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Abstract

We present a novel analysis of compositional order (CO) based on the occurrence of Frequent amino-acid Triplets (FTs) that
appear much more than random in protein sequences. The method captures all types of proteomic compositional order
including single amino-acid runs, tandem repeats, periodic structure of motifs and otherwise low complexity amino-acid
regions. We introduce new order measures, distinguishing between ‘regularity’, ‘periodicity’ and ‘vocabulary’, to quantify
these phenomena and to facilitate the identification of evolutionary effects. Detailed analysis of representative species
across the tree-of-life demonstrates that CO proteins exhibit numerous functional enrichments, including a wide repertoire
of particular patterns of dependencies on regularity and periodicity. Comparison between human and mouse proteomes
further reveals the interplay of CO with evolutionary trends, such as faster substitution rate in mouse leading to decrease of
periodicity, while innovation along the human lineage leads to larger regularity. Large-scale analysis of 94 proteomes leads
to systematic ordering of all major taxonomic groups according to FT-vocabulary size. This is measured by the count of
Different Frequent Triplets (DFT) in proteomes. The latter provides a clear hierarchical delineation of vertebrates,
invertebrates, plants, fungi and prokaryotes, with thermophiles showing the lowest level of FT-vocabulary. Among
eukaryotes, this ordering correlates with phylogenetic proximity. Interestingly, in all kingdoms CO accumulation in the
proteome has universal characteristics. We suggest that CO is a genomic-information correlate of both macroevolution and
various protein functions. The results indicate a mechanism of genomic ‘innovation’ at the peptide level, involved in protein
elongation, shaped in a universal manner by mutational and selective forces.
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Introduction

Most protein sequences appear to be quite random. Nonethe-

less, many sequences display various types of ordered patterns,

observed in all kingdoms of life [1,2]. These include successive

expansion of a single amino-acid (known as ‘run’ or homo-

peptide), repetitive sections with various lengths and degree of

purity, and more generally, low-complexity amino-acid regions,

i.e., sections of high compositional bias manifested by low single

amino-acid Shannon entropy [3]. We refer hereafter to the

phenomena of ordered patterns in protein sequences as compo-

sitional order (CO).

In the DNA, ordered patterns appear in both non-coding and

coding regions, including minisatellites and microsatellites, or

generally tandem repeats of chains of few nucleotides. Their

generating mechanisms involve replication slippage and recombi-

nation effects [4]. These mechanisms, and others such as

segmental duplications, may serve as the origin of the CO

structures observed in proteins. Proteins containing CO exhibit a

wide variety of functions associated with disordered, as well as

ordered, 3D structures including extended coiled, helical domains,

molten globules, collagen, keratin and zinc-fingers [5–8]. They are

involved in DNA binding, alternative splicing, transcription,

regulation, protein-protein interaction, tumor

genesis [5,8,9], and formation of novel functions, such as cell

envelopes of keratinocytes [10].

Tandem repeats are thought to represent a third type of

genomic variation along with single nucleotide polymorphisms

(SNPs) and copy number variation (CNV) [11]. This is because

they are important not only for protein function but also for the

fast evolution of complex traits, including various phenotypic and

morphological changes as well as adaptive and social behaviors

[12–14]. Variations of repeats in coding DNA sequences were

found particularly important in some rapid evolutionary processes,

such as changes in size and shape of limbs and craniums of dog

[15], and fast adaptation to changing environment of cell wall

proteins in yeast, which allows for avoiding capture by the host

immune system [16]. In contrast, in human, variations in amino-

acid runs have been associated with disease, in particular various

cancers [17] and neurodegenerative diseases [18], where related

proteins are rich with poly-Q repeats [19], poly-A repeats [20], or

multiple runs of various amino-acids as in the case of the

Huntingtin protein.

The dual association of repeats with both essential functions and

disease promoted the view that repetitive sections are subjected to

rapid evolution by fast mutational drive, which facilitates the
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acquisition of a function soon after a repetitive section came into

being [5,9]. The latter presumably did not fit any initial

functionality and may have even contained a risk of leading to

deleterious effects. This raised the question of which evolutionary

forces act on repetitive sequences. Early studies [5,9,21] pointed

out that interruptions of amino-acid runs are evidence of

mutational forces, and that mutations at the third DNA

synonymous site are indicative of selectivity of function. However,

the role of selection remained elusive as other studies have shown

that repeats are only weakly conserved across species, indicating

weak selective pressure, except for some specific genes of the

xylanase family, the heat response protein Dnaj, and the ribosomal

L10, 12 proteins, which were identified as the origins of amino-

acid runs in prokaryotes [22]. Recently it was shown that

alternatively spliced exons are enriched in repeats with low

codon-diversity [23], and that repeat conservation in vertebrates is

three times higher in coding than in non-coding regions, but less in

primates [24]. Both observations constitute strong evidence for

selection. Evidently three fundamental evolutionary forces: muta-

tion, selection and ‘innovation’, i.e. generation of new raw

repetitive sequences exist; however, the balance between these

forces is hard to measure and may vary considerably among

species and conditions.

The interrelation between CO and evolution has been stressed

by Albà et al. [25], who have suggested that repeats may have an

important role in organism diversity and macroevolution, i.e., the

generation of higher taxa. This is because some developmental

genes, like Ubx in insects and HOX in human, are responsible for

major organism-specific characteristics and are rich in homo-

peptides. Indeed, previous analyses of a large ensemble of species

revealed that the number of CO proteins is three times larger in

eukaryotes than in prokaryotes, independently of protein length

[26]. Furthermore, some CO proteins were associated with

specific eukaryotic functions such as collagen, calcium binding

and keratin. Thus it was suggested that eukaryotes favor the

generation of repeats as a source of variability to compensate for

their relatively slow evolutionary rate [26,27], indicating that the

mechanisms shaping CO are not universal in the super-kingdoms.

In the general framework of evolution, with particular emphasis

on eukaryotes, it should be noted that species development is often

described in terms of increasing organism complexity [28], which

is thought to be reflected by several factors such as the numbers of

different tissues, cell types, proteins and their interactions [29].

Attempts to quantify this complexity from genomic sequence

suggest that natural selection is a necessary mechanism to explain

the seemingly increase in biological complexity [30]. Nevertheless,

the questions of which evolutionary forces participate in the

development of complex traits, what is the balance between them,

how it depends on environmental and ecological factors, and

whether all this leaves any measurable genomic-information stamp

that correlates with the evolutionary path of species complexity,

remained unresolved [31,32].

In this study we introduce the concept of Compositional Order

(CO), accounting for all types of repetitive and low complexity

regions. The novel framework is based on the identification and

quantification of Frequent amino acid Triplets (FTs). The

biological importance of both amino acid and DNA triplets has

been pointed out in various studies, emphasizing their role in the

characterization of major bacterial phyla and super-kingdoms

[33,34], and the evolutionary importance of their spontaneous

expansions in higher taxa [35]. We show that triplets of amino

acids are adequate and even optimal building blocks for a

systematic characterization of CO. We define and exhibit three

measures of CO in proteins: ‘regularity’, ‘periodicity’ and

‘vocabulary’. Regularity refers to the high multiplicity of amino-

acid triplets, and is defined by the relative coverage of a protein’s

sequence by FTs. This measure is highly correlated with

Shannon’s entropy hence it recapitulates the conventional

establishment of low sequence-complexity regions. Periodicity

reflects the relative amount of FT occurrences within a periodic

structure observed on the protein sequence. In the case of tandem

repeats it may account for basic motif characterization. FT-

vocabulary is defined as the number of observed Different

Frequent Triplets (DFT) in either a single protein or in a full

proteome.

We demonstrate and evaluate the phenomenology of CO in

human proteins, quantifying them in detail using the new

measures. We explore the functional enrichment of proteins

containing CO in several representative species, emphasizing their

dependencies on these new measures. We discuss the evolutionary

interpretation of these dependencies. A comparative study of

human vs mouse proteomes provides new insights on the interplay

of CO with evolutionary forces. Last, we concentrate on a large-

scale proteomic study, comparing 94 species from all kingdoms of

life. This leads to the observation that FT-vocabulary is an

important measure. At the proteome level DFT counts provide

clear delineation of vertebrates, invertebrates, plants and fungi

from each other, with bacteria and archaea closing the list,

concluding that DFT is a universal proteomic marker of

macroevolution. This throws new light on fundamental questions

in the evolution of species and on the nature of the genomic

mechanisms involved.

Results

We define Frequent Triplets (FT) to be those amino-acid triplets

that are observed in protein sequences far beyond random (see

Methods). Specifically, we search for triplets that occur at least 5

times in a protein. Their statistical significance is discussed in Text

Author Summary

Variations in compositionally ordered (CO) sections of
proteins, such as amino acid runs, tandem repeats and low
complexity regions, are often considered as a third type of
genomic variation along with SNP and CNV. At the
microevolutionary scale, they are involved in the rapid
evolution of numerous biological functions and the
development of novel phenotypic complex traits, includ-
ing disease in human, in particular neurodegeneration and
cancer. At the macroevolutionary scale, the best discrim-
inating proteomic factor between super-kingdoms is the
prevalence of CO proteins in eukaryotes. The analysis of
CO structures has so far been quite eclectic. Here we
introduce a novel unifying methodology, accounting for all
types of low-complexity regions and repetitive phenom-
ena, including the existence of large periodic structures in
protein sequences. We define new CO measures providing
insights into the correlation of CO with protein function
and with evolution. In particular, a large-scale analysis of
94 proteomes shows that the CO vocabulary of frequently
appearing amino acid triplets serves as a measure of
taxonomic ordering separating major clades from each
other. It unravels a missing genomic correlate of macro-
evolution and serves as a novel phylogenetic tool. This
suggests that major CO generation occurs during the
creation of a completely new species, i.e. during macro-
evolutionary events.

Proteomic Universal Correlate of Macroevolution
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S1 (section 1–2, figures S1, S2, S3, S4, S5). In Methods, we

establish that the relative coverage (RC) of FTs in a protein

sequence highly correlates with sequence entropy, providing a

good tool for estimating ‘regularity’ (Text S1 - section 4, figure S7).

Additionally, the intervals between the consecutive occurrences of

an FT provide information about the existence of periodic

structures on the protein’s sequence. These are identified by the

most frequent interval (MFI) encountered in a protein,

chosen out of all intervals displayed by FT recurrences on the

sequence. The level of ‘periodicity’ in a protein is then estimated

by the relative periodicity (RP): the sum of all FT recurrences

at MFI divided by the sum of all FTs occurrences. Thus we obtain

through FTs independent information about both prevalent

composition and prevalent periodicities. Few representative

examples are shown in Table 1. Complete detailed information

is provided in Methods.

Compositional order (CO) of human proteins
We analyze the Swiss-Prot human proteome (N = 20248) in

detail, employing our new measures. The human proteome is

composed of CO proteins (NCO = 5511, 27.2%) and NO proteins

(NNO = 14747); the latter do not contain any FT. Identifying FT

occurrences on proteins allows for capturing a large repertoire of

order patterns of peptide repeats of different levels of purity. Two

outstanding examples of human proteins in Swiss-Prot records are:

1) the pure glutamine run in ATX8, a protein which consists of

one M followed by 79 Q. Notably its DNA consists of an

uncorrupted chain of 79 CAG repeats [36]. 2) 40 exact repeats of

a peptide of length 20, VTSVPVTRPALGSTTPPAHD, on the protein

MUC1. The variability in the number and purity of these repeats

may differ among individuals [37], and plays an important role in

cancer [38]. In Table 1 we present other types of order patterns

caught by the FT analysis. One finds single amino-acid short runs

of several amino-acid types, which may be distributed on various

locations in a protein (Table 1 examples A–B), as well as repetitive

motifs of various length and purity (Table 1, examples C–F), as

found in many zinc-fingers (ZF), collagens and keratins. For high

RP the repetitive motif is quite obvious (Table 1, examples C and

F), while for moderate RP the underlying motif may be less

obvious and the MFI may indicate its origin (Table 1, D and E are

examples of motifs that seem to have undergone mutations). A full

list of human CO proteins and their relevant CO measures, as well

as other sequence information, is provided in Table S1.

The distribution of MFIs (figure 1a) as well the distribution of all

intervals in the entire CO set (figure 1b), exhibit two leading

periodic features in the proteome. One is that of MFI = 1 denoting

prevalence of amino-acid runs, and the other is MFI = 28 which is

characteristic of many ZF proteins. The interval distribution

further displays higher harmonics of 56 and 84 on ZF proteins,

which can be accounted for by mutation effects on amino acid

sections with periodicity 28. Interestingly, the ranked-ordered

interval distribution (figure 1b) displays behavior close to that of

the well-known Zipf Law, a hallmark of linguistic elements (see

Discussion). A periodic structure can be defined by requiring a

minimal number of interval recurrences at MFI (figure 1c). In

human, about 50% of CO proteins can be characterized as

periodic with at least 4 interval repetitions, on which we find on

average 6 DFTs and 30 recurrences at MFI.

