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Abstract

Amino acid covariation, where the identities of amino acids at different sequence positions are correlated, is a hallmark of
naturally occurring proteins. This covariation can arise from multiple factors, including selective pressures for maintaining
protein structure, requirements imposed by a specific function, or from phylogenetic sampling bias. Here we employed
flexible backbone computational protein design to quantify the extent to which protein structure has constrained amino
acid covariation for 40 diverse protein domains. We find significant similarities between the amino acid covariation in
alignments of natural protein sequences and sequences optimized for their structures by computational protein design
methods. These results indicate that the structural constraints imposed by protein architecture play a dominant role in
shaping amino acid covariation and that computational protein design methods can capture these effects. We also find that
the similarity between natural and designed covariation is sensitive to the magnitude and mechanism of backbone
flexibility used in computational protein design. Our results thus highlight the necessity of including backbone flexibility to
correctly model precise details of correlated amino acid changes and give insights into the pressures underlying these
correlations.
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Introduction

Evolutionary selective pressures on protein structure and

function have shaped the sequences of today’s naturally occurring

proteins [1–3]. As a result of these pressures, sequences of natural

proteins are close to optimal for their structures [4]. Natural

protein sequences therefore provide an excellent test for compu-

tational protein design methods, where the goal is to predict

protein sequences that are optimal for a desired protein structure

and function [5]. It is often assumed that given a natural

polypeptide backbone conformation, an accurate protein design

algorithm should be able to predict sequences that are similar to

the natural protein sequence. This test is commonly referred to as

native sequence recovery [4] and it has been used extensively to

evaluate various protein design sampling methods and energy

functions [6–8].

Beyond simply recovering the native sequence, a further

challenge in computational protein design is to predict the set of

tolerated sequences that are compatible with a given protein fold

and function [9–13]. Predicting sequence tolerance is important

for applications such as characterizing mutational robustness

[14,15], predicting the specificity of molecular interactions [16–

20], and designing libraries of proteins with altered functions

[21,22]. Recent methods developed for this goal involve generat-

ing an ensemble of backbone structures similar to the native

structure and then designing low energy sequences for the different

structures in the ensemble [9,16,19,23–25]. These flexible back-

bone design methods can produce sequences that are highly

divergent from the native sequence but may still fold into the desired

structure, which makes simple native sequence recovery a poor

indicator for the accuracy of these methods. A more useful com-

putational test of these approaches involves comparing designed

sequences with a set of reference sequences, either naturally

occurring or experimentally derived, that share the desired protein

fold. This comparison can be based on sequence profile similarity,

which involves quantifying the difference between the frequencies of

observing each amino acid at corresponding positions in the

designed and reference sequences [16,17,19].

While high similarity between designed and reference sequence

profiles can be informative to gauge the accuracy of a protein

design method, it does not guarantee that the method will predict

sequences that fold into the desired structure. This is because

sequence profile comparisons evaluate amino acid positions

independently from each other and therefore ignore the details

of amino acid interactions that are critical for protein structure

and function. Naturally occurring protein structures are formed

cooperatively and each amino acid can physically interact with

multiple neighboring amino acids. Evolutionary selective pressures

have acted upon these interactions, resulting in the patterns of

amino acid covariation that can be observed within today’s

naturally occurring protein families. Accordingly, previous studies

have used information theoretic methods to detect amino acid
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covariation in multiple sequence alignments of many different

protein families [26–28] and have used contact prediction based

on covariation to dramatically improve the accuracy of protein

structure modeling [29].

Despite the clear occurrence of amino acid covariation in

natural protein sequences, the extent to which different selective

pressures have shaped amino acid covariation in diverse protein

families is unknown. Additionally, it is difficult to dissect to what

extent phylogenetic bias has influenced the observations of amino

acid covariation. Previous work has indicated that networks of

covarying amino acids play a role in allosterically linking distant

functional sites, suggesting that amino acid covariation is driven by

protein functional constraints [30,31]. However, other studies

have shown in two test cases that computational protein design can

recapitulate naturally occurring covariation in the cores of SH3

domains [4,13,32] and for two-component signaling systems [33].

These results indicate that constraints imposed by protein

structure have played a role in producing the covariation in the

studied examples, but it has not yet been shown that these

observations are general.

In this paper, we use computational protein design to measure

the extent to which protein structure has shaped amino acid

covariation in a diverse set of 40 protein domains. Since

computational protein design predicts sequences that are energet-

ically optimal based on protein structure alone, we expect that

pairs of amino acids that highly covary in both designed and

natural sequences to have likely covaried to maintain protein

structure. We find significant overlap in the sets of highly

covarying amino acid pairs between designed and natural

sequences for all 40 domains examined, suggesting that mainte-

nance of protein structure is a dominant selective pressure that

constrains the evolution of amino acid interactions in proteins.

Our analysis furthermore quantifies the extent to which different

types of interactions explain the observed covariation. Finally, we

demonstrate the utility of amino acid covariation recapitulation as

a sensitive test for evaluating different protein design methods. We

find that flexible backbone design significantly improves covari-

ation recapitulation relative to fixed backbone design and that

recapitulation of amino acid covariation is exquisitely sensitive to

both the magnitude and mechanism of backbone flexibility. Taken

together, these results provide fundamental insights into the

physical nature of amino acid co-evolution and, more practically,

provide a new benchmark that may help improve the accuracy of

computational protein design methods.

Results

Computational protein design recapitulates natural
amino acid covariation

To compare amino acid covariation in natural and predicted

designed protein sequences, we selected 40 protein domains that

were diverse with respect to their secondary structure composition

and fold class (Table 1). We then quantified natural amino acid

covariation for each domain by creating a multiple sequence

alignment for the domain, followed by computing covariation

between every pair of columns in the multiple sequence alignment

by using a mutual information based method [28] (see Methods).

Pairs of amino acid positions with a covariation score that is two

standard deviations above the mean or greater were considered to

be highly covarying pairs.

We predicted designed protein sequences for each of the 40

domains using RosettaDesign [4,34]. We first used the standard

RosettaDesign fixed backbone protocol [34], which takes a crystal

structure as input and runs Monte Carlo simulated annealing, to

predict 500 designed sequences for each domain structure. We

then quantified amino acid covariation in the designed sequences

and compared it to natural amino acid covariation for each

domain. We calculated the similarity between designed and

natural covariation based on the percent overlap of the highly

covarying pairs in each set (see Methods). We found this overlap to

be significant (p,0.001) for all 40 domains (Table S1).

