain Monte

Carlo sampling [56,119,120]. The Gelman Rubin diagnostic, which

we adopted in this article, is one of the most widely used methods

[55,57,58,119], besides other popular methods such as the diagnostics

by Raftery and Lewis [121] and by Geweke [122]. We remark that the

consensus in the literature is that no single method is perfect in general.

Some attractive properties of the Gelman Rubin method are general

applicability to any MCMC system (some other methods only work,

for example, in the context of Gibbs sampling), ease of use, ease of

implementation, computational efficiency, and the fact that results are

quantitative (in contrast to graphical diagnostics) [56,119].

The Gelman-Rubin convergence diagnostic [55] takes as input

samples from m different runs (trials/chains/sequences) produced

by the same system, started from different initial states. The

method was originally developed for discrete-time systems in the

context of Markov Chain Monte Carlo sampling. Our simulations

use a time step of 1 ms, so we simply treat each simulation step as

one discrete time step in a Markov chain. The Gelman-Rubin

method produces as output the potential scale reduction factor

R̂R(t) as a function of time t. The scale reduction factor R̂R(t) is an

indicator for whether or not the system has converged at time t.
High values &1 indicate that more time is needed until

convergence, while values close to 1 suggest that convergence

has (almost) taken place.

For computing the scale reduction factor R̂R(t) at time t, samples

from the period ½t,2t� from each run of the network are taken into

account. In the univariate case one focuses on a particular single

variable (such as the marginal simple state of a single neuron, or

the simple state of a ‘‘random readout’’ neuron as in the solid lines

of Figure 2G). Let n be the number of samples obtained from the

period ½t,2t� from each of the simulations. Then one defines

R̂R(t)~
n{1

n
z

mz1

mn

B(t)

W (t)
, ð62Þ

where B(t) and W (t) are between and within-sequence variances,

respectively, which can be computed as described in [55], based

on samples taken from the time period ½t,2t�. In the rare event of

W~0, which happens for example if a neuron never fires and

hence its state is constant across all runs, we set R̂R to 1.

An unfortunate source of confusion is the fact that Gelman and

Rubin [55] originally introduced R̂R in its ‘‘variance’’ form

equivalent to equation (62), but later in [57,60] altered this

definition and defined R̂R as the square root of (62). This issue is

particularly critical when considering threshold values for R̂R: a

threshold of 1:2 was suggested in the context of the original

definition [59]. Later, a typical threshold of 1:1 was suggested, but

this lower threshold applied to the modified definition [57,60].

Squaring this apparently lower threshold yields again a typical

threshold of approximately 1:2.

In the multivariate case (e.g. when analyzing convergence of the

vector-valued simple state of a small subset of neurons as in the

dotted lines of Figure 2G) one takes vector-valued (d-dimensional)

samples, and computes the multivariate potential scale reduction

factor R̂Rd (t) according to:

R̂Rd (t)~
n{1

n
z

mz1

m
l1(t), ð63Þ

where l1(t) is the largest eigenvalue of W (t){1B(t)=n, and W (t)
and B(t) denote within and between sequence covariance matrix

estimates (see [123] for details).

Convergence analysis for cortical microcircuit

models. Gelman-Rubin values were calculated based on 100
runs, where the duration of each run was 10 s of biological time.

We tried also much longer simulations of 100 s but did not notice

any sign of non-convergent behavior. A random initial state was

set in each run by showing random input for 1 s before the start of

the actual simulation. This initial random input was fed into the

network via the two regular input streams (40 neurons each), by

assigning to each input neuron a random rate drawn uniformly

from a 0{40 Hz range. Convergence analysis of marginals was

performed by applying univariate analysis to single components of

the simple state yS , with t~10 ms. From individual marginal

convergence values, mean and worst marginal convergence (as in

Figure 2E,F) were derived by taking at time t the mean/max over

all individual R̂R-values at time t. For pairwise spike coincidences

(see Figure 2D), we analyzed samples of the product of simple

states of two neurons (the product equals 1 only if both neurons

spiked within the last 10 ms).

Random readouts for Figure 2G were implemented by adding

an additional excitatory observer neuron to the network which

receives synaptic inputs from a random subset of 500 network

neurons (we kept this number 500 fixed across simulations with

different network sizes to allow a fair comparison). The number of

randomly chosen neurons from each of the pools is given in

Table 1.

Synapses onto the readout neuron were created in a similar

manner as connections within the cortical column model: short-

term plasticity parameters were set depending on the type of

connection (EE or IE) according to [30]. The weights for EE and

IE connections were randomly chosen from a Gamma distribution

with mean 2 nS and scale parameter 0:7, and mean 5 nS and scale

parameter 0:7, respectively. Gelman-Rubin convergence of

readouts was then computed as for the marginal case.

Convergence analysis of vector-valued simple states of subsets of

neurons (see Figure 2G) was performed by applying multivariate

analysis to randomly chosen subnetworks of the cortical column.