The number of ZF proteins is quite prominent in the CO set

(Table 2). It is of the order of 18%, doubling its relative weight

compared to the total human proteome. Similar doubling is

observed for collagen and keratin. The latter have substantial

average values of RC, pointing to high relative coverage of FTs on

their sequences, while ZF have high relative periodicity, RP. In

contrast to all these examples, proteins annotated as disease-

correlated, are not significantly enriched within the CO set. This

would seem to run against the common understanding that disease

related proteins have high compositional bias. The resolution is

explained in the next section.

Functional enrichment and annotation dependencies on
measures of compositional order on species chosen from
different kingdoms throughout the tree of life

Our principal measures of CO regularity, RC, and periodicity,

RP, can be used to sort out functions, cell-localizations and other

annotations that are enriched with CO (see Methods). We carry

out such analysis on three species: Human, A. Thaliana, and S.

Cerevisiae, which may be viewed as representatives of three major

taxonomic groups of eukaryotes: Animalia, Plantae and Fungi.

Their proteomes in the Swiss-Prot data-base contain 20248,

11304, and 5875 proteins respectively. In addition, we have

analyzed all the 187740 bacterial enzymes in Swiss-Prot.

Human. Analysis of human CO proteins using the GOrilla

GO (gene ontology) tool [39,40] shows, consistently with previous

studies, that human CO proteins exhibit numerous and highly

significant functional enrichments (Text S2). Notably, these

include regulation, transcription, binding, and various develop-

mental and metabolic biosynthetic processes (Hypergeometric P-

values,1028, FDR corrected). In figure 2, we further demon-

strate, using text search in GO annotations (see Methods), that CO

human proteins exhibit a repertoire of enrichment dependencies

on CO measures. Some functions depend on RC (figure 2A):

keratin (P-value,10212) and collagen (P-value,10212). In this

category one finds also filament and cell adhesion related proteins.

Other functions depend on the RP (figure 2B), such as neuronal

(P-value,1026) and immune system related proteins (P-val-

ue,1025) and other response proteins. Some depend on both

RC and RP (figure 2C), e.g., extracellular proteins (P-val-

ue,10210 for RC, and ,1026 for RP). There also exist proteins

that have a non-monotonic behavior (figure 2D). In this last

category we note some outstanding terms that have been

previously discussed in the literature in the context of composi-

tional bias: DNA-binding, regulation and transcription. To better

understand the association of these annotations with CO measures

we further explore how they depend on MFI. We analyzed

separately two sub-groups of these proteins (figure 2D), those with

significant amino-acid runs (MFI = 1) and its complement

(MFI.1). The subgroup MFI.1 shows the highest enrichment

with RP, indicating that, repetitive sections other than runs play

important roles in the evolution of these functions. The subgroup

MFI = 1 further displays a clear monotonic behavior with respect

to the length of runs (figure 2E). The larger the coverage of amino-

acid runs, the larger is the portion of proteins associated with these

three annotations (P-values,10212, 1027, 10212 for DNA

binding, regulation and transcription, respectively). Disease

proteins do not show any clear behavior with respect to RC or

RP, however, a monotonic enrichment was found with respect to

an increase in length of runs (figure 2F) with moderate P-

value,1024. Last, we note that there are several GO terms for

which one finds monotonic decrease of the portion of related

proteins for elevated thresholds of both RP and RC. These include

ATP, cell-cycle, signal transduction, proliferation and growth. All

these basic functions of living systems presumably evolve without

relying on CO-structures, implying strong accumulation of

mutations or purifying selection. We will point out below that

increasing CO is correlated with organism complexity; hence, the

fact that the most basic mechanisms do not require an increased

CO is consistent with our analysis.

Proteomic Universal Correlate of Macroevolution
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Table 1. Typical Examples of proteins containing FTs.

Protein Length # DFTs Leading FT MFI RC, RP Amino-acid sequence (leading FTs are highlighted)

A. A4
Amyloid beta
A4 protein

770 3 AEE
EEE
TTT

1 0.04, 0.4 MLPGLALLLLAAWTARALEVPTDGNAGLLAEPQIAMFCG

RLNMHMVQNGKWDSDPSGTKTCIDTKEGILQYCQEVYPE

LQITNVVEANQPVTIQNWCKRGRKQCKTHPHFVIPYRCL

VGEFVSDALLVPDKCKFLHQERMDVCETHLHWHTVAKET

CSEKSTNLHDYGMLLPCGIDKFRGVEFVCCPLAEESDNV

DSADAEEDDSDVWWGGADTDYADGSEDKVVEVAEEEE

VAEVEEEEADDDEDDEDGDEVEEEAEEPYEEATERTTSIA

TTTTTTTESVEEVVREVCSEQAETGPCRAMISRWYFDVTEGK

CAPFFYGGCGGNRNNFDTEEYCMAVCGSAMSQSLLKTTQEP

LARDPVKLPTTAASTPDAVDKYLETPGDENEHAHFQKAKERL

EAKHRERMSQVMREWEEAERQAKNLPKADKKAVIQHFQE

KVESLEQEAANERQQLVETHMARVEAMLNDRRRLALENYIT

ALQAVPPRPRHVFNMLKKYVRAEQKDRQHTLKHFEHVRMV

DPKKAAQIRSQVMTHLRVIYERMNQSLSLLYNVPAVAEEI
QDEVDELLQKEQNYSDDVLANMISEPRISYGNDALMPSLTE

TKTTVELLPVNGEFSLDDLQPWHSFGADSVPANTENEVEP

VDARPAADRGLTTRPGSGLTNIKTEEISEVKMDAEFRHDSG

YEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVM

LKKKQYTSIHHGVVEVDAAVTPEERHLSKMQQNGYENPTYKF

FEQMQN

B. LORI
Keratin

312 12 GGG 1 0.72, 0.13 MSYQKKQPTPQPPVDCVKTSGGGGGGGGSGGGGCGFF
GGGGSGGGSSGSGCGYSGGGGYSGGGCGGGSS
GGGGGGGIGGCGGGSGGSVKYSGGGGSSGGGSGC

FSSGGGGSGCFSSGGGGSSGGGSGCFSSGGGGSSGGG

SGCFSSGGGGFSGQAVQCQSYGGVSSGGSSGGGSGCFSS

GGGGGSVCGYSGGGSGCGGGSSGGSGSGYVSSQQV

TQTSCAPQPSYGGGSSGGGGSGGSGCFSSGGGGG

SSGCGGGSSGIGSGCIISGGGSVCGGGSSGGGGGGSSVG

GSGSGKGVPICHQTQQKQAPTWPSK

C. CAMKV
ATP binding

501 5 TPA
PAT
ATD

8 0.1, 0.69 MPFGCVTLGDKKNYNQPSEVTDRYDLGQVIKTEEFCEIF

RAKDKTTGKLHTCKKFQKRDGRKVRKAAKNEIGILK

MVKHPNILQLVDVFVTRKEYFIFLELATGREVFDWILDQG

YYSERDTSNVVRQVLEAVAYLHSLKIVHRNLKLENLV

YYNRLKNSKIVISDFHLAKLENGLIKEPCGTPEYLAPEVV

GRQRYGRPVDCWAIGVIMYILLSGNPPFYEEVEEDDYENHD

KNLFRKILAGDYEFDSPYWDDISQAAKDLVTRLMEVEQDQR

ITAEEAISHEWISGNAASDKNIKDGVCAQIEKNFARAKWKK

AVRVTTLMKRLRAPEQSSTAAAQSASATDTATPGAAGGATA

AAASGATSAPEGDAARAAKSDNVAPADRSATPATD

GSATPATDGSVTPATDGSITPATDGSVTPATDRSA

TPATDGRATPATEESTVPTTQSSAMLATKAAATPE

PAMAQPDSTAPEGATGQAPPSSKGEEAAGYAQESQREEAS

D. COLQ
Collagen

455 7 PGP 6 0.18, 0.14 MVVLNPMTLGIYLQLFFLSIVSQPTFINSVLPISAALPSL

DQKKRGGHKACCLLTPPPPPLFPPPFFRGGRSPLLSPD

MKNLMLELETSQSPCMQGSLGSPGPPGPQGPPGLPGK

TGPKGEKGELGRPGRKGRPGPPGVPGMPGPIGWPGPEGPR

GEKGDLGMMGLPGSRGPMGSKGYPGSRGEKGSRGEKGD

LGPKGEKGFPGFPGMLGQKGEMGPKGEPGIAGHRGPTGRP

GKRGKQGQKGDSGVMGPPGKPGPSGQPGRPGPPGPPPAG

QLIMGPKGERGFPGPPGRCLCGPTMNVNNPSYGESVYGPSSP

RVPVIFVVNNQEELERLNTQNAIAFRRDQRSLYFKDSLGWL

PIQLTPFYPVDYTADQHGTCGDGLLQPGEECDDGNSDVGD

DCIRCHRAYCGDGHRHEGVEDCDGSDFGYLTCETYLPGSYGDL

QCTQYCYIDSTPCRYFT

E. ASPX
multi - cellular
organismal
development

265 6 SGE 5 0.24, 0.35 MNRFLLLMSLYLLGSARGTSSQPNELSGSIDHQTSVQ

QLPGEFFSLENPSDAEALYETSSGLNTLSEHGSSEHGSS

KHTVAEHTSGEHAESEHASGEPAATEHAEGEHTVGEQPSGE

QPSGEHLSGEQPLSELESGEQPSDEQPSGEHGSGEQPSGE

QASGEQPSGEHASGEQASGAPISSTSTGTILNCYTCAYMNDQ

GKCLRGEGTCITQNSQQCMLKKIFEGGKLQFMVQGCENMCP

SMNLFSHGTRMQIICCRNQSFCNKI

Proteomic Universal Correlate of Macroevolution
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Arabidopsis thaliana. Some plant genomes contain large

repetitive sections whose protective roles in stressful conditions

have been suggested previously [41,42]. In A. thaliana we find 1786

CO proteins comprising 15.8% of the proteome. Figure 3 (upper

panel) describes the enrichment patterns found in cell wall
(figure 3A, P-value,10211), response (figure 3B, P-value,1024)

and extracellular related proteins (figure 3C, P-value,10212).

While cell wall and extracellular region related proteins were

enriched for elevated thresholds of RC, the response related

proteins are enriched with respect to RP. Notably, many of the

high-RP proteins, beyond the scale of figure 3B (RP.0.7), are

those involved with response to heat (HFA1A), cold (CAHC),

cadmium and zinc ions (WAKLD), cytokinin stimulus (WOX9)

oxidative stress (GPX6), salt stress (ULP1D, SRK2H), abscisic acid

stimulus (ATE1, DNJ16), light stimulus (Y3210, GAT22), and

defense response to bacterium or biotic stimulus (ATL55, EIL1,

MLO9).

Saccharomyces cerevisiae. Main GO terms enriched in

CO proteins (NCO = 996, 17%) are similar to the ones found in A.

thaliana as shown in figure 3 (lower panel), i.e., cell wall (P-

value,10212), response (P-value,1023) and specifically stress
related genes (P-value,1024) and extracellular region genes

(P-value,10212). Also nuclear pore proteins are enriched,

although their overall number is low. Furthermore, in both A.

Table 1. Cont.

Protein Length # DFTs Leading FT MFI RC, RP Amino-acid sequence (leading FTs are highlighted)

F. PRDM9
Zinc-finger

894 28 HQR
HTG
TGE
GEK
YVC
VCR
CRE
ECG

28 0.36, 0.84 MSPEKSQEESPEEDTERTERKPMVKDAFKDISIYFTK

EEWAEMGDWEKTRYRNVKRNYNALITIGLRATRPAFMC

HRRQAIKLQVDDTEDSDEEWTPRQQVKPPWMALRVEQ

RKHQKGMPKASFSNESSLKELSRTANLLNASGSEQAQK

PVSPSGEASTSGQHSRLKLELRKKETERKMYSLRERKGHA

YKEVSEPQDDDYLYCEMCQNFFIDSCAAHGPPTFVKDSA

VDKGHPNRSALSLPPGLRIGPSGIPQAGLGVWNEASDLPLG

LHFGPYEGRITEDEEAANNGYSWLITKGRNCYEYVDGKDK

SWANWMRYVNCARDDEEQNLVAFQYHRQIFYRTCRVIRPG

CELLVWYGDEYGQELGIKWGSKWKKELMAGREPKPEIHPC

PSCCLAFSSQKFLSQHVERNHSSQNFPGPSARKLLQPENP

CPGDQNQEQQYPDPHSRNDKTKGQEIKERSKLLNKRTWQ

REISRAFSSPPKGQMGSCRVGKRIMEEESRTGQKVNPGNT

GKLFVGVGISRIAKVKYGECGQGFSVKSDVITHQRTHTGEK

LYVCRECGRGFSWKSHLLIHQRIHTGEKPYVCRECGRGFS

WQSVLLTHQRTHTGEKPYVCRECGRGFSRQSVLLTHQR

RHTGEKPYVCRECGRGFSRQSVLLTHQRRHTGEK

PYVCRECGRGFSWQSVLLTHQRTHTGEKPYVCRECG

RGFSWQSVLLTHQRTHTGEKPYVCRECGRGFSNKSHLLR

HQRTHTGEKPYVCRECGRGFRDKSHLLRHQRTHTGEK

PYVCRECGRGFRDKSNLLSHQRTHTGEKPYVCREC

GRGFSNKSHLLRHQRTHTGEKPYVCRECGRGFRNKSHL

LRHQRTHTGEKPYVCRECGRGFSDRSSLCYHQRTHTGEK

PYVCREDE

Typical examples of order patterns, as obtained by FT search in the human proteome. For each protein, Swiss-Prot entry name and main function is given in the first
column, and then follow the protein length, the number of different frequent-triplets (DFT), the leading FTs, defined by the maximal number of occurrences of a FT, and
the CO measures MFI, RC, RP. The leading FTs are highlighted within the protein sequence, displayed in the last column; in some cases they form runs of amino-acids
(A–B), while in other cases they form large repetitive motifs of various purities (C–F). See Methods for more details.
doi:10.1371/journal.pcbi.1003346.t001

Figure 1. Analysis of Swiss-Prot human proteome. Analysis of Swiss-Prot human proteome (n = 20248) containing 5511 CO proteins. A)
Histogram of the most frequent intervals, MFI, demonstrates the significant periodic structures originating in ‘runs’ of homo-peptides (MFI = 1) and
zinc-fingers (MFI = 28). B) The frequency of intervals of all FTs in all proteins (black circles). The outstanding symbols are mostly due to Zinc-finger
proteins which form repetitive sections of 28 amino-acids. Multiplicities at intervals 56, 84 amino-acid are also evident due to mutation acting on
these sections. The superimposed red dots display the data in a rank-ordered manner (i.e. the x-axis takes on the role of rank rather than value of
interval). C) The number of periodic proteins as defined by the number of FT occurrences at MFI. The bars indicate the fraction of CO proteins with
exactly 2–20 (x-axis) occurrences at MFI. 20% of CO proteins are non-periodic (NP). Circles represent the cumulative fraction of proteins with number
of repetitions at MFI above the value indicated by the x-axis. Thus, for a minimum of 4 repeats at MFI (i.e., x = 3), there are above 50% CO proteins
with periodic structures.
doi:10.1371/journal.pcbi.1003346.g001
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thaliana and S. cerevisiae, annotations of DNA-binding, regulation

and transcription display similar enrichment patterns to those

observed in human for the subgroup of proteins that contain

significant runs, MFI = 1 (figure S10). Noted differences between

A. thaliana and S. cerevisiae are in response related genes. While in A.

thaliana enrichment is with respect to RP (figure 3B) in S. cerevisiae it

is with respect to RC (figure 3E). This looks similar to the

disappearance of RP-enrichment of extracellular proteins in A.

thaliana vs human. We will argue below that it is consistent to

assume that major CO generation occurs at macroevolutionary

steps. Since the macroevolutionary birth of the S. cerevisiae lineage

predates that of A. thaliana which clearly predates the several

macroevolutionary steps in the human lineage, it is consistent to

assume that RP dependencies of the former species have washed

out during the long periods of microevolution, due to accumulat-

ing mutations.

Bacterial enzymes. Since the number of CO proteins in a

bacterial proteome is quite small, of the order of few tens,

functional enrichment in a single bacterial species is usually not

conclusive. Therefore, we analyzed the ensemble of all the

reviewed bacterial enzymes in Swiss-Prot (n = 187740), which

contains 6240 CO enzymes (3.3%). Enrichment levels display

dominance of cell wall and response proteins (figure S10 C),

consistently with previous observations [43,44].

Furthermore, our methodology allows us to pick up extreme

examples of CO in bacterial enzymes, namely sections of protein

sequences having high RC, which further elucidate how CO

sections may accumulate throughout evolution. Two outstanding

examples are Lysostaphin enzymes in two different species that

belong to the same genus, Staphylococcus simulans and S. staphyloly-

ticus. In both cases these enzymes contain a long repetitive section

of 15x13 amino acid approximate tandem repeats of AEVETS-

Table 2. Examples of compositional order and functional
enrichment.

Function
within the
proteome

within CO
proteins Mean RP Mean RC

Disease 2755 (13.6%) 903 (16.4%) 0.3 0.1

Zinc Fingers 1799 (8.9%) 977 (17.7%) 0.43 0.17

Collagen 166 (0.8%) 87 (1.6%) 0.21 0.25

Keratin 162 (0.8%) 100 (1.8%) 0.27 0.39

Examples of selected functional groups with high CO in human. Based on Swiss-
Prot records, the portions of each functional group in the entire proteome and
within the CO set (i.e., proteins containing FTs) are given in numbers and
percentages. Last columns indicate the average RC and RP, which should be
compared with the overall mean values of 0.1 (RC) and 0.35 (RP) in the CO set
(n = 5511).
doi:10.1371/journal.pcbi.1003346.t002

Figure 2. Repertoire of functional enrichments in human proteome. Repertoire of enrichment dependencies of GO (gene ontology) terms on
the order measures of regularity, RC (black), and periodicity, RP (red). Portions of proteins belonging to a functional group are estimated based on
text search in GO terms (see methods) and plotted in double axes against increasing thresholds of RC (lower x-axis) and RP (upper x-axis). A) The
portions of some terms that are enriched with increasing threshold of RC but not of RP, like keratin (solid) and collagen (dotted). In this category one
finds also filament and cell adhesion related proteins. B) GO terms that are enriched only for increased RP threshold but not RC, as neuronal related
proteins (solid) and immune system proteins (dotted). These include also synaptic function and cell response genes. C) Other terms like extracellular
region are enriched with increasing the threshold of both RC and RP. D) Some functionalities show more complicated non-monotonic ‘‘bump’’
behaviors. These include DNA-binding, regulation and transcription. As an example, DNA binding are further analyzed showing functional
dependencies on RP and RC of both repetitive sections (MFI.1) and runs (MFI = 1). E) MFI = 1 proteins exhibit stable enrichment pattern as function
of the threshold on the sum of repetitions at MFI = 1 (i.e., the effective coverage of all amino-acids ‘‘runs’’). F) Disease related proteins are enriched
with increasing length of runs. In each plot, the portion of the corresponding GO-term in the entire CO Swiss-Prot reviewed proteome is the value
displayed at 0.
doi:10.1371/journal.pcbi.1003346.g002
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KAPVENT. This long section serves as a pro-peptide chain which is

uniquely associated with these two enzymes. Another example is

XYNA_RUMFL, belonging to Ruminococcus flavefacien. This

enzyme has a long midsection which is highly enriched with

Asparagine (N) and Glutamine (Q), captured by the FT QNN, and

has no homolog elsewhere. As a last example we point to

SYE_TRIEI which has a standard Glutamyl-tRNA synthetase

domain on its first 480 amino-acids, followed by a highly repetitive

domain for the next 400 amino-acids (containing the FTs ATD,

ATT, PVA, TAT, TPV, VAT). This long chain has no homolog

anywhere in the known protein world. All these examples serve as

a show-case for CO sections of proteins that did not spread to

other organisms; however they survived within these organisms,

presumably because they don’t have deleterious effects. As such

they allow us a glimpse into how very rich CO can emerge. In

analogy with paleontological evidence, we may assume that many

other CO variations have been tried by nature, and have been

either discarded or reshaped into useful novel genes.

Comparative proteomic analysis of compositionally
ordered sets of Human and Mouse

In this section we perform comparative proteomic analysis of

human and mouse, based on Swiss-Prot data. The relationship

between the proteins of these two species is summarized in Table 3.

The 20248 human proteins and the 16513 mouse proteins are

sorted out according to whether they are CO or not (NO) and,

according to whether they are orthologs (V) of each other or not

(X) as indicated by Swiss-Prot annotations. Some of the 8 subsets

have interesting features that we describe below.

Analysis of the CO orthologous sets. Comparison of RC

values in mouse and human for the 3312 orthologous CO proteins

is shown in figure 4. Along the diagonal of figure 4 we find high

similarity of sequences, FTs and their periodic properties. High

RC values are associated with some well-known protein families,

Zinc fingers (MFI = 28, 56), Collagen (MFI = 3, 6), Keratin

(MFI = 5, 10). Because the lower harmonics are more prevalent,

the existence of the higher harmonics suggests the effect of

mutations, while the simultaneous conservation of function and

high CO in both species suggests that selection played a role in

maintaining them.

Pairs that deviate from the diagonal, and have high RC in one

species but relatively low RC in the other, have also low sequence

identity (,70%), as measured by Needleman–Wunsch (NW)

global alignment. These low sequence similarity proteins comprise

11.5% (380/3312) of the studied set. Interestingly, we find that

protein pairs in the upper off-diagonal (i.e., low RC in human and

high RC in mouse, including SPR1B, MUC4, ZN239, K1C9,

F186A, RPNT, SBSN, ZAN) display similarity between their FTs

and MFIs in both species. For example, the protein K1C9 has

MFI = 8 in both species and similar prevalent FTs (SGG and GSG).

In contrast, the lower off-diagonal pairs (high RC in human and

low RC in mouse, including CQ097, FILA, MUC2, MUC20,

PGCA, PHGR1, SPRR3, INVO) have low similarity of the CO

sections , i.e. usually their FTs and MFIs are different. Two

exceptions are PRG4, with MFI = 8 in both species (FT = PTT),

and TXND2 with MFI = 15 (FT = PKS).

Both types of observation are consistent with the fact that the

mouse lineage exhibits higher substitution rates [45,46]; hence

some CO structures that existed on the common ancestor may

more readily wash out in the mouse lineage if they are not needed

for functional purposes. Few examples provided in Text S1

(section 7, figure S11) present evidence that the repetitive sections

are subjected to mutational forces that lead to an increase in the

intervals in mouse and to the creation of harmonics. In Text S1

(section 7, figure S12) we have further quantified the discrepancy

in mouse intervals distribution compared to their human orthologs

in all proteins that contain periodic structures (MFI.1), showing

that high harmonics are more prevalent in mouse by a factor

larger than 2.

Because orthologous proteins in human and mouse originate

from a common ancestor, it is of particular interest to study the

sets in which the CO property has been lost or gained in one of the

species (Table 4, sets H2 and M2). Their average RC is at bare

minimum, whereas their average RP is high, compared to the

Figure 3. Functional enrichment in A. Thaliana and S. cerevisiae. Similarly to figure 2, functional enrichment in A. Thaliana (A–C) and S.
cerevisiae (D–F) are shown with respect to RC (black) or RP (red). Portions of cell wall genes (A, D) and extracellular related genes (C, F) are enriched
with increasing the threshold of RC, while portions of response related genes (B, E) are enriched with RP in A. thaliana but RC in yeast.
doi:10.1371/journal.pcbi.1003346.g003
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orthologous CO sets. This may indicate that in these cases while

RC decreases (low FT coverage) functional evolutionary

constraints retain periodicity which leads to the high RP.

However, we did not find any significant functional enrichment

is these subgroups. Therefore, it is possible that high RP based

on only few FTs, reflecting low RC, may simply indicate the

degeneration of CO, a phenomenon that we have encountered

in the off-diagonal proteins in figure 4. Alternatively, the high

RP and low RC in these sets may reflect the generation of new

CO sections in the respective species with no evident functional

purpose.

Analysis of CO non-orthologous novel protein

sets. Another interesting case is that of CO sets which are

novel (Table 4, sets H3 and M3), i.e. have been created after the

two lineages have separated from each other. The latter are

particularly abundant in human: whereas human has 1368 non-

orthologous CO proteins (set H3), mouse has only 125 such

proteins (set M3). This discrepancy by an order of magnitude is

quite astounding, indicating that novel CO proteins have

accumulated to a larger extent on the human lineage since its

departure from the mouse lineage. Comparable novelty is

observed also for all non-orthologous proteins (both CO and

Table 3. Human and Mouse proteomes analysis.

Human Mouse Orthology # of proteins % of Human proteome % of Mouse proteome

CO CO V 3312 16.4% 20%

CO NO V 831 4.1% 5%

NO CO V 626 3.1% 3.8%

NO NO V 10557 52.1% 63.9%

CO — X 1368 6.8% —

NO — X 3554 17.6% —

— CO X 125 — 0.8%

— NO X 1062 — 6.4%

Human and mouse proteomes were decomposed into compositionally ordered (CO) and non-ordered (NO) subsets as well as into Orthologous (V) and non-orthologous
(X) proteins.
doi:10.1371/journal.pcbi.1003346.t003

Figure 4. Comparison of CO orthologs in human and mouse. Comparison of CO orthologs in human and mouse according to their RC values.
Each point corresponds to a pair of such proteins (n = 3312). Low homologies are marked by circles. Usually, their CO sections are comparable,
however revealing higher harmonics in the mouse (Text S1 - section 7, figure S11). Off-diagonal pairs always display low homologies. In the upper-left
diagonal CO sections of human and mouse resemble each other, having high similarity of FTs and MFI, despite the low RC in human. In the lower-
right diagonal mouse CO sections do not resemble human CO sections, except for few exceptions (see text). High homology is obtained for protein
pairs with similar MFIs, such as zinc finger (MFI = 28), collagen (MFI = 3) and keratin (MFI = 5) proteins, and lie along the diagonal.
doi:10.1371/journal.pcbi.1003346.g004
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NO sets): 4992 in human vs 1187 in mouse. Sets H3 and M3 are

highly enriched in RP and RC values in comparison to the CO

orthologous sets (Table 4, sets H1, M1, respectively). Thus, CO of

the novel proteins is higher than that of the older ones. A large

fraction of the 1368 novel CO proteins in human are ZF,

containing 433 out of a total of 977 ZF in the overall CO set of

human (n = 5511). When ranking the proteins by their RC values,

a GOrilla analysis (Text S3) provides P-values,10242 for

functions carried by ZF proteins, and when ranked by RP the

analogous P-value reduces to 10280. Other outstanding protein

families are keratin-associated proteins (61 novel, out of 94 in the

CO set) and protocadherins (44 novel, out of 55 in the CO set).

In view of the large disparity between the numbers in H3 and

M3 we have also extracted the number of non-orthologous

proteins in human and mouse using various other databases and

methods, and re-assessed the ratio between human and mouse

novel CO proteins (Text S1 – section 13 and Table S5). The ratios

we obtain are in the range of 2 to 5. Thus, although the

discrepancy is less pronounced than in the Swiss-Prot set, it is still

large and significant. Consistently, all sets show that significantly

many of the human novel CO proteins are Zinc Fingers.

Compositional Order vocabulary serves as a signature of
macroevolution

In order to study effects of CO for a wide range of species, we

have extracted from the NCBI-RefSeq data-base well annotated

proteomes, listed in Table 5, of 39 eukaryotes (including 7

protista), 36 bacteria and 19 archaea, distributed across the tree-

of-life [47]. In this table, we ordered the species according to the

kingdoms Animalia, Plantae, Fungi, Bacteria and Archaea. The

ordering of the eukaryotes follows the tree-of-life, which is also a

reasonable ordering of organism complexity. We explore the FT-

vocabulary, a measure of proteomic CO richness, which is defined

by the total number of Different Frequent Triplets (DFT). This is

the count of FT types rather than the number of FT occurrences

on the proteome. Proteomic DFT counts displayed in Table 5 are

insensitive to redundancy, because two identical proteins in a

proteome contribute the same FTs.

One may discern in Table 5 a general trend of decrease in DFT

counts among eukaryotes with increasing evolutionary distance

from human, excluding the 7 protista which are added at the end of

the list of eukaryotes in arbitrary order because of uncertainties in

their phylogenies. Bacteria are ordered by the phylogenetic distance

between phyla from firmicutes to protobacteria, with decreasing

DFT counts within each phylum. Archaea are ordered by DFT

counts. DFT counts of prokaryotes are mostly in the hundreds, with

few exceptions in the thousands; the latter usually occur because of

few highly ordered long genes, unlike in eukaryotes (see Methods

sensitivity analysis, and Text S1 - section 2).

The data of Table 5 are grouped together into major taxonomic

divisions in figure 5. The latter exhibit characteristic ranges of

DFT counts that distinguish these divisions from one another,

allowing for a meaningful and significant hierarchical order

differentiating the successive kingdoms (Kolmogorov-Smirnov P-

values#1022). The decrease of DFT may be also correlated with a

decrease in the complexity of the organism. This correlation is not

exact; however the trend is clear, yielding a decrease by factor of 5

from human to yeast. Protista are exceptional, with DFT counts

overlapping with those of plants and fungi. This is consistent with

the conventional view of protista as being a diverse grouping of

organisms that may not be closely related via evolution. Among

prokaryotes, we find an interesting systematic functional trend of

DFT counts: thermophiles exhibit much lower numbers (few tens)

than mesophiles, with differentiating P-value of 1.461024. This is

in agreement with the analysis of Pe’er et al. [33] which found

bacterial thermophiles to be more closely related to archaea. It

seems quite natural to expect that the low DFT counts of

thermophiles are due to evolutionary pressure, since highly

repetitive amino-acid sequences may be less stable under extreme

temperatures. The few observed FTs may be important to induce

favorable structural changes [48].

No hierarchical order of the kind displayed here can be

achieved by measures such as the number of proteins, fraction of

CO proteins, average protein lengths (Text S1 - section 3, figure

S6) or other genomic characteristics [49]. It is interesting to note

the species that seem to possess extreme DFT counts within their

particular kingdoms. Fungi with the largest number of DFTs are

plant pathogens (Nectria haematococca, Botryotinia fuckeliana). Bacteria

and archaea with very large DFT counts live in aquatic or cold

environments (Chlorobium chlorochromatii, Cenarchaeum symbiosum) or

possess very complex functionalities (Nostoc punctiforme). This may

support the view that ecological and environmental conditions,

such as decrease in temperature, or inter-species hybridizations as

in the case of amphidiploids in plants [50], had shaped DFT

distributions in these species. In Text S1 (section 6) we present a

reanalysis of the same data using a modified restrictive definition

of FTs which further abolishes any length-dependent contribution

(see Methods), resulting in figure S9. The same characteristics are

obtained with slightly different P-values. We conclude that the

proteomic DFT counts lead to a unique correlate of evolution,

which is insensitive to the exact FT definition, providing a

distinguishing hierarchical order-parameter.

Table 4. Human and Mouse CO set – Enrichment by RC and RP.

species CO Set name Orthology # of CO proteins RP(P-value) RC(P-value)

Human (n = 5511) H1 V (CO in mouse) 3312 0.33 0.09

H2 V (NO in mouse) 831 0.4(2.1610235) 0.03(6.02610268)

H3 X 1368 0.36(2.25610211) 0.19(7.56610262)

Mouse (n = 4063) M1 V (CO in human) 3312 0.33 0.08

M2 V (NO in human) 626 0.44(1.16610234) 0.04 (1.18610251)

M3 X 125 0.34 0.16(9.861025)

The CO sets of Human (H) and mouse (M) are decomposed into CO orthologous proteins (V) that appear in both species (H1, M1), to orthologous proteins that are CO in
one species but not (NO) in the other (H2, M2) and to non-orthologous genes (X) belonging to the CO sets (H3, M3). The values of RC and RP are shown for each
subgroup in each species. P-values correspond to Kolmogorov-Smirnov 2 sample test of each group in a species compared with the subgroup 1 of the same species
(i.e., H1 and M1 respectively).
doi:10.1371/journal.pcbi.1003346.t004
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Table 5. List of 94 species.

Index DFT Species Taxonomy

1 5076 Human (Homo Sapiens) Animal (V)

2 4333 Chimpanzee(pan troglodytes) Animal (V)

3 4873 Mouse (Mus musculus) Animal (V)

4 4815 Rat (Rattus Norvegicus) Animal (V)

5 4559 Dog (Canis lupus familiaris) Animal (V)

6 2901 Platypus (Ornithorhynchus Anatinus) Animal (V)

7 4419 Chicken (Gallus gallus) Animal (V)

8 3216 Zebra Finch (Taeniopygia guttata) Animal (V)

9 3989 Lizard (Anolis Carolinensis) Animal (V)

10 5299 Zebrafish (Danio rerio) Animal (V)

11 4019 Sea Squirt (Ciona intestinalis) Animal (IV)

12 4146 Fruit Fly (Drosophila melanogaster) Animal (IV)

13 3518 Mosquito (Anopheles Gambiae) Animal (IV)

14 3225 Bee (Apis Mellifera) Animal (IV)

15 3722 Nematode (C. elegans) Animal (IV)

16 2630 Nematode (Brugia Malayi) Animal (IV)

17 2262 Arabidopsis thaliana Plant

18 2785 Medicago truncatula Plant

19 2094 Populus trichocarpa Plant

20 2286 Physcomitrella patens Plant

21 2770 Chlamydomonas reinhardtii Plant

22 1846 Rice (Oryza sativa Japonica) Plant

23 1993 Sorghum bicolor Plant

24 1037 Maize (Zea may) Plant

25 1838 Nectria haematococca Fungi

26 1858 Botryotinia fuckeliana B05.10 Fungi

27 1411 Aspergillus niger CBS 513.88 Fungi

28 936 Ajellomyces_capsulatus NAm1 Fungi

29 1439 candida albicans SC5314 Fungi

30 1112 Candida albicans WO1 Fungi

31 1077 S. Cerevisiae Fungi

32 1033 S. Pombe Fungi

33 2990 Dictyostelium Discoideum Protista

34 1380 Entamoeba Histolytica Protista

35 2319 Leishmania Major Protista

36 2740 Phytophthora Infestans Protista

37 1230 Plasmodium Chabaudi Protista

38 3404 Plasmodium Vivax Protista

39 2129 Thalassiosira Pseudonana Protista

40 823 Staphylococcus aureus MRSA252 Bacteria, Firmicutes

41 644 Bacillus anthracis AMES Bacteria, Firmicutes

42 432 Bacillus subtilis str168 Bacteria, Firmicutes (T)

43 413 Symbiobacterium thermophilum Bacteria, Firmicutes

44 344 Mycoplasma penetrans HF-2 Bacteria, Firmicutes

45 332 Alicyclobacillus acidocaldarius Bacteria, Firmicutes (T)

46 210 Lactococcus lactis cremoris MG1363 Bacteria, Firmicutes

47 154 Caldocellum saccharolyticum Bacteria, Firmicutes (T)

48 137 Streptococcus agalactiae NEM316 Bacteria, Firmicutes

49 1007 streptomyces coelicolor A3(2) Bacteria, Actinobacteria
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Table 5. Cont.

Index DFT Species Taxonomy

50 670 Mycobacterium tuberculosis CDC1551 Bacteria, Actinobacteria

51 454 Arthrobacter aurescens TC1 Bacteria, Actinobacteria

52 274 Corynebacterium glutamicum ATCC13032 Bacteria, Actinobacteria

53 2452 Chlorobium chlorochromatii CaD3 Bacteria, Chlorobi

54 202 Bacteroides thetaiotaomicron VPI-5482 Bacteria, Bacteriodes

55 179 Bacteriodes fragilis YCH46 Bacteria, Bacteriodes

56 126 Bacteroides caccae ATCC 43185 Bacteria, Bacteriodes

57 83 Chlamydophila pneumoniae AR39 Bacteria, Chlamydiae

58 90 Chlamydia trachomatis A2497 Bacteria, Chlamydiae

59 330 Fusobacterium nucleatum ATCC 25586 Bacteria, Fusobacteria

60 77 Thermotoga maritima Bacteria, Thermotogae (T)

61 45 Thermotoga lettingae TMO Bacteria, Thermotogae (T)

62 82 Aquifex aeolicus Bacteria, Aquificae (T)

63 267 Thermomicrobium roseum Bacteria, Chloroflexi (T)

64 261 Thermus thermophilus Bacteria, Deinococcus-Thermus (T)

65 1627 Nostoc punctiforme PCC 73102 Bacteria, Cyanobacteria, Nostocaceae

66 630 Gloeobacter violaceus PCC 7421 Bacteria, Cyanobacteria, Gloeobacteraceae

67 402 Prochlorococcus marinus MIT 9303 Bacteria, Cyanobacteria, Synechococcaceae

68 1167 Geobacter uraniireducens Rf4 Bacteria, Protobacteria, Delta

69 543 Yersinia pestis Antiqua Bacteria, Protobacteria, Gamma

70 482 Shewanella baltica OS155 Bacteria, Protobacteria, Gamma

71 432 Bordetella pertussis Tohama I Bacteria, Protobacteria, Beta

72 403 Caulobacter crescentus CB15 Bacteria, Protobacteria, Alpha

73 268 Brucella suis 1330 Bacteria, Protobacteria, Alpha

74 249 Ecoli K12 MG1655 Bacteria, Protobacteria, Gamma

75 100 Helicobacter cinaedi CCUG 18818 Bacteria, Protobacteria, Epsilo

76 1665 Cenarchaeum symbiosum A Archaea

77 883 Nitrosopumilus maritimus SCM1 Archaea

78 582 Methanosphaera stadtmanae Archaea

79 522 Haloquadratum walsbyi Archaea

80 495 Methanospirillum hungatei Archaea

81 285 Natronomonas Pharaonis Archaea

82 193 Halobacterium salinarum R1 Archaea

83 182 Methanopyrus kandleri Archaea (T)

84 173 Pyrobaculum aerophilum Archaea (T)

85 141 Aeropyrum pernix K1 Archaea (T)

86 141 Methanococcus maripaludis Archaea

87 130 Metallosphaera sedula Archaea (T)

88 124 Sulfolobus solfataricus Archaea (T)

89 114 Methanothermobacter thermautotrophicus Archaea (T)

90 99 Archaeoglobus fulgidus DSM4304 Archaea (T)

91 98 Picrophilus torridus DSM9790 Archaea (T)

92 73 Pyrococcus furiosus Archaea (T)

93 73 Pyrococcus abyssi GE5 Archaea (T)

94 48 Nanoarchaeum equitans Kin4-M Archaea (T)

List of the 94 species distributed across the tree-of-life studied in the large-scale analysis and their taxonomic identities, Eukaryotes (1–39) and Prokaryotes (49–94). The
ordering of species is according to the tree-of life [47]. Within Eukaryotes, kingdoms are first ordered from Animalia to Plantae (P) to Fungi (F). Animalia are classified as
vertebrates (V), and invertebrates (IV). Within each kingdom ordering is according the phylogenetic distance from the first species, i.e. Human within Animalia, A. thaliana
within Plantae and Nectria within Fungi. Protista (PRT) are added at the end with no phylogenetic analysis. Bacteria are also ordered according to the Phylum as presented
in [47], where within each Phylum the ordering is according to DFT counts. Archaea are ordered by DFT counts. Mesophiles (M) and Thremophiles (T) are indicated.
doi:10.1371/journal.pcbi.1003346.t005
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This observation motivated us to analyze the identities of the

DFT contents of different proteomes. Defining DFTI to be the set

of DFTs in proteome I, we look for the DFT-correlation between

different proteomes I and J, defined by the Jaccard index:

CIJ = (DFTI>DFTJ)/(DFTI <DFTJ). The results are displayed in

figure 6, containing all eukaryotes, and figure 7, containing all

prokaryotes. In eukaryotes, the divisions between the sets displayed

in figure 5 are delineated also through the CIJ. Moreover,

mammals (id 1–5) stick out among the vertebrates (id 1–10),

having distinct DFT sets of their own. Invertebrates (id 11–16)

have the largest correlation to vertebrates; and plants (id 17–24)

show some correlation with animals, and less with fungi (id 25–32).

In contrast, some protista species (id 33–39) show an unexpected

correlation which gradually decreases from Animalia to Plantae to

Fungi. We note the particular case of Zebra-Fish (id 10), whose

DFT count supersedes that of human yet its correlation with

mammals is not too high. Hierarchical clustering, using Euclidian

average distance of CIJ, shows that the hierarchical tree largely

overlaps the phylogentic tree. Animals, Plants and Fungi form

separated clusters with only little misplacement (figure 6, bottom).

Three Fungi that are plant pathogens, Nectria haematococca,

Botryotinia and Aspergillus niger are grouped with Plants. Protista

species are distributed across the tree.

In prokaryotes, bacteria (id 1–36) are ordered in phyla, with

decreasing DFT counts within each phylum. Archaea (id 37–55)

are ordered by DFT counts. The correlation among different

bacterial phyla is relatively strong, except for bacterioidetes (id 15–

17) and chlamydiae (id 18–19), which have weak similarity to

other species. The thermophiles Thermotogae (id 21–22) and

Aquificae (id 23) also have weak similarity to other species, but

they have strong similarity to the last 3 archaea which are

themophilic as well. The bacterium with outstanding DFT is

Chlorobium due to a particularly long protein, the parallel beta-helix

protein composed of 36800 amino acids. It has high correlation

with some cyano- and proto- bacteria. Archaea mesophiles show

significant correlation to other bacterial species. In contrast, some

Archaea thermophiles have either distinct DFTs of their own, or

they possess significant correlation with other thermophiles (either

archaea or bacteria).

Another evident difference between the kingdoms is the identity

of the most abundant FTs in the proteomes. They are presented in

Table 6 for several selected species, highlighting those resulting in

amino-acid runs. The latter are significantly more abundant in

eukaryotes than in prokaryotes (figure S13).

Last, we applied the same technique of DFT correlations

(defined at protein levels) to human proteins. The analysis shows

that it leads to classification of principal functional groups, notably

various metabolic processes of macromolecule biosynthesis,

response to unfolded proteins and numerous developmental,

morphological and anatomical structure proteins (Text S1 -

section 8, figure S14). A compendium of human protein

information is presented in figure S15. There we sort all CO

proteins according to the clustergram (figure S14) and present the

distributions of DFT numbers in proteins, and protein numbers in

which each FT occurs. We also zoom-in onto the 50 leading FTs

exhibiting characteristics of co-occurrences.

Figure 5. DFT Box-plot by Kingdom. Box plots of DFT counts across the tree-of-life. Each box delineates lower quartile, median and upper
quartile values. Most extreme values (whiskers) are within 1.5 times the inter-quartile range from the ends of the box. Outliers are also displayed.
Prokaryotes are displayed twice. First divided according to bacteria and archaea, and secondly as mesophiles and thermophiles. P-values according to
non-parametric two-sample Kolmogorov-Smirnov test are 2.561022 (V-IV), 6.561023(IV-P), 961023 (P-F), 1.761025 (F-B), 2.361022(B-A) and
1.461024 (M-T). Protista species show large variability and cannot be distinguished from Plantae or Fungi. Abbreviations: Vertebrates (V),
Invertebrates (IV), Plantae (P), Fungi (F), Protista (PRT) Bacteria (B) Archaea (A), Mesophiles (M), Thermophiles (T).
doi:10.1371/journal.pcbi.1003346.g005
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Universality
DFT distribution functions in proteomes. The probability

distributions of DFT abundance in the proteome are shown in

figure 8 across 32 eukaryotes. They resemble power-laws for all

individual eukaryotes (Text S1 - section 9, figure S16). Few DFT

show up quite often on the proteome (examples are given in

Table 6) and many DFT are quite rare, i.e. found on few proteins.

Similarly, few proteins carry many DFT and many proteins carry

much smaller numbers of DFT. Many of the prokaryotes seem to

have similar DFT distribution behavior as well, but their variance

is much larger. The specific example of E. coli added onto figure 8

serves to demonstrate the large variance observed for a single

bacterium. Nevertheless, when individual distributions of many

prokaryotes are superimposed, they reveal a power-law behavior

as well (Text S1 - section 9, figure S17), suggesting universal

characteristics. The general character of power-law distribution is

similar to evolutionary genome universals such as the membership

in paralogous gene families [1] and node-degree relations in

biological networks [51]. Figure 8 may therefore add a new law to

the ‘laws of genome evolution’ [52], this time at the peptide level.

Further support for this view comes from observations of

spontaneous expansions of triplets in higher taxa [35].

Universality of CO measure characteristics. Studying the

behavior of CO measures we find that in single proteins RP and

DFT show universal dependence on protein length L (figure 9). As

an example, we show in figure 9A that RP for human is negatively

correlated with L, while figure 9C shows that DFT for human is

positively correlated with L. RC has no significant correlation with

Figure 6. DFT enrichment in eukaryotes. DFT count and correlation CIJ of the 39 studied eukaryotes. Species are indexed and ordered as in
table 5, according to the kingdoms Animalia, Plantae, Fungi and within each kingdom, according to their phylogenetic distance. The upper panel
shows the heat-map of the correlation CIJ, the middle panel shows the DFT counts, and the lower panel shows the tree of hierarchical clustering
based on Euclidian average distance of CIJ. Colors of the branches correspond to the taxonomic identity as indicated by the colored abbreviations in
the middle panel. Abbreviations are the same as defined in figure 5. Solid gray branch corresponds to two proximate ends-leafs belonging to
different taxonomic groups. Dashed gray branches link groups.
doi:10.1371/journal.pcbi.1003346.g006
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L (figure 9B). The left boundary in RC reflects its lower bound 3/

L. The distributions (over L) peak around the centers of their

respective domains, and their averages may be well described by

linear regressions. Figure 9D displays the behavior of RP for all

species, while figure 9G is its analog for DFT. The universal

behavior of these trends is quite obvious, as shown by the linear

regression slopes for the average of these measures over all

kingdoms in figures 9E and 9H, respectively.

Because FTs are not expected at random (see Methods), the

behavior displayed in figures 9C and G implies that growth of

protein length and CO are linked. This suggests the possibility that

incorporation of CO may be an element of the mechanism of

protein elongation. The decrease of RP, which is defined as the

fraction of all FTs that participate in the MFI, may occur in one of

two ways: either by increasing FT occurrences, as hinted by the

increase in DFT, or by a decrease in the number of FTs

participating in the most prominent periodic structure. Assuming

that many of the longer proteins may be considered to be of older

evolutionary origin [53], the decrease in RP could be blamed on

mutations that were accumulated during evolutionary history. A

direct analysis of the relationship between RP and protein age

shows that high RP is associated with relatively young protein age

(Text S1 - section 12, figure S20).

Another feature of universality is provided by the rank-ordered

interval distribution functions. The latter is reminiscent of the

Zipf-law (Text S1 - section 9, figures S18, S19), a hallmark of

many dynamic evolving systems [54], as well as languages where

word frequencies follow this law [55].

Discussion

Many efforts to order major taxa according to known genomic

measures are inconclusive [49; figure S6]. Aside from clear

differences in the karyotypes, the best genomic discriminating

Figure 7. DFT enrichment in prokaryotes. DFT count and correlation CIJ of the 55 studied prokaryotes. Bacteria are grouped into phyla which are
ordered according to their phylogenetic distance, from firmicutes to proteobacteria, and within each phylum species are ordered by DFT counts.
Archaea are ordered by DFT counts. Upper panel displays the heatmap of CIJ, lower panel displays DFT counts (red points indicate thermophiles).
Color scale is different from figure 6, in order to be able to trace trends which extend over several orders of magnitude. Abbreviations: Firmicutes
(Firm); Actinobacteria (Act); Bacteriodes (Bac); Chlamydiae (Ch); Cyanobacteria (Cya), Protobacteria (Proto), Mesophiles (M), Thermophiles (T).
doi:10.1371/journal.pcbi.1003346.g007
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factor between eukaryotes and prokaryotes is the prevalence of

amino acid repeats in the former [26]. Their role in evolutionary

processes, in particular fast evolution of protein function and

development of phenotypic complex traits is well accepted [11–

16]. However, because of the large diversity of repetitive sections,

it is difficult to find genomic variants and determinants that may

further elucidate their importance. Existing methods are usually

tuned to capture a few aspects of the nature of compositional

order, but a unifying framework has been missing [56].

Here, we presented such a unifying framework, by generalizing

the concept of compositional bias to that of compositional order

(CO), which captures all scales of repetitive peptides, from runs to

repetitive domains. This is achieved by identifying multiple

occurrences of frequent triplets that are not expected at random.

As such, their existence on protein sequences allows for detecting

various patterns, and provides novel measures of order. We focused

in this study on three CO measures: ‘regularity’, the relative

coverage of FTs in proteins (RC), which correlates well with

sequence entropy; ‘periodicity’ of FT recurrences (RP); and FT-

vocabulary, the number of different FTs (DFT), representing the

richness in the vocabulary of CO on a protein or within a proteome.

RC, RP and evolution
RC and RP provide novel perspectives on the evolution of

proteins and proteomes by putting various observations into a

common framework and applying comparative analyses. One of

the astounding facts is the CO enrichment of novel proteins in

human compared to mouse, leading to an increase in RC and RP.

To a large extent, the latter is due to the large increase of ZF

proteins in the human lineage.

Whereas an increase in RP is correlated with a general increase

of the CO component of the proteome, we observe that a decrease

of RP reflects the effect of mutations along the microevolution of a

lineage. Rapid evolution by high mutation rate will tend to erase

the periodic nature of repetitive sections in protein sequences.

Thus, when comparing CO orthologous proteins in human and

mouse, we find that some of the latter exhibit a clear decrease in

RP, which may be blamed on the higher substitution rate along

the mouse lineage. Our analysis of interval distributions is

consistent with faster evolutionary substitution rate on the mouse

lineage [45,46]. A similar conclusion that RP functional enrich-

ment of proteins deteriorates with evolutionary age of the

organism follows from the study of response and extracellular

proteins, for which RP-enrichment was seen to decrease from

human through A. thaliana to S. cerevisiae.

When a protein’s RP decreases along evolution this is evidence

that the particular period, rather than its harmonics, may be less

important to its function. Interesting cases are collagen and keratin

proteins in human and cell wall proteins in plants, fungi and

bacteria. In these cases prevalent intervals reflect the existence of

underlying repetitive motifs, but protein enrichment with respect

to RC and not RP indicates the tendency of these sections to

rapidly accumulate mutations for functional purposes. Thus RC,

rather than RP, correlates with these functions.

Universality of the CO measures
We note that the balance between the three forces of evolution,

mutation selection and innovation, acting on CO sections in

proteins is universal. This we conclude from three observations:

1) the power-law distribution of DFTs in proteomes (figure 8).

Interestingly, the accumulation of FTs in the proteome is

similar to evolutionary genome universals such as

the membership in paralogous gene families [1]. Such

Table 6. Predominant FTs in selected species.

Human Mouse Fly C. elegans A. thaliana S. cerevisiae E. coli

1 EEE EEE QQQ SSS SSS SSS LLL

2 SSS SSS SSS PPP EEE QQQ LLA

3 PPP PPP AAA TTT GGG EEE AAA

4 LLL LLL GGG QQQ PPP NNN LAA

5 AAA AAA PPP GGG QQQ DDD ALL

6 CGK GGG TTT EEE DDD SST EAA

7 HTG GEK NNN AAA LLL TTT GRL

8 GEK HTG SGS KKK AAA TSS RLT

9 TGE CGK GSG STS KKK STS AAG

10 GGG EKP EEE TSS NNN LLL AAK

11 EKP TGE GSS PPG SSL NSS AEA

12 ECG KPY QQH PGP DLS KKK ALA

13 KPY QQQ SST DDD LLS SSL APA

14 QQQ KAF HHH GPP TTT PPP DRL

15 KAF SSL SSG APG SLL SKK LAE

16 GKA KKK DDD GAP SPS LSS LAL

17 IHT GKA SGG APA LDL ATT LLG

18 KKK SPS SAS SST LSG NSN QQQ

19 PGP PGP TSS PAP LSS AAA RYD

20 HQR PSP LLL STT SPP SLS TLT

List of predominant FTs in several species. FTs are ranked according to the number of CO proteins in which they are found. FTs containing a single amino-acid, which
represent amino-acid runs on the protein’s sequence, are highlighted. The latter are significantly more abundant in Eukaryotes (see, figure S13).
doi:10.1371/journal.pcbi.1003346.t006
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power-law behavior is observed in node-degree relations in

biological networks [51], suggesting a particular role in

protein-protein interaction (PPI) and metabolism, networks

of similar functional node-degree architecture. Indeed, various

metabolic processes, notably of macromolecule synthesis, are

found in our human CO set. Other evidences for the role in

PPI comes from the observation of CO enrichment in PPI

hubs proteins [57], and the association of variations in

repetitive sections with the evolution of PPI network topology

[58].

2) the distribution of intervals resembling in character to Zipf’s

law (figure 1B). Zipf’s law, the rule of word frequency in text,

is a hallmark of linguistic structure [55]. The intervals

between FT recurrences correlate with the lengths of larger

motifs (see, e.g. the ZF protein PRDM9 in table 1), thus their

frequency represents motifs frequency to a large extent. The

appearance of Zipf’s law also suggests fast evolution of motifs,

such that there is no characteristic length scale of motifs, i.e.

the distribution of FT intervals is scale free. In analogy of

conventional interpretation of Zipf’s law [59], our analysis

suggests fast evolution of immune system and response related

proteins in human, as well as cell-wall and response proteins

in plants, fungi and bacteria. This strengthens the view that

CO vocabulary is a hallmark of evolving diverse functional-

ities, a consequence of the necessity of some proteins to

interact and adapt to fluctuating environmental conditions.

3) the relationships of RP and DFT with protein length (figure 9).

RP decreases while DFT increases with protein length, in all

species. The ratio of the power-law exponents of RP and DFT

is approximately constant, indicating a balance between

repetitive structure degeneration and CO vocabulary

escalation. The positive correlation between RP and protein

age (figure S20) implies that insertion of raw repetitive

material is a possible mechanism responsible to protein

growth. This also further associates RP with relatively new

functions.

DFT and macroevolution
The observation that DFT counts increase from archaea to

vertebrates, providing a clear delineating hierarchy of major clades

of organisms, is a unique case of correlating proteomic information

with evolution. Since it relates to major taxonomic groupings, the

evolutionary context to which it belongs is macroevolution [60].

Macroevolutionary changes are invariably connected to major

genomic changes. Novel taxa and novel functions are marked by

gene and chromosome rearrangement [61], and gene duplications

[62] which may occur even after speciation [63]. This is also when

major effects may occur in CO properties, as reflected by DFT

counts. Thus we posit that changes in DFT reflect macroevolu-

tionary events. In other words, we envisage major CO accumu-

lation to occur mostly during macroevolutionary events. The

following microevolutionary forces of mutation and selection can

diminish or modify the CO, leading to the presently observed

structures.

Eldredge & Gould [64] emphasized that long periods of small

evolutionary changes are intertwined by relatively short periods of

major changes, a phenomenon they called punctuated equilibri-

um. The Cambrian explosion period is a striking example, where

changes from unicellular to multicellular species occurred within

few 10 MY after billions of years dominated by microevolution.

More recently, large-scale analysis of various measurements

Figure 8. Universal DFT accumulation in proteomes. Probability of a number of DFT in a protein, on log-log scale, for 32 eukaryotes
proteomes, colored differently for Animalia (red), Plantae (green) and Fungi (yellow). Few FTs occur quite often in the proteome while many FTs are
rare. The cases of human and E. coli are shown as specific examples. All individual eukaryote species are very well fitted by a pure power-law (see Text
S1 - section 9). E. coli serves as an example of a typical prokaryote.
doi:10.1371/journal.pcbi.1003346.g008
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combining data from fossil records [65] showed that macroevo-

lutionary steps indeed occur in rare bursts at time scales .1MY,

presumably as a consequence of permanent changes in ecological

and environmental properties [66]. Thus we should expect that

major changes of DFT counts have occurred at relatively short

periods of time, while most of evolutionary history accounted for

smaller changes that accumulate during microevolution.

Gould [67] pointed out that one should not be influenced by

our parochial focus on human, believing that evolution proceeds

in the direction of complexification, since speciation may just as

well take a turn toward simplification. Nevertheless, even if

macroevolution can go both ways, it must still be true that high

complexity of an extant organism, as well as a high DFT count, is

a good indicator that its lineage has gone through many steps of

macroevolution. CO structures that we observe on proteomes had

survived while being modified by mutation under selection

constraints. This suggests that analogously to birth-death-innova-

tion models of protein domains evolution [68], similar forces shape

the evolution of repeats at the peptide level.

In prokaryotes we find that DFT counts do not discriminate

between major phyla. We observe, however, a clear distinction

between mesophiles and thermophiles, suggesting that CO

generation and conservation is also condition dependent. Ther-

mophiles have characteristically lower DFT counts. The ones that

we observe presumably have been selected for functional purposes.

Evidence for this is the crucial role of CO in the induction of

necessary structural changes under extreme conditions [48], and

the prevalence of functional peptide motifs in extremophiles [69].

DFT content, rather than DFT counts, serves as another handle

on proteomic relationships. Boundaries of prokaryote phyla may

be discerned by their DFT content dissimilarity. This result is of

particular interest when compared to previous attempts to find

amino-acid sequence correlates of kingdom and super-kingdom

divisions. Using information about single, double and triple

amino-acid distributions, Pe’er et al. [33] observed some separa-

tions in a principal component analysis. Triplets turned out to be

the best distinguishing elements. In our analysis, also based on

triplets, but constraining them further to fit into FTs, we find that

DFT correlations are highly significant, exposing DFT contents to

be an important sequence correlate of kingdom identity.

Macroevolution is also affected by the landscape of inter-species

interaction as in the case of plants and insects [70]. Here, the role

Figure 9. Universal dependence of RP and DFT on protein length. The relationship, on a log-log scale, between the CO measures RP, RC and
DFT and protein length, L. Upper panel (A–C) display human proteins indicating strong correlation of RP (A) and DFT (C) but not RC (B), r indicated
the Pearson correlation coefficient. A clear linear boundary in RC is due to its lower bound 3/L. Linear regression analysis shows excellent power-law
fits of RP and DFT dependence on L. Data was binned to 50 equally spaced intervals along the y-axis. ‘X’ symbols denote the average of L in each bin,
error (SD) on the mean is at the size of the symbol and therefore not shown. The blue line is the result of a linear regression fit. Middle Panel (D–F)
shows a superposition of RP-L data for all species (D) and the quality of its linear regression fits in (E,F). Slopes increase from Eukaryote to Prokaryotes
(E) coupled with a decrease in the goodness of fit (F). Lower panel (G–I) is the same type of analysis for DFT-L dependence. Note that the slope trends
are opposite. The ratio of the RP-L and DFT-L slopes is close to 21 in all species: it is 21.1160.05 in eukaryotes. In prokaryotes, excluding 9 outliers,
the ratio is 20.8560.05.
doi:10.1371/journal.pcbi.1003346.g009
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of inter-species interaction is insinuated by DFT proximity of

species in one kingdom to species in a neighbor kingdom, as

exhibited by the similarity of fungal plant-pathogens to plants.

Such interaction was previously suggested based on analysis of

simple sequence repeats contents [34]. Interestingly, many of the

CO proteins are response and immune related. Therefore, it is

possible that these proteins coevolved as part of the interaction

between the species defense systems. Thus, the fundamental

factors that shape evolution of different lineages, i.e. unequal

distribution of changes over time and correlation with ecological

and environmental properties, also seem to shape CO composition

at the kingdom level.

Lynch & Conery [71] studied the ordering of species based on

the effective population size x mutation rate, Neu. While this

measure is based on comparisons within species, i.e. it is of

microevolutionary nature, their results suggest that increasing

genomic complexity, associated with transitions from prokaryotes

to eukaryotes, is a consequence of magnified random genetic drift.

Comparing Neu with DFT counts over eukaryotes we find that

they anti-correlate (Pearson correlation = 20.6, P-value<1022,

Text S1 - section 11, table S4). This suggests that drift plays a

central role in shaping FT evolution. Furthermore, we have seen

that some CO in bacterial enzymes exhibit de novo creation which

has presumably reached fixation through drift, without having any

clear functional advantage, although we cannot exclude the

possibility that these sections have emerged recently. However,

there are various cases that are indicative of the effect of purifying

and positive selection. Purifying selection is indicated by the very

small numbers of DFT in thermophiles, while evidence for positive

selection is provided by functional enrichment of various protein

families with respect to increased CO (i.e., RC or RP), and by the

mutations in synonymous and non-synonymous sites (Text S1 -

section 10, table S3). To better quantify the relative contribution of

positive and negative selection in specific protein families, one

should resort to studying the traditional dN/dS ratio.

In summary we claim therefore that the FT tools that we have

introduced and studied have proved themselves as meaningful

measures of biological investigation. Moreover, they turn out to be

very useful in providing the means for specifying which features

are correlated with different protein annotations, and how the

latter can be studied in a comparative genomics perspective. We

believe that the highlight of this formalism is the fact that

proteomic DFT counts turn out to delineate correctly major

biological kingdoms, thus leading us to posit that CO vocabulary is

intimately linked with major evolutionary forces.

Methods

There exist known mathematical tools that come to mind for

studying compositional order. One is the Shannon entropy [3,5],

and the other is the Fourier transform. The first is low when a

clear imbalance in multiplicity of different amino-acids occurs, and

the second should provide peaks for dominant periodicities. But

the question remains what should be the basic variables. Entropy

misses out on the co-occurrence of amino-acids in repetitive k-

mers, while Fourier decomposition is much too noisy to allow for

useful analysis. The difficulty and the need in constructing new

and more general characterization of repeat patterns have been

recently emphasized in a survey of existing methods [56]. Here, we

establish a unifying framework for studying all types of
compositional order (CO) within protein sequences. The

basis for our systematic study is the identification of multiple

occurrences of amino-acid triplets that appear far beyond random,

which we define as Frequent Triplets (FTs). FTs allow for defining

CO observables that facilitate the quantification and identification

of structural elements of CO.

Definition and analysis of frequent triplets (FTs)
Triplets of amino-acids represent a set of 8000 elements. The

multiple appearance of a single triplet on a protein should have

been a rare event had the sequence consisted of an independent

arrangement of amino-acids. The probability to observe any triplet

exactly n time in a sequence of length L, is given by the Bernoulli

distribution: Pr(L,p; i~n)~ L
i

� �
pi(1{p)L{i, where p = 1/8000 in

a uniform random model. The expected value, E, of the number of

different triplets that appear at least n times in a protein is

therefore:

E~8000 Pr(L,p; i§n) ð1Þ

thus, E/8000 is the P-value for FT misidentification. Numerical

search for the occurrences of every one of the possible 8000 triplets

on purely random protein sequences perfectly matches this

theoretical estimate (figure 10). For the vast majority of proteins

n = 5 is sufficiently restrictive for eliminating any random

occurrences while maximizing the signal, the number of identified

FTs. However, for very large proteins (L.8000) E becomes quite

large. Although the number of such long proteins is very small (3

in human, TITIN, MUC16 and SYNE1), a more restrictive

definition that reduces E, can be formulated by requiring that

repetitions ($n) of a triplet should occur within a section of
length M on the protein’s sequence. The latter may become

useful for the analysis of long proteins.

In Text S1, we present both the uniform random model of

Eq. 1 and a unigram random model based on first order

statistics of all human proteins (section 1), and provide detailed

analysis of the human proteome comparing it to the two random

models for various values of M (section 2). The analysis of

random models suggests that a regular assignment of a triplet as

FT, using n = 5 yields P-values,1023 for proteins with L,8000

and is sufficient for any practical use. The fact that the regular

definition captures high-order structures in long proteins that are

otherwise missed by restrictive definitions provides further

justification for the use of regular FTs (Text S1 - section 2,

figure S5). Thus, we define Frequent Triplets (FT) of a protein

to be those amino-acid triplets that are observed to occur five

times or more, not necessarily as tandem repeats, on its

sequence. FT of a species proteome will be any FT that appears

in at least one protein of this species.

Setting a threshold n for FT definition allows comparing CO

between different species. With n = 5 a reasonable description of

CO can be obtained for all eukaryotes and prokaryotes.

Lowering the threshold one runs into the problem of random

effects, while raising the threshold is too restrictive (figure 10,

inset) ending up with almost no FT assignments for some

prokaryotes. We find that 27% of the human proteins are CO,

i.e. contain FTs, while this fraction reduces to 17% in yeast and

to 3% in E-coli. The fraction of CO proteins in the proteome is

shown in Text S1 (section 3, figure S6b) for the main taxonomic

groups we study. Similar orders of magnitude of ordered

sequences are obtained by other methods [26]. Our methodol-

ogy has another important outcome for comparative analysis: it

tends to unify the mean compositionally ordered protein length

across the tree-of-life (Text S1 - section 3, figure S6 c,d). In

other words, CO proteins display higher length similarity

between eukaryotes and prokaryotes than average lengths

defined over their complete proteomes.
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Measures of compositional order (CO)
Many protein sequences show significant periods or quasi-

periodic repeats. We wish to distinguish between the two aspects of

regularity and periodicity. This is because both can be viewed

as orderly elements of a protein sequence, as in many tandem

repeats of any k-mer, but they are not necessarily correlated.

Regularity. Sequence regularity is traditionally estimated by

the single amino-acids entropy [3,5]. The Shannon entropy can be

generalized, using as its basis any k-mer of amino-acids, as follows

Sk~{
XNk

i~1

ni

L
log2(

ni

L
) ð2Þ

Where Nk is the number of possible k-mers in a sequence, Nk = 20k;

L is the length of the sequence and ni is the number of occurrences

of the ith k-mer in the sequence. Sk measures sequence regularity,

and is low when a clear imbalance in k-mer multiplicity occurs.

For comparative analysis, it is useful to normalize the entropy by it

maximal value, defining the normalized entropy, nSk. This

describes by how much a given sequence differs from a random

sequence of maximum entropy. For k = 1, L&N1, the maximum of

S1 is log2(20), and the normalized entropy is given by nS1 = S1/

log2(20). For k.2, usually Nk&L thus the normalized entropy is

given by nSk = Sk/log2(L).

Considering all FTs that appear on a given protein sequence,

we define their ‘relative coverage’ RC of this particular protein

as the number of distinct amino-acid loci covered by FTs divided

by the protein length. This parameter correlates significantly with

the normalized entropy nS3 (Text S1 - section 4): high RC implies

very distinctive CO, hence also very low nS3 entropy. Thus, RC is

a good tool for estimating compositional bias. Note that the

dynamic range of RC is considerably larger than that of nS3 (figure

S7 C), thus making RC an easier tool to use.

Periodicity. Many CO sequences show significant periodic

or quasi-periodic repeats (table 1). Entropy does not provide

information about the periodicity of a sequence, neither does RC.

We introduce measures based on the intervals between all

consecutive occurrences of the same FT, IFTi. Considering all

consecutive intervals of each FT, I = {IFTi}, one obtains the

discrete empirical probability distribution function of all consec-

utive intervals, P(I). We define the Most Frequent Interval
(MFI) of a CO protein as:

MFI~Imax ð3Þ

where Imax is the interval at which P(I) is maximal. Because MFI is

based on the intervals of all FTs, and not on the intervals of the

most repetitive single FT, it is a robust estimator. Rarely, there are

two or more intervals with equal maximal probability, in which

cases MFI is taken as the lowest interval, because it is often also the

lower harmonic of the higher MFI. The significance of MFI may

be further evaluated by considering the number of interval

occurrences at MFI (see figure 1c).

Based on the MFI we define the ‘relative periodicity’ RP as

the number of FT occurrences within the MFI divided by total

number of FT occurrences:

Figure 10. Frequent Triplets – Theory and simulation. Expected values of Frequent Triplets (FTs) in random proteins as function of sequence
length. Length range is up to 35,000 amino-acids, approximately the length of the longest proteins found among the proteomes of the 94 species
studied (TITIN in human, and beta-helical in Chlorobium). A) Blue curve is the theoretical expected value given by the Bernoulli probability, for n = 5.
Dark circles are the corresponding results of a numerical search of triplets showing perfect match to the theoretical estimation. Red circles are the
numerical results for restrictive FTs defined by n = 5 and M = 2000. Inset: same data is shown up to L = 8000 for clarity. Additional black curves
represent the theoretical estimation for n = 4–6. B) P-value for FT misidentification as function of length on log-scale. C) Length distribution of human
proteins showing log-normal characteristics. Length of CO proteins is right-shifted (see also Text S1 -section 3, figure S6d). Further analysis based on a
human ‘‘unigram’’ reference model is provided in Text S1 - sections 1 and 2, where the few very long proteins are analyzed in detail.
doi:10.1371/journal.pcbi.1003346.g010
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RP measures the relative richness of CO observed within the

periodic structure, compared to the overall CO observed in the

sequence, and approaches zero as MFI becomes less significant.

RP has no significant correlation with neither RC nor nSk, and

therefore contains independent information (Text S1 - section 4

and figure S7).

Vocabulary. We define a measure of FT-vocabulary as the

total number of Different Frequent Triplets (DFT). This is the

count of FT types rather than the number of FT occurrences, and

can be applied either to single proteins or to a full proteome. The

correlation between two DFT sets I, J representing either two

proteomes or two proteins is estimated by the Jaccard score

CIJ = (DFTI>DFTJ)/(DFTI <DFTJ), the size of the intersection

divided by the size of the union of the sample sets.

The case of overlapping triplets
Triplets may overlap. For example, in a protein containing the

sequence AAAAAAA there are 5 occurrences of the single FT AAA,

lagged by interval 1 and of total coverage of 7 amino-acids. This

defines an MFI = 1 case, here a run of A. Similarly, MFI = 2 is a

property of tandem repeats such as AQAQAQAQAQAQ, composed of

two FTs (AQA and QAQ) that occur 5 times each, separated by

interval 2 and with total coverage of 12. The occurrence of

overlapping triplets is highly reduced in random models. Hence,

one could have submitted runs to a constraint weaker than n = 5.

This has little effect on global analysis, hence we stick to a single

definition using always n = 5 as the minimal number of occurrence

of an FT. As a result proteins which have only short runs (,7) are

excluded from our set of CO proteins.

Relation to other repetitive phenomena and motifs
characterization

Several tools have been developed for analyzing tandem

repeats; both at the DNA level [72] and at the protein level

[2,73]. While such methods may provide detailed local informa-

tion on repeat properties, such as unit length, purity, and

alignment-based repeat-variations, they are applicable to a

subgroup of CO proteins with particular periodic structures.

Moreover, such methods usually involve more than one stage of

filtering and therefore require further choices of internal param-

eters to be able to account for each repetitive phenomenon such as

tandem repeats or cryptically simple repeats. Our CO measures

provide global information and are not restricted to a specific type

of periodic structure. They span the spectrum of possible high-

order structures, and therefore are not always directly comparable

to other existing motif characterizations.

Nevertheless, within high RP proteins one finds cases of tandem

repeats, for which the CO measures can account for some basic

motif properties, such as unit length and purity. In a highly pure

motif repeat pattern, for example PRDM9 (Table 1), the identified

DFTs compose the motif of unit length 28. Thus, DFT = MFI

indicates a highly pure motif. Even if part of the motif is variable,

the identified FTs can appear in equally distant intervals leading to

high RP, and MFI still indicates the unit length. Thus, RP is

independent of motif purity, which may be accounted for by the

difference between DFT and MFI. DFT,MFI indicates a

decrease in purity. Note that DFT.MFI corresponds to larger

regularity than periodicity, as in some low-complexity regions, and

will usually indicate low RP but moderate or high RC.

Functional enrichment
For large groups of proteins we employ the bioinformatics tool

provided by GOrilla [39,40]. In addition, to explore possible

dependencies on CO measures, enrichment levels were estimated

by text search of key-terms in GO annotations. Specifically, we

estimate Ntot, the total number of proteins with order measure

value.some threshold. For a given threshold, we obtain the

number of proteins that are associated with a certain GO term,

Nfun. The dependence of the ratio Nfun/Ntot on the threshold

provides an enrichment pattern which allows for quantifying

dependencies on CO measures also for small functional groups.

Enrichment P-values are estimated by the Hypergeometric test,

comparing the values of Nfun and Ntot obtained at the maximum of

the ratio Nfun/Ntot with their values at the minimal threshold. To

avoid small number effects, Nfun is limited to 10% of the maximal

Nfun (i.e. at the minimal threshold), and in any case Nfun.15, such

that there exists sufficient data for statistical inference of

enrichment levels.

Data bases
Full proteomes of 94 species distributed across the tree-of-life

were downloaded from NCBI Ref-Seq, and served as the basis of

the large-scale analysis of compositional order enrichment. Swiss-

Prot reviewed proteomes of several representative species from

animalia (human, mouse), plantae (A. thaliana), fungi (S. cerevisiae)

and bacteria (E. coli) were downloaded and analyzed as well. For

S. cerevisiae we compared in addition the Swiss-Prot proteome to

SGD data-base for validation of proteins annotation. Generally,

Swiss-Prot contains fewer proteins than NCBI. It provides

however high quality information about proteins’ biological

functions, and contains non-redundant sets. Therefore, we used

Swiss-Prot for detailed protein functional analysis, and also to test

the sensitivity of CO measures to the choice of data base (see the

following sensitivity analysis).

Sensitivity analysis
Interval distributions and the parameters specifying an

FT. We have opted for the use of amino-acid triplets, i.e. k-mers

with k = 3. Moreover, we have defined an FT using a constant

threshold for its number of occurrences, n = 5. In Text S1 (section

5) we have tested other alternatives, i.e. different values of k and

different thresholds that depend on protein length. The results,

presented as rank-ordered interval distributions in figure S8, show

that the regular FT-definition is optimal for capturing large

repetitive motifs that are missed by alternative definitions of a

frequent k-mer.

Proteomic DFT enrichment in different

databases. Comparison of the Swiss-Prot human proteome

(20,248 proteins) with ref-seq data (34,084 proteins) by recon-

structing the list of Different Frequent Triplets (DFT), showed less

than 0.1% reduction in the number of DFTs in spite of the large

difference in numbers of listed proteins. This exemplifies the

redundancy of proteins in ref-seq data, and proves that the DFT

count is a stable measure. In mouse, where Swiss-Prot lists only

16,513 proteins, compared to 28,868 proteins in ref-seq, we found

a reduction of 10% in Swiss-Prot DFT counts. This seems to

indicate that the Swiss-Prot mouse proteome is incomplete.

Ref-Seq DFT counts of different species are provided in Table 5,

grouped into kingdoms. There exist outstanding DFT counts in

prokaryotes, such as for C. chlorochromatii, where few extremely long

genes are responsible for the FT assignment of more than half the

DFT. Such exceptions occur in prokaryotes and account for the

outliers in figure 5. However, no such case exists in eukaryotes.

Even TITIN, which carries many FTs, is responsible for the FT

Proteomic Universal Correlate of Macroevolution
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assignment of less than 2% of all DFT in human. Further analysis

of the sensitivity to long proteins is provided in Text S1 (sections1–

2).

Graphic User Interface for practical research of CO
We provide a friendly GUI MATLAB package that implements

the search of triplets in proteins to help interested practitioners

using our method for further research. The GUI accepts proteins

in FASTA format. Both single proteins and full proteomes can be

uploaded. The GUI allows changing the key parameters n and M.

The output is a list of CO proteins and their CO properties, that is

automatically saved as TEXT file and can be accessed with

MicroSoft EXCEL. Key properties and figures are presented in

the GUI output. The GUI is available at: http://neuron.tau.ac.il/

,horn/research.html

Supporting Information

Figure S1 Human proteins length distribution. Protein

length distribution of the CO (black) and NO (gray) sets using our

regular FT definition. The vast majority of NO proteins have

length well below 2000 amino-acids. Three additional proteins

beyond the scale of 8000 amino-acids (SYNE1, MUC16, TITIN)

belong to the CO set.

(TIF)

Figure S2 Frequent triplet (FT) identification in random
models of protein sequences. The expected value, E, of the

number of identified FTs in a single protein (left y-axis) and the P-

values (estimated as E/8000) for misidentification of a single FT in

a single protein (right y-axis) are shown for a uniform model of

protein sequences with alphabet of 20 amino-acids (A–B) and for a

unigram model generated from the human proteome (C–D). A, C

correspond to a search of any triplet that appears at least 5 times

on a single protein. B, D correspond to a search of any triplet that

appears at least 5 times on a single protein within a section smaller

than 2000 letters (M = 2000). Errors on the expected values are

smaller than the symbol sizes (based on numerical simulation of

thousands of non-overlapping proteins sampled from the two

models).

(TIF)

Figure S3 Variation of CO properties as function of M
in human and random models. Numerical search of triplets

in human Swiss-Prot proteome containing 20248 proteins and in

two random models (uniform and unigram) with identical protein

length distributions to human at various values of M shown in the

x-axis. A) The number of identified CO proteins, NCO, at various

M are presented as fraction of Nco = 5511 at M = Inf, showing

saturation of the identified CO set at L.1000.B) The fraction of

proteins for which the identified FTs at various M differ by D from

the identified FTs at M = Inf. The black bar represents the case

where D.0, i.e. considering all proteins for which 1 FT difference

or more was measured. At M = 2000 this fraction is approximately

5%. Red bars represent the case of D.1% of the number of FTs

identified at M = Inf. This fraction is smaller than 5% for all M. C)

NCO found in a uniform random model compared with Nco found

in human proteome, showing a minor fraction of ,3%. D) regular

DFTs of human for various M (black bars), compared with those

obtained for the uniform random model (red). 2 long proteins

(TITIN and MUC16 of length 34350, 22152, respectively) may

contribute a large number to the total DFTs found in the

proteome. However, excluding them reduces DFT counts

considerably in the random model (green) but not in the human

proteome (gray). This shows that the human proteome is not

sensitive to the contribution of few proteins, even the very long

ones, in contrast to the random model. It also shows that the

number of erroneous regular FTs in long proteins may be large

and should be investigated separately. E–F) same as C–D for the

human unigram model.

(TIF)

Figure S4 Dependence of DFT counts in the proteome
on single protein contribution. Proteins were sorted by the

number of FTs identified in them according to the regular (A) and

restrictive definition (B) in human proteome (black), in uniform

model (red) and in unigram model (blue). Long CO proteins were

removed one by one (rank-ordered by length) from the set and the

DFT count was reassessed. In A, the two long proteins (see text)

contribute many DFTs in the random models, but not in human.

(TIF)

Figure S5 Interval recurrences in TITIN and MUCIN-16
of human. The interval distribution of human TITIN protein as

obtained for both regular and restrictive FT definitions (A). This is

compared to the regular FT definition results of uniform (B) and

unigram (C) models of this protein. Random models do not show

any significant interval recurrences while the TITIN protein has

clear high-order structures. Same is shown for MUCIN-16 (D–F).

(TIF)

Figure S6 Genomic measures by kingdoms. A) Boxplots

of the number of proteins in proteomes. B) The fraction of CO

proteins, i.e. FT-containing ones in the proteome. The fraction in

eukaryotes is generally higher than in prokaryotes. Within

eukaryotes, the fractions are not correlated with phylogenetic

distance or species complexity. C) The average protein length in

proteomes showing considerable variability, with prokaryotes

having the smallest average protein length. D) The average length

of CO proteins tends to be higher and flat, showing little variability

across the tree-of-life. Note the different scales in C and D. Species

are grouped as in figure 5 of the main text, vertebrates (V)

invertebrates (IV), plants (P), Fungi (F), Bacteria (B) and Archeae

(A). Dataset was downloaded from NCBI ref-seq.

(TIF)

Figure S7 CO measures. Scatter plots of compositional bias

entropy measures of single amino-acids and of triplets of amino-

acids, the relative coverage RC, and the relative periodicity RP,

for human (blue) and yeast (yellow). A) The relationship among the

normalized entropies, nS1 and nS3 (Pearson correlation is 0.61 in

human and 0.76 in yeast). B) The relationship between nS1 and

RC. C) RC is highly correlated with nS3 (Pearson correlation of

0.93 in human and 0.94 in yeast). D–F) the relationship between

RP andnS1, nS3, and RC, respectively. Correlation between RP

and all these measures are very weak, indicating that RP provides

independent information.

(TIF)

Figure S8 Sensitivity tests based on the rank-ordering
interval distributions. Sensitivity test of human rank-ordering

interval distributions for different k-mers (k) and repetition

thresholds (th). Threshold is defined in terms of the ratio of the

number of repetitions by the protein length. The proteins that are

found to have k-mers that pass the threshold define a new CO set,

which is compared with our original CO (defined by 5 repeats and

k = 3). The percentage of overlap between the two sets is shown.

Note that k = 4, th = 0.1%and the regular FT definition k = 3, th = 5

provide approximately the same CO proteins, and their interval

distributions are very similar: they practically overlap, except for

their tails.

(TIF)
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Figure S9 DFT hierarchy evaluated with restrictive FTs.
Similar box plots of DFT counts across the tree-of-life to the one

presented in figure 5, but using the restrictive FT definition. Each

box delineates lower quartile, median and upper quartile values.

Most extreme values (whiskers) are within 1.5 times the inter-

quartile range from the ends of the box. Outliers are also

displayed. Prokaryotes are displayed twice. First grouped accord-

ing to bacteria and archaea, and secondly as mesophiles and

thermophiles. P-values according to non-parametric two-sample

Kolmogorov-Smirnov test are 2.561022 (V-IV), 3.661023(IV-P),

9.861023 (P-F), 7.8661026 (F-B), 2.361022 (B-A) and 1.3861024

(M-T). Protista species show large variability and cannot be

distinguished from Plantae or Fungi by the DFT measure.

(TIF)

Figure S10 Dependence on run length. Certain GO terms

that depend on runs length as measured by the number of

repetitions at MFI = 1. Run length is associated with DNA-

binding, regulation and transcription in A. thaliana (A) and S.

cerevisiae (B). Bacterial enzymes show similar behavior of cell wall

proteins (C).

(TIF)

Figure S11 Interval shift in mouse. Examples of ortholo-

gous sequences in human and mouse with low sequence similarity.

Numbers followed by AA (green) indicate the numbers of amino-

acid before and after the repetitive section. Within the repetitive

section the leading FTs at MFI are highlighted (blue) and the

number of amino-acids between recurrences of FTs is given in ( )

for visual convenience. These numbers allow for easy observation

of the existence of ‘‘harmonics’’.

(TIF)

Figure S12 Differential Analysis of phase in human and
mouse. Comparison of orthologous CO proteins in human and

mouse with MFI.1 and which have low sequence similarity

ID,70% (n = 204). The most abundant FT at MFI (Flag) of human

sequence (A) and of mouse sequence (B) were each searched in both

species. The histogram of the difference in the average interval of

the occurrences of a flag between the human and mouse protein

pairs is shown. Leftward shift is estimated by the fraction of proteins

that had negative difference compared with positive difference, i.e.

measuring the extent by which regularity tends to disappear in

mouse. Left shift factors yield 2.6 (A) and 0.7 (B).

(TIF)

Figure S13 Comparison of runs in eukaryotes and
prokaryotes. Comparison of runs in eukaryotes and prokaryotes

carried out for the leading 45 FTs, covering all species. The

threshold of 45 was chosen because it is the minimal DFT count

among all species. Plotted are the numbers of FTs composed of a

single amino-acid, representing runs. The Box-plot demonstrates

the significant abundance of runs in eukaryotes (P-val-

ue = 1.067610216, non-parametric two-sample kolmogorov-smir-

nov test).

(TIF)

Figure S14 Clustergram of DFT correlation among
human proteins. Hierarchical clustering based on the matrix

CIJ of 5511 human CO proteins is shown at the top. Heatmap of

CIJ is shown at the bottom, revealing about 10 large clusters in

addition to several small ones. The big group in the middle,

around index 3000, contains mostly ZF proteins.

(TIF)

Figure S15 Summary of DFT presence in the human
proteome. DFT are ordered according to their abundance in the

human Swiss-Prot proteome (x-axis, main panel) and proteins are

ordered according to the classification of the clustergram in figure

S14 (y-axis, main panel). The abundance of each FT is shown in

the upper panel (blue) and the number of DFTs in each protein is

shown on the left panel (blue). On the right, zoom in into the 50

most prevalent FTs showing the co-occurrences in groups of

proteins. Note that their rank is slightly different from Table 6,

which is based on NCBI-RefSeq.

(TIF)

Figure S16 Linear fits of the DFT probability distribu-
tion functions in eukaryotes. Linear fits of the DFT

probability distribution functions are shown for human (A), A.

thaliana (B) and S. cerevisiae (C). A–C) black circles are the data

points and colored dashed lines are the fits over range 0–4 of the x-

axis. P-values are 2.5610236, 2.7610232, 3610224 in human, A.

thaliana and S. cerevisiae, respectively. All eukaryote data have

corresponding power-law fits with P-values smaller than 10217. D)

The slopes (i.e. the power law exponents) of all eukaryotes we have

analyzed. The cases in A–C are indicated by arrows.

(TIF)

Figure S17 Linear fits of the DFT probability distribu-
tion functions in prokaryotes. A) Individual DFT probability

distribution function of all bacterial species (n = 36) superimposed

(black circles). Linear fit, for the range 0–3, was applied to all data

points (P-value,102177, slope = 21.6). B) Same procedure applied

for all archaea species (n = 19). Linear fit with P-value,10265 and

slope = 21.35.

(TIF)

Figure S18 Linear fits of the rank-ordered probability
distribution functions in eukaryotes. rank-ordered distri-

bution function (black circles) and the corresponding linear fits

over the range 0–6 are shown for human (A), A. thaliana (B) and S.

cerevisiae (C) as colored dashed lines. Applying such fits to all

eukaryotes we find that the power-law exponents are close to 21

(D), displaying a universal behavior that is close to the Zipf law. P-

values in all cases are practically 0.

(TIF)

Figure S19 Slopes of the rank-ordered probability
distribution functions. Slopes of all individual interval

probability distribution functions as obtained by a linear fit. P-

values among all species were lower than 10239.

(TIF)

Figure S20 Protein age vs RP. The average age of proteins

(black) is shown versus elevated RP. Error bars on the mean age

are also shown. The statistical significance of the difference

between the age distribution for a given RP threshold and the age

distribution of the entire CO set was estimated according to

Wilcoxon rank-sum test (red).

(TIF)

Table S1 Full list of all Human CO proteins. Detailed

sequence information is provided for all identified Human CO

proteins in the Swiss-Prot record.

(XLSX)

Table S2 Characteristics of the 10 longest human
proteins. Characteristics of the 10 longest human proteins,

displaying their length, assigned DFT counts according to the

regular and restrictive definitions, and error estimates on the

latter, given in ‘()’, for the uniform and unigram random models

respectively. In the unigram model the inhomogeneous drop with

decreasing length is due to statistical fluctuations. Last column
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shows that amendment due to periodicity considerations (see

figure S5) increases considerably the number of validated FTs.

(DOCX)

Table S3 Mutation and selection in cell wall proteins in
yeast by DNA analysis. Analysis of repetitive motifs in cell wall

proteins of S. cervisiaea. First and second columns show the name,

function and starting location of the repetitive section. Third and

fourth columns show the sequences at the protein and DNA levels

respectively. Motifs are divided into identical sections forming

groups which are colored with gray (group 1), blue (group 2) and

white (group 3). The first group is taken as a reference motif and

the remaining groups are compared to it in the following way:

Yellow colored letters indicate mutations that cause the generation

of a distinct motif, i.e. amino-acids different from group 1. Red

colored letters indicate synonymous mutations within each motif

group, thus do not change the motif composition at the amino-

acid level, indicating that some amino-acids are protected by

selection.

(DOCX)

Table S4 Comparison between DFT counts and Neu
values. Listed are all eukaryotes for which we could retrieve the

Neu measure from Lynch & Conery 2003. Left: species are

ordered according to DFT counts in ascending order. Right: Same

species ordered according to Neu in descending order. Both

measures provide an hierarchical ordering of major clades. They

also significantly correlate (correlation coefficient = 20.6, P-

value = 0.012). Clade notations are the same as in figure 5 of the

main text.

(DOCX)

Table S5 Non-orthologous genes and proteins in human
and mouse using Ensembl. For non-orthologous genes we

compare the numbers of different genes, available protein coding

sequences and the number of CO proteins, for five different data

sets. 1) Known genes with RefSeq Protein IDs 2) All genes, i.e.,

including novel and putative, with RefSeq IDs 3) All genes with

UniProtKB/TrEMBL accessions 4) All genes with Entrez IDs 5)

no filter applied. The ratio between the number of CO human and

mouse proteins is between 2 to 5. As found in Swiss-Prot, a large

fraction of the novel CO human proteins are zinc fingers.

(XLSX)

Text S1 Supporting analysis. Description of all the support-

ing analyses (13 sections) that are mentioned in the main text.

(DOCX)

Text S2 GOrilla analysis of Human CO proteins. Results

of functional enrichments in Human CO proteins using GOrilla

web-tool. Enrichments of processes, functions and cellular

components are shown for three analyses: (i) comparing the

Human CO proteins (‘target’) to all Human proteins (‘back-

ground’) (ii) Ranking Human CO proteins by RC (ii) Ranking

Human CO proteins by RP.

(DOCX)

Text S3 GOrilla analysis of Human novel CO proteins.
Results of functional enrichments in Human novel CO proteins

using GOrilla web-tool. Enrichments of processes, functions and

cellular components are shown for (i) Human novel CO proteins

ranked by RC (ii) Human novel CO proteins ranked by RP.

(DOCX)
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