Magnitude of structural variation affects covariation
similarity

Given the observation that fixed backbone protein design can

recapitulate a significant fraction of naturally covarying amino

acid pairs, we next aimed to understand how incorporating

backbone flexibility into the design protocol affects this recapit-

ulation. To accomplish this, we generated a conformational

ensemble of 500 backbone structures for each domain using the

‘‘backrub’’ method [35] in Rosetta [36], which iteratively applies

local backbone perturbations throughout the protein structure

combined with adjustments in side-chain conformations. We then

used RosettaDesign to predict a low energy sequence for each

backbone structure in the ensemble, resulting in 500 designed

sequences. Figure 1 shows a flow chart of this approach applied to

an SH3 domain.

To investigate the effect of the magnitude of backbone flexibility

in the design protocol, we varied the temperature parameter in the

Monte Carlo simulations used in the backrub protocol to generate

conformational ensembles with different amounts of structural

variation (Figure 2A). We designed sequences for each ensemble

(kT = 0.3, 0.6, 0.9, 1.2, 1.8, 2.4) and quantified similarity to

natural covariation for each set of sequences. We compared these

results with sequences designed using the fixed backbone design

protocol described above (‘‘Fixed’’). Figure 2B shows a significant

increase in covariation similarity for the flexible backbone

simulations relative to the fixed backbone simulation. Moreover,

the distributions of covariation similarity for the 40 domains show

Author Summary

Proteins generally fold into specific three-dimensional
structures to perform their cellular functions, and the
presence of misfolded proteins is often deleterious for
cellular and organismal fitness. For these reasons, mainte-
nance of protein structure is thought to be one of the
major fitness pressures acting on proteins. Consequently,
the sequences of today’s naturally occurring proteins
contain signatures reflecting the constraints imposed by
protein structure. Here we test the ability of computational
protein design methods to recapitulate and explain these
signatures. We focus on the physical basis of evolutionary
pressures that act on interactions between amino acids in
folded proteins, which are critical in determining protein
structure and function. Such pressures can be observed
from the appearance of amino acid covariation, where the
amino acids at certain positions in protein sequences are
correlated with each other. We find similar patterns of
amino acid covariation in natural sequences and sequenc-
es optimized for their structures using computational
protein design, demonstrating the importance of structur-
al constraints in protein molecular evolution and providing
insights into the structural mechanisms leading to covari-
ation. In addition, these results characterize the ability of
computational methods to model the precise details of
correlated amino acid changes, which is critical for
engineering new proteins with useful functions beyond
those seen in nature.

Protein Design Models Amino Acid Covariation

PLOS Computational Biology | www.ploscompbiol.org 2 November 2013 | Volume 9 | Issue 11 | e1003313



that there is an optimal degree of structural variation, as low-

temperature and high-temperature simulations perform signifi-

cantly worse than mid-temperature simulations (Table S2). We

observed this same trend when we repeated this analysis using a

different method for quantifying covariation [37] (Figure S1),

suggesting that our results are not dependent on the method used

to quantify covariation.

To better understand the basis of this trend, we examined

several other sequence and structural characteristics: sequence

recovery, sequence profile similarity, sequence entropy and

structural variation (see Methods). The resulting distributions for

these characteristics are shown in Figure 2C. Sequence entropy

and sequence profile similarity showed similar trends to covari-

ation similarity (sequence entropy is most similar to natural

Table 1. Protein domains used in this study.