In particular, we randomly drew 5 neurons from each of the 6

pools, yielding a subnetwork of 30 neurons, and calculated R̂R30(t).
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Impact of different dynamic regimes on the convergence
time

In Figure 3 we compared convergence times in four different

neural circuits. The first circuit was identical to the small cortical

microcircuit from Figure 1. For the remaining three circuits, the

same stochastic point neurons and conductance-based dynamic

synapses with delays were used as for the data-based cortical

microcircuit model. Dynamic synaptic parameters were set to the

corresponding mean values of parameters used in the cortical

column model. Synaptic delays of 1 ms were used for all networks,

except for the network with sequential structure (Figure 3C) where

delays were 3 ms. To modulate the intrinsic excitability of neurons

we injected small currents to each neuron. The strengths of

injected currents and connections were tuned for each network

until the desired network activity was achieved. Synaptic

background inputs were injected as in the cortical microcircuit

model. To set different initial states (needed for Gelman Rubin

analysis), during a preparatory phase of 1 s we injected into each

neuron a random current chosen from ½{2,2� nA. These small

random input currents were strong enough to yield sufficiently

diverse initial states. Gelman-Rubin values were then calculated

based on 100 runs, where the duration of each run (after the

preparatory phase) was 20 s of biological time. Convergence

analysis was performed on marginals (individual simple states with

t~10 ms). Mean and worst marginals were computed as

described in the previous section.

Below are additional details to the circuits used for Figure 3B–D:

The sparsely active network of Figure 3B comprises one excitatory (E)

and one inhibitory (I) population (each 10 neurons). Connections

between neurons were drawn randomly according to the following

set of connection probabilities: EE = 0.1, EI = 0.1, II = 0.9, IE = 0.9.

The network with sequential structure of Figure 3C consists of two

interconnected subnetworks where each one of them produces a

stereotypical trajectory. Each subnetwork consists of a trigger

neuron, a subsequent chain of neurons, and a pool of inhibitory

neurons. Shown in Figure 3C are only the excitatory chain neurons

from each subnetwork (neurons 1–15: first subnetwork; neurons 16–

30: second subnetwork). Each excitatory neuron in the chain

projects to all other neurons in the same chain with synaptic

strengths decreasing with distance according to exp({distance=td )
where td~0:01 applies to the forward direction in the chain and

td~0:1 to the backward direction. The trigger neuron projects

(forward) to the chain in the same fashion with td~1. All neurons in

the chain project to the inhibitory pool, and all neurons in the

inhibitory pool project back to the trigger neuron and to the chain.

Finally, the two subnetworks are combined such that the inhibitory

pool of one subnetwork projects to the trigger neuron and the chain

of the other subnetwork, and vice versa. This ensures that only one

of the two subnetworks can be active at a time (competition between

two trajectories). The bistable network of Figure 3D consists of two

populations which strongly inhibit each other (each population

comprising 10 neurons).

Distributions of network states in the presence of
periodic network input

The theoretical proof for Theorem 2 can be found after the

proof of Theorem 1 above. For Figure 4F, a single long simulation

(100:000 s) of the bi-stable network in Figure 4E was carried out.

Each of the two pools was defined active at time t if more than two

neurons from the pool had an active simple state at time t (with

t~10 ms). A transition was defined as the succession of a period in

which one pool was active and the other pool inactive by a period

in which the other became active and the first pool turned inactive.

Between those two periods it typically occurs that either both pools

are active or both are inactive for some short time. The exact time

(and phase within the current cycle) of each transition was defined

as the point in the middle of this intermediate period.

Solving constraint satisfaction problems in networks of
spiking neurons

Formulation of Sudoku as a constraint satisfaction

problem. A constraint satisfaction problem consists of a set of

variables defined on some domain and a set of constraints, which

limit the space of admissible variable assignments. A solution to a

problem consists of an assignment to each variable such that all

constraints are met. To formulate Sudoku as a constraint

satisfaction problem, we define for each of the 81 fields (from a

standard 969 grid), which has to be filled with a digit from 1 to 9,

a set of 9 binary variables (taking values in f0,1g) [124]. Each of

these binary variables votes for exactly one digit in a field. The

rules of the Sudoku game impose constraints on groups of these

variables, which can be classified into the following three types.

Given number constraints: The given numbers of a puzzle are fixed.

Hence, the binary variables for the given fields are constrained to

fixed values, for example, a given value 2 corresponds to fixed

binary values (0,1,0, . . . ,0).

Unique field constraints: In a correct solution, there must be only

one digit active in each field. Hence in each field, exactly one of

the 9 associated binary variables must be 1, and all others must be

0 (equivalent to stating that the sum over these binary variables

must equal 1).

Unique group constraints: There are three types of groups: rows,

columns and 363 subgrids. There are 9 row groups, 9 column

groups, and 9 subgrid groups. In any of these groups, each digit

1, . . . ,9 must appear only once. Hence, in each group, all binary

variables voting for the same digit i must sum to 1.

