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Abstract

Computational prediction of cancer associated SNPs from the large pool of SNP dataset is now being used as a tool for
detecting the probable oncogenes, which are further examined in the wet lab experiments. The lack in prediction accuracy
has been a major hurdle in relying on the computational results obtained by implementing multiple tools, platforms and
algorithms for cancer associated SNP prediction. Our result obtained from the initial computational compilations suggests
the strong chance of Aurora-A G325W mutation (rs11539196) to cause hepatocellular carcinoma. The implementation of
molecular dynamics simulation (MDS) approaches has significantly aided in raising the prediction accuracy of these results,
but measuring the difference in the convergence time of mutant protein structures has been a challenging task while
setting the simulation timescale. The convergence time of most of the protein structures may vary from 10 ns to 100 ns or
more, depending upon its size. Thus, in this work we have implemented 200 ns of MDS to aid the final results obtained from
computational SNP prediction technique. The MDS results have significantly explained the atomic alteration related with
the mutant protein and are useful in elaborating the change in structural conformations coupled with the computationally
predicted cancer associated mutation. With further advancements in the computational techniques, it will become much
easier to predict such mutations with higher accuracy level.
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Introduction

Most genetic variations in human were portrayed by single

nucleotide polymorphisms (SNPs), and most of them were

thought to cause phenotypic differences amid individuals. Due

to the use of high-throughput sequencing methods, the amount

of identified variants in the human genome was rising rapidly,

but studying their phenotypic outcome was a laborious task.

Moreover, processing of these vast amounts of SNPs needs the

improvement of regular annotation tools. Detecting patholog-

ical genetic variants were helpful in the organization of

genome level study, establishing the hope on the way of target

based therapies and tailored medicine. The ability to differ-

entiate between pathogenic and neutral nsSNPs (non-synony-

mous Single Nucleotide Polymorphisms) using computational

approaches could significantly aid in targeting the disease

associated mutations. In last two decades, extensive computa-

tional efforts had been provided to study the functional and

structural consequences of the SNPs [1]. The primary efforts to

recognize the patterns of SNPs taking place in the coding

regions of genes were studied by Cargill et al. [2] and Halushka

et al. [3]. Cargill et al. characterized SNPs in 106 candidate

genes having potential relevance to various human diseases

[2]. Several reports had very precisely explained the occur-

rence and consequences of disease-associated alleles on the

protein structures. Terp et al. [4] reported the structurally

relevant features common in disease-associated mutations from

the Human Gene Mutation Database (HGMD). Vitkup et al.

[5] examined the frequency of mutations associated with

diseases in detail. Furthermore, the detailed analysis of the

biophysical and evolutionary distributions of the disease-

associated mutations was demonstrated by Ferrer-Costa et al.

[6]. Stitziel et al. [7] further analysed the locations of non-

synonymous disease-associated polymorphisms by organizing

the mutational data into structural classes. Moreover, Mooney

et al. [8] demonstrated the majority of occurrence of disease-

associated mutations in the highly conserved genomic loca-

tions. Furthermore, Saunders and Baker [9] applied decision

trees and a linear logistic regression to find that a protein

structure-derived solvent accessibility term (Cb density) and an

evolutionary term derived from a PSSM matrix (SIFT) to

examine different features associated with intolerant muta-

tions. Moreover, Krishnan and Westhead [10] applied decision

tree and support vector machine (SVM) techniques to the in

vitro mutagenesis data sets as well as to SNPs in the nematode

worm species Caenorhabditis elegans to examine their effective-

ness in SNP characterization. These efforts were further

accompanied by several other researches that demonstrated

the effective use of computational tools and algorithms for

accurate characterization of SNPs [1]. Path to deleterious SNP

prediction has now advanced from its previous form. Apart

from reporting the deleterious nsSNPs, now the calculation of

phenotypic changes had further raised the prediction accuracy

level. The previous computational SNP analysis pathways lack

the genotype-phenotype correlations which were considered as

the major disadvantage of the result. To overcome these
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limitations, our lab studied the structural consequences of

deleterious predicted mutations. Changes in amino-acid

composition had wide role in affecting the native conformation

of the protein structure.

The vibrant nature of proteins was closely linked to its

function, with key conformational changes usually taking place

on timescales, varying from microseconds to several seconds.

At a scrupulous time step, protein attains particular confor-

mation that occupies a least amount on its free-energy

landscape. When energy fluctuates from one minimum to

another, it leads to alterations in the protein structure which

controls their structural fluctuations and function. Thus to

examine these conformational alteration occurring due to

predicted deleterious alleles, we further incorporated molecu-

lar dynamics calculations for native and mutant protein

structures. Molecular dynamics (MD) simulation is an absolute

method for modelling protein dynamic motions, the classifica-

tion of which gives perception into the workings of macromo-

lecular systems at spatial and temporal scales that are hard to

access empirically. The use of molecular dynamics approach

had been a leading platform to determine the phenotypic

consequences induced by point mutations [11–14]. Our

previous results had shown high accuracy of deleterious nsSNP

prediction in CENPE and MCAK protein coding genes when

MDS (Molecular Dynamics Simulation) was incorporated

[15,16]. On the technical side, depending on the size of the

protein, the simulation might take a very long time to converge

(e.g. a hundred nanoseconds). Thus, even the most ‘state-of-

the’ art or computationally intensive methods might not give

correct results. Moreover, folding was typically much slower

than what presently simulated through direct application of all-

atom MD simulations. Most simulation studies of protein

folding had relied on reduced models, implicit solvent models,

protein unfolding or the inclusion of experimental data into the

simulations [17]. Extended MD simulations were liable to play

a vital role in modelling the long-timescale native and mutant

state dynamics and their association with protein function.

Thus, we carried out a long term molecular dynamics

simulation to aid the computational SNP prediction results.

Aurora kinases were chosen to detect the cancer associated

SNPs due to the recent cases showing their involvement in

cancer associated pathways.

Materials and Methods

Dataset collection
Human Aurora kinase protein sequence data was collected form

national centre for biological Information (NCBI) protein

sequence database [18]. SNP information for our computational

analysis was obtained from NCBI dbSNP (http://www.ncbi.nlm.

nih.gov/snp/) [19]. Structure of Aurora-A kinase was obtained

from Brookhaven Protein Data Bank [20] (PDB ID: 1MQ4). The

mutant structure was build using homology modelling technique

through Modeller9v9 package [21]. Modelled structures were

refined by means of loop refining, checking wrong bond contacts

and adding hydrogen atoms. The best selected structure was

energy minimized by charmm27 force field for 5000 iterations

using Gromacs 4.5.3 package [22].

Disease-associated SNP prediction
There are likely chances of amino acid variants to cause

pathological phenotype, which might directly or indirectly lead to

cancers. We used SIFT [23], Polyphen-2 [24], PhD-SNP [25],

Pmut [26], MutPred [27], Dr Cancer [28], Fathmm [29] and SNP

Function Portal [30] to detect the amino acid variants which are

likely to cause cancer. SIFT and Polyphen-2 is used to filter

deleterious and harmful SNPs from the large pool of SNP dataset.

Moreover, PhD-SNP and Pmut was used to filter disease

associated SNPs. Furthermore, Dr. Cancer, Fathmm and SNP

Function Portal was used to predict the cancer associated SNPs.

MutPred was used to examine the molecular changes occurring in

the protein induced by a particular amino acid variant.

Author Summary

The genetic mutations in human were shown by single
nucleotide polymorphisms (SNPs), and several of them
were supposed to cause deleterious and disease associat-
ed phenotypic effects. The ability to differentiate between
pathogenic and neutral nsSNPs (non-synonymous Single
Nucleotide Polymorphisms) using computational ap-
proaches could significantly help in targeting the disease
associated mutations. In this work we applied computa-
tional tools to prioritize the most deleterious disease
associated mutation in Aurora kinases. We used sequence
and structural based approaches to refine cancer associ-
ated mutation and applied a long term simulation (MDS)
to understand the changes in structural conformation and
function of the aurora kinases upon mutation. From the
200 ns MD simulation, we suggested that the G325W
mutation induced major phenotypic damages in aurora-A
kinase protein and altered its structural behaviour in 3D
space, which might play an important role in inducing
hepatocellular carcinoma.

Figure 1. Location of the mutant residue. a) Native Aurora-A protein b) Mutant Aurora-A protein. The mutant location is shown in red.
doi:10.1371/journal.pcbi.1003318.g001
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Table 1. Deleterious and damaging nsSNPs prioritized using SIFT tolerance score and Polyphen-2 PSIC score.

Gene SNP ID AA change SIFT Polyphen-2

Tolerance Index Prediction PSIC Prediction

AurkA rs113451501 N395S 0.94 Tolerated 0.000 Benign

rs146034224 P381L 0.00 Deleterious 0.994 Damaging

rs33923703 M373V 0.01 Deleterious 0.000 Benign

rs192771776 H366Y 0.50 Tolerated 0.019 Benign

rs201356620 E354Q 0.12 Tolerated 0.699 Damaging

rs45557632 F348L 0.01 Deleterious 0.353 Benign

rs200181472 R343Q 0.15 Tolerated 0.063 Benign

rs11539196 G325W 0.00 Deleterious 1.000 Damaging

rs45483697 G198S 0.00 Deleterious 1.000 Damaging

rs45520831 R179K 0.03 Deleterious 0.903 Damaging

rs45455492 L114Q 0.66 Tolerated 0.001 Benign

rs2230743 S104L 0.30 Tolerated 0.005 Benign

rs45533839 V84A 0.76 Tolerated 0.000 Benign

rs1047972 I57V 1.00 Tolerated 0.000 Benign

rs34572020 P50L 0.27 Tolerated 0.027 Benign

rs145616804 Q34H 0.43 Tolerated 0.975 Damaging

rs188825988 R24C 0.00 Deleterious 1.000 Damaging

rs6069717 G11R 0.87 Tolerated 0.003 Benign

AurkB rs201709756 A344T 0.07 Tolerated 0.012 Benign

rs148715809 P325S 0.03 Deleterious 0.933 Damaging

rs144169786 S313L 0.74 Tolerated 0.068 Benign

rs146017427 S313P 0.30 Tolerated 0.019 Benign

rs146334050 I304T 0.00 Deleterious 0.989 Damaging

rs1059476 M298T 0.42 Tolerated 0.000 Benign

rs151173438 A294T 0.26 Tolerated 0.006 Benign

rs140224531 R284C 0.00 Deleterious 0.998 Damaging

rs149651741 G212R 0.00 Deleterious 0.945 Damaging

rs146905713 E204D 0.00 Deleterious 0.975 Damaging

rs55871613 T179M 0.02 Deleterious 0.989 Damaging

rs199630207 E174K 0.00 Deleterious 0.970 Damaging

rs147097910 A157T 0.00 Deleterious 1.000 Damaging

rs148133660 R147W 0.01 Deleterious 0.121 Benign

rs150216235 V103M 0.04 Deleterious 0.997 Damaging

rs3027254 H100Q 0.13 Tolerated 0.001 Benign

rs184713921 R95Q 0.00 Deleterious 1.000 Damaging

rs141907099 R70W 0.00 Deleterious 0.292 Benign

rs146036524 T69M 0.14 Tolerated 0.000 Benign

rs199981964 S61G 0.45 Tolerated 0.001 Benign

rs74385486 M58I 0.19 Tolerated 0.000 Benign

rs55878091 A52V 0.33 Tolerated 0.000 Benign

rs201438176 R44H 0.05 Tolerated 0.886 Damaging

AurkC rs200296015 M1T 0.05 Deleterious 0.012 Benign

rs200712786 S12N 0.43 Tolerated 0.003 Benign

rs146186252 R17Q 0.06 Tolerated 0.205 Benign

rs137858773 R28H 0.00 Deleterious 0.603 Damaging

rs61736320 I60V 0.03 Deleterious 0.001 Benign

rs148631645 I60T 0.00 Deleterious 0.617 Damaging

rs202030166 N83H 0.20 Tolerated 0.955 Damaging
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Phenotype analysis
SNPeffect4.0 tool was used to detect the phenotypic changes

induced by the computationally predicted cancer associated

mutation [31]. It reports the changes in TANGO, LIMBO,

WALTZ and ddG scores for the given mutation. Furthermore, the

meta-analysis tool of SNPeffect4.0 used to map these changes for

different cancer type.

Cation-p sites and stabilizing residues
Cation-p interactions were calculated by using CaPTURE

program [32]. The CaPTURE program identifies energetically

significant cation–p interactions within proteins in the Protein

Data Bank (PDB). Cation–p interactions in Aurora_A kinase

structures are evaluated with default parameters which were

mentioned in our previous work [33].

Table 1. Cont.

Gene SNP ID AA change SIFT Polyphen-2

Tolerance Index Prediction PSIC Prediction

rs45555141 R86H 0.00 Deleterious 0.862 Damaging

rs45623632 Y90C 0.00 Deleterious 0.983 Damaging

rs199855150 H92R 0.01 Deleterious 0.928 Damaging

rs45503793 T126M 0.02 Deleterious 0.996 Damaging

rs147955649 C138F 0.00 Deleterious 1.000 Damaging

rs200042694 K178N 0.58 Tolerated 0.001 Benign

rs199933542 D202Y 0.00 Deleterious 1.000 Damaging

rs149157434 S222N 0.08 Tolerated 0.089 Benign

rs45527835 D236Y 0.03 Deleterious 0.889 Damaging

rs147392532 R238K 1.00 Tolerated 0.000 Benign

rs201199082 Q267E 0.93 Tolerated 0.001 Benign

rs200445619 Q267R 0.54 Tolerated 0.006 Benign

The alleles highlighted in bold are predicted to be deleterious as well as damaging by SIFT and Polyphen scores.
doi:10.1371/journal.pcbi.1003318.t001

Figure 2. Profile representation of the LIMBO stretches in a) Native and b) Mutant protein. c) Difference in LIMBO chaperone binding
propensity between native and mutant. d) Molecular visualisation of LIMBO chaperone-binding sites as pink colored segments.
doi:10.1371/journal.pcbi.1003318.g002
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Identifying stabilizing residues
SRIDE tool was used to identify the stabilizing residues in

Aurora-A protein [16,34]. The prediction is done by calculating 4

essential criteria that involves surrounding hydrophobicity of a

residue, the long-range order, stabilization centre defined by

considering the conservation scores of residues and the contact

map of a protein [16]. Two residues are in contact if there is at

least one pair of heavy atoms with a distance less than the sum of

the van der Waals radii of the two atoms plus 1.0 Å [16]. A

contact is measured long-range if it is between residues that are

separated by at least 10 residues in the protein sequence [16].

Two residues are stabilizing centers (SC) elements if they are

involved in long-range contacts and if at least one supporting

residue can be found in each of the flanking tetra-peptides of

these residues, in such a way that at least seven out of the possible

nine interactions are formed between the two triplets [16].

Combinedly, all these criteria are compiled to report the

stabilizing residues [16].

Molecular docking analysis
We used molecular docking analysis to carry comparative

analysis between TPX2 binding affinity of native and mutant

Aurora A protein using HADDOCK tool [35,36]. HAD-

DOCK is information driven flexible docking approach to

perform the molecular docking simulation and it runs a series

of scripts in combination with ARIA [37,38] and CNS [39].

The interacting active residues of Aurora-A and TPX2 for

docking simulations were obtained from our previous work

[40].

Molecular dynamics simulation
Molecular Dynamics Simulation was carried out by using

Gromacs 4.5.3 package [22]. Structure of native and mutant

Aurora-A kinase was used as starting point for MD simula-

tions. The simulation parameters were set according to our

previous work conducted on Aurora-A protein [40] and other

proteins [15,32,40]. Systems were solvated in a rectangular

box with TIP3P water molecules at 10 Å marginal radius. The

systems were neutralized by added 3 sodium ions (Na+) to the

simulation box using the ‘‘genion’’ tool that accompanies with

Gromacs package. Energy minimization was performed for

5000 iterations by conjugate gradient method implementing

GROMOS96 43a1 force field. Emtol convergence criterion

was set to 1000 kJ/mol/nm. Berendsen temperature coupling

method [41] was used to control the temperature within the

box. Electrostatic interactions were calculated using the

Particle Mesh Ewald method [42]. The systems were subjected

to position restraint simulation for 5 ns and after that

unrestraint simulation for 200 ns. We then computed the

comparative analysis of structural deviations in native and

mutant structure. RMSD, RMSF, SAS and Rg analysis were

carried out by using g_rms, g_rmsf, g_sas and g_gyrate tool

respectively. Number of distinct hydrogen bonds (NHbonds)

was calculated using g_hbond. Moreover, we implemented

g_densmap to obtain the atomic density distribution of the

native and mutant protein. All graphs were plotted using

Grace GUI toolkit 5.1.22 version. Further we carried out

principal component analysis using essential dynamics (ED)

method according to protocol [43] within the Gromacs

software package. This section is an abbreviated version of

our previously published work [15,32,40].

Results/Discussion

Total 60 nsSNPs were computationally examined to detect their

harmful and damaging properties. Out of 60 SNPs, 24 were

calculated to be deleterious as well as damaging using SIFT and

Polyphen2 servers (Table 1). Among these 24 nsSNPs, 7 were

accounted to be exceedingly deleterious and damaging with

tolerance index of zero and PSIC score 1. To further categorize

the expected deleterious nsSNP’s as cancer-associated, we used

PhD-SNP, Pmut, MutPred, Dr Cancer, Fathmm and SNP

Table 2. LIMBO regions in mutant and wild type.

Number Start End Stretch Score

Native

1 30 44 KFILALKVLFKAQL 12.87

2 67 75 ILRLYGYF 37.58

3 80 89 VYLILEYAP 40.52

4 136 144 LLLGSAGE 24.91

5 168 176 DYLPPEMI 42.67

6 196 204 FLVGKPPF 5.66

7 236 244 RLLKHNPS 94.00

Mutant

1 30 44 KFILALKVLFKAQL 12.87

2 67 75 ILRLYGYF 37.58

3 80 89 VYLILEYAP 40.52

4 136 144 LLLGSAGE 24.91

5 — — — —

6 195 203 EFLVWKPP 82.59

7 236 244 RLLKHNPS 16.53

For each LIMBO region, the start, end, sequence and score is given. Stretches shown in bold represents the LIMBO regions that have been severely affected by the
mutation.
doi:10.1371/journal.pcbi.1003318.t002
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Function Portal. Combinedly we reported Aurora-A G325W

mutation as cancer-associated (Table S1). A very interesting

scenario was observed in the results obtained from SNP Function

Portal. Aurora-A G325W mutation was predicted to be associated

with multiple cancer cases including Neurofibrosarcoma, Prostate

cancer, Colorectal cancer, Breast cancer, Li-Fraumeni syndrome,

Osteosarcoma, Hepatocellular carcinoma, Histiocytoma, Naso-

pharyngeal carcinoma, Thyroid carcinoma, Pancreatic cancer,

Breast cancer, Adrenal cortical carcinoma, Gastric cancer,

Endometrial carcinoma, Colorectal cancer, Lung and Ovarian

Adenocarcinoma. This large number of cancer-associated predic-

tions directly suggested that the G325W Aurora-A kinase mutation

was likely to be associated with cancer cases. Fig. 1 showed the

position of mutant residue in Aurora-A kinase protein.

Without studying the phenotypic evidences associated with a

particular mutation, the conclusion derived from computational

studies are not easily reliable. Thus we implemented SNPEffect4.0

to examine the phenotypic consequences of G325W mutation at

molecular level. Significant fluctuation in the LIMBO score for

G325W mutation was observed. For G325W mutation, dLIMBO

equaled 2335.67 which meant that the mutation decreased the

chaperone binding propensity of the protein. Fig. 2 represents the

position of the chaperone-binding sites in the protein. In Fig 2, it

could be clearly seen that the mutation had shifted the chaperone-

binding sites from the 7th stretch to the 6th stretch. In table 2, we

could see that the 6th stretch had shown significant rise in the

chaperone-binding tendency where in native, the LIMBO score of

6th stretch was 5.66 whereas in mutant the LIMBO score

increased to 82.59. Furthermore the 7th stretch showed significant

loss in the chaperone-binding tendency in mutant when compared

to the native. Moreover, the 5th chaperone-binding stretch was

completely absent in the mutant protein, whereas it was shown to

be active in native Aurora-A kinase. Molecular chaperones are

protein molecules that support in the non-covalent folding or

unfolding and the assembly or disassembly of other biomolecular

structures. Furthermore, it disallowed both newly synthesised

Figure 3. Representation of dLIMBO and ddG scores for the mutations associated with Hepatocellular carcinoma. a) Difference in
stability scores b) Difference in stability scores with respect to its frequency of occurrence. c) Difference in LIMBO scores with repect to its frequency
of occurrence.
doi:10.1371/journal.pcbi.1003318.g003
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polypeptide chains and assembled subunits from aggregating into

non-functional structures. Decrease in chaperone-binding tenden-

cy of Aurora-A might severely damage the folding pattern of the

protein. Moreover, it would lead to the formation of non-

functional protein aggregates which might cause disease-associated

phenomena. Furthermore, major stability loss was observed in the

case of mutant when FoldX predictions from SNPEffect4.0 were

taken into account. The mutant showed rise in ddG value of

7.28 kcal/mol. This implied that the mutation severely reduced

the protein stability. Based on the dLIMBO and ddG scores it was

evident that the mutation had induced loss in the chaperone-

binding tendency of protein which further led to severe

conformational changes in the protein motif and reduced its

stability. We subjected these scores for the meta-analysis in order

to detect the type of cancer which was most likely to occur in the

case of G325A Aurora-A kinase mutation. The dLIMBO and ddG

scores were plotted for previously reported cancer cases. Our

dLIMBO and ddG scores were shown to lie in the dLIMBO and

ddG distribution range of hepatocellular carcinoma associated

mutations (Fig. 3). For other cancer cases, no positive distributions

for the above obtained scores were observed. This showed that the

G325W mutation might play an important role in inducing

hepatocellular carcinoma associated phenotypes, whereas no

significant correlation was observed for other cancer cases.

Other scores obtained from SNPEffect4.0 did not have much

significance.

By the interaction with TPX2, the catalytic activity of Aurora-A

protein increased up to 15-fold [44]. TPX2 bound to and localized

Aurora-A to spindle microtubules along with microtubules on the

periphery of spindle poles [45]. To examine the changes in

interaction pattern of mutant Aurora-A with TPX2 when
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(Å

2
)

N
ar

iv
e

C
o

m
p

le
x

2
7

4
.7

+/
2

7
.7

2
1

5
3

.1
7

2
4

1
.0

+/
2

5
.6

2
9

7
.7

+/
2

2
4

.1
2

2
9

.4
+/

2
6

.9
1

5
1

.4
+/

2
3

.9
6

1
2

0
1

.6
+/

2
3

2
.9

M
u

ta
n

t
C

o
m

p
le

x
2

3
7

.3
+/

2
4

.9
2

9
2

.9
6

2
1

7
.9

+/
2

2
.1

2
5

9
.3

+/
2

1
4

.8
2

1
1

.7
+/

2
6

.1
6

0
.6

+/
2

2
.6

4
7

5
8

.5
+/

2
2

8
.8

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

cb
i.1

0
0

3
3

1
8

.t
0

0
3

Figure 4. Backbone RMSDs are shown as a function of time for
native and mutant Aurora-A protein structures at 300 K. Native
is shown in black and mutant in red.
doi:10.1371/journal.pcbi.1003318.g004

Figure 5. RMSF of the backbone CAs of Ca atoms of native and
mutant Aurora-A protein versus time at 300 K. Native is shown in
black and mutant in red.
doi:10.1371/journal.pcbi.1003318.g005
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compared to the native, we conducted molecular docking analysis.

In-depth analysis of the docked complexes revealed notable

differences between interaction patterns of native and mutant

Aurora-A protein with TPX2. As we described in [14],

computation of interaction energy was very important to

comprehend the attraction level of biological partners. Overall

interaction energy amid Aurora-A (native/mutant) and TPX2

protein mainly contributed to their electrostatic and van der

Waals interaction energy. In native, there were a major

contribution of electrostatic and van der Waals energy of 2

97.7+/224.1 kcal/mol and 241.0+/25.6 kcal/mol respectively

(Table 3). The total protein–protein interaction energy of native

complex was 2153.17 kcal/mol (Table 3). All the results

obtained from docking analysis were confirmed from the results

obtained in our previous work on Aurora-A kinase [40].

Electrostatic and van der Waals energy confirms large amount

of surface complementarities amid native Aurora-A and TPX2.

On the contrary, mutant complex showed less van der Waals and

electrostatic energies of 217.9+/22.1 and 259.3+/214.8 kcal/

mol, respectively, and relatively less amount of total interaction

energy 292.96 kcal/mol when compared to the native (Table 3).

More negative value of interaction energy for native as compared

to mutant indicated its high affinity towards TPX2. Approxima-

tions of van der Waals interaction energy were computed to

provide a theoretical quantitative estimation of the protein–

protein non-bonded interactions [14]. Result showed that the

mutation induced damaging consequences in native conforma-

tion of Aurora-A kinase that in turn reduced its overall binding

affinity to TPX2 protein.

As we described in [14], buried surface area (BSA) is a criterion

to assess protein surface which is not exposed to water and more

BSA showed a compact macromolecular complex. In table 3, we

have showed the BSA of native and mutant complexes as

1201.6+/232.9 and 758.5+/228.8 respectively. Consideration

of desolvation component (the loss of interactions with the water

phase) was important because it overcompensated the interaction

energy and resulted in an opposite effect [14,20]. Restraints

violation energy, desolvation energy and BSA showed good

correlation with interaction energy and docking score of complex

during docking simulation (Table 3). Major difference between

docking score, interaction energy and BSA were found in mutant

than native. The net values of native were significantly higher than

mutant, indicating the loss-of-function due to mutation in Aurora

A which disrupted the binding with TPX2 when compared to

mutant (Table 3). Docking process solely depended on the position

of binding residues (active residues) on the protein surface. It

showed that divergence from the actual location of binding

residues (position number 155, 157, 159 and 197) in mutant

Aurora-A might be a reason for the loss of binding with TPX2.

The three factors namely, score difference in docking process,

alteration in interaction energy and in buried surface area of

complex possibly corresponded to conformational variation of

protein-binding surface due to mutation.

The ddG scores obtained from SNPeffect4.0 FoldX prediction

implicated loss in the stability of protein. Thus we implemented

MDS calculation to observe the molecular alterations associated

with the stability loss. We explored RMSD, Rg, RMSF, SASA,

NHbond, total energy and density distribution of mutant and

native structure. RMSD for all the Ca atoms were calculated from

the starting structure which was described as the central origin to

compute the protein system (Fig. 4) [46]. In Fig. 4, native and

mutant protein showed diverge fashion of deviation from starting,

resulting in final backbone RMSD of ,0.172 nm and 0.252 nm

respectively during the simulation. Mutant lingered distinguished

till the end and exhibited higher aberration than native. This level

of fluctuation together with a minute difference in average RMSD

value after the relaxation time led to the outcome that the

simulation produced stable trajectory, thus providing a suitable

basis for further investigation. To observe the affect of mutation on

the dynamic behaviour of residues, the RMSF values of mutant

and native backbone residues were computed (Fig. 5). Inspection

of fluctuation score exposed the occurrence of higher degree of

flexibility in mutant. Mutant curve differed significantly and

fluctuated at higher degree during the simulation time period,

indicating that mutant conformation was flexible throughout the

Figure 6. Radius of gyration of Ca atoms of native and mutant
Aurora-A protein versus time at 300 K. Native is shown in black
and mutant in red.
doi:10.1371/journal.pcbi.1003318.g006

Figure 7. Solvent-accessible surface area (SASA) of native and
mutant Aurora-A protein versus time at 300 K. Native is shown in
black and mutant in red.
doi:10.1371/journal.pcbi.1003318.g007

Figure 8. Average number of protein–solvent intermolecular
hydrogen bonds in native and mutant Aurora-A protein versus
time at 300 K. Native is shown in black and mutant in red.
doi:10.1371/journal.pcbi.1003318.g008
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simulation time and its structure acquired expanded conformation

when compared to native.

As we described in [46], the radius of gyration (Rg) is the mass-

weighted root mean square distance of group of atoms from their

common centre of mass. Hence it provided an observation into

global dimension of protein. Radius of gyration graph for alpha-

carbon atoms of protein vs time at 300 K is depicted in Fig. 6. We

observed a major fluctuation in both native and mutant between a

time periods of 0 to 200 ns (Fig. 6). Based on Rg graph, native

structure was found stable than mutant. The alteration in SASA of

mutant and native protein with time is depicted in Fig. 7. Mutant

protein showed higher value of SASA with time, while native

indicated lower SASA value. Longer variation in Rg plot showed

that the mutant protein might be enduring a major structural

transition. This was further maintained by SASA result in which

the mutant was found to reveal higher values (Fig. 7). Hydrogen

bond plays a major factor on controlling the steady conformation

of protein. Time dependent NHbond formations during simula-

tion were observed in native and mutant proteins in order to

comprehend the relationship between hydrogen bond formation

and flexibility. Mutant structure demonstrated significantly less

number of NHbond formation throughout the simulation when

compared to native (Fig. 8). Furthermore, the energy spectrum

provided a detail insight into the stability of a particular structure.

We investigated the overall energy variation of native and mutant

protein throughout the simulation. A significant rise in energy level

of mutant structure was observed (Fig. 9). It provided a clear

indication of loss of the stability in mutant structure. Moreover, the

observation of corresponding eigenvalues showed the level of

variation and dynamic nature of protein molecule in the

simulation system and was mostly restricted within the first two

eigenvectors. Our result showed higher range of eigenvector

trajectory covered by mutant in comparison with native (Fig. 10).

Further information on the structural plasticity of protein was

found by the analysis of time-dependent secondary structures and

structural fluctuations. Fig. 11 showed the secondary structural

elements as a function of simulation time. Coils, b-sheets, bends

and turns were found in both native and mutant protein during

simulation time period and it is depicted in fig 11. In native

Aurora-A kinase, the residues between position 238–275 appeared

as alpha-helix, b-sheets and coils with few bend conformation till

the end of the simulation but in mutant Aurora-A this region

showed beta-sheets and turns with more traces of bend confor-

mation. The severe conformational changes in this region

supported our previous results obtained from SNPEffect4.0, where

the loss in chaperone-binding tendency of this region was

observed. In Comparison to native Aurora-A kinase, mutant

showed significant structural changes between a region of residues

238–275, 324–334 and 348–360 during simulation. Between

residues 324–334, native showed more a-helix whereas in mutant

it attained bend with few traces of turns. Between the residues of

348–360, a-helix and coil conformation formed the majority of

structure whereas in mutant, the coil conformation was only seen.

In other regions, very slight changes in secondary structure

conformation were observed.

In SNPeffect4.0 results, we observed that the chaperone-binding

location shifted from the 7th stretch to the 6th stretch. Moreover,

the chaperone-binding activity of 5th stretch was shown to be

completely lost. Thus we plotted the atom density distribution to

check if these shifting had caused any major changes in the

orientation and atomic distribution of 7th and 5th chaperone-

binding stretches. The plot indicated major conformation loss in

mutant as its atomic distribution differed significantly from the

native. For the 5th stretch the mutant structure confirmed a highest

atomic density of 6.24 nm23 whereas in native it was 7.76 nm23

(Fig. 12). Moreover, for the 7th stretch, the mutant structure

exhibited a highest atomic density of 7.23 nm23 whereas in native

it was 10.3 nm23 (Fig 13), which was in accordance to the DSSP

results, further indicating major conformational loss in these

segments.

The above results strongly indicated the loss of stability of

the mutant structure. To examine the molecular causes

associated with these outcomes, we further investigated the

cation- p interactions and the stabilizing residues in Aurora A

protein. Cation–p interaction has significant contribution in

protein stability. In proteins, cation–p interactions occur

between the aromatic side chains of phenylalanine (F), tyrosine

(Y), and tryptophan (W) and the cationic side chain of lysine

(K) or arginine (R). It was likely to have a important role in the

folding or stabilization of the proteins. The significance of

cation–p interaction had been observed in several researches

for their corresponding role in retaining the stability of

proteins. We observed a total of 5 energetically significant

cation–p interactions (Fig 14). To scrutinize if the cation–p
interactions were maintained in mutant structure, we further

examined the bond length variations of the outlying cation–p

Figure 9. Graph of total energy as a function of time for mutant
and native Aurora A protein versus time at 300 K. Mutant is
shown in red and native in black.
doi:10.1371/journal.pcbi.1003318.g009

Figure 10. Projection of the motion of the protein in phase
space along the first two principal eigenvectors at 300 K. Native
is shown in black and mutant in red.
doi:10.1371/journal.pcbi.1003318.g010
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interaction. The bond length fluctuation showed that the

Arg232-Phe238, Lys240-Tyr256 and Arg357-Phe348 cation–p
interactions had undergone major interaction losses (Fig 14).

After 32900 ps there was a major loss in Arg232-Phe238

cation–p interaction whereas after 28400 ps there was a

significant loss in Arg357-Phe348 interactions (Fig 14). Mutant

trajectory of Arg371-Trp313 bond length was comparatively

higher when compared to the native and maintained a

constant trajectory during the simulation. Arg232-Phe238

and Lys250-Tyr246 interaction were retained in the mutant

structure. These results suggested that there was a major loss in

cation–p interactions in the mutant structure which might

have induced higher fluctuation and lower in stability of the

structure. Furthermore, the protein structure contains certain

SC that acted as an essential component to maintain the stable

conformation of corresponding protein structure. Residues

Ala160, Leu161, Lys162, Val163, Asn192, Leu210, Leu263,

Lys271, Ile272 and Ser278 were identified as stabilizing

centers. When the RMSF of these residues were investigated,

we observed significant rise in their fluctuation levels (Table 4).

This further indicated that apart from damaging the ATP

binding domain and the cation-p interactions, the mutation

had also introduced major deflection in the Aurora A protein

SC, which might have significantly contributed towards

phenotypic changes observed in mutant G325W structure.

All these biophysical and biochemical factors obtained from

200 ns MD simulation had collectively suggested that the

G325W mutation had strong evidence of inducing phenotypic

Figure 11. Time evolution of the secondary structural elements of the protein at 300 k (DSSP classification). a) Native and Mutant
Aurora-A protein merged at different timescale. b) Native Aurora-A secondary structural variation c) Mutant secondary structural fluctuation.
doi:10.1371/journal.pcbi.1003318.g011
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damages in Aurora-A kinase protein, and might play signifi-

cant role in inducing hepatocellular carcinoma. These results

could be further implemented for wet lab investigations and

could provide an evidence of Aurora kinase genetic mutation

in association with cancer.

Conclusion
By the use of multiple computational platforms and long-

term molecular dynamics simulation approaches, we identified

Aurora-A G325W mutation as highly deleterious and associ-

ated with hepatocellular carcinoma. The RMSF, Rg, DSSP

and energy fluctuation results provided a clear insight of

Figure 12. Density distribution of 7th chaperone-binding stretch in a) native and b) mutant Aurora kinase A.
doi:10.1371/journal.pcbi.1003318.g012

Figure 13. Density distribution of 5th chaperone-binding stretch in a) native and b) mutant Aurora kinase A.
doi:10.1371/journal.pcbi.1003318.g013
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Figure 14. Distance fluctuation between the cation-p residues a) Lys227-Phe351 b) Arg232-Phe238 c) Lys240-Tyr256 d) Arg357-
Phe348 e) Arg371-Trp313. Native is shown in black and mutant in red.
doi:10.1371/journal.pcbi.1003318.g014

Table 4. The RMSF values of stabilizing residues.

Serial Number Residue HP LRO RMSF (nm)

Native Mutant

1 ALA160 27.54 0.02299 0.0589 0.0736

2 LEU161 24.29 0.02299 0.0528 0.0657

3 LYS162 21.97 0.03065 0.0586 0.0672

4 VAL163 24.01 0.03448 0.0669 0.0849

5 ASN192 20.39 0.03065 0.0575 0.0707

6 LEU210 23.47 0.03065 0.0497 0.0664

7 LEU263 23.05 0.02299 0.0545 0.07

8 LYS271 24.49 0.02299 0.0589 0.0717

9 ILE272 21.37 0.02299 0.0507 0.0697

10 SER278 21.55 0.03448 0.0518 0.0753

doi:10.1371/journal.pcbi.1003318.t004
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stability loss and conformational changes in mutant protein.

The results showed that the long-range computational simu-

lations provided clear picture of conformational changes

occurring in the computationally predicted disease associated

mutant protein structure. Through the advancements in the

computational resources, the use of MDS for higher time scale

would become approachable. Dedicated computer for

biomolecular simulation will most likely bring further

speedups in future, allowing the length of each simulation to

move well ahead of the large timescale. These advancements

will aid in studying the changes in the dynamics behavior

of computationally predicted disease-associated SNPs. More-

over, the advancements in high-performance molecular

dynamics simulation of biomolecules will provide new pros-

pects for the use of in silico simulations to observe mutation-

induced changes in biophysicochemical properties of protein,

especially for those parameters, which were well-known to

occur at long timescales. Furthermore to the capacity to

produce very long-range incessant simulation trajectories,

these advances will also greatly enhance the accuracy of

SNP predictions, ultimately allowing us to examine the

changes occurring at the atomic state in a very precise manner

[46].

Supporting Information

Table S1 Cancer-associated nsSNPs predicted using PhD-SNP,

Pmut, MutPred, Dr Cancer and Fathmm server. g score, P score,

molecular changes and prediction were obtained from MutPred

server. SEQPROF results were obtained from Dr Cancer server.

Allele highlighted in bold has been predicted to show Cancer-

associated SNPs.
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