Pfam ID Pfam Name Total # of sequences PDB ID Amino acid length SCOP class

PF00226 DnaJ 19122 2O37 60 a

PF00249 Myb_DNA-binding 9398 1GUU 47 a

PF00439 Bromodomain 4483 3JVL 89 a

PF00486 Trans_reg_C 35180 2ZXJ 77 a

PF00550 PP-binding 28748 1T8K 68 a

PF01029 NusB 5275 1TZV 127 a

PF01035 DNA_binding_1 5230 3GVA 87 a

PF01627 Hpt 7684 2A0B 88 a

PF12844 HTH_19 9622 3FYM 70 a

PF00072 Response_reg 103232 1MVO 111 a/b

PF00085 Thioredoxin 16281 1FB0 104 a/b

PF00581 Rhodanese 19885 1GN0 92 a/b

PF00582 Usp 15546 2Z3V 137 a/b

PF01451 LMWPc 5201 1JL3 130 a/b

PF00013 KH_1 11484 1WVN 63 a+b

PF00076 RRM_1 31837 2X1B 71 a+b

PF00111 Fer2 11941 1CZP 76 a+b

PF00179 UQ_con 6107 1Z2U 138 a+b

PF00240 Ubiquitin 8316 2BWF 69 a+b

PF00254 FKBP_C 11034 2PPN 95 a+b

PF00327 Ribosomal_L30 3324 1BXY 52 a+b

PF00381 PTS-HPr 5246 1PTF 84 a+b

PF00542 Ribosomal_L12 3474 1CTF 68 a+b

PF00691 OmpA 11815 1OAP 96 a+b

PF00708 Acylphosphatase 3057 3BR8 89 a+b

PF04002 RadC 3253 2QLC 123 a+b

PF00018 SH3_1 8993 2O9S 48 b

PF00041 Fn3 26172 1TEN 81 b

PF00168 C2 11697 3F04 87 b

PF00169 PH 8137 1UNQ 103 b

PF00313 CSD 9848 3I2Z 67 b

PF00355 Rieske 9153 1FQT 95 b

PF00364 Biotin_lipoyl 16853 2EVB 68 b

PF00498 FHA 7247 3GQS 67 b

PF00595 PDZ 12568 2H3L 87 b

PF01833 TIG 4814 3MQI 83 b

PF02823 ATP-synt_DE_N 3782 1AQT 80 b

PF07679 I-set 29272 1U2H 91 b

PF07686 V-set 9255 2PND 116 b

PF08666 SAF 3256 1UCS 60 b

Forty diverse protein domains were selected from Pfam. This table contains the Pfam information for each domain, the total number of sequences assigned to this
domain according to Pfam, the PDB ID of the domain crystal structure used for design, the domain length and the SCOP classification.
doi:10.1371/journal.pcbi.1003313.t001
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Figure 1. Flow chart of the computational strategy to compare natural and designed amino acid covariation. For each domain family
(the SH3 domain in the example), a crystal structure of the domain is obtained from the Protein Data Bank. This structure is used as input to a
protocol that generates a conformational ensemble of protein structures. Each structure in this ensemble is then input to a protocol that designs a
low energy sequence consistent with the structure. Amino acid covariation is calculated for every pair of positions in the designed sequences, and
the designed covariation is compared to the covariation seen among naturally occurring sequences with the same protein domain.
doi:10.1371/journal.pcbi.1003313.g001
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Figure 2. Effects of the magnitude of structural variation on sequence properties. A) Representative structures of conformational
ensembles generated using backrub Monte Carlo simulations with different temperature parameters (shown for an SH3 domain). B) Box plot showing
the distributions of covariation similarity values between natural sequences and sequences designed using conformational ensembles generated
with different temperature parameters (including ‘‘Fixed’’ backbone design sequences). Each distribution contains 40 covariation similarity values,
one for each of the 40 protein domains. For each box plot in this study, the top and bottom whiskers denote the maximum and minimum values,
respectively. The top and bottom of the box indicates the 75th and 25th percentiles, respectively, and the bold line denotes the 50th percentile. C)
Box plots showing the distributions of sequence and structural characteristics for each temperature. The sequence profile similarity, sequence

Protein Design Models Amino Acid Covariation
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sequences and profile similarity is highest at 0.9 kT), suggesting

that backbone flexibility allows for sampling diverse sequences

with native-like properties. These trends are consistent with the

observation that sequence recovery decreases with increasing

amounts of backbone flexibility. As diversity within a set of

sequences increases, those sequences tend to become more

dissimilar to any individual sequence, including the native

sequence of the crystal structure used as input for design.

Structural variation in the 0.3, 0.6, 0.9 and 1.2 kT simulations is

less than the structural variation among naturally occurring

protein structures with these domains, which could be due to the

fact that natural proteins use additional mechanisms of generating

structural variation that are not being modeled, such as the

insertion or deletion of amino acids in loop regions. Taken

together, these results suggest that a moderate degree of backbone

flexibility allows for the accommodation of sequences that differ

from the native sequence and yet are similar to naturally occurring

sequences with respect to their sequence profiles, sequence

entropies and patterns of amino acid covariation.

Mechanism of structural variation affects covariation
similarity

Next we examined whether or not these results were specific to

the method used to generate the conformational ensembles for

design. We tested two other Monte Carlo based methods that

iteratively perform perturbations to the backbone. One method

performed Kinematic Closure (‘‘KIC’’), which involves random-

izing phi/psi torsions in a local region of the backbone while

keeping the rest of the backbone fixed, thus introducing a chain

break, and then using inverse kinematics to solve for the torsions

that will close the chain [38]. The other method performs

potentially non-local moves by perturbing the phi and psi torsions

of residues by a random small angle (‘‘Small’’) [39]. We ran both

of these methods for the same number of trials and for the same

values of kT as the backrub protocol. The resulting distributions of

covariation similarity show the same trend we observed previously

with the backrub simulations, where mid-range temperature

simulations result in an optimal degree of covariation similarity

(Figure S2).

While the optimal simulation temperature parameter was

comparable for each of the methods tested, the methods achieved

a different optimum level of covariation similarity with the natural

sequences. We found that the two local move simulations (KIC

and Backrub) outperformed the non-local move simulation

(Small). To test if this observation holds true more generally, we

tested two additional methods of generating conformational

ensembles that make non-local moves. These methods included

FastRelax (‘‘Relax’’), which consists of multiple rounds of side-

chain repacking and all-atom minimization while increasing the

weight of the repulsive term in the Lennard–Jones (LJ) potential

from 2% to 100% of its default value, and AbInitioRelax

(‘‘AbRelax’’), which performs fragment-based ab initio structure

prediction followed by FastRelax [40]. As an additional control,

we also designed sequences using a fixed backbone structure with

an energy function that dampens the weight of the repulsive LJ

term (‘‘Soft’’). The resulting covariation similarity distributions

show that recapitulation of natural amino acid covariation is

sensitive to the method used to generate conformational ensembles

(Figure 3A). Both local move simulations (KIC, Backrub) achieved

higher median covariation similarities than the non-local move

simulations (Small, AbRelax, Relax) and the fixed backbone

simulations (Fixed, Soft) (see Table S3 for p-values).

We also evaluated each of these methods using the other metrics

described above: native sequence recovery, sequence profile

similarity, sequence entropy and structural variation (Figure 3B).

Unexpectedly, the AbRelax method, which resulted in conforma-

tional ensembles with the greatest structural variation, achieved

the highest sequence profile similarity with the natural sequences

of any method tested. A possible explanation for this behavior is

that local interactions are preserved in AbRelax generated

structures, but the overall topology of the protein is incorrect.

To test this hypothesis, we examined covariation similarity in the

AbRelax sequences by splitting all covarying pairs into the

following two sets: pairs separated by fewer than 10 residues in

sequence (‘‘Near’’) and pairs separated by greater than 10 residues

in sequence (‘‘Far’’). This analysis revealed that whereas AbRelax

sequences have relatively high covariation similarity with natural

sequences for pairs close in sequence, they have low covariation

similarity for pairs that are distant in sequence (Figure 3C). In

contrast, covariation similarity for ‘‘near’’ and ‘‘far’’ pairs were

similar for simulations using backrub ensembles. These results

suggest that AbRelax can model local interactions within a

secondary structural element or between adjacent secondary

structures, but it does not correctly capture non-local interactions

that are likely critical for achieving a cooperatively folded, stable

tertiary structure. This observation demonstrates the importance

of using amino acid covariation to evaluate the accuracy of protein

design methods, since it is possible to obtain deceptively high

sequence profile similarity scores with highly divergent tertiary

structures as long as local interactions are maintained. Of all the

flexible backbone design methods tested, Backrub, kT = 0.9

resulted in sequences most similar to the natural sequences with

respect to covariation similarity and sequence profile similarity.

Using the assumption that a method that gives higher similarity to

natural sequences will better capture the mechanisms underlying

covariation, we used Backrub, kT = 0.9 as the representative

flexible backbone sequences for the remainder of the study.

Backbone flexibility allows for amino acid interactions
that fixed backbones cannot accommodate

To understand how backbone flexibility influences the extent of

covariation similarity between designed and natural sequences, we

identified all pairs of amino acid positions that highly covaried in

both the natural sequences and a set of flexible backbone

sequences (Backrub, kT = 0.9) but did not highly covary in the

fixed backbone sequences. We then took all pairs of amino acids at

these positions that were not sampled in the fixed backbone

simulation and designed them onto the crystal structure backbone

using fixed backbone design. For each pair of these positions, we

calculated mean interaction energies and compared these energies

between fixed and flexible backbone design structures (Figure 4A).

We calculated both one-body energies, which include the

interaction of an amino acid residue with itself, and two-body

energies, which include the interactions between two amino acid

residues in the protein (see Text S1 for description of the

components of Rosetta one-body and two-body energies). We

found both the one-body and two-body energies of these pairs to

be generally greater in the context of fixed backbones relative to

recovery and structural variation distributions each contain 40 values, one for each of the 40 protein domains. The sequence entropy distributions
each contain 2778 values, one for each position in the 40 protein domains. ‘‘Native’’ distributions for structural variation and sequence entropy of the
natural proteins were included as well.
doi:10.1371/journal.pcbi.1003313.g002
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Figure 3. Effects of the mechanism of structural variation on sequence properties. A) Box plot showing the distributions of covariation
similarity values between natural sequences and sequences designed using conformational ensembles generated with different methods. The
Backrub, KIC and Small simulations shown here were run with kT values of 0.9, 1.2, and 1.2, respectively (which represents the optimal temperature
for covariation similarity in each case, see Figures 2B and S2). B) Box plots showing the distributions of sequence and structural characteristics for
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flexible backbones. Splitting the energies into their component

terms revealed that the backbone-dependent Dunbrack rotamer

energy (fa_dun) and Lennard-Jones repulsive (fa_rep) terms

resulted in greater energy increases in the one-body and two-

body energies, respectively, than any other term in the energy

function (Figure S3). These results suggest that amino acid pairs

that covary in flexible backbone simulations but do not covary in

fixed backbone simulations generally cannot be accommodated on

fixed backbones without resulting in steric clashes or rotamers that

are unfavorable for the given backbone. Simply modifying the

energy function by using a ‘‘soft’’ repulsive potential that reduces

the energy of clashes does not increase sequence diversity or

covariation similarity (Figure 3B), suggesting that backbone

movements are required to accommodate these amino acid

interactions. Figure 4B shows representative cases where some

degree of backbone flexibility is required to correctly model the

precise interaction details of specific amino acid pairings.

Natural and designed amino acid pair propensities are
highly correlated

We have thus far compared amino acid covariation between

natural and predicted designed sequences based on the extent of

overlap between the sets of highly covarying pairs. However, it is

also important to consider the amino acid pair propensities at

covarying positions to test whether the natural and designed

covarying pairs utilize the same types of amino acid interactions.

To accomplish this, we calculated amino acid propensities at pairs

of positions that covary in both the natural and designed sequences

(Figure 5A). Over-represented amino acid pairs in both designed

and natural sequences included those with opposite charges,

hydrophobic pairs and hydrogen-bonding pairs. Differences in the

designed and natural amino acid pair propensities included the

over-representation of cation-pi pairs in the natural sequences but

not in the designed sequences (such as W-R). These differences

highlight shortcomings of the energy function used for design,

which does not currently account for cation-pi interactions.

To quantify the similarity between the natural and designed

covarying pair propensities, we calculated the correlation coeffi-

cients between the natural and designed propensities for all sets of

designed sequences. We found these correlations to be dependent

on both the magnitude and mechanism of backbone flexibility, as

we previously observed with the overlap in covarying pairs (Table

S4). The comparison between natural and designed pair

propensities for fixed backbone sequences and for a set of flexible

backbone sequences (Backrub, kT = 0.9) are shown in Figure 5B,

again supporting the conclusion that backbone flexibility improves

recapitulation of amino acid covariation.

Mechanisms underlying covariation in natural and design
sequences include complementary changes in amino
acid size, charge or hydrogen bonding

While similar pair propensities between natural and designed

covarying pairs demonstrate that the same types of amino acid

interactions occur in both natural and designed sequences, they do

not show that the mechanisms underlying covariation are the same

in both cases. To investigate this, we first classified the mechanism

of covariation for all pairs that covary in both designed and natural

sequences and then quantified how often the same mechanism is

used. Figure 6A shows an illustration of three of the covariation

mechanisms: size, hydrogen bonding and charge. Classifying each

of these mechanisms requires examining the transition from one

amino acid pair to another. For example, the transitions depicted

in Figure 6A are IA–VV, AP–SS, RE–DR. Covariation due to size

involves a decrease in the size of one amino acid and an increase in

the size of the other (IA–VV). Covariation due to hydrogen

bonding involves a hydrogen bond that exists in one pair but not

the other (AP–SS). Covariation due to charge involves a pair of

amino acids with opposite charges that either swap sign (RE–DR)

or become uncharged amino acids. We also defined covariation

mechanisms based on cation-pi interactions, pi-pi interactions, and

other interactions not falling into any of the previous categories

that we classify as hydrophobic, hydrophilic or mixed hydrophobic

and hydrophilic (see Methods for a detailed definition).

For each pair of positions that covaried in both the designed and

natural sequences, we computed the ten most significant

transitions between amino acid pairs at those positions and

classified each transition based on the mechanism of covariation.

The resulting distributions of covariation mechanisms for the

designed and natural pairs are shown in Figure 6B. The designed

and natural covariation mechanisms distributions share similar

properties, including covariation due to charge being the most

common mechanism, whereas cation-pi, pi-pi and other (hydro-

philic) covariation mechanisms are more rare. In both natural and

designed distributions, hydrogen bonding and size covariation

together account for approximately 30% of the total mechanisms.

However, a number of quantitative differences exist in the

distributions, including charge occurring more frequently in the

designed pairs, suggesting that the design method may be over-

predicting charged interactions. Additionally, in the natural pairs,

size covariation is more common than hydrogen bonding

covariation while the opposite is true in designed pairs. The

‘‘other’’ categories are also more common in the natural pairs than

in the designed pairs. To better understand these differences, we

split the pairs up based on the extent of their burial and compared

the distributions of covariation mechanisms (Figure S4). This

analysis revealed that covariation mechanism is dependent on the

extent of pair burial and that buried pairs have the most significant

differences between natural and designed covariation mechanisms.

In natural buried pairs, the most common covariation mechanisms

are size and other (hydrophobic), whereas the most common

mechanisms in designed buried pairs are hydrogen bonding and

size. This likely occurs due to insufficient penalization of buried

polar groups during the design protocol, resulting in over-

predicting polar amino acids at buried positions and therefore

incorrect predictions of covariation mechanism.

To quantify how often the same covariation mechanism is used

for specific pairs of positions in the designed and natural

sequences, we calculated the percent of pairs sharing the same

classification type in both the natural and designed sequences

(percent overlap) for each type of covariation mechanism

(Figure 6C). Covariation due to charge has the highest percent

overlap between the designed and natural pairs, followed by

hydrogen bonding, size, other (hydrophobic) and other (mixed),

which have roughly equal percent overlaps. Covariation due to

cation-pi and pi-pi interactions have relatively low percent

overlaps between the designed and natural sequences, likely due

to the fact that these types of interactions are not explicitly

accounted for in the design energy function. We repeated this

analysis using fixed backbone design sequences and found a

each method of generating conformational ensembles. C) Covariation similarity distributions for subsets of covarying pairs that are ‘‘near’’ in
sequence (separated by 10 residues or fewer) or ‘‘far’’ in sequence (separated by greater than 10 residues).
doi:10.1371/journal.pcbi.1003313.g003
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Figure 4. Energetic effects of forcing amino acid covariation onto fixed backbones. A) Scatter plots of covarying pair energies in the
context of fixed or flexible backbones. Each dot represents a pair of positions that was found to be highly covarying in the flexible backbone
sequences (Backrub, kT = 0.9) and the natural sequences but not in the fixed backbone sequences. Pairs of amino acids at these positions that were
found in flexible backbone designs but not in fixed backbone designs were forced onto fixed backbones taken from X-ray crystal structures and their
one and two-body energies were calculated. The left plot shows a comparison of one-body energies and the right plot shows a comparison of two-
body energies for these pairs. B) Representative examples of pairs of amino acids that require backbone movements to achieve low-energy
interactions. Models from flexible backbone design (Backrub, kT = 0.9) are shown in cyan and models from fixed backbone design are shown in
magenta. The top case shows a ring stacking interaction, the middle case shows a hydrogen bonding interaction and the bottom case shows a salt
bridge interaction. Red disks represent steric clashes, where the radius and number of the disks is proportional to the magnitude of the clash.
doi:10.1371/journal.pcbi.1003313.g004

Figure 5. Correlation of amino acid pair propensities between natural and designed covarying pairs. A) Heat maps of amino acid pair
propensities at pairs of positions that are highly covarying in both designed and natural sequences. Red pairs are over-represented at covarying
positions and blue pairs are under-represented at covarying positions. The values are shown as Z-scores, which denote the number of standard
deviations above or below the mean. B) Correlation of amino acid pair propensity Z-scores between designed and natural sequences. The left plot
shows the correlation from flexible backbone design sequences and the right plot shows the correlation from fixed backbone design sequences. A
Pearson correlation coefficient (r) is shown for each plot.
doi:10.1371/journal.pcbi.1003313.g005
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decrease in the percent overlaps for size and other (hydrophobic)

interactions, indicating that backbone flexibility may aid in

modeling these types of covariation mechanisms (Figure S5).

Taken together, this analysis provides insights into the mechanisms

underlying amino acid covariation in naturally occurring proteins.

Overall, the analysis shows considerable agreement between

naturally occurring and designed covariation mechanisms. In

some cases, it exposes pathologies in the design methods (such as

the over-representation of polar amino acids in cores under-

representation of cation-pi and pi-pi interactions) that can be

addressed in future work using naturally occurring covariation as a

reference point.

Covarying pairs not modeled by design are more distant
in three-dimensional structure and differ in amino acid
pair propensities

While computational protein design can model a significant

fraction of naturally occurring covarying amino acid pairs, there

remain pairs of amino acids that are highly covarying in the

natural sequences but not in the designed sequences (nature-

specific pairs). Moreover, there also exist pairs that highly covary

in designed sequences but not in natural sequences (design-specific

pairs). Figure 7A shows the classification of nature-specific, design-

specific and overlap pairs for the SH3 domain. To understand the

basis for these differences, we first compared these sets of pairs

based on their distances in three-dimensional structure (Figure 7B).

We found the design-specific and overlap covarying pairs to be

significantly closer in structure than the nature-specific pairs.

These results are consistent with the all-atom energy function used

for generating the design sequences, which is most sensitive at

short distances. The long distances in the nature-specific pairs

could result from a number of factors, including interactions that

bridge monomers in an oligomeric complex [37], interactions that

exist in alternative conformations [37], long-range correlations in

protein dynamics or from phylogenetic bias in the natural

sequences. Another possibility is that in naturally occurring

proteins, destabilizing substitutions (that occur in functional sites)

co-vary with compensating stabilizing mutations in the protein

that could be far away from the functional site.

In addition to analyzing design-specific and nature-specific pairs

with respect to pair distance, we compared them based on extent

of amino acid burial, the presence in interfaces or active sites, and

amino acid pair propensity. We observed a slight decrease in the

percent of exposed pairs in the designed-specific pairs relative to

the nature-specific pairs (Figure S6), which may be due to the

difficulty of accurately modeling solvent exposed interactions in

protein design. We observed no difference in the design-specific

and nature-specific pairs with respect to their presence in

interfaces or active sites (Figure S7), suggesting that the constraints

imposed by known functional sites are not responsible for the

inability to model the nature-specific pairs. We observed that the

amino acid pair propensities of nature-specific and overlap pairs

were different, while the amino acid pair propensities of design-

specific pairs were highly correlated to those of the overlap pairs

(Figure 7C). The latter observation indicates that the energetic

interactions leading to design-specific and overlap pairs may be

similar to each other. A simple explanation may be that the design-

specific pairs are equally compatible with the given protein

structure, but may simply not have been sampled by nature. Such

design-specific pairs may provide opportunities for engineering

proteins with novel amino acid interactions, such as re-designing

the specificity of protein-protein interactions.

Discussion

Our study tested the hypothesis that the structural constraints

imposed by protein architecture are a major determinant of amino

acid covariation in naturally occurring proteins. If true, we

reasoned that computational design methods that design sequenc-

es based on protein structure alone should be able to recapitulate

amino acid covariation, provided that design predictions are

sufficiently accurate. Confirming these ideas, we found a

significant overlap between amino acid covariation in natural

and designed protein sequences across a set of 40 diverse protein

domains. These results quantify the influential role of the selective

pressures for maintaining protein structure on shaping amino acid

covariation. Therefore, even though correlated changes are

undoubtedly important to evolve new activities and regulatory

mechanisms [30,31] the presence of covariation alone may not

necessarily indicate a functional role.

Our study also illustrates how recapitulation of amino acid

covariation serves as a stringent test for the ability of computa-

tional protein design methods to capture precise details of

interactions between amino acids. We demonstrate that modeling

backbone flexibility significantly increases the similarity between

natural and designed covariation, and that this similarity is

exquisitely sensitive to the mechanism used to model backbone

changes. These findings indicate that protein backbone motions

are required for allowing precise adjustments in amino acid

interactions that enable covariation. Moreover, simulations that

perform local backbone movements (Backrub and KIC) result in

sequences with more natural-like covariation than simulations that

perform non-local backbone movements (AbRelax, Relax, Small).

Proteins may have undergone local motions similar to Backrub

and KIC moves to accommodate new mutations and amino acid

interactions during evolution [24,35,36,41]. Such motions could

have provided proteins with a mechanism to allow subtle,

incremental changes to their structures without adversely affecting

protein structure or protein function.

While local motions may be a common mechanism for proteins

to accommodate point mutations, larger structural adjustments

may be necessary for dealing with insertions or deletions. In this

study, we found that a moderate degree of backbone flexibility best

recapitulated natural amino acid covariation, however, the

magnitude of structural variation produced by this degree of

backbone flexibility was less than the structural variation among

naturally occurring protein families.

This discrepancy is likely due to the assumption in the design

method that the protein remains a fixed length. This is not true in

naturally occurring sequences; in fact, all 40 domains in our

benchmark include loop regions that have varying lengths.

Figure 6. Covariation mechanisms of natural and designed covarying pairs. A) Representative examples of covariation mechanisms in both
natural and designed sequences. Models from flexible backbone design (Backrub, kT = 0.9) are shown in cyan and x-ray crystal structures are shown in
yellow. The left panel shows covariation due to size, the middle panel shows covariation due to hydrogen bonding and the right case shows
covariation due to charge. The top and bottom rows for each panel show different amino acid pairs in the same positions but in different proteins. B)
Pie charts showing the distribution of covariation mechanisms for pairs that covary in both natural and designed sequences. The left pie chart shows
covariation mechanisms for natural pairs and the right shows covariation mechanisms for designed pairs. See the methods for a definition of the
mechanism classification. C) Bar plot showing the percent overlap between natural and designed pairs for each covariation mechanism.
doi:10.1371/journal.pcbi.1003313.g006
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Mutations that change the length of a flexible loop could allow for

secondary structure elements to re-orient themselves and slightly

alter the tertiary structure. The accumulation of mutations in loop

regions can produce significant structural diversity that cannot be

modeled using a protein design method that keeps the number of

amino acids in a protein constant. Future protein design methods,

particularly those involving loop regions such as protein-protein

interaction design or enzyme specificity design, could potentially

benefit from incorporating moves that both change the confor-

mation and length of the protein backbone.

In addition to observing significant similarity between the sets of

natural and designed highly covarying amino acid pairs, we

observed a high correlation in the amino acid propensities of these

covarying pairs and showed that the structural mechanisms

Figure 7. Distinguishing features of natural and designed covarying pairs. A) Example comparison of natural and designed covariation for
an individual protein domain (SH3 domain). Each dot represents an amino acid pair. Dashed red lines indicate the thresholds used to identify pairs as
highly covarying (two standard deviations above the mean). The indicated quadrants contain the design-specific, overlap and nature-specific pairs,
respectively. B) Box plot of distances between amino acid pairs in the nature-specific, design-specific and overlap sets. Pair distances are measured as
the minimum distance between heavy-atoms of two amino acids in the representative crystal structure of the domain. C) Correlation of amino acid
pair propensity Z-scores between different sets of covarying pairs. The left plot shows the correlation between design-specific and overlap pairs and
the right plot shows the correlation between nature-specific and overlap pairs. A Pearson correlation coefficient (r) is shown for each plot.
doi:10.1371/journal.pcbi.1003313.g007
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underlying covariation are similar for both natural and designed

sequences. Differences between natural and designed covarying

pairs highlight areas for improvement in the energy function used

for protein design. For instance, cation-pi interactions, which are

not explicitly accounted for in the energy function used in this

study, have high propensities among naturally covarying pairs but

not in designed covarying pairs. Similarly, polar amino acid pairs

are more frequent in the cores of designed proteins than in

naturally occurring proteins. Interestingly, we found differences in

the pair propensities between nature-specific pairs and pairs that

highly covary in both natural and design sequences. We also

observed that nature-specific pairs tend to be more distant in

three-dimensional structure. These results have implications for

the field of contact prediction, as combining amino acid covaria-

tion with amino acid pair propensity information could improve

the prediction of three-dimensional contacts in protein structures

compared to using amino acid covariation alone. Improving

methods of contact prediction would increase the accuracy of

recent protein structure prediction algorithms that use amino acid

covariation [29].

Unlike nature-specific pairs, design-specific pairs have amino

acid propensities that are highly correlated with the amino acid

propensities of pairs that covary in both natural and designed

sequences. These design-specific pairs represent candidate posi-

tions for engineering amino acid interactions that have not been

sampled by natural protein evolution. A practical application of

this is the re-wiring of protein interaction specificity to design

orthogonal protein-protein interactions for use in synthetic

biology. Natural intermolecular covariation has previously been

exploited to alter specificity in two component signaling systems

[42]. Future work could exploit designed intermolecular covari-

ation to re-engineer protein interactions with novel specificities

that are orthogonal from naturally occurring protein-protein

interactions [43] and therefore useful for synthetic applications.

Methods

Preparation of natural protein sequences
The protein domains used in this study were selected from the

Pfam database [44] based on the following criteria: 1) at least one

crystal structure of a protein containing the domain was available

from the Protein Data Bank (PDB) [45], 2) at least 500 sequences

of proteins from the domain were available from Pfam and 3) the

domain was equal to or less than 150 amino acids in length. We

selected a total of 40 domains that represented a diverse set of

protein folds (Table 1). The seed alignment and the full alignment

for each domain were obtained from Pfam. In order to remove

highly divergent sequences with uncommon insertions or dele-

tions, we first removed sequences from the seed alignment if they

had either of the following: 1) a gap in a position where 90% of the

sequences in the seed alignment did not have a gap or 2) an amino

acid in a position where 90% of the sequences in the seed

alignment had a gap. Next, we aligned each sequence in the full

alignment to the seed alignment using MUSCLE [46] and we

discarded any sequences that resulted in the creation of gaps that

were not in the seed alignment. This resulted in an alignment

without sequences containing uncommon insertions or deletions.

Finally, we used CD-HIT [47] to filter the sequence alignments by

removing sequences with 80% redundancy or greater.

Generation of designed protein sequences
For each of the 40 protein domains, the highest resolution

crystal structure of the domain was obtained from the PDB. This

structure was used as a template for all the design simulations. The

design method used in this study consisted of two steps: 1) the

generation of a conformational ensemble and 2) the design of

sequences onto each structure in the ensemble using RosettaDe-

sign. For each of the 40 domains, 500 structures were generated

for the conformational ensemble and 500 sequences were

designed, one for each structure in the ensemble. Descriptions of

each protocol used for generating conformational ensembles and

for designing sequences are provided in Text S1 along with the

corresponding Rosetta command lines.

Amino acid covariation
Amino acid covariation was quantified using a mutual

information based metric called Zpx [28]. First, the Shannon

entropy is calculated at each position i as follows:

Hi~{
X

x

Px log20Px

where Px is the frequency of amino acid x at position i. The joint

entropy is calculated between all pairs of positions as follows:

Hi,j~{
X

x

X

y

Px,y log20Px,y

where Px,y is the frequency of amino acid x and y and positions i

and j, respectively. The mutual information (MI) between each

pair of columns in a multiple sequence alignment, i and j, was

calculated as the difference between the individual entropies and

the joint entropy:

MIi,j~HizHj{Hi,j

Next, the background mutual information due to random noise

and shared ancestry is subtracted to obtain the product corrected

mutual information (MIp) [27]:

MIpi,j~MIi,j{
(MIi|MIj)

MI

where MIi is the mean MI of position i with all other positions and

MI is the overall mean. This value is converted to two Z-scores,

one for each column, which are multiplied together:

Zi|y~
MIpi,j{MIpi

s(MIpi)
|

MIpi,j{MIpj

s(MIpj)

The final score, called Zpx, is the square root of the absolute value

of Zi|y. If Zi|y is negative, then Zpx is multiplied by 21. This

normalization of MIp was demonstrated to reduce the sensitivity

to misaligned regions in multiple sequence alignments, which

otherwise result in artificially high mutual information scores [28].

Calculation of Zpx was implemented in Python. Direct coupling

analysis (DCA) was calculated using Matlab code provided by its

authors [37].

Covariation similarity
To compare amino acid covariation between natural and

designed multiple sequence alignments, Zpx was first computed

for all pairs of ungapped positions in each alignment. The mean

Zpx for each alignment was calculated and residue pairs with

values greater than two standard deviations above the mean Zpx

were considered to be covarying residue pairs. The covariation
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similarity between the natural and designed covarying amino acid

pairs was calculated as the percent of overlap, 2C/(A+B), where A

and B are the total numbers of natural and designed covarying

pairs, respectively, and C is the number of pairs that covary in

both natural and designed sequences. The same approach was

used to calculate covariation similarity using DCA.

Sequence recovery, entropy and profile similarity
Sequence recovery was calculated as the mean percent identity

of the designed sequences to the sequence of the crystal structure

used as input for the design protocol. Sequence entropy was

calculated for each position as Hi defined above. Sequence profile

similarity was calculated as the mean prof_sim score [48] between

each position in the natural and designed alignments. Briefly,

prof_sim is the product of two scores: 1) the estimated probability

that two amino acid frequency distributions represent the same

source distribution and 2) the a prior probability of the source

distribution. Using this metric, positions in designed sequences

receive high prof_sim scores if both 1) their amino acid distri-

bution is similar to the amino acid distribution at the correspond-

ing position in the natural alignment and 2) their amino acid

distribution is different than the background amino acid distribu-

tion. Calculation of sequence recovery, entropy and profile

similarity was implemented in Python.

Structural variation
Structural variation was calculated as the mean pair-wise

RMSD between 10 randomly selected structures in each

conformational ensemble. Natural structural variation was com-

puted for all domains with at least 10 crystal structures in the PDB.

The following 20 domains were used to compute natural structural

variation: PF00013, PF00018, PF00041, PF00072, PF00076,

PF00085, PF00111, PF00168, PF00169, PF00179, PF00254,

PF00355, PF00439, PF00550, PF00581, PF00582, PF00595,

PF01833, PF07679, PF07686. Structural alignments and RMSD

calculations were performed using PyMol [49].

Amino acid pair propensities
Amino acid pair propensities (PP) were calculated as the ratio

between observed pair frequencies and the expected individual

amino acid frequencies:

PPx,y~log20

Px,y

PxPy

To compare amino acid pair propensities between two sets of

covarying pairs, we computed the Z-score for each pair amino

acid pair x,y. The Pearson correlation coefficient r between the

two sets of Z-scores was then calculated using R [50]. Cysteines

were excluded from this analysis because they rarely appear in the

designed sequences.

Covariation mechanisms
To classify the mechanisms of covariation for a pair of positions,

we first computed a correlation coefficient wx,y for each amino acid

pair x,y [32]. We then calculated a score for all possible amino

acid pair transitions (PT) between one pair x,y and another pair

a,b as follows:

PT(x,y<a,b)~wx,yzwa,b{wx,b{wa,y

This pair transition score quantifies the significance of the

transition between the amino acid pair x,y and the pair a,b. The

most significant transitions are defined as those that highly favor

pairs x,y and a,b but highly disfavor pairs x,b and a,y. For each

pair of positions, ten pair transitions with the greatest scores were

assigned one of eight classes in the following order: charge, cation-

pi, pi-pi, size, hydrogen bonding, other (hydrophobic), other

(hydrophilic) and other (mixed). Charge transitions involve a pair

with opposite charges that either swap sign or become uncharged.

A charge transition is also assigned to pair transitions that avoid

like charges, for example, if x and b (or y and a) are like charges.

Cation-pi transitions involve one pair with a potential cation-pi

interaction but no cation-pi interaction in the other pair. Similarly,

pi-pi transitions involve one pair with a potential pi-pi interaction

but no pi-pi interaction in the other pair. Size transitions involve a

decrease in the size of one amino acid by at least 18 Å3 (the

volume of a methyl group) and an increase in the size of the other

amino acid by at least 18 Å3. Hydrogen bonding transitions

involve a potential hydrogen bonding interaction (hydrogen bond

acceptor and donor) in one pair but not in the other pair. The

three other classes are used to assign pair transitions that do not fit

any of the above criteria. Other (hydrophobic) transitions are those

where both pairs contain only hydrophobic amino acids, other

(hydrophilic) transitions are those where both pairs contain only

hydrophilic amino acids, and other (mixed) transitions are those

with both hydrophobic and hydrophilic amino acids. Similarity

between natural and designed was quantified using the percent

overlap (defined above) for each covariation mechanism.

Amino acid burial
Amino acid burial was defined for each position based on the

number of Cb atoms within 8 Å of the Cb atom of the given

position as follows: exposed 0–8, intermediate 9–14 and buried

.14. For the covariation mechanism analysis in Figure S4, we

defined pairs of positions that were buried/buried or buried/

intermediate as buried pairs, exposed/buried or intermediate/

intermediate as intermediate pairs, and exposed/intermediate or

exposed/exposed as exposed pairs.

Interface and active site positions
For domains with known protein–ligand or protein–protein

interface information, we defined all positions with a heavy-atom

within 6 Å of any heavy-atom on the binding partner as an

interface position. The domains with interface information were

PF00013, PF00439, PF00498, PF00691, PF00072, PF00018,

PF00076, PF00249, PF00327, PF01035, PF00169, PF00550 and

PF00595. For domains with known active sites, we defined all

positions with a heavy-atom within 6 Å of any heavy-atom on a

catalytic residue as an active site position. The domains with active

site information were PF00085, PF00111, PF00355, PF00708,

PF00581, and PF01451.

Supporting Information

Figure S1 Effect of the magnitude of structural varia-
tion on covariation similarity computed using direct
coupling analysis (DCA). Box plot showing the distributions of

DCA based covariation similarity values between natural and

sequences designed using backrub conformational ensembles at

different temperatures.

(TIF)

Figure S2 Effect of the magnitude of structural varia-
tion on covariation similarity for KIC and Small
simulations. Box plot showing the distributions of covariation

similarity values between natural sequences and sequences
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designed using conformational ensembles generated with KIC

moves (left) and Small moves (right) at different temperatures.

(TIF)

Figure S3 Effects of forcing amino acid covariation on
fixed backbones on different terms in the energy
function. One-body (A) and two-body (B) energy scatter plots

of covarying pair energies in the context of fixed or flexible

backbones for one-body (A) and two-body (B) energy terms. A

description of each energy terms is provided in the Supplemental

Methods.

(TIF)

Figure S4 Effect of amino acid pair burial on covaria-
tion mechanism. Line plots showing the percentage of each

covariation mechanism for buried, intermediate and exposed pairs

in natural (left) and designed (right) sequences.

(TIF)

Figure S5 Comparison of covariation mechanisms in
natural sequences and sequences designed using fixed
backbone protein design. Bar plot showing the percent

overlap between natural and designed pairs for each covariation

mechanism.

(TIF)

Figure S6 Extent of amino acid burial of natural and
designed covarying pairs. Stacked bar plot showing the

percent of buried, intermediate and exposed pairs in nature-

specific pairs, designed-specific pairs, overlap pairs and all pairs.

(TIF)

Figure S7 Comparison of the percent of positions in
interfaces and active sites between natural and designed
covarying pairs. Scatter plot of the percent of positions in

interfaces (left) and active sites (right) for natural and designed

covarying pairs. A bold line is shown to denote x = y.

(TIF)

Table S1 Covariation similarity between designed and
natural sequences for each the 40 domains tested using
fixed backbone protein design. Covariation was quantified

for all pairs of positions in the designed and natural sequences for

each domain. Pairs were considered to be highly covarying if their

covariation scores were two standard deviations above the mean

or greater. Overlap pairs are those that were highly covarying in

both the designed and natural sequences. The percent overlap is

the fraction of overlap pairs in the combined set of highly

covarying design and natural pairs. P-values were calculated using

a hypergeometric distribution.

(DOCX)

Table S2 Comparison of covariation similarity distri-
butions for different temperature backrub simulations.
The p-values in this table were calculated using a two-tailed

Student’s t-test. P-values less than 0.01 are shown in bold.

(DOCX)

Table S3 Comparison of covariation similarity distri-
butions for different methods of generating backbone
flexibility. The p-values in this table were calculated using a two-

tailed Student’s t-test. P-values less than 0.01 are shown in bold.

The Backrub, KIC and Small simulations shown here were run

with kT values of 0.9, 1.2, and 1.2, respectively (which represents

the optimal temperature for covariation similarity in each case).

(DOCX)

Table S4 Comparison of all protein design methods
used in this study based on covariation similarity,
sequence profile similarity, sequence recovery, se-
quence entropy, structural variation and pair propensi-
ty correlation.

(DOCX)

Text S1 Supplementary Methods. A description of the

computational protein design protocols used in this study with

corresponding command lines and a description of the energy

function terms referenced in the paper.

(DOCX)
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