Network architecture for solving Sudoku. Sudoku can be

implemented in a spiking neural network by creating for each of

the 9 binary variables in each Sudoku field a local group of ngroup

pyramidal cells. Whenever one of these pyramidal cells fires, the

corresponding binary variable is set to 1 for a short period

t~20 ms. The binary variable is defined 0 only if no neuron in its

associated group fired within the last t~20 ms. This mapping

allows one to readout the current (tentative) solution represented

by the network at any time t. The tentative solution is correct only

if all constraints are met. For all simulations we used ngroup~4,

resulting in a total 81 � 9 � 4~2914 pyramidal cells. Constraints

among Sudoku variables can be implemented via di-synaptic

inhibition between the groups of pyramidal cells as detailed below.

Given number constraints are implemented by providing strong

positive input currents selectively to those neurons which code for

the given numbers, and negative currents to neurons coding for

wrong digits in a given field. Unique field constraints are implemented

by forming a winner-take-all (WTA) circuit among all 9 � 4~36
neurons associated with the same Sudoku field. A WTA circuit is

modeled by a single inhibitory neuron which is reciprocally

Table 1. Number of randomly chosen neurons per pool for
readout neuron in Figure 2G.

E I

L2/3 120 30

L4 80 20

L5 200 50

doi:10.1371/journal.pcbi.1003311.t001
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connected to all 36 pyramidal cells. To reduce the probability that

no pyramidal cell fires (which would violate the unique field

constraint), thresholds of pyramidal cells are set to low values (see

next section for details). Unique group constraints are implemented by

a WTA circuit in which all neurons in a group which code for the

same digit participate. In summary, there are 81 unique field

constraints and 27 � 9~243 unique group constraints (in each

group there is a constraint for each digit), yielding a total of 324
WTA circuits. These WTA circuits are partially overlapping, in

the sense that each pyramidal cell participates in 4 of these WTA

circuits (one for the unique value constraint in its field, and three

for the unique group constraints in its row/column/subgrid).

Stochastic spike generation in both excitatory and inhibitory

neurons is implemented consistent with the theoretical noise model

I (see next section for details). The network thus fulfills all

theoretical conditions for Theorem 1, and is guaranteed to have a

unique stationary distribution pC(yDx) of network states, to which

it converges exponentially fast. This landscape will have automat-

ically peaks at those states of the network which fulfill most of the

game constraints, since each of the WTA circuits ensures that

invalid configurations with respect to that constraint are unlikely to

occur. Any specific Sudoku problem can be set by providing input

x to the network in the form of strong currents to those neurons

which correspond to the given values. This automatically modifies

the landscape of the stationary distribution pC(yDx) such that only

(or predominantly) solutions consistent with the givens are

generated. Finally, due to neuronal noise the network can quickly

probe different peaks in the landscape (different promising solution

candidates) and escape them equally fast. Importantly, this process

may occur at different places in the Sudoku puzzle simultaneously.

Hence, one can interpret the network dynamics also as a highly

parallel stochastic search algorithm.
Details to implementation and simulations for

Figure 5. Simulations for Figure 5 were performed in

NEVESIM, an event-based simulator for networks of spiking

neurons developed in C++ with a Python Interface [125]. The

puzzle in Figure 5A was generated and rated ‘‘hard’’ by ‘‘Sudoku

Solutions’’ [126]. Spike generation is modeled according to

equation (60), with parameters du~0:5, ts~20 ms. The stochastic

threshold q was set to {1 and 10 for excitatory and inhibitory

neurons, respectively. An absolute refractory period of 3 ms was

chosen for pyramidal cells. To maximize the speed up of event-

based simulations, PSPs were modeled in a simplified manner as

current-based rectangular pulses of length 20 ms (in contrast to the

more complex conductance based integration of synaptic inputs

used for cortical microcircuit models).

WTA circuits were formed by reciprocally connecting a single

inhibitory neuron to all participating pyramidal cells. The single

inhibitory neuron was modeled to mimic the response of a

population of inhibitory neurons (i.e. strong inhibition for a

prolonged amount of time), using an absolute refractory period of

20 ms, and strong bidirectional connections from and to excitatory

neurons (synaptic weights 100 and {100, respectively).

To set a particular puzzle, given numbers were fixed by

providing strong input currents to the corresponding pyramidal

cells. In particular, neurons coding for the given numbers in a

Sudoku field received a constant positive input current (a constant

input z9 on the membrane potential). Neurons coding for

conflicting digits in given Sudoku fields received a constant

negative input current of strength {11.

A final practical remark concerns the number of neurons coding

for each binary variable, ngroup~4. We found that networks with

ngroupw1 have a number of attractive properties compared to

networks with single neuron coding. In particular firing rates of

individual neurons can be lower (for ngroup~1 a pyramidal cell

would need to constantly burst to indicate a steady active state).

Also, synaptic efficacies among neurons can be made weaker, and

overall spike response patterns appear more biologically plausible.

In view of a potential implementation in analog neuromorphic

hardware, population coded variable assignments are also less

prone to single unit failures or device mismatch.
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