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Abstract

Standard theories of decision-making involving delayed outcomes predict that people should defer a punishment, whilst
advancing a reward. In some cases, such as pain, people seem to prefer to expedite punishment, implying that its
anticipation carries a cost, often conceptualized as ‘dread’. Despite empirical support for the existence of dread, whether
and how it depends on prospective delay is unknown. Furthermore, it is unclear whether dread represents a stable
component of value, or is modulated by biases such as framing effects. Here, we examine choices made between different
numbers of painful shocks to be delivered faithfully at different time points up to 15 minutes in the future, as well as
choices between hypothetical painful dental appointments at time points of up to approximately eight months in the
future, to test alternative models for how future pain is disvalued. We show that future pain initially becomes increasingly
aversive with increasing delay, but does so at a decreasing rate. This is consistent with a value model in which moment-by-
moment dread increases up to the time of expected pain, such that dread becomes equivalent to the discounted
expectation of pain. For a minority of individuals pain has maximum negative value at intermediate delay, suggesting that
the dread function may itself be prospectively discounted in time. Framing an outcome as relief reduces the overall
preference to expedite pain, which can be parameterized by reducing the rate of the dread-discounting function. Our data
support an account of disvaluation for primary punishments such as pain, which differs fundamentally from existing models
applied to financial punishments, in which dread exerts a powerful but time-dependent influence over choice.
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Introduction

When faced with the choice of whether to have a painful

medical or dental procedure right now or in the future, many

people opt to ‘get it out of the way now’. This tendency to expedite

rather than delay future pain seems to challenge the generality of

standard discounting models of inter-temporal choice [1–6]. It also

suggests a fundamental principle of human valuation likely to be

important for our understanding of pain and a range of health

behaviors [7–12]. The general phenomenon is typically referred to

as ‘negative time preference’ and is well replicated under

controlled conditions [13–19]. A putative explanation is that the

anticipation of primary punishments is itself inherently aversive,

referred to as ‘dread’ [18–22]. However, the way in which dread is

constructed as a function of both time and the aversiveness of

outcomes is not well understood. An additional unknown property

of dread is its stability in the face of biases, such as framing effects.

In particular, if dread is re-framed as relief from an imagined

higher amount of pain it might be possible to reduce or even

reverse negative time preference. In theory if framing could

eliminate dread preferences might revert to those predicted by

temporal discounting alone.

A simple account proposes that, when anticipating pain, people

treat each prospective unit of time as equally aversive. Here the

total dread of pain accumulates linearly with increasing delay,

such that the prospect of even minor pain ought to become

unbearable at a sufficiently long delay. Under an alternative

account, moment-by-moment dread increases as expected pain is

approached in time. Under this account prospective pain is

increasingly aversive with increasing delay, though at a decreasing

rate. A further possibility is that moment-by-moment dread is itself

prospectively discounted in time [19]. In particular, this predicts

that prospective pain has a future point at which it is maximally

aversive, being preferred both sooner or later. Thus we might

prefer to have a dental procedure now as opposed to next week,

but also next year as opposed to next week. Within the context of

experimentally accessible choices, these differing accounts make

testable predictions for the shape of the (dis)value function that

relates prospective pain to time.

To test these alternative models and the influence of framing

effects, we examined intertemporal choice over experienced

painful outcomes at different delays ranging from seconds to

around 15 minutes (Experiment 1: Figure 1). The outcomes

consisted of trains of brief moderately painful cutaneous electric

shock stimuli delivered to the dorsum of the hand. A total of 35

participants made binary choices between shock trains with

different expected shock rates (expressed in terms of the number of

shocks per episode) which occurred at different points in time,
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where the unit of time was a single trial. Chosen outcomes were

delivered faithfully at the relevant future time points. In order to

achieve longer delays, choices and outcomes were interleaved,

such that each choice was followed by a painful outcome, the

shock rate of which was determined by choices made earlier in the

experimental run. We collected intertemporal choice data in two

blocks: a block in which outcomes were framed as an increase in

shock rate from an expected baseline, referred to as the pain frame

and an otherwise identical experimental block in which outcomes

were framed as a decrease in shock rate from an expected

maximum, referred to as the relief frame. In addition we examined

intertemporal choices from 30 participants over hypothetical

dental appointments with varying degrees of dental pain at

different delays ranging from today to around 8 months

(Experiment 2).

We show at a group level, for both laboratory and hypothetical

outcomes, prospective aversion increases with increasing delay to

the delivery of pain, but does so at a decreasing rate, consistent

with a value model in which instantaneous dread increases

exponentially up to the time of expected pain, allowing dread to be

considered as equivalent to the discounted expectation of pain. For

a minority of individuals the prospect of future pain is maximally

aversive at intermediate intervals, consistent with an exponential

dread function being itself prospectively discounted in time when

making decisions. Framing outcomes as relief from pain attenu-

ated, but did not reverse, overall negative preference, an effect

which was best parameterized by reducing the discount rate

governing the expectation of pain.

Results

Experiment 1
Participant inclusion criteria. Of the 35 participants, 2

participants were excluded from the analysis after they

reported during the experiment that they did not find the

shock stimuli aversive. A further 8 deterministically chose

sooner pain, irrespective of the shock rate: these ‘maximum

dreaders’ were excluded from the modeling analysis, since the

shape of their preferences could not be reliably assessed using

the experimental choices offered (a larger difference in sooner

and later shock rates than those used here would be required

in order to encounter indifference points for these partici-

pants).

Group level time preference. At the group level, partici-

pants showed a strong preference for sooner pain, at the expense

of an increased number of shocks, confirming the existence of a

strong effect of dread in the experiment. Overall time preference

in the experiment is given by the mean probability across all

choices of choosing later shocks (S2) over sooner shocks (S1),

referred to as p(Choose S2). Since there are equal numbers of trials

in which S1.S2 as in which S2.S1, overall negative time

preference is indicated by p(Choose S2) ,0.5. Group mean

p(Choose S2) averaged across both frames and all delay lengths

was significantly less than 0.5, [mean p(Choose S2) = 0.29,

S.E. = 0.04, N = 33, One sample t(32) = 25.23, p,0.001], this

was confirmed with non-parametric testing [median p(Choose

S2) = 0.34, One sample Wilcoxon Signed Rank test p,0.001],

indicating overall negative time preference. As a result, partici-

pants chose the larger pain on 32.6% (S.E. = 3.21) of choices

overall.

Dependence of group level time preference on

delay. Figure 2 shows mean p(Choose S2) on the two frames

across the 25 subjects included in the modeling analysis, as a

function of delay length, where the latter is expressed as the

difference in delay between the two choice options. Since there are

equal numbers of trials in which S1.S2 as in which S2.S1, and

option presentation is counterbalanced, p(Choose S2) at a delay

difference of zero is theoretically bounded at 0.5. Delay difference

(D2-D1) is binned into tertiles, corresponding to short (1–10 trials),

medium (11–20 trials) and long (.20 trials) delay differences. A 2-

way repeated measures analysis of variance (ANOVA) revealed a

significant main effect of frame [F(1,24) = 9.5 p = 0.005)], whereby

participants chose sooner shocks less frequently in the relief frame.

There was also a significant main effect of delay [F(3,72) = 8.2;

p = 0.002)], as well as a delay by frame interaction [F(3,72) = 4.2;

p = 0.023)]. Non-parametric pair-wise comparisons between zero,

short, medium and long delay differences (across both frames

combined) revealed a significant decrease in p(Choose S2) between

zero and short delay differences [p(Choose S2, Short) ,0.5,

Wilcoxon Signed Rank test, p = 0.004] and between short and

medium delay differences (Wilcoxon Signed Rank test, p = 0.014),

but no significant change between medium and long delay

differences (Wilcoxon Signed Rank test, p = 0.398), suggesting that

negative time preference decreases at longer delay differences,

rather than being constant. In particular the slope of the

dependence of p(Choose S2) on delay provides a proxy for the

rate of time preference. We therefore tested the hypothesis of

decreasing negative time preference by performing a further 2-way

repeated measures ANOVA, entering the slope of p(Choose S2)

between each category of delay difference as the dependent

variable. This second ANOVA demonstrated a significant main

effect of frame on the rate of time preference [F(1,24) = 15.5;

p = 0.001)], as well as a significant main effect of delay

[F(2,48) = 4.4; p = 0.033)], thus rejecting the null hypothesis of

constant negative time preference. There was no significant delay

by frame interaction in this analysis [F(2,48) = 1.6; p = 0.205)].

Non-parametric pairwise comparisons revealed that the effect of

delay was driven by a significantly more negative slope between

short and medium delays than between medium and long delays

(Wilcoxon Signed Rank test, p = 0.013), consistent with diminish-

ing negative time preference. This suggests the rate of accumu-

lation of dread diminishes with increasing delay, suggesting that on

Author Summary

People often prefer to ‘get pain out of the way’, treating
pain in the future as more significant than pain now. One
explanation, termed ‘dread’, is that anticipating pain is
unpleasant or disadvantageous, rather like pain itself.
Human brain imaging studies support the existence of
dread, though it is unknown whether and how dread
depends on the timing of future pain. We address this
question by offering people decisions between moderate-
ly painful stimuli, and separately between imagined
painful dental appointments occurring at different time
points in the future, and use their choices to estimate
dread. We show that future pain initially becomes more
unpleasant when it is delayed, but as pain is moved further
into the future, the effect of delay decreases. This is
consistent with dread increasing as anticipated pain draws
nearer, which is then combined with a general (and
opposing) tendency to down-weight the significance of
future events. We also show that dread can be attenuated
by describing pain in terms of relief from an imagined
even more severe pain. These observations reveal impor-
tant principles about how people estimate the value of
anticipated pain – relevant to a diverse range of human
emotion and behavior.

Disvalue of Future Pain
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average instantaneous dread increases in time, rather than being

constant.

Classification of participants by individual time

preference. The group level data displayed in Figure 2 conceal

substantial heterogeneity in the response patterns of individual

participants. We therefore categorized the 25 participants whose

data contributes to Figure 2 according to their individual pattern

of time preference. We identified four mutually exclusive

categories: zero time preference, positive time preference, negative

time preference, and reversing time preference (Figure 3). Partici-

pants were classified as having zero time preference if p(Choose S2)

showed no significant deflections from 0.5 at any delay difference

(Binomial test, a = 0.05) (7/25, Figure 3A). The zero time

preference group chose the option with the smaller shock rate

on 88% of choices [mean p(Choose Smaller) = 0.88, SE = 2.8],

demonstrating that this group did not simply respond randomly,

but tended to choose the less painful stimulus, irrespective of delay.

Participants were classified as having positive time preference if they

displayed significant increases in p(Choose S2), but no significant

decreases (Fisher Exact test, a = 0.05) (4/25, Figure 3B), as having

negative time preference if they displayed significant decreases in

p(Choose S2), but no significant increases (12/25, Figure 3C), and

as having reversing time preference if they displayed significant

increases in p(Choose S2), as well as significant decreases (2/25,

Figure 3D). The two participants with reversing time preference

both displayed initial negative, followed by positive time prefer-

ence, a pattern that would be consistent with prospective dread

being itself discounted in time.

Group level modeling analysis. We compared alternative

accounts for the computations underlying the observed patterns of

time preference by fitting a series of dread-discounting models of

increasing complexity. Each model parameterized the function by

Figure 1. Trial structure of the task in Experiment 1. A: sequence of two Choice Trials, demonstrating the display of outcome options and
outcome phases. The dotted arrow denotes how choices on previous trials determine expected shock rates on the future trials referred to by those
choices. B: An example No Choice Trial.
doi:10.1371/journal.pcbi.1003335.g001

Disvalue of Future Pain
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Figure 2. Observed time preference: Experiment 1. Mean probability across participants (N = 25) of choosing the more delayed shock outcome
(S2) over the sooner shock outcome (S1) [referred to as p(Choose S2)] as a function of difference in delay between delivery of S2 and S1 (D2 – D1),
expressed in units of trials. Delay difference (D2 - D1) is binned into tertiles, corresponding to short (1–10 trials), medium (11–20 trials) and long (.20
trials) delay differences. A: choice probabilities for all choices. At delay difference of zero, S1 and S2 would occur at the same time-point; since there
are equal numbers of trials in which S1.S2 as in which S2.S1, this plot is theoretically bounded to cross the probability axis at p(Choose S2) = 0.5,
represented by the blue and red square. Blue circles represent choice probabilities for the relief frame, red circles choice probabilities for the pain
frame. Error bars represent one standard error from the between subject mean. A 2-way repeated ANOVA revealed a significant main effect of both
frame [F(1,24) = 9.505; p = 0.005)] and delay [F(3,72) = 8.156; p = 0.002)], as well as a significant delay by frame interaction [F(3,72) = 4.169; p = 0.023)]. B:
Choice probabilities for choices in which the more delayed option was a smaller number of shocks. At delay difference of zero, S1 and S2 would occur
at the same time-point, under which circumstance it might be assumed that participants would show preference for the smaller number of shocks,
denoted by the blue and red square.
doi:10.1371/journal.pcbi.1003335.g002

Figure 3. Observed time preference in individual participants categorized by time preference. p(Choose S2) as a function of delay
difference, expressed in units of trials, for all 25 participants included in the modeling analysis. Choice probabilities shown are the mean of those on
the two frames. Delay difference scaling is identical that in Figure 2. Time preference is approximated by the slope of the choice probability lines. A:
participants with no significant time preference at any delay. B: participants who show positive time preference, but no significant negative time
preference at any delay. C: participants who show negative time preference, but no significant positive time preference at any delay. D: participants
with initial negative time preference followed by significant positive time preference at longer delays. Data are plotted as solid lines to assist
visualization of the choice patterns. Each gray line represents data from a single participant. The bold purple lines represent the between-subject
means in each category. At delay difference of zero, S1 and S2 would occur at the same time-point; since there are equal numbers of trials in which
S1.S2 as in which S2.S1, the plots are theoretically bounded to cross the probability axis at p(Choose S2) = 0.5.
doi:10.1371/journal.pcbi.1003335.g003
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which future pain was disvalued, and therefore the value of each of

the binary choice options presented. Values were transformed into

predicted probabilities of choosing either option according to a

softmax activation function (see Methods). In order to draw

comparisons between models with differing architecture and

complexity, we calculated the Bayesian Information Criterion

(BIC) for each model at the group level, according to a fixed-effects

scheme, by summing the BIC values for model fits to individual

data. The BIC favors models with higher likelihood estimates and

penalizes increasing model complexity, where lower values of BIC

indicate a more favorable model fit. Figure 4 displays choice

probabilities on the paradigm itself predicted by representative

parameterizations of each model (blue lines), as well as the mean

choice probabilities from each of the four participant sub-groups.

(Notably the shape is also dependent on the parameters of each

model and the parameter dependence of the more complex models

is illustrated in Figures S1, S2, S3, S4, S5).

Each model shares the same general form, but differs in the

manner in which dread varies as a function of time and outcome

magnitude. In all models, we assume that the total aversive value of

a prospective option (UTOTAL) is equal to the aversive value

associated with accumulated sum of future dread up until the time

(T ) of the actual pain plus the aversive value related to the pain itself:

UTOTAL~UDREADzUPAIN ð1Þ

In all models, we also assume exponential discounting of pain,

where cP represents the discount factor applied to the future pain,

and x represents the shock rate. Thus:

Figure 4. Model predictions on the task: Experiment 1. p(Choose S2) as a function of delay difference according to alternative models of
dread. Choice probabilities shown are the mean of those on the two frames. Delay difference scaling is identical that in Figure 2. The fine gray lines
represent mean p(choose S2) for the four participant subgroups shown in Figure 3. Data points marked by blue squares, joined with lines for
illustrative purposes, represent model data simulated at the parameter values denoted in each panel. These do not represent the results of model
fitting, but serve to illustrate the basic form of the alternative model predictions. Notably different parameterizations of the more complex models
can produce diverse shapes of choice frequency plot (see Figures S2, S3, S4, S5). Error bars represent one standard deviation of the binomial
distribution. In each case the softmax inverse temperature parameter, b, is set to 0.25, a representative value.
doi:10.1371/journal.pcbi.1003335.g004

Disvalue of Future Pain
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UPAIN~cT
P
:x ð2Þ

Hence what differs between the models is the way in which UDREAD

depends on x and T. Although different forms of discounting

function, such as hyperbolic and quasi-hyperbolic, are of impor-

tance in standard models of financial discounting, they have a

relatively subtle effect here, since the more complex functional

forms resulting from the addition of dread depend little on the

precise shape of the basic discounting function; we therefore adopt

exponential discounting for the sake of simplicity.

In the following analysis UPAIN is assumed to be a linear

function of the shock rate, x. Since there was no a priori reason

for this assumption, besides parsimony, we performed an

identical model comparison in which (negative) UPAIN was a

concave function of the shock rate. The parameters of this

concave utility function were derived empirically, separately for

each subject, and outside of the main model fitting procedure,

by fitting a three-parameter Weibull function to participants’

subjective ratings of stimuli with differing shock rates (shown in

Figure S6).

Model 1: The first model, the Null model, assumes that the

prospective disvalue of pain depends only on the stated number of

shocks, and not on the delay, i.e. UDREAD~0 and cP = 1 such that:

UTOTAL~x ð3Þ

As shown in Figure 4A, this model predicted a net 50% probability

of choosing later shocks on our choice paradigm. This arose of the

fact that on half the presented options the later outcome carried a

larger number of shocks and on half the options the later outcome

carried a smaller number. The Null model did not adequately

capture observed choice patterns at the group level (BIC~5009).

Model 2: The second model, the Exponential Discount model,

extends the Null model to add an exponential discount rate for

pain, cP, but again assumes that UDREAD~0, such that:

UTOTAL~cT
P
:x ð4Þ

The Exponential Discount model predicted overall preference for

later shock (Figure 4). This model improved the group-level

likelihood by comparison with the Null model, consistent with

some participants demonstrating positive time preference however

this was not sufficient to compensate for an increase in complexity

over the Null model (BIC~5133).

Model 3: The third model, which is the simplest model to

incorporate dread, assumes a constant benefit or cost from

anticipation accruing from any delayed outcome, which does not

scale with the size of the outcome or the delay to its delivery. In

other words, outcomes accrue a fixed cost from anticipation.

UTOTAL~AzUPAIN ð5Þ

Where UDREAD~A is the fixed constant of dread, assumed to be

negative. Despite the additional parameters, this Fixed Delay Cost

model substantially outperformed both the Null and Exponential

Discount models (BIC improvements of 368 and 492 respectively).

Model 4: The fourth model, Constant Dread, assumes that dread

is constant over time, where UDREAD, is given by the prospective

sum of dread across the delay:

UDREAD~a:
XT{1

t~0

x ð6Þ

Hence dread accumulates linearly when pain is viewed from the

perspective of an increasing delay. As in all dread-discounting

models discussed here, total dread is added to the discounted value

of the delayed pain itself in order to compute the overall disvalue

of delayed pain. Dread is weighted in this sum by the parameter a,

equivalent in this case to a proportionality constant for the linear

increase in dread. Figure S2 outlines the parameter dependence of

the Constant Dread model. The time dependence of total dread

embodied by this model substantially improved the model fit

compared with Fixed Delay Cost (BIC improvement of 321, see

Figure 5A).

Model 5: The fifth model, Exponential Dread, assumes an

increasing time-course of instantaneous dread, such that dread

increases exponentially until the actual time of pain. Parsimoni-

ously, the model assumes that the exponential rate governing the

increase in dread is identical to the rate by which pain is

discounted, cP, such that dread becomes simply equivalent to the

predicted (discounted) value of future pain. In addition, the

general form of the Exponential Dread model allows the

exponential rise of dread to be itself discounted in time by a

further discount factor, cD, such that:

UDREAD~a:
XT{1

t~0

cP
T{t:c t

D
:x ð7Þ

Figure S2 outlines the parameter dependence of the general

form Exponential Dread model. We tested this general form, as

well as two nested variants. The first variant, which we term

Undiscounted Exponential Dread assumes that dread is not itself

prospectively discounted, such that cD~1:

UDREAD~a:
XT{1

t~0

cP
T{t:x ð8Þ

Figure S3 outlines the parameter dependence of this Un-

discounted Exponential Dread model, which predicts that

preference for sooner shock saturates at longer delays. The second

variant, Restricted Discounted Exponential Dread, assumes that

the rate of exponential rise of dread is the same as the rate of

exponential discounting of dread, such that cD~cP~c, giving:

UDREAD~a:
XT{1

t~0

cT{t:ct:x ð9Þ

Which further simplifies as follows:

UDREAD~a:
XT{1

t~0

cT :x ð10Þ

UDREAD~a:cT :T :x ð11Þ

Disvalue of Future Pain
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Figure 5. Model comparison and framing effects: Experiment 1. A: Bayesian Information Criterion (BIC), summed across participants (N = 25)
for the alternative models. Lower values of BIC indicate better fits of the model. Exponential Dread outperformed other models, with Undiscounted
Exponential Dread providing the most parsimonious fit at the group level, indicated by the red circle. B: Mean frequency of choosing sooner pain
across all choices by all participants in either frame. Error bars show one standard error from the mean in each direction. Two-tailed paired t-test
showed significant difference between the two frames t(32) = 2.84, p = 0.0077. This result was confirmed with non-parametric testing for differences
between paired samples using the Wilcoxon Signed Rank test, which revealed significant differences between the two medians (N = 33, Z = 22.6,
p = 0.0093). C: Results of fitting the general form Exponential Dread model to both pain and relief frames, whilst restricting which parameters were
allowed to vary between frames. In the unrestricted framing model (All-Framing) all four parameters, the inverse softmax temperature, b, the

Disvalue of Future Pain
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All forms of the Exponential Dread model are capable of

predicting diminishing negative time preference. Furthermore, if

dread itself is prospectively discounted (cDv1), reversals of time

preference can occur, such that prospective pain is maximally

aversive at intermediate delays (Figures S2 and S3).

Consistent with the behavioral observation of diminishing

negative time preference, (Figure 2) Exponential Dread models

were the best performing at the group level (BIC improvement of

149 over Constant Dread for general form Exponential Dread).

The restricted variants were favored over the general form, with

Undiscounted Exponential Dread providing the most parsimoni-

ous fit out of all models tested at the group level (BIC
improvement of 150 over the general form), followed by Restricted

Discounted Exponential Dread (BIC improvement of 57 over the

general form).
Group level framing effects. Across participants, the mean

frequency of choosing sooner pain in the pain frame was 73.7%

(S.E. = 3.95) and 67.3% (S.E. = 4.22) in the relief frame (Figure 5B).

A two-tailed paired t-test showed that this difference was

significant: t(32) = 2.84, p = 0.0077. The result was confirmed

with non-parametric testing for differences between paired

samples using the Wilcoxon Signed Rank test, which revealed

significant differences between the median choice frequencies

(N = 33, Z = 22.6, p = 0.0093).

Analysis of the framing effect was extended using the general

form Exponential Dread model to test which parameters of the

model best accounted for the differences in intertemporal choice

between pain and relief frames. Thus, we performed a second model

comparison whilst restricting which parameters were allowed to

vary between frames. The general form model was chosen for this

analysis in order that predictions regarding the basis of the framing

effects were not dependent on accepting a specific version of the

model. The results of model comparison across frames are shown

in Figure 5C.

The two models with the lowest BIC were the model in which a
is allowed to be free (i.e. the discount factors cP and cD and the

choice temperature b are fixed; BIC = 4142), and the model in

which cP is allowed to be free (i.e. the dread discount factors cD,

the dread weighting parameter, a, and the choice temperature b
are fixed; BIC = 4115), with a BIC difference of 27, indicating

substantial support for the cP-framing model. These results suggest

that the framing effect was most parsimoniously accounted for by

changes in the discount rate governing the rate of increase in the

dread of future pain, cP. Likelihood ratio tests rejected the (null)

No-Framing model in favour of the cP-Framing model at both the

group (fixed effects) (LR = 10108:1, x2 = 497.3, p,0.001, d. f. = 25)

and individual (Mean individual LR = 2088:1, x2 = 19.9,

p,0.001, d. f. = 1) levels.
Modeling with non-linear utility of pain. Within the set of

experimental choices offered, absolute shock rate is weakly

correlated with the delay difference (Pearson r = 0.12) between

the two options. As a result, it is possible that some of the variance

in the data could be accounted for by the shape of the utility

function for pain, independent of the effect of delay. To examine

the contribution of variable utility, we fitted a version of the Null

model in which the pain utility function (implemented as a three-

parameter Weibull function) was allowed to freely vary between

subjects. This model (BIC~4881) illustrated that the utility

function alone was unable to account for the full range of the

observed findings. We performed further model comparison of the

dread-discounting models under a concave utility function for

pain. The rank ordering of the model fits was unchanged under

concave utility, whilst the overall quality of fits was higher with

linear utility (Figure 6), demonstrating that the results remain

robust to changes in the utility function of pain. We could

speculate from these results that subjects, having only sampled the

extremes of shock rate prior to taking part in the experiment, did

not have precise insight into the shape of their own utility functions

for shock rate, and may have therefore used linear utility as a

heuristic.

Modeling analysis of sub-groups. At the sub-group level,

we hypothesized that the Null model would perform best in the

zero time preference group, that Exponential Discounting would

perform best in the positive time preference group, that Un-

discounted Exponential Dread would perform best in the negative

time preference group and that either general form or Restricted

Discounted Exponential Dread would perform best in the reversal

group. In the zero time preference group, the two models with the

lowest BIC estimates were indeed the Null model (BIC = 755) and

Undiscounted Exponential Dread (BIC = 793), suggesting evi-

dence in favor of the Null model in this group. In the positive time

preference group the two models with the lowest BIC estimates

were Fixed Delay Cost (BIC = 961) and Exponential Discounting

(BIC = 964), with a BIC difference of 3.5, unexpectedly providing

weak evidence in favor of the Fixed Delay Cost model in this

group. Closer inspection revealed that the improved fit of this

model was driven by a single participant, who displayed a degree

of negative time preference on the pain frame. As expected, in the

negative time preference group the best performing model was

Undiscounted Exponential Dread (BIC = 1868), followed by

Restricted Discounted Exponential dread (BIC = 1941). Also as

expected, in the reversal group, the best performing model was

Restricted Discounted Exponential dread (BIC = 370), followed by

the general form Discounted Exponential Dread (BIC = 372)

(followed by Undiscounted Exponential Dread, BIC = 374),

indicating evidence in favor of dread being discounted in this

sub-group. Notably, alternative parameterizations of the general

form Exponential Dread model are able to account for the

patterns of time preference displayed by each of the four sub-

groups, as shown in Figure 7, which presents data from a single

participant within each group, along with the maximum likelihood

estimates predicted by the general form Exponential Dread model.

The cP-framing model provided the most parsimonious account

of between-frame differences for all participant sub-groups.

Framing effects were most prominent in the negative and reversing

time preference groups, which together accounted for all

participants with significant behavioral framing effects in the

expected direction (9 participants, Fisher exact test p,0.05).

Consistent with this, cP was significantly higher in the pain frame

(less discounting of pain, faster accumulation of dread) than in the

relief frame in the negative time preference group [Wilcoxon signed

rank test, d. f. = 14, p = 0.006]. No subjects in the zero time

preference group showed significant framing effects, and there

discount parameters, cP and cD , and the anticipation parameter, a, were applied separately to each frame, yielding an eight parameter model. In the
fully restricted framing model (No-Framing) all parameters were constrained to be equal across frames, yielding a four-parameter model. The best fit,
indicated by the red circle, was provided by a four-parameter model in which b, cD and a were fixed across frames, leaving between-frame differences
explained by differences in cP (cP-Framing). Likelihood ratios are displayed at both the group level and the individual level, strongly favoring the cP-
Framing model over the No-Framing model at both the group (fixed effects) (LR = 10108:1, x2 = 497.3, p,0.001, d. f. = 25) and individual levels (Mean
individual LR = 2088:1, x2 = 19.9, p,0.001, d. f. = 1) .
doi:10.1371/journal.pcbi.1003335.g005
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were no significant between-frame differences in cP in the zero

time preference sub-group [Wilcoxon signed rank test, d. f. = 11,

p = 0.57]. A single subject in the positive time preference group

showed a significant behavioral framing effect in the reverse

direction (higher discounting in the pain frame), in this case

parameterized as a lower cP in the pain frame, suggesting that the

direction of the framing effect described here relies on subjects

displaying a significant degree of dread.

Experiment 2
Participant inclusion criteria. All 30 participants were

included in the analysis.

Group level time preference. In Experiment 2 participants

made 70 choices between two possible timings for a hypothetical

dental appointment. They were informed that the appointment

would last for 15 minutes and that the experience would be

painful. Participants were also informed that the appointment was

routine and that the timing would not affect their dental health.

They were asked to imagine that the dental surgery was situated

close to their home, such that they could attend an appointment

almost immediately should they so wish. The severity of the pain

for each possible appointment was described as a percentage,

where 100% represented the worst imaginable dental pain. Since

outcome magnitude was described in experiential terms, a linear

utility function was assumed over percentage pain intensities. The

appointment delays ranged from ‘‘today’’ to 237 days in the

future, and were described in units of days. As for Experiment 1,

there were an equal number of choices for which the larger

magnitude pain was the sooner option as choices in which the

(identical) larger magnitude pain was the later option, therefore

Figure 6. Model comparison with non-linear utility: Experiment 1. The results of an identical model comparison, performed with subject-
specific non-linear utility functions for pain, derived from subjective ratings of stimuli with differing shock rates, as shown in Figure S6. Blue bars
represent summed BIC values for linear utility models, gray bars the BIC values for non-linear utility models. For each alternative model using linear
utility provided better model fits, as indicated by lower BIC values. Importantly, the rank order of the models was largely unchanged using non-
linear utility, the only exception being that the general form Exponential Dread model outperformed the Restricted Discounted version with non-
linear utility, but not with linear utility. The green bar labelled ‘‘Fit Utility Only’’ represents the result of implementing the Null model with a freely
fitted three-parameter Weibull utility function, showing that a variable utility function alone was unable to account competitively for the observed
data.
doi:10.1371/journal.pcbi.1003335.g006
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the probability of choosing the later option, in this case p(Choose

A2) where A2 refers to Appointment 2, reflects time preference in

the same manner as for Experiment 1.

Consistent with Experiment 1, at the group level, participants

showed a strong preference for sooner dental appointments, at the

expense of more severe dental pain: group mean p(Choose A2)

averaged across all delay lengths was significantly less than 0.5,

[mean p(choose A2) = 0.38, N = 30, SE = 0.025, One sample

t(29) = 24.56, p,0.001], a result which was confirmed with non-

parametric testing [median p(Choose A2) = 0.39, One sample

Wilcoxon Signed Rank test p,0.001], indicating overall negative

time preference.

Dependence of group level time preference on delay. To

assess the dependence of time preference on delay at the

behavioral level, and to facilitate comparison with Experiment 1,

delays to the later dental appointment were grouped into short (1–

5 days), medium (13–32 days) and long (89–237 days) categories. A

one-way analysis of variance (ANOVA) revealed a significant main

effect of delay [F(3,116) = 8.1 p,0.001)]. Non-parametric pair-

wise comparisons between zero, short, medium and long delays

revealed a significant decrease in p(Choose A2) between zero and

short delay differences [p(Choose A2) ,0.5, Wilcoxon Signed

Rank test, p,0.001], between short and medium delay differences

(Wilcoxon Signed Rank test, p = 0.0025), and between medium

and long delay differences (Wilcoxon Signed Rank test, p = 0.022),

suggesting consistent negative time preference at the group level.

Figure 8A displays the group mean p(Choose A2) for Experiment 2

at all delay lengths offered. The data reflect the finding of

consistent negative time preference. Diminishing negative time

preference with increasing delay can be clearly appreciated from

the shape of the plot.

Classification of participants by individual time

preference. We categorized the 30 participants according to

their individual pattern of time preference, using an identical

method as for Experiment 1: 12 out of 30 participants showed zero

time preference, 3 out of 30 showed positive time preference, and

the remaining 15 out of 30 showed negative time preference. In this

experiment, no participants displayed reversing time preference, i.e.

none displayed significant increases in p(Choose A2), as well as

significant decreases. Figures 8B–D display group mean p(Choose

A2) at each delay length for the zero, positive and negative time

preference groups respectively.

Group level modeling analysis. The results of group level

model comparison for Experiment 2 are shown in Figure 9.

Consistent with the shape of the group level choices (Figure 8),

Undiscounted Exponential Dread was the best performing model

at the group level (BIC = 1036), followed by Constant Dread

(BIC = 1115). These two models outperformed both the restricted

variant of Discounted Exponential Dread (BIC = 1162), general

form Discounted Exponential Dread Constant Dread

(BIC = 1179), Fixed Dread Cost (BIC = 1418). Exponential

Discounting (BIC = 1784) and the Null model (BIC = 1791).

Modeling analysis of sub-groups. At the sub-group level,

we hypothesized that the Null model would perform best in the

zero time preference group, that Exponential Discounting would

perform best in the positive time preference group and that

Undiscounted Exponential Dread would perform best in the

negative time preference group. In the zero time preference group,

the best performing model was in fact Undiscounted Exponential

Dread (BIC = 218), followed by the restricted form of Discounted

Exponential Dread (BIC = 229), followed by the Null model

(BIC = 232). This unexpected result is consistent with the

observation that participants in the zero time preference group

displayed a small but consistent degree of negative time

preference, as shown in Figure 8B. In the positive time preference

group the two models with the lowest BIC estimates were

Exponential Discounting (BIC = 176) and Undiscounted Expo-

nential Dread (BIC = 179), a BIC difference of 3.1, providing

weak evidence in favor of Exponential Discounting in this group.

Similarly, as predicted, in the negative time preference group the

best performing model was Undiscounted Exponential Dread

(BIC = 633), followed by Constant Dread (BIC = 674).

Discussion

We compared alternative accounts for how aversive (dis)value is

constructed as a function of time using two experimental

paradigms in which participants made choices between painful

Figure 7. Time preference of sample participants on Experiment 1 and fits of the (discounted) Exponential Dread model. Observed
p(Choose S2), combined across both frames, as a function of delay difference, expressed in units of trials, is displayed for a single participant from
each of the four subgroups shown in Figure 3, indicated by the purple circles. Delay difference scaling is identical that in Figure 2. Data simulated
from the general form Exponential Dread model at the maximum likelihood parameter estimates for each participant, subsequently combined across
frames, are plotted as cyan squares. Error bars represent one standard deviation of the binomial distribution. A: a participant with zero time
preference B: a participant with positive time preference (left hand column). C: a participant with negative time. D: a participant with reversing time
preference: showing initial negative time preference reverting to positive time preference at longer delay differences. The general form of the
Exponential Dread model adequately captures all four patterns of time preference.
doi:10.1371/journal.pcbi.1003335.g007
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outcomes occurring at different delays in the future: in the first the

outcomes were moderately painful electric shocks which were

experienced for real, and in the second the outcomes were

hypothetical painful dental appointments.

In accordance with previous studies we found that most

participants (26 out of 33 in Experiment 1, see Table S1 and

Text S1) exhibited dread for pain. These participants preferred to

experience the same pain sooner rather than later and were willing

to accept more pain in order to hasten its occurrence. The

observed behavior for both real and hypothetical painful outcomes

revealed that negative time preference initially increased with

increasing delay, but saturated at long delay. This pattern was best

accounted for by a dread-discounting model in which dread

increases exponentially as pain is approached in time. The total

utility from dread is then given by the prospective sum of dread,

where the extent to which an individual incorporates dread can be

described in terms of the weighting parameter, a. We termed this

model Exponential Dread. We showed also that dread is

modulated by relief framing, an effect which was captured by

modulation in the rate of instantaneous dread increase.

Our findings extend those of Berns and colleagues, who

compared a Constant Dread model and an Exponential

Figure 8. Time preference for a hypothetical painful dental appointment: Experiment 2. Observed p(Choose A2) is plotted as a function of
the delay to the later appointment; the sooner appointment was always at 0 days, i.e. ‘‘today’’. Error bars represent one standard error from the group
mean. A: group mean p(Choose A2) for all participants (N = 30). B: mean p(Choose A2) in the zero time preference group (N = 12). C: mean p(Choose
A2) in the positive time preference group (N = 3). D: mean p(Choose A2) in the negative time preference group (N = 15).
doi:10.1371/journal.pcbi.1003335.g008
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Discounting model without dread in the context of choice between

delayed shocks predicted by a cue [18]. In the latter study, the

Constant Dread model provided better fits to both the behavioral

data and the BOLD response in several regions of interest (right

primary and secondary somatosensory cortices, caudal anterior

cingulate cortex and right posterior insula) than the model without

dread, demonstrating a neural correlate of dread. We have used

behavior to probe the dependence of dread on delay, and in so

doing provide direct empirical support for Exponential Dread,

corresponding to the original form of the anticipation-discounting

model proposed by Loewenstein [19].

We suggest that both moment-by-moment dread and the

temporally discounted value of pain itself increase as pain is

approached in time. This leads to a putative simplification,

embodied by the Exponential Dread model, that both are one and

the same signal – simply the instantaneous anticipation of pain. An

increasing aversiveness by time function for the anticipation of

pain bears similarity to observations in studies of fear conditioning.

For example, the ability of fear to potentiate the startle response is

specific to the learned time interval between conditioned stimulus

(CS) and unconditioned stimulus (UCS) [23–26]. Thus, following

the CS, fear behaviors increase to reach a maximum at the

predicted time of UCS onset. Similarly, in human subjects

instructed to expect shock after a stated delay, physiological

measures of fear such as galvanic skin response (GSR) and heart

rate both increase roughly exponentially in the period immediately

preceding the predicted time of shock delivery [27–29]. Conse-

quently, the anticipation of pain can be considered as resembling a

temporally discounted value signal, assuming a low level when

pain is distant and increasing as pain is approached. Indeed, we

Figure 9. Model comparison for Experiment 2. Bayesian Information Criterion (BIC), summed across participants (N = 30) for the alternative
models. Lower values of BIC indicate better fits of the model. Undiscounted Exponential Dread provided the most parsimonious fit at the group
level, indicated by the red circle.
doi:10.1371/journal.pcbi.1003335.g009

Disvalue of Future Pain

PLOS Computational Biology | www.ploscompbiol.org 12 November 2013 | Volume 9 | Issue 11 | e1003335



suggest it is possible that the overall motivational value of pain

reflected across many instances of pain-related decision-making

incorporates, to a varying degree, a prospective sum of this

anticipation, comprising the dread term of the dread-discounting

model.

A small proportion of participants (2 out of 25 in Experiment 1)

exhibited negative time preference which reverted to positive time

preference at longer delays, consistent with an Exponential Dread

model in which dread is itself prospectively discounted. However,

we acknowledge that we have insufficient evidence to support this

conclusion at the group level, and we do not observe this pattern

for hypothetical outcomes over the range of delays offered. The

key prediction here is that the (negative) value function for pain

has a maximum at an intermediate time point, as opposed to

increasing or decreasing steadily across time. Such maxima would

predict dynamic preference reversals for delayed aversive

outcomes, whereby people would be most likely to attempt to

avoid the dreaded outcome at the point of maximal aversion. We

therefore speculate that high discounting of dread may contribute

to avoidant psychopathology [10,11,30,31]. We propose that a

general form Exponential Dread model is well-placed to param-

eterize individual differences in the valuation of future pain, and a

possible direction for future research will be to investigate the

discounting of dread in clinical populations.

Whilst dread clearly represents a departure from economic

theories of behavior, such as Rational Choice theory [32,33], the

dread-discounting models presented here retain assumptions of

intertemporal independence. In other words the models assume

that prospective dread is simply the sum of the instantaneous

anticipation of future pain. This assumption is particularly relevant

to the design of Experiment 1, which interleaves choices and

outcomes, such that participants can be making choices about

future pain, whilst currently anticipating the results of their

previous choices. If participants keep track of their previous

choices, dread from previous choices would overlap with the

estimated dread of the current choice options. Additive indepen-

dence of dread entails that previous dread simply adds the same

amount to the value of both choice options and therefore is

eliminated from the value of the current choice options (this is the

case since the softmax activation function subtracts the value of the

two choice options, see Methods: Equation 19). Whether dread

from different time periods indeed simply adds together linearly in

this manner forms an important question for future study.

We show that choices that expedite pain were more frequent

when the same outcomes were framed as an increase in pain than

when framed as a decrease in pain, a demonstration that framing

biases exert a strong effect in situations associated with dread.

Modeling analysis of participant subgroups indicated that the

framing effect we report is only present in participants who display

significant dread (Figures S8 and S9). The observation of framing

may be similar to that which underlies the well-known sign effect,

in where discount rates for rewards are typically different from

those for punishments [34,35]. A model in which between-frame

differences in temporal value functions were determined by

changes in the rate of accumulation of dread, here equivalent to

the discount rate for pain, provided the most parsimonious

account for these effects of framing, suggesting that differential

anticipation is a sufficient explanation for the sign-effect in this

context. This observation is however bound to the framework of

the dread-discounting model. It is possible for example that

framing induced changes in the instantaneous utility function for

pain [34].

We have suggested that increasing instantaneous dread may

represent a fundamental principle of anticipated aversion. A

multitude of factors, which may interact with the effect of delay,

are likely to influence the valuation of future pain in real-world

contexts. Nevertheless we show the functional form of dread

appears conserved across two very different experimental

contexts: in the context of real painful outcomes experienced

at delays of up to approximately 15 minutes, and in the context

of an imagined painful experience at delays of up to

approximately 8 months. A relevant observation here is that

the form of the dread function appears to demonstrate scale

invariance, as evidenced by a similar shape when making

choices over delays expressed in different units of time (trials or

days). As a result the magnitude of prospective dread at a given

delay is likely to depend upon the psychological construal of the

time scale. Scale invariance is a feature of many psychometric

functions, including temporal discounting with rewarding

outcomes [36,37,38], and the scale invariance of dread presents

a target for future study.

Why dread is a consistent feature of pain related decision-making

is unclear. One possibility is that cognitive and emotional

mechanisms associated with preparation for pain interfere with

other behavioral processes, such as those involved in reward

seeking. It is known for example that non-contingent prediction of

shock, signaled by a conditioned stimulus, can reduce the vigor of

instrumental responding, an effect referred to as conditioned

suppression [26]. Dread, as the prospective sum of anticipated

punishment, may therefore signal the likely degree of behavioral

suppression during the delay. Another possibility is that dread

represents a form of ‘stimulus substitution’ – the observation that

cues associated with the prediction of aversive events evoke some of

the core properties of the aversive events they predict themselves

[12,39]. This can be viewed as a form of aversive impulsivity –

assumed to be a maladaptive inheritance of decision-making

dispositions that are shaped by earlier evolutionary niches. An

alternative explanation would be that people have an increasing

uncertainty with time that they can engage in an adequate physical

or psychological response to deal with pain. Further research is

required to uncover the constitutive mechanisms of dread, which is

of importance for clinicians and health policy makers, since

knowledge about the shape of pain value functions and their

modulation by framing may be useful when presenting options

regarding potentially painful investigations and treatments.

Methods

Ethics statement
The research received approval from the National Health

Service National Research Ethics Service, Central London

Research Ethics Committee 3 (Ethics number 08/H0716/6,

Amendment AM1). All participants gave informed consent before

taking part in the study.

Experiment 1
Participants. Thirty-five participants (18 females) took part

in the experiment. Participants were recruited by advertisement on

the website of the University College London Psychology Subject

Pool. All experiments were carried out at the Wellcome Trust

Centre for Neuroimaging, University College London and each

session lasted around 2 hours. All participants gave full informed

consent prior to the experiment. Participants were briefed that

they would be making choices between different numbers of

moderately painful electric shocks that would be delivered at

different points in time.

Procedure and design. In each of 2 sessions participants

made 95 choices between two options involving between 3 to 12
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moderately painful electric shocks, delivered at between 4 to 51

trials in the future. All choices were genuine, with shock delivered

faithfully according to subjects’ choices.

The painful shocks occurred within a 5 second stimulus train,

and the intensity of each discrete shock did not vary. Since the

duration of the stimulus was constant, increasing number of shocks

was equivalent to an increasing shock rate. The number of shocks

within the stimulus train followed a Poisson distribution with

uniform probability of receiving a shock at each sampled time

interval. Participants were briefed on the probabilistic nature of

the outcomes and were informed of the number of shocks they

could on average expect to receive for a particular outcome, that

is, the mean of the distribution, where it was assumed that

participants made their choices based on this number. This was

done purely to embed the experiment into a more naturalistic

context, and hence elicit more considered choices.

After providing consent, participants underwent a standardized

thresholding procedure [40,41]. The aim of this procedure was to

control for between participant variations in pain perception, so

that the maximum shock rate used during the experiment

corresponded to an approximately equivalent subjective level of

discomfort for each participant. We aimed to set a current level

such that the five second stimulus at the maximum shock rate (2.8

shocks/s) was rated as moderately severe pain by each participant.

To achieve this we used an expected shock rate of 2.8 shocks/s

whilst varying current amplitude. Participants provided a visual

analog pain rating for each stimulus train on a continuous scale

from 0 (not painful) to 10 (intolerable pain). Current level was

increased in small increments until the participant rated the

stimulus as 6 out of 10. The staircase procedure was then repeated,

allowing participants to adapt to initial anxiety about the shocks.

This procedure determined a single current level corresponding to

moderately severe pain for each participant. At the end of the

experiment we also verified that increasing the mean shock rate

within the range used for the experiment corresponded to

monotonic increases in rated aversiveness, by asking participants

to provide visual analog ratings of the unpleasantness of stimulus

trains with different mean shock rates but constant current

amplitude. Shock rate was increased in increments of 2 shocks/5s,

starting from the baseline mean rate of 2 shocks/5s up to the

maximum rate of 14 shocks/5s at a constant current level equal to

that used during the choice phase. This was followed by a

symmetrical decreasing staircase in which shock rate was

decreased by the same increment, thus controlling for adaptation

effects. 2 out of the 35 participants were excluded from the analysis

on the basis of these ratings, since at the end of the experiment

they rated the maximum shock rate as below 4/10 (which

corresponded to ‘‘mild pain’’ on the visual analog rating scale),

suggesting that significant adaptation had occurred over the course

of the experiment.

Prior to the intertemporal choice phase, participants were

briefed with on-screen instructions that embedded the task in a

naturalistic health-related scenario. We collected intertemporal

choice data in two blocks, the order of which was counterbalanced

across participants: a block in which outcomes were framed as an

increase in shock rate, referred to as the pain frame and an

otherwise identical experimental block in which outcomes were

framed as a decrease in shock rate, referred to as the relief frame

(see Text S1 for a full description of the information given to

participants). Prior to making choices participants received six

samples of five second stimulus trains at two different shock rates,

corresponding to the minimum and maximum rates used during

the experiment, of 2 shocks/5s (0.4 shocks/s) and 14 shocks/5s

(2.8 shocks/s). Choice blocks proceeded according to a trial-based

design in which the unit of time was a single trial and participants’

choices determined outcomes on future trials. The sequence of

events across a series of trials is shown in Figure 1.

On each trial the default outcome was a five-second shock train

with mean 2 shocks/5s (0.4 shocks/s), which was referred to as a

‘‘Baseline Episode’’. Participants’ choices determined outcomes

with higher shock rates, referred to as ‘‘Severe Episodes’’.

Participants were informed that their choices would not change

the total number of pain episodes, only their timing and severity.

When presenting choice options, shock rate was expressed in the

pain frame as the expected number of extra shocks per five seconds

above the baseline rate and in the relief frame as the expected

number of shocks to be relieved per five seconds from an expected

maximum rate. The timing of outcomes was expressed as the

number of trials in the future. Since we made no a priori

assumptions about the direction of participants’ time preference,

there were an equal number of choices in which the delayed

outcome had a higher expected shock rate as choices in which the

sooner outcome had a higher expected shock rate. The

presentation of outcome options was counterbalanced and

randomized such that sooner outcome options appeared on the

left-hand side of the screen on half of trials, and on the right-hand

side in the other half of trials.

There were two types of trial: Choice Trials and No Choice

Trials. The latter are necessary to absorb the outcomes of all the

Choice Trials, such that all choices faithfully and precisely led to

their outcomes. In each run there were 95 Choice Trials and an

approximately equal number of No Choice Trials. On Choice

Trials participants were first presented with a choice between two

options for a Severe Episode, where each detailed its timing and

expected shock rate. After a choice had been made, there followed

the painful episode (five-second outcome stimulus) for that trial,

whose shock rate was determined by previous choices. On No

Choice Trials participants were presented with a screen saying

‘‘No Choice This Time’’, which was displayed for a constant delay

of 1s, and followed directly by the painful episode for that trial.

Choices and outcomes were interleaved: for example if a

participant chose on trial one to receive ‘‘a Severe Episode with

nine extra shocks, five trials in the future’’, then following their

choice on trial six they would experience an outcome with a mean

shock rate of nine shocks above the baseline. The outcome for trial

one would then be a Baseline Episode, as was the case for all trials

not referenced by a previous choice. Prior to each experimental

run we generated a novel trial order using a random permutation

that was bounded such that no two Choice Trials referred to an

outcome on the same trial, and participants were informed of this

fact. Although Choice Trials and No Choice Trials were randomly

interspersed, the frequency of the latter necessarily increased

towards the end of the experimental run, in order to ensure that

choice delays did not extend beyond the end of the experiment.

Shocks were delivered using a Digitimer (Letchworth Garden

City, England) DS7 constant current stimulator through silver

chloride surface electrodes placed approximately 3 cm apart on the

dorsum of the left hand. Each individual shock consisted of a single

200 ms square-wave pulse. Throughout the experiment the partic-

ipant sat in front of a computer monitor; where trials were presented

on-screen, and decisions were indicated using two keys on the

keyboard. The software package COGENT 2000 (University

College London) was used for stimulus presentation and response

acquisition. At the end of the session participants were fully

debriefed and given an opportunity to make any comments.

Model fitting procedures. To estimate the likelihood of

each of the models, we used assumed a standard probabilistic

model of action selection in which the probability of choosing
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option i over option j depends on a softmax function with the

following form:

p Choose ið Þ~ exp bUTOTAL ið Þð Þ
exp bUTOTAL ið Þð Þzexp bUTOTAL jð Þð Þ , ð12Þ

where p Choose ið Þ is the probability of choosing option i over

option j, and b is the inverse temperature parameter. Higher

values of b lead to behavior becoming more deterministic for

choosing the option with higher utility. The above can be

rearranged to the following form,

p Choose ið Þ~ 1

1zexp b UTOTAL jð Þ{UTOTAL ið Þð Þð Þ , ð13Þ

which demonstrates that the probability of choosing an option in

this case depends on the difference between the utility of the two

options. Simplex optimization was performed using the Matlab

(Mathworks, MA, USA) fminsearch optimization tool (Nelder-Mead

search algorithm [42]), with the addition of bound constraints by

transformation, to estimate the parameters for each model in order

to maximize log likelihood of the model parameters (by

minimizing the negative log likelihood) given the observed binary

choices for each subject. The optimizer was called within a

random multi-started overlay (RMsearch), with 100 starting points

selected from a uniform distribution between the parameter

bounds, in order to reduce convergence on local minima. In

addition, for each subject 1000 iterations of the optimization were

performed, and the maximum likelihood estimate across all

iterations was selected. Discount parameters, cP and cD, and the

dread parameter, a, were bounded between 0 and 1. For the Fixed

Dread Cost model, the dread cost, A, was bounded between 0 and

250. The inverse temperature parameter, b, was bounded

between 0 and 1000. As an additional safeguard against

convergence on local minima, we also performed a grid search

for the three best performing models with three-dimensional

parameter spaces (Constant Dread, Undiscounted Exponential

Dread and the restricted version of Discounted Exponential

Dread), evaluating the functions over the entire parameter space,

by sampling on a log scale 100 values of each parameter between

the bounds. A second grid search was then performed at ten times

this resolution in the regions of the maximum likelihood estimates

resulting from both the first grid search and the Simplex

optimization. Figure S7 plots the results of the second grid search

against the Simplex optimization results for each parameter across

the three dread-discounting models. Differences in the maximized

likelihood between the two search strategies were negligible, and

therefore Simplex estimates were retained for the purposes of model

comparison. For models with more than three parameters we

confirmed that the model-fitting procedure had indeed minimized

the negative log-likelihood, by numerically computing the second

partial derivatives of the likelihood surface with respect to each

parameter in the region of the maximum likelihood estimate.

Model fitting resulted in a set of maximum likelihood parameter

estimates for each subject. Model comparison was performed at

the group level (fixed effects), by summation of log likelihoods

across participants. Selection between models proceeded using the

Bayesian Information Criterion (BIC) [43], where

BIC~{2:Lz2:k:ln nð Þ, ð14Þ

and L is the maximized group level log likelihood, k is the number

of free parameters in the model and n the number of independent

observations. The BIC favors models with higher likelihood

estimates and penalizes increasing model complexity, where lower

values of BIC indicate a more favorable model fit. Where

appropriate, nested models were compared using likelihood ratio

significance tests, where fixed-effects comparisons on the summed

group-level likelihoods were of primary interest. For these model

comparisons, the total likelihood was summed across all choices

regardless of frame (pain or relief).

Analysis of framing effects. To examine which model

parameters were capable of accounting for choice variability

between pain and relief frames, we fitted the general form

Exponential Dread model to data from both frames separately,

whilst constraining selected parameters to be the same across both

frames (Figure 5C). The fully unrestricted model (All-Framing) had

eight parameters, namely: aPain, aRelief ,cP{Pain,cP{Relief ,

cD{Pain,cD{Relief ,bPain and bRelief . Alternative restricted models

were tested in which only a single parameter at time was allowed

to vary between frames (a-framing, cP-framing, cD-framing and b-

Framing), as well as the fully restricted model in which all three

parameters were fixed between frames (No-Framing). a-Framing

had the following five parameters: aPain, aRelief ,cP, cD and b. cP-

Framing had the following five parameters: a,cP{Pain,cP{Relief ,cD

and b. cD-Framing had the following five parameters:

a,cD{Pain,cD{Relief ,cP and b. b-Framing had the following five

parameters: a,cP, cD bPain, and bRelief . No-Framing had the

following four parameters: a,cP, cD and b. The goodness-of-fit of

the alternative restricted models was compared using the summed

BIC values across both frames, as well as likelihood ratio tests

between the two leading models.

Experiment 2
Participants. 30 participants took part in the experiment.

Participants were recruited by advertisement on the website of the

University College London Psychology Subject Pool. Choices were

administered online using Qualtrics software (Qualtrics.com;

Provo, UT). The study procedure was approved by the joint

ethics committee of The National Hospital for Neurology and

Neurosurgery and the Institute of Neurology (UCL).

Procedure and data analysis. Participants were introduced

to the following scenario:

You are due to have a routine dental appointment. The appointment will

last for 15 minutes. The appointment is non-urgent but must be booked

now to occur sometime in the next year. Importantly the timing will not

affect your dental health: having the appointment sooner will provide no

added health benefits. However the experience will be very

uncomfortable, and at times painful. Exactly how painful will depend

on when you choose to have the appointment. The pain will only last for

the length of the appointment: you do not experience dental pain at any

other time. The dental surgery is very close to where you live, so you will

be able to attend an appointment almost immediately if you choose to. As

far as your diary is concerned, any of the appointment times are equally

possible for you.

Participants were offered binary choices between different

timings for the dental appointment, in units of days. The sooner

appointment was always designated as occurring ‘‘today’’. The

later appointment occurred at delays of 1, 5, 13, 32, 89 or 237

days. In each case participants were told how painful they could

expect the appointment to be on a scale of 0% to 100%, where

100% represents the worse imaginable dental pain. The outcome

magnitudes were 60, 55, 51 46, 37 and 16% dental pain. At each
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possible delay, each possible magnitude was paired with an

outcome of 60% dental pain. Options were counterbalanced, so

that there were an equal number of choices in which the larger

magnitude pain was the delayed option as choices in which the

smaller magnitude pain was the delayed option. So that the

timings appeared plausible, participants were asked to imagine

that it was currently a weekday morning. Data analysis followed

the same methodology as described above for Experiment 1.

Supporting Information

Figure S1 Temporal value functions predicted by
alternative models. For each panel the value of a shock is

plotted against increasing delay to its delivery. The value of

immediate shock is given by the intersection of the curves with the

vertical axis; for purposes of clarity the scales of the vertical axes

are arbitrary and differ between the plots. Parameters of the

function are displayed next to each. The top left panel depicts

simple exponential discounting with positive rate, with the result

that the prospective utility of shock becomes less negative the

further it is delayed into the future. The top right panel depicts

exponential discounting with negative rate, a model which we

reject a priori due to its implausible prediction that very small

values of distantly delayed shock ought to be equivalent to severe

immediate shock. The middle left panel depicts a model in which

all values of delayed shock carry a fixed subtractive cost, A (here

set arbitrarily to a value of 5), with the discount factor cP set to

0.95 (see text). The remaining panels depict dread-discounting

models as labelled Constant Dread, Undiscounted Exponential

Dread (denoted by the prefix U) and Restricted Discounted

Exponential Dread (denoted by the prefix D). For the Exponential

Dread models depicted, the discount rate used to determine dread

is equal to the discount rate applied to consumption of shock, cP.

(TIF)

Figure S2 Parameterization of the Constant Dread
model. A range of temporal value functions predictable by a

Constant Dread model, at different values of the two free

parameters cP~c and a. A: Effects of increasing a (left to right)

at lower (top row) and higher (second row) values of c. It is evident

that at small values of a the model approaches positive exponential

discounting (top left panel). Simple exponential discounting is

produced when a = 0. At positive a the functions approach linear

decreases, where a determines the slope. B: Effects of decreasing c
(left to right) at lower (top row) and higher (second row) values of a.

(TIF)

Figure S3 Parameterization of the general form Expo-
nential Dread model. A range of temporal value functions

predictable by an Exponential Dread model with separate cP and

cD, at different values of the three parameters cP, cD and a. The

model allows for points of maximal aversion at intermediate values

of delay. A: Effects of increasing a (left to right) at lower (top row)

and higher (second row) values of cP with a high value of cD. It is

evident that at small values of a the model approaches positive

exponential discounting (top left panel). Simple exponential

discounting is produced when a = 0. B: Effects of decreasing cD

(i.e. increasing the discounting of dread; left to right) at lower (top

row) and higher (second row) values of a.

(TIF)

Figure S4 Parameterization of the Undiscounted Expo-
nential Dread model. A range of temporal value functions

predictable by an Exponential Dread model with cD~cP, where

dread itself is not subject to discounting, at different values of the

two free parameters c~cD~cP, and a. A: Effects of increasing a

(left to right) at lower (top row) and higher (second row) values of c.

It is evident that at small values of a the model approaches positive

exponential discounting (top left panel). Simple exponential

discounting is produced when a = 0. At positive a aversiveness

(negative value) increases at a decreasing rate with delay, where

both a and c influence the asymptotic boundary. B: Effects of

decreasing c (left to right) at lower (top row) and higher (second

row) values of a.

(TIF)

Figure S5 Parameterization of the Restricted Discount-
ed Exponential Dread model. A range of temporal value

functions predictable by an Exponential Dread model with

cD~cP, where dread itself is temporally discounted, at different

values of the two free parameters c and a. The model allows for

points of maximal aversion at intermediate values of delay. A:

Effects of increasing a (left to right) at lower (top row) and higher

(second row) values of c. It is evident that at small values of a the

model approaches positive exponential discounting (top left panel).

Simple exponential discounting is produced when a = 0. B: Effects

of decreasing c (left to right) at lower (top row) and higher (second

row) values of a.

(TIF)

Figure S6 Utility functions derived from subjective pain
ratings. Visual Analogue Scale (VAS) pain ratings as a function

of stimulus shock rate for the 25 participants included in the

modeling analysis. VAS ratings were made on a scale ranging from

0 (no pain) to 10 (intolerable pain). Ratings scores were fitted with

a 3-parameter concave Weibull function, using least squares

minimisation, indicated by the dashed lines on each plot. These

functions were then entered as negative utility functions for pain as

a function of shock rate in a second modeling analysis of the

intertemporal choice data.

(TIF)

Figure S7 Grid search of parameter space. Grid search

was performed over the entire parameter space of the three best

fitting dread-discounting models with up to three dimensional

parameter spaces (Constant Dread, Undiscounted Exponential

Dread and the restricted version of Discounted Exponential

Dread) in order to verify that the random multi-started Simplex

optimization procedure successfully avoided local minima in the

likelihood surface. Maximum likelihood estimates resulting from

grid search of the three parameters are plotted against the

estimates resulting from Simplex optimization on a log scale.

Outliers, representing cases in which the Simplex routine

encountered local minima, are few in number, and in each case

in the maximised log likelihood between the two search routines

are negligible (they do not change the results of model

comparison).

(TIF)

Figure S8 Fitted temporal value functions: Negative
time preference sub-group. Empirical temporal value func-

tions predicted by the cP-framing version of the general form

Exponential Dread model for individuals categorized behaviorally

as having consistent negative time preference: subject numbers are

indicated above each plot (corresponding to Table S1). Asterisks

indicate subjects who showed significant framing effects in the

expected direction at the behavioral level (Fisher exact test,

p,0.05). Note variable scaling of the vertical axes for some

individuals, a function of variable softmax temperatures. The blue

line represents the value function for the relief frame, the red line

the value function for the pain frame. In each case, where

significant behavioral framing effects occurred, this was captured
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by the model. It can be appreciated that for the majority of

subjects the value function for the pain frame appears to lie below

that in the relief frame, consistent with higher dread.

(TIF)

Figure S9 Fitted temporal value functions: zero, posi-
tive and reversing time preference sub-groups. Empirical

temporal value functions predicted by the cP-framing version of

the general form Exponential Dread model for individuals

categorized behaviorally as having either zero time preference

(A), consistent positive time preference (B), or negative time

preference followed by positive time preference (C). Subject

numbers are indicated above each plot (corresponding to Table

S1). The asterisks indicate participants with significant framing

effects at the behavioural level for individual participants (Fisher

exact test, p,0.05), the prefix ‘‘rev’’ indicates a single subject (7)

who showed a significant framing effect in the direction opposite to

that expected. Note variable scaling of the vertical axes for some

individuals, a function of variable softmax temperatures. The blue

line represents the value function for the relief frame, the red line

the value function for the pain frame.

(TIF)

Table S1 Choice frequency: Experiment 1. The table

outlines the percentage of choices in which the sooner painful

episode was chosen for each participant, on both pain and relief

frames, as well as the percentage difference between the two

frames (percentage sooner choice on the pain frame minus the

percentage sooner choice on the relief frame). The latter indicates

the size of the framing effect; positively signed values of this

difference indicate that the participant choose sooner pain more

frequently in the pain frame, indicating a framing effect in the

expected direction. The final two columns show the p-value and

hypothesis test of a Fisher exact test on the percentage choices in

each frame; a 1 in the final column indicates a significant framing

effect in the expected direction at an individual level. Table S1

outlines the overall frequencies of choosing sooner pain in both

pain and relief frames in Experiment 1. The eight participants

listed in gray chose sooner pain 100% of the time in at least one of

the two frames, rendering their data unsuitable for model-based

analysis. 10 out of 33 participants displayed significant framing

effects in the expected direction at an individual level (Fisher exact

test p,0.05).

(DOC)

Table S2 Model parameters for the general form
Exponential Dread model with cP-framing: Experiment
1. Maximum likelihood parameter estimates are listed for the five

parameters of the general form Exponential Dread model with cP-

framing for each participant included in the modeling analysis for

Experiment 1. Participant numbers correspond to those in Table

S1.

(DOC)

Text S1 Information given to participants in Experi-
ment 1. Details the instructions in Experiment 1 which embed

the task within a health-related scenario and distinguish the two

frames.

(DOC